This repository has been archived by the owner on Nov 1, 2024. It is now read-only.
forked from gpt-open/rag-gpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_sqlite_db.py
348 lines (299 loc) · 11.6 KB
/
create_sqlite_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# coding=utf-8
import json
import os
import sqlite3
import time
from werkzeug.security import generate_password_hash
from server.app.utils.diskcache_client import diskcache_client
from server.constant.constants import SQLITE_DB_DIR, SQLITE_DB_NAME
from dotenv import load_dotenv
os.makedirs(SQLITE_DB_DIR, exist_ok=True)
def init_chroma_db():
# Load environment variables from .env file
load_dotenv(override=True)
try:
from server.constant.env_constants import check_env_variables
check_env_variables()
from server.rag.index.embedder.document_embedder import document_embedder
return True
except Exception as e:
print(f"[ERROR] init_chroma_db is failed, the exception is {e}")
return False
def create_table():
conn = sqlite3.connect(f'{SQLITE_DB_DIR}/{SQLITE_DB_NAME}')
cur = conn.cursor()
# Create table to store domain information and status of sitemap
cur.execute('''
CREATE TABLE IF NOT EXISTS t_sitemap_domain_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
domain TEXT NOT NULL,
domain_status INTEGER NOT NULL,
version INTEGER NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
#`domain_status` meanings:
# 1 - 'Domain statistics gathering'
# 2 - 'Domain statistics gathering collected'
# 3 - 'Domain processing'
# 4 - 'Domain processed'
# Create table to store sitemap webpage information
cur.execute('''
CREATE TABLE IF NOT EXISTS t_sitemap_url_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
domain TEXT NOT NULL,
url TEXT NOT NULL,
content TEXT NOT NULL,
content_length INTEGER NOT NULL,
content_md5 TEXT NOT NULL,
doc_status INTEGER NOT NULL,
version INTEGER NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
#`doc_status` meanings:
# 0 - 'Process failed'
# 1 - 'Sitemaps web page recorded'
# 2 - 'Sitemaps web page crawling'
# 3 - 'Sitemaps web page crawling completed'
# 4 - 'Sitemaps web text Embedding stored in VectorDB'
# 5 - 'Sitemaps web page expired and needed crawled again'
# Create table to store isolated webpage information
cur.execute('''
CREATE TABLE IF NOT EXISTS t_isolated_url_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
url TEXT NOT NULL,
content TEXT NOT NULL,
content_length INTEGER NOT NULL,
content_md5 TEXT NOT NULL,
doc_status INTEGER NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
#`doc_status` meanings:
# 0 - 'Process failed'
# 1 - 'Isolated web page recorded'
# 2 - 'Isolated web page crawling'
# 3 - 'Isolated web page crawling completed'
# 4 - 'Isolated web text Embedding stored in VectorDB'
# Create table to store local file
cur.execute('''
CREATE TABLE IF NOT EXISTS t_local_file_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
url TEXT NOT NULL,
origin_file_name TEXT NOT NULL,
file_path TEXT NOT NULL,
file_type TEXT NOT NULL,
content_length INTEGER NOT NULL,
content_md5 TEXT NOT NULL,
doc_status INTEGER NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
#`doc_status` meanings:
# 0 - 'Process failed'
# 1 - 'Local files recorded'
# 2 - 'Local files parsing'
# 3 - 'Local files parsing completed'
# 4 - 'Local files text Embedding stored in VectorDB'
cur.execute('''
CREATE TABLE IF NOT EXISTS t_local_file_chunk_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
file_id INTEGER NOT NULL,
chunk_index INTEGER NOT NULL,
content TEXT NOT NULL,
content_length INTEGER NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
# Create document embedding map table to link documents to their embeddings
cur.execute('''
CREATE TABLE IF NOT EXISTS t_doc_embedding_map_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
doc_id INTEGER NOT NULL,
doc_source INTEGER NOT NULL,
embedding_id_list TEXT NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
#`doc_source` meanings:
# 1 - 'from sitemap URLs'
# 2 - 'from isolated URLs'
# 3 - 'from local files'
# Create user QA record table to store user queries and responses
cur.execute('''
CREATE TABLE IF NOT EXISTS t_user_qa_record_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id TEXT NOT NULL,
query TEXT NOT NULL,
answer TEXT NOT NULL,
source TEXT NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
# Create user QA intervene table for manual intervention in QA pairs
cur.execute('''
CREATE TABLE IF NOT EXISTS t_user_qa_intervene_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
query TEXT NOT NULL,
intervene_answer TEXT NOT NULL,
source TEXT NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
# Create account table to store user account information
cur.execute('''
CREATE TABLE IF NOT EXISTS t_account_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
account_name TEXT NOT NULL,
password_hash TEXT NOT NULL,
is_login INTEGER NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
# Create bot setting table to store chatbot settings
cur.execute('''
CREATE TABLE IF NOT EXISTS t_bot_setting_tab (
id INTEGER PRIMARY KEY AUTOINCREMENT,
initial_messages TEXT NOT NULL,
suggested_messages TEXT NOT NULL,
bot_name TEXT NOT NULL,
bot_avatar TEXT NOT NULL,
chat_icon TEXT NOT NULL,
placeholder TEXT NOT NULL,
model TEXT NOT NULL,
ctime INTEGER NOT NULL,
mtime INTEGER NOT NULL
)
''')
conn.commit()
conn.close()
def create_index():
with sqlite3.connect(f'{SQLITE_DB_DIR}/{SQLITE_DB_NAME}') as conn:
# the index of t_sitemap_domain_tab
conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS idx_domain ON t_sitemap_domain_tab (domain)')
# the index of t_sitemap_url_tab
conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS idx_url ON t_sitemap_url_tab (url)')
conn.execute('CREATE INDEX IF NOT EXISTS idx_ctime ON t_sitemap_url_tab (ctime)')
# the index of t_isolated_url_tab
conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS idx_url ON t_isolated_url_tab (url)')
conn.execute('CREATE INDEX IF NOT EXISTS idx_ctime ON t_isolated_url_tab (ctime)')
# the index of t_local_file_tab
conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS idx_url ON t_local_file_tab (url)')
conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS idx_content_md5 ON t_local_file_tab (content_md5)')
conn.execute('CREATE INDEX IF NOT EXISTS idx_ctime ON t_local_file_tab (ctime)')
# the index of t_local_file_chunk_tab
conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS idx_file_id_chunk_index ON t_local_file_chunk_tab (file_id, chunk_index)')
# the index of t_doc_embedding_map_tab
conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS idx_doc_id_doc_source ON t_doc_embedding_map_tab (doc_id, doc_source)')
conn.execute('CREATE INDEX IF NOT EXISTS idx_ctime ON t_doc_embedding_map_tab (ctime)')
# the index of t_user_qa_record_tab
conn.execute('CREATE INDEX IF NOT EXISTS idx_user_id ON t_user_qa_record_tab (user_id)')
conn.execute('CREATE INDEX IF NOT EXISTS idx_ctime ON t_user_qa_record_tab (ctime)')
# the index of t_user_qa_intervene_tab
conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS idx_query ON t_user_qa_intervene_tab (query)')
conn.execute('CREATE INDEX IF NOT EXISTS idx_ctime ON t_user_qa_intervene_tab (ctime)')
# the index of t_account_tab
conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS idx_account_name ON t_account_tab (account_name)')
def init_admin_account():
# Initialize admin account with predefined credentials
account_name = 'admin'
password = 'open_kf_AIGC@2024'
password_hash = generate_password_hash(password, method='pbkdf2:sha256', salt_length=10)
conn = None
try:
conn = sqlite3.connect(f'{SQLITE_DB_DIR}/{SQLITE_DB_NAME}')
cur = conn.cursor()
# Check if the account name already exists
cur.execute('SELECT id FROM t_account_tab WHERE account_name = ?', (account_name,))
account = cur.fetchone()
if account:
print(f"[INFO] account_name:'{account_name}' already exists.")
else:
timestamp = int(time.time())
cur.execute('INSERT INTO t_account_tab (account_name, password_hash, is_login, ctime, mtime) VALUES (?, ?, ?, ?, ?)',
(account_name, password_hash, 0, timestamp, timestamp))
conn.commit()
except Exception as e:
print(f"[ERROR] init_admin_account is failed, the exception is {e}")
finally:
if conn:
conn.close()
def init_bot_setting():
# Initialize bot settings
initial_messages = ['Hi! What can I help you with?']
suggested_messages = []
bot_name = ''
bot_avatar = ''
chat_icon = ''
placeholder = 'Message...'
model = 'gpt-3.5-turbo'
conn = None
try:
conn = sqlite3.connect(f'{SQLITE_DB_DIR}/{SQLITE_DB_NAME}')
cur = conn.cursor()
# Check if the setting table is empty
cur.execute('SELECT COUNT(*) FROM t_bot_setting_tab')
if cur.fetchone()[0] > 0:
print("[INFO] the bot setting already exists.")
else:
timestamp = int(time.time())
cur.execute('''
INSERT INTO t_bot_setting_tab (id, initial_messages, suggested_messages, bot_name, bot_avatar, chat_icon, placeholder, model, ctime, mtime)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
1,
json.dumps(initial_messages),
json.dumps(suggested_messages),
bot_name, bot_avatar, chat_icon, placeholder, model,
timestamp, timestamp)
)
conn.commit()
# Add bot setting into Cache
try:
key = "open_kf:bot_setting"
bot_setting = {
'id': 1,
'initial_messages': initial_messages,
'suggested_messages': suggested_messages,
'bot_name': bot_name,
'bot_avatar': bot_avatar,
'chat_icon': chat_icon,
'placeholder': placeholder,
'model': model,
'ctime': timestamp,
'mtime': timestamp
}
diskcache_client.set(key, json.dumps(bot_setting))
except Exception as e:
print(f"[ERROR] add bot setting into Cache is failed, the exception is {e}")
except Exception as e:
print(f"[ERROR] init_bot_setting is failed, the exception is {e}")
finally:
if conn:
conn.close()
if __name__ == '__main__':
print('Create tables in the SQLite database')
create_table()
print('Create indexes for the tables')
create_index()
print('Initialize the admin account')
init_admin_account()
print('Initialize the bot settings')
init_bot_setting()
print('SQLite init Done!\n\n')
print("Init Chroma DB")
ret = init_chroma_db()
if ret:
print("Init Chroma DB Done!")
else:
print("Init Chroma DB Failed!")