-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOverlapTestUI.py
435 lines (375 loc) · 16.2 KB
/
OverlapTestUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Script control setup area
__script__.title = 'ECH Overlap'
__script__.version = '1.0'
import sys
# Imports
from Reduction import overlap
'''Extra plots'''
if 'Plot4' not in globals():
Plot4 = Plot(title='Chi-squared history')
Plot4.close = noclose
if 'Plot5' not in globals():
Plot5 = Plot(title='Gain')
Plot5.close = noclose
if 'Plot6' not in globals():
Plot6 = Plot(title='Residual Map')
Plot6.close = noclose
''' User Interface '''
# Output Folder
out_folder = Par('file',"")
out_folder.dtype = 'folder'
output_xyd = Par('bool','True')
output_cif = Par('bool','True')
output_fxye = Par('bool','False')
output_stem = Par('string','overlap_')
Group('Output Folder').add(output_xyd,output_cif,output_fxye,output_stem,out_folder)
# Normalization
# We link the normalisation sources to actual dataset locations right here, right now
norm_table = {'Monitor 1':'bm1_counts','Monitor 2':'bm2_counts',
'Monitor 3':'bm3_counts','Detector time':'detector_time'}
norm_apply = Par('bool', 'True')
norm_reference = Par('string', 'Monitor 3', options = norm_table.keys())
norm_target = Par('string', 'auto')
Group('Normalization').add(norm_apply, norm_reference, norm_target)
# Vertical Tube Correction
vtc_apply = Par('bool', 'True')
vtc_file = Par('file', '')
vtc_file.ext = '*.txt,*.*'
Group('Vertical Tube Correction').add(vtc_apply, vtc_file)
# Efficiency Correction
eff_apply = Par('bool', 'True')
eff_map = Par('file', '')
eff_map.ext = '*.*'
eff_show = Act('eff_show_proc()', 'Show')
Group('Efficiency Correction').add(eff_apply, eff_map, eff_show)
# Horizontal Tube Correction
#htc_apply = Par('bool', 'True')
#htc_file = Par('file', '')
#htc_file.ext = '*.ang,*.*'
#Group('Horizontal Tube Correction').add(htc_apply, htc_file)
# Recalculate gain
regain_apply = Par('bool','True')
regain_iterno = Par('int','5')
regain_unit_weights = Par('bool','True')
regain_ignore = Par('int','2')
Group('Recalculate Gain').add(regain_apply,regain_iterno,regain_unit_weights,regain_ignore)
# Vertical Integration
vig_lower_boundary = Par('int', '0')
vig_upper_boundary = Par('int', '127')
#vig_apply_rescale = Par('bool', 'True')
#vig_rescale_target = Par('float', '10000.0')
#vig_cluster = Par('float','0.03')
Group('Vertical Integration').add(vig_lower_boundary, vig_upper_boundary)
# Plot Helper
plh_from = Par('string', 'Plot 2', options = ['Plot 1', 'Plot 2', 'Plot 3'])
plh_to = Par('string', 'Plot 3', options = ['Plot 1', 'Plot 2', 'Plot 3'])
plh_copy = Act('plh_copy_proc()', 'Copy')
Group('Copy 1D Datasets').add(plh_from, plh_to, plh_copy)
plh_plot = Par('string', '', options = ['Plot 1', 'Plot 2', 'Plot 3'], command = 'plh_plot_changed()')
plh_dataset = Par('string', '', options = ['All'])
plh_delete = Act('plh_delete_proc()', 'Delete')
Group('Delete 1D Datasets').add(plh_plot, plh_dataset, plh_delete)
''' Load Preferences '''
efficiency_file_uri = __UI__.getPreference("au.gov.ansto.bragg.echidna.ui:efficiency_file_uri")
angular_offset_file = __UI__.getPreference("au.gov.ansto.bragg.echidna.ui:angular_offset_file")
normalisation_reference = __UI__.getPreference("au.gov.ansto.bragg.echidna.ui:normalisation_reference")
user_output_dir = __UI__.getPreference("au.gov.ansto.bragg.echidna.ui:user_output_dir")
#
# Set the optional values to those in the preferences file
#
if user_output_dir:
out_folder.value = user_output_dir
if angular_offset_file:
htc_file.value = angular_offset_file
if normalisation_reference: #saved as location, need label instead
vals = filter(lambda a:a[1]==normalisation_reference,norm_table.items())
if vals: norm_reference.value = vals[0]
if efficiency_file_uri:
eff_map.value = efficiency_file_uri
# Storage for efficiency map
if not 'eff_map_cache' in globals():
eff_map_cache = {}
''' Button Actions '''
# show Efficiency Correction Map
def eff_show_proc():
from Reduction import reduction
eff_map_canonical = eff_map.value
if eff_map.value[0:5] != 'file:':
eff_map_canonical = 'file:' + eff_map.value
if not eff_map_canonical in eff_map_cache:
eff_map_cache[eff_map_canonical] = reduction.read_efficiency_cif(eff_map_canonical)
else:
print 'Found in cache ' + `eff_map_cache[eff_map_canonical]`
Plot1.clear()
Plot1.set_dataset(eff_map_cache[eff_map_canonical][0])
Plot1.title = 'Efficiency map' #add info to this title!
def plh_copy_proc():
src = str(plh_from.value)
dst = str(plh_to.value)
plots = {'Plot 1': Plot1, 'Plot 2': Plot2, 'Plot 3': Plot3}
if not src in plots:
print 'specify source plot'
return
if not dst in plots:
print 'specify target plot'
return
if src == dst:
print 'specify a different target plot'
return
src_plot = plots[src]
dst_plot = plots[dst]
src_ds = src_plot.ds
if type(src_ds) is not list:
print 'source plot does not contain 1D datasets'
return
dst_ds = dst_plot.ds
if type(dst_ds) is not list:
dst_plot.clear()
dst_ds = []
dst_ds_ids = [id(ds) for ds in dst_ds]
for ds in src_ds:
if id(ds) not in dst_ds_ids:
dst_plot.add_dataset(ds)
def plh_plot_changed():
target = str(plh_plot.value)
plots = {'Plot 1': Plot1, 'Plot 2': Plot2, 'Plot 3': Plot3}
if not target in plots:
print 'specify source plot'
plh_dataset.options = []
return
target_plot = plots[target]
target_ds = target_plot.ds
target_list = ['All']
if (type(target_ds) is not list) or (len(target_ds) == 0):
print 'target plot does not contain 1D datasets'
plh_dataset.options = []
return
for ds in target_ds:
target_list.append(ds.title)
plh_dataset.options = target_list
plh_dataset.value = 'All'
def plh_delete_proc():
target = str(plh_plot.value)
dataset = str(plh_dataset.value)
plots = {'Plot 1': Plot1, 'Plot 2': Plot2, 'Plot 3': Plot3}
if not target in plots:
print 'specify source plot'
plh_dataset.options = []
return
target_plot = plots[target]
target_ds = target_plot.ds
if (type(target_ds) is not list) or (len(target_ds) == 0):
print 'target plot does not contain 1D datasets'
plh_dataset.options = []
return
if dataset == 'All':
for ds in target_ds:
target_plot.remove_dataset(ds)
else:
for ds in target_ds:
if ds.title == dataset:
target_plot.remove_dataset(ds)
''' Script Actions '''
# This function is called when pushing the Run button in the control UI.
def __run_script__(fns):
global Plot4,Plot5,Plot6
from Reduction import reduction,AddCifMetadata
from os.path import basename
from os.path import join
import time #how fast are we going?
from Formats import output
elapsed = time.clock()
print 'Started working at %f' % (time.clock()-elapsed)
df.datasets.clear()
# check input
if (fns is None or len(fns) == 0) :
print 'no input datasets'
return
# check if input needs to be normalized
if norm_apply.value:
# norm_ref is the source of information for normalisation
# norm_tar is the value norm_ref should become,
# by multiplication. If 'auto', the maximum value of norm_ref
# for the first dataset is used, otherwise any number may be entered.
norm_ref = str(norm_reference.value)
norm_tar = str(norm_target.value).lower()
# check if normalization target needs to be determined
if len(norm_tar) == 0:
norm_ref = None
norm_tar = None
print 'WARNING: no reference for normalization was specified'
elif norm_tar == 'auto':
# set flag
norm_tar = -1
# iterate through input datasets
location = norm_table[norm_ref]
print 'utilized reference value for "' + norm_ref + '" is:', norm_tar
# use provided reference value
else:
norm_tar = float(norm_tar)
else:
norm_ref = None
norm_tar = None
# check if eff-map needs to be loaded
if eff_apply.value:
if not eff_map.value:
eff = None
print 'WARNING: no eff-map was specified'
else:
eff_map_canonical = str(eff_map.value)
if eff_map_canonical[0:5] != 'file:':
eff_map_canonical = 'file:' + eff_map_canonical
if not eff_map_canonical in eff_map_cache:
eff_map_cache[eff_map_canonical] = reduction.read_efficiency_cif(eff_map_canonical)
else:
print 'Found in cache ' + `eff_map_canonical`
eff = eff_map_cache[eff_map_canonical]
else:
eff = None
# check if vertical tube correction needs to be loaded
if vtc_apply.value:
if not vtc_file.value:
vtc = None
print 'WARNING: no vtc-file was specified'
else:
vtc = str(vtc_file.value)
else:
vtc = None
# iterate through input datasets
# note that the normalisation target (an arbitrary number) is set by
# the first dataset unless it has already been specified.
for fn in fns:
# load dataset
ds = df[fn]
# extract basic metadata
ds = reduction.AddCifMetadata.extract_metadata(ds)
# remove redundant dimensions
rs = ds.get_reduced()
rs.copy_cif_metadata(ds)
# check if normalized is required
if norm_ref:
ds,norm_tar = reduction.applyNormalization(rs, reference=norm_table[norm_ref], target=norm_tar)
print 'Finished normalisation at %f' % (time.clock()-elapsed)
# check if vertical tube correction is required
if vtc:
ds = reduction.getVerticallyCorrected(ds, vtc)
print 'Finished vertical offset correction at %f' % (time.clock()-elapsed)
# check if efficiency correction is required
if eff:
ds = reduction.getEfficiencyCorrected(ds, eff)
print 'Finished efficiency correction at %f' % (time.clock()-elapsed)
# check if we are recalculating gain
if regain_apply.value:
b = ds.intg(axis=1).get_reduced() #reduce dimension
ignore = regain_ignore.value #Ignore first two tubes
# Determine pixels per tube interval
tube_pos = ds.axes[-1]
tubesep = abs(tube_pos[0]-tube_pos[-1])/(len(tube_pos)-1)
tube_steps = ds.axes[0]
bin_size = abs(tube_steps[0]-tube_steps[-1])/(len(tube_steps)-1)
pixel_step = int(round(tubesep/bin_size))
bin_size = tubesep/pixel_step
print '%f tube separation, %d steps before overlap, ideal binsize %f' % (tubesep,pixel_step,bin_size)
# Reshape with individual sections summed
c = b.reshape([b.shape[0]/pixel_step,pixel_step,b.shape[-1]])
print `b.shape` + "->" + `c.shape`
# sum the individual unoverlapped sections
d = c.intg(axis=1)
e = d.transpose()
# we skip the first tubes' data as it is all zero
# Get an initial average to start with
bottom = vig_lower_boundary.value
top = vig_upper_boundary.value
resummed = ds[:,bottom:top,:]
resummed = resummed.intg(axis=1).get_reduced()
first_gain = array.ones(len(b.transpose())-ignore)
first_ave,x,first_var = overlap.apply_gain(resummed.transpose()[ignore:,:],1.0/resummed.transpose().var[ignore:,:],pixel_step,first_gain, calc_var=True)
if regain_unit_weights.value is True:
weights = array.ones_like(e[ignore:])
else:
weights = 1.0/e[ignore:].var
q= iterate_data(e[ignore:],weights,pixel_step=1,iter_no=int(regain_iterno.value))
# Now we actually apply the vertical limits requested
f,x, varf = overlap.apply_gain(resummed.transpose()[ignore:,:],1.0/resummed.transpose().var[ignore:,:],pixel_step,q[0],calc_var=True)
# Get error for full dataset
esds = overlap.calc_error_new(b.transpose()[ignore:,:],f,q[0],pixel_step)
f = Dataset(f)
f.title = "After scaling"
f.var = varf
# construct the ideal axes
axis = arange(len(f))
f.axes[0] = axis*bin_size + ds.axes[0][0] + ignore*pixel_step*bin_size
f.copy_cif_metadata(ds)
print `f.shape` + ' ' + `x.shape`
Plot1.set_dataset(f)
first_ave = Dataset(first_ave)
first_ave.var = first_var
first_ave.title = "Before scaling"
first_ave.axes[0] = f.axes[0]
Plot1.add_dataset(Dataset(first_ave))
Plot4.set_dataset(Dataset(q[4]))
fg = Dataset(q[0])
fg.var = esds
Plot5.set_dataset(fg)
# show old esds
fgold = Dataset(q[0])
fgold.var = q[5]
Plot5.add_dataset(fgold)
residual_map = Dataset(q[3])
try:
Plot6.set_dataset(residual_map)
except:
pass
print 'Finished regain calculation at %f' % (time.clock() - elapsed)
# Output datasets
filename_base = join(str(out_folder.value),str(output_stem.value) + basename(str(fn))[:-7])
if output_cif.value:
output.write_cif_data(f,filename_base)
if output_xyd.value:
output.write_xyd_data(f,filename_base)
if output_fxye.value:
output.write_fxye_data(f,filename_base)
print 'Finished writing data at %f' % (time.clock()-elapsed)
def iterate_data(dataset,weights,pixel_step=25,iter_no=5,pixel_mask=None):
start_gain = array.ones(len(dataset))
gain,first_ave,ar,esds,K = overlap.find_gain_fr(dataset,weights,pixel_step,start_gain,pixel_mask=pixel_mask)
chisquared,residual_map = overlap.get_statistics_fr(gain,first_ave,dataset,dataset.var,pixel_step,pixel_mask)
Plot1.set_dataset(Dataset(first_ave))
Plot2.set_dataset(zeros_like(first_ave))
old_result = first_ave #store for later
chisq_history = [chisquared]
if iter_no > 0:
no_iters = iter_no
else:
no_iters = abs(iter_no)
for cycle_no in range(no_iters+1):
esdflag = cycle_no == iter_no
if cycle_no > 3 and iter_no < 0:
esdflag = (esdflag or (abs(chisq_history[-2]-chisq_history[-1]))<0.005)
gain,interim_result,ar,esds,K = overlap.find_gain_fr(dataset,weights,pixel_step,gain,arminus1=ar,pixel_mask=pixel_mask,errors=esdflag)
chisquared,residual_map = overlap.get_statistics_fr(gain,interim_result,dataset,dataset.var,pixel_step,pixel_mask)
chisq_history.append(chisquared)
if not cycle_no % ((iter_no/2)+1): # +1 to avoid division by zero for single step iterations
print "Plotting cycle %d" % cycle_no
Plot1.add_dataset(Dataset(interim_result))#,label="%d" % cycle_no)
Plot2.add_dataset(Dataset(interim_result-first_ave))#,label="%d" % cycle_no)
old_result = interim_result
Plot3.set_dataset(Dataset(chisq_history))#,label="%d" % cycle_no)
print 'Maximum shift/error: %f' % max(ar/esds)
return gain,dataset,interim_result,residual_map,chisquared,esds,first_ave
# dispose
def __dispose__():
global Plot1,Plot2,Plot3
Plot1.clear()
Plot2.clear()
Plot3.clear()
''' Quick-Fix '''
def run_action(act):
act.set_running_status()
try:
exec(act.command)
act.set_done_status()
except:
act.set_error_status()
traceback.print_exc(file = sys.stdout)
raise Exception, 'Error in running <' + act.text + '>'