forked from beehive-lab/mambo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
signals.c
666 lines (584 loc) · 19.8 KB
/
signals.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
This file is part of MAMBO, a low-overhead dynamic binary modification tool:
https://github.com/beehive-lab/mambo
Copyright 2017 The University of Manchester
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include <stdio.h>
#include <signal.h>
#include <assert.h>
#include <unistd.h>
#include <asm/unistd.h>
#include <string.h>
#include "dbm.h"
#include "scanner_common.h"
#ifdef __arm__
#include "pie/pie-thumb-encoder.h"
#include "pie/pie-thumb-decoder.h"
#include "pie/pie-thumb-field-decoder.h"
#include "pie/pie-arm-encoder.h"
#include "pie/pie-arm-decoder.h"
#include "pie/pie-arm-field-decoder.h"
#endif
#ifdef __aarch64__
#include "pie/pie-a64-encoder.h"
#include "pie/pie-a64-decoder.h"
#include "pie/pie-a64-field-decoder.h"
#endif
#define self_send_signal_offset ((uintptr_t)send_self_signal - (uintptr_t)&start_of_dispatcher_s)
#define syscall_wrapper_svc_offset ((uintptr_t)syscall_wrapper_svc - (uintptr_t)&start_of_dispatcher_s)
#define SIGNAL_TRAP_IB (0x94)
#define SIGNAL_TRAP_DB (0x95)
#ifdef __arm__
#define pc_field uc_mcontext.arm_pc
#define sp_field uc_mcontext.arm_sp
#elif __aarch64__
#define pc_field uc_mcontext.pc
#define sp_field uc_mcontext.sp
#endif
typedef struct {
uintptr_t pid;
uintptr_t tid;
uintptr_t signo;
} self_signal;
void install_system_sig_handlers() {
struct sigaction act;
act.sa_sigaction = signal_trampoline;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
int ret = sigaction(UNLINK_SIGNAL, &act, NULL);
assert(ret == 0);
}
int deliver_signals(uintptr_t spc, self_signal *s) {
uint64_t sigmask;
if (global_data.exit_group) {
thread_abort(current_thread);
}
int ret = syscall(__NR_rt_sigprocmask, 0, NULL, &sigmask, sizeof(sigmask));
assert (ret == 0);
for (int i = 0; i < _NSIG; i++) {
if ((sigmask & (1 << i)) == 0
&& atomic_decrement_if_positive_i32(¤t_thread->pending_signals[i], 1) >= 0) {
s->pid = syscall(__NR_getpid);
s->tid = syscall(__NR_gettid);
s->signo = i;
atomic_increment_u32(¤t_thread->is_signal_pending, -1);
return 1;
}
}
return 0;
}
typedef int (*inst_decoder)(void *);
#ifdef __arm__
#define inst_size(inst, is_thumb) (((is_thumb) && ((inst) < THUMB_ADC32)) ? 2 : 4)
#define write_trap(code) if (is_thumb) { \
thumb_udf16((uint16_t **)&write_p, (code)); \
write_p += 2; \
} else { \
arm_udf((uint32_t **)&write_p, (code) >> 4, (code) & 0xF); \
write_p += 4; \
}
#define TRAP_INST_TYPE ((is_thumb) ? THUMB_UDF16 : ARM_UDF)
#elif __aarch64__
#define inst_size(inst, is_thumb) (4)
#define write_trap(code) a64_HVC((uint32_t **)&write_p, (code)); write_p += 4;
#define TRAP_INST_TYPE (A64_HVC)
#endif
bool unlink_indirect_branch(dbm_code_cache_meta *bb_meta, void **o_write_p) {
int br_inst_type, trap_inst_type;
inst_decoder decoder;
void *write_p = *o_write_p;
bool __attribute__((unused)) is_thumb = false;
#ifdef __arm__
if (bb_meta->exit_branch_type == uncond_reg_thumb) {
is_thumb = true;
br_inst_type = THUMB_BX16;
decoder = (inst_decoder)thumb_decode;
} else if (bb_meta->exit_branch_type == uncond_reg_arm) {
br_inst_type = ARM_BX;
decoder = (inst_decoder)arm_decode;
}
#elif __aarch64__
br_inst_type = A64_BR;
decoder = (inst_decoder)a64_decode;
#endif
trap_inst_type = TRAP_INST_TYPE;
int inst = decoder(write_p);
while(inst != br_inst_type && inst != trap_inst_type) {
write_p += inst_size(inst, is_thumb);
inst = decoder(write_p);
}
if (inst == trap_inst_type) {
return false;
}
write_trap(SIGNAL_TRAP_IB);
*o_write_p = write_p;
return true;
}
int get_direct_branch_exit_trap_sz(dbm_code_cache_meta *bb_meta, int fragment_id) {
int sz;
switch(bb_meta->exit_branch_type) {
#ifdef __arm__
case cond_imm_thumb:
case cbz_thumb:
sz = (bb_meta->branch_cache_status & BOTH_LINKED) ? 10 : 6;
break;
case cond_imm_arm:
sz = (bb_meta->branch_cache_status & BOTH_LINKED) ? 8 : 4;
break;
#elif __aarch64__
case uncond_imm_a64:
sz = 4;
break;
case cond_imm_a64:
case cbz_a64:
case tbz_a64:
if (fragment_id >= CODE_CACHE_SIZE) {
// a single branch is inserted for a conditional exit in a trace
// however a second branch may follow for an early exit to an existing trace
sz = 8;
} else {
sz = (bb_meta->branch_cache_status & BOTH_LINKED) ? 12 : 8;
}
break;
#endif
default:
while(1);
}
return sz;
}
bool unlink_direct_branch(dbm_code_cache_meta *bb_meta, void **o_write_p, int fragment_id, uintptr_t pc) {
int offset = 0;
bool __attribute__((unused)) is_thumb = false;
void *write_p = *o_write_p;
offset = get_direct_branch_exit_trap_sz(bb_meta, fragment_id);
if (pc < ((uintptr_t)bb_meta->exit_branch_addr + offset)) {
if (bb_meta->branch_cache_status != 0) {
inst_decoder decoder;
#ifdef __arm__
is_thumb = (bb_meta->exit_branch_type == cond_imm_thumb) || (bb_meta->exit_branch_type == cbz_thumb);
if (is_thumb) {
decoder = (inst_decoder)thumb_decode;
} else {
decoder = (inst_decoder)arm_decode;
}
#elif __aarch64__
decoder = (inst_decoder)a64_decode;
#endif
int inst = decoder(write_p);
if (inst == TRAP_INST_TYPE) {
return false;
}
memcpy(&bb_meta->saved_exit, write_p, offset);
for (int i = 0; i < offset; i += inst_size(TRAP_INST_TYPE, is_thumb)) {
write_trap(SIGNAL_TRAP_DB);
}
} // if (bb_meta->branch_cache_status != 0)
} else {
/* It's already setting up a call to the dispatcher. Ensure that the
fragment is not supposed to be linked */
assert((bb_meta->branch_cache_status & BOTH_LINKED) == 0);
return false;
}
*o_write_p = write_p;
return true;
}
void unlink_fragment(int fragment_id, uintptr_t pc) {
dbm_code_cache_meta *bb_meta;
#ifdef DBM_TRACES
// Skip over trace fragments with elided unconditional branches
branch_type type;
do {
bb_meta = ¤t_thread->code_cache_meta[fragment_id];
type = bb_meta->exit_branch_type;
fragment_id++;
}
#ifdef __arm__
while ((type == uncond_imm_arm || type == uncond_imm_thumb ||
type == uncond_blxi_thumb || type == uncond_blxi_arm) &&
#elif __aarch64__
while (type == uncond_imm_a64 &&
#endif
(bb_meta->branch_cache_status & BOTH_LINKED) == 0 &&
fragment_id >= CODE_CACHE_SIZE &&
fragment_id < current_thread->active_trace.id);
fragment_id--;
// If the fragment isn't installed, make sure it's active
if (fragment_id >= current_thread->trace_id) {
assert(current_thread->active_trace.active);
}
#else
bb_meta = ¤t_thread->code_cache_meta[fragment_id];
#endif
#ifdef __aarch64__
// we don't try to unlink trace exits, we unlink the fragment they jump to
if (bb_meta->exit_branch_type == trace_exit) {
fragment_id = addr_to_fragment_id(current_thread, bb_meta->branch_taken_addr);
bb_meta = ¤t_thread->code_cache_meta[fragment_id];
pc = bb_meta->tpc;
}
#endif
void *write_p = bb_meta->exit_branch_addr;
void *start_addr = write_p;
#ifdef __arm__
if (bb_meta->exit_branch_type == uncond_reg_thumb ||
bb_meta->exit_branch_type == uncond_reg_arm) {
#elif __aarch64__
if (bb_meta->exit_branch_type == uncond_branch_reg) {
#endif
if (!unlink_indirect_branch(bb_meta, &write_p)) {
return;
}
} else if (bb_meta->branch_cache_status != 0) {
if (!unlink_direct_branch(bb_meta, &write_p, fragment_id, pc)) {
return;
}
}
__clear_cache(start_addr, write_p);
}
void translate_delayed_signal_frame(ucontext_t *cont) {
uintptr_t *sp = (uintptr_t *)cont->sp_field;
#ifdef __arm__
/*
r7
r1
r2
PID
TID
SIGNO
R0
TPC
SPC
*/
cont->uc_mcontext.arm_r7 = sp[0];
cont->uc_mcontext.arm_r1 = sp[1];
cont->uc_mcontext.arm_r2 = sp[2];
cont->uc_mcontext.arm_r0 = sp[6];
cont->uc_mcontext.arm_pc = sp[8];
sp += 9;
#elif __aarch64__
/*
TPC, SPC
X2, X8
X0, X1
*/
cont->uc_mcontext.regs[x8] = sp[3];
cont->uc_mcontext.regs[x2] = sp[2];
cont->uc_mcontext.pc = sp[1];
cont->uc_mcontext.regs[x0] = sp[4];
cont->uc_mcontext.regs[x1] = sp[5];
sp += 6;
#endif
cont->sp_field = (uintptr_t)sp;
}
void translate_svc_frame(ucontext_t *cont) {
uintptr_t *sp = (uintptr_t *)cont->sp_field;
#ifdef __arm__
cont->uc_mcontext.arm_r8 = sp[8];
cont->uc_mcontext.arm_r9 = sp[9];
cont->uc_mcontext.arm_r10 = sp[10];
cont->uc_mcontext.arm_fp = sp[11];
cont->uc_mcontext.arm_ip = sp[12];
cont->uc_mcontext.arm_lr = sp[13];
cont->uc_mcontext.arm_pc = sp[15];
sp += 16;
#elif __aarch64__
#define FPSIMD_SIZE (0x210)
assert(cont->uc_mcontext.regs[x8] != __NR_rt_sigreturn);
struct fpsimd_context *fpstate = (struct fpsimd_context *)&cont->uc_mcontext.__reserved;
// Set up the FP state first
assert(fpstate->head.magic == FPSIMD_MAGIC && fpstate->head.size == FPSIMD_SIZE);
memcpy(fpstate->vregs, sp, sizeof(fpstate->vregs));
fpstate->fpsr = cont->uc_mcontext.regs[x21];
fpstate->fpcr = cont->uc_mcontext.regs[x20];
sp += 512 / sizeof(sp[0]);
// Now set the general purpose registers & PSTATE
cont->uc_mcontext.pstate = cont->uc_mcontext.regs[x19];
for (int r = 9; r <= 21; r++) {
cont->uc_mcontext.regs[r] = sp[r];
}
cont->uc_mcontext.pc = sp[23];
cont->uc_mcontext.regs[x29] = sp[24];
cont->uc_mcontext.regs[x30] = sp[25];
sp += 26;
#endif
cont->sp_field = (uintptr_t)sp;
}
#define PSTATE_N (1 << 31)
#define PSTATE_Z (1 << 30)
#define PSTATE_C (1 << 29)
#define PSTATE_V (1 << 28)
bool interpret_condition(uint32_t pstate, mambo_cond cond) {
assert(cond >= 0 && cond <= 0xF);
bool state = true;
switch (cond >> 1) {
case 0:
state = pstate & PSTATE_Z;
break;
case 1:
state = pstate & PSTATE_C;
break;
case 2:
state = pstate & PSTATE_N;
break;
case 3:
state = pstate & PSTATE_V;
break;
case 4:
state = (pstate & PSTATE_C) && ((pstate & PSTATE_Z) == 0);
break;
case 5:
state = ((pstate & PSTATE_N) ? true : false) == ((pstate & PSTATE_V) ? true : false);
break;
case 6:
state = ((pstate & PSTATE_N) ? true : false) == ((pstate & PSTATE_V) ? true : false);
state = state && ((pstate & PSTATE_Z) == 0);
break;
case 7:
state = true;
break;
}
state = state ? true : false;
if (cond < 14 && (cond & 1)) {
state = !state;
}
return state;
}
#ifdef __aarch64__
bool interpret_cbz(ucontext_t *cont, dbm_code_cache_meta *bb_meta) {
int reg = (bb_meta->rn) & 0x1F;
uint64_t val = cont->uc_mcontext.regs[reg];
if (bb_meta->rn & (1 << 5)) {
val &= 0xFFFFFFFF;
}
return (val == 0) ^ (bb_meta->branch_condition);
}
bool interpret_tbz(ucontext_t *cont, dbm_code_cache_meta *bb_meta) {
int reg = (bb_meta->rn) & 0x1F;
int bit = (bb_meta->rn) >> 5;
bool is_taken = (cont->uc_mcontext.regs[reg] & (1 << bit)) == 0;
return is_taken ^ bb_meta->branch_condition;
}
#endif
#ifdef __arm__
#define direct_branch(write_p, target, cond) if (is_thumb) { \
thumb_b32_helper((write_p), (target)); \
} else { \
arm_b32_helper((write_p), (target), cond); \
}
#elif __aarch64__
#define direct_branch(write_p, target, cond) a64_b_helper((write_p), (target) + 4);
#endif
#ifdef __arm__
void restore_exit(dbm_thread *thread_data, int fragment_id, void **o_write_p, bool is_thumb) {
#elif __aarch64__
void restore_exit(dbm_thread *thread_data, int fragment_id, void **o_write_p) {
#endif
void *write_p = *o_write_p;
dbm_code_cache_meta *bb_meta = &thread_data->code_cache_meta[fragment_id];
int restore_sz = get_direct_branch_exit_trap_sz(bb_meta, fragment_id);
memcpy(write_p, &bb_meta->saved_exit, restore_sz);
write_p += restore_sz;
*o_write_p = write_p;
}
void restore_ihl_regs(ucontext_t *cont) {
uintptr_t *sp = (uintptr_t *)cont->sp_field;
#ifdef __arm__
cont->context_reg(5) = sp[0];
cont->context_reg(6) = sp[1];
#elif __aarch64__
cont->context_reg(0) = sp[0];
cont->context_reg(1) = sp[1];
#endif
sp += 2;
cont->sp_field = (uintptr_t)sp;
}
void sigret_dispatcher_call(dbm_thread *thread_data, ucontext_t *cont, uintptr_t target) {
uintptr_t *sp = (uintptr_t *)cont->context_sp;
#ifdef __arm__
sp -= DISP_SP_OFFSET / 4;
#elif __aarch64__
sp -= 2;
#endif
sp[0] = cont->context_reg(0);
sp[1] = cont->context_reg(1);
#ifdef __arm__
sp[2] = cont->context_reg(2);
sp[3] = cont->context_reg(3);
#endif
cont->context_reg(0) = target;
cont->context_reg(1) = 0;
cont->context_pc = thread_data->dispatcher_addr;
#ifdef __arm__
cont->context_reg(3) = cont->context_sp;
cont->uc_mcontext.arm_cpsr &= ~CPSR_T;
#endif
cont->context_sp = (uintptr_t)sp;
}
#ifdef __arm__
#define restore_ihl_inst(addr) if (is_thumb) { \
thumb_bx16((uint16_t **)&addr, r6); \
__clear_cache((void *)addr, (void *)addr + 2); \
} else { \
arm_bx((uint32_t **)&addr, r6); \
__clear_cache((void *)addr, (void *)addr + 4); \
}
#elif __aarch64__
#define restore_ihl_inst(addr) a64_BR((uint32_t **)&addr, x0); \
__clear_cache((void *)addr, (void *)addr + 4);
#endif
/* If type == indirect && pc >= exit, read the pc and deliver the signal */
/* If pc < <type specific>, unlink the fragment and resume execution */
uintptr_t signal_dispatcher(int i, siginfo_t *info, void *context) {
uintptr_t handler = 0;
bool deliver_now = false;
assert(i >= 0 && i < _NSIG);
ucontext_t *cont = (ucontext_t *)context;
uintptr_t pc = (uintptr_t)cont->pc_field;
uintptr_t cc_start = (uintptr_t)¤t_thread->code_cache->blocks[trampolines_size_bbs];
uintptr_t cc_end = cc_start + MAX_BRANCH_RANGE;
if (global_data.exit_group > 0) {
if (pc >= cc_start && pc < cc_end) {
int fragment_id = addr_to_fragment_id(current_thread, (uintptr_t)pc);
dbm_code_cache_meta *bb_meta = ¤t_thread->code_cache_meta[fragment_id];
if (pc >= (uintptr_t)bb_meta->exit_branch_addr) {
thread_abort(current_thread);
}
unlink_fragment(fragment_id, pc);
}
atomic_increment_u32(¤t_thread->is_signal_pending, 1);
return 0;
}
if (pc == ((uintptr_t)current_thread->code_cache + self_send_signal_offset)) {
translate_delayed_signal_frame(cont);
deliver_now = true;
} else if (pc == ((uintptr_t)current_thread->code_cache + syscall_wrapper_svc_offset)) {
translate_svc_frame(cont);
deliver_now = true;
}
if (deliver_now) {
handler = lookup_or_scan(current_thread, global_data.signal_handlers[i]);
return handler;
}
if (pc >= cc_start && pc < cc_end) {
int fragment_id = addr_to_fragment_id(current_thread, (uintptr_t)pc);
dbm_code_cache_meta *bb_meta = ¤t_thread->code_cache_meta[fragment_id];
if (pc >= (uintptr_t)bb_meta->exit_branch_addr) {
void *write_p;
if (i == UNLINK_SIGNAL) {
uint32_t imm;
#ifdef __arm__
bool is_thumb = cont->uc_mcontext.arm_cpsr & CPSR_T;
if (is_thumb) {
thumb_udf16_decode_fields((uint16_t *)pc, &imm);
} else {
uint32_t imm12, imm4;
arm_udf_decode_fields((uint32_t *)pc, &imm12, &imm4);
imm = (imm12 << 4) | imm4;
}
#elif __aarch64__
a64_HVC_decode_fields((uint32_t *)pc, &imm);
#endif
if (imm == SIGNAL_TRAP_IB) {
restore_ihl_inst(pc);
int rn = current_thread->code_cache_meta[fragment_id].rn;
uintptr_t target;
#ifdef __arm__
unsigned long *regs = &cont->uc_mcontext.arm_r0;
target = regs[rn];
#elif __aarch64__
target = cont->uc_mcontext.regs[rn];
#endif
restore_ihl_regs(cont);
sigret_dispatcher_call(current_thread, cont, target);
return 0;
} else if (imm == SIGNAL_TRAP_DB) {
write_p = bb_meta->exit_branch_addr;
void *start_addr = write_p;
#ifdef __arm__
restore_exit(current_thread, fragment_id, &write_p, is_thumb);
#elif __aarch64__
restore_exit(current_thread, fragment_id, &write_p);
#endif
__clear_cache(start_addr, write_p);
bool is_taken;
switch(bb_meta->exit_branch_type) {
#ifdef __arm__
case cond_imm_thumb:
case cond_imm_arm:
is_taken = interpret_condition(cont->uc_mcontext.arm_cpsr, bb_meta->branch_condition);
break;
case cbz_thumb: {
unsigned long *regs = &cont->uc_mcontext.arm_r0;
is_taken = regs[bb_meta->rn] == 0;
break;
}
#elif __aarch64__
case uncond_imm_a64:
is_taken = true;
break;
case cond_imm_a64:
is_taken = interpret_condition(cont->uc_mcontext.pstate, bb_meta->branch_condition);
break;
case cbz_a64:
is_taken = interpret_cbz(cont, bb_meta);
break;
case tbz_a64:
is_taken = interpret_tbz(cont, bb_meta);
break;
#endif
default:
fprintf(stderr, "Signal: interpreting of %d fragments not implemented\n", bb_meta->exit_branch_type);
while(1);
}
// Set up *sigreturn* to the dispatcher
sigret_dispatcher_call(current_thread, cont,
is_taken ? bb_meta->branch_taken_addr : bb_meta->branch_skipped_addr);
return 0;
} else {
fprintf(stderr, "Error: unknown MAMBO trap code\n");
while(1);
}
} // i == UNLINK_SIGNAL
} // if (pc >= (uintptr_t)bb_meta->exit_branch_addr)
unlink_fragment(fragment_id, pc);
}
/* Call the handlers of synchronous signals immediately
The SPC of the instruction is unknown, so sigreturning to addresses derived
from the PC value in the signal frame is not supported.
We mangle the PC in the context to hopefully trap such attempts.
*/
if (i == SIGSEGV || i == SIGBUS || i == SIGFPE || i == SIGTRAP || i == SIGILL || i == SIGSYS) {
handler = global_data.signal_handlers[i];
if (pc < cc_start || pc >= cc_end) {
fprintf(stderr, "Synchronous signal outside the code cache\n");
while(1);
}
// Check if the application actually has a handler installed for the signal used by MAMBO
if (handler == (uintptr_t)SIG_IGN || handler == (uintptr_t)SIG_DFL) {
assert(i == UNLINK_SIGNAL);
// Remove this handler
struct sigaction act;
act.sa_sigaction = (void *)handler;
sigemptyset(&act.sa_mask);
int ret = sigaction(i, &act, NULL);
assert(ret == 0);
// sigreturn so the same signal is raised again without an installed signal handler
return 0;
}
cont->pc_field = 0;
handler = lookup_or_scan(current_thread, handler);
return handler;
}
atomic_increment_int(¤t_thread->pending_signals[i], 1);
atomic_increment_u32(¤t_thread->is_signal_pending, 1);
return handler;
}