forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_handler.py
84 lines (72 loc) · 3.64 KB
/
model_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright (C) 2018-2020 Intel Corporation
#
# SPDX-License-Identifier: MIT
import cv2
import numpy as np
import os
from model_loader import ModelLoader
class ModelHandler:
def __init__(self):
base_dir = os.path.abspath(os.environ.get("MODEL_PATH", "/opt/nuclio"))
model_xml = os.path.join(base_dir, "dextr.xml")
model_bin = os.path.join(base_dir, "dextr.bin")
self.model = ModelLoader(model_xml, model_bin)
# Input:
# image: PIL image
# points: [[x1,y1], [x2,y2], [x3,y3], [x4,y4], ...]
# Output:
# polygon: [[x1,y1], [x2,y2], [x3,y3], [x4,y4], ...]
def handle(self, image, points):
DEXTR_PADDING = 50
DEXTR_TRESHOLD = 0.9
DEXTR_SIZE = 512
numpy_image = np.array(image)
points = np.asarray(points, dtype=int)
bounding_box = (
max(min(points[:, 0]) - DEXTR_PADDING, 0),
max(min(points[:, 1]) - DEXTR_PADDING, 0),
min(max(points[:, 0]) + DEXTR_PADDING, numpy_image.shape[1] - 1),
min(max(points[:, 1]) + DEXTR_PADDING, numpy_image.shape[0] - 1)
)
# Prepare an image
numpy_cropped = np.array(image.crop(bounding_box))
resized = cv2.resize(numpy_cropped, (DEXTR_SIZE, DEXTR_SIZE),
interpolation = cv2.INTER_CUBIC).astype(np.float32)
if len(resized.shape) == 2: # support grayscale images
resized = cv2.cvtColor(resized, cv2.COLOR_GRAY2RGB)
elif resized.shape[2] == 4: # remove alpha channel
resized = resized[:, :, :3]
# Make a heatmap
points = points - [min(points[:, 0]), min(points[:, 1])] + [DEXTR_PADDING, DEXTR_PADDING]
points = (points * [DEXTR_SIZE / numpy_cropped.shape[1], DEXTR_SIZE / numpy_cropped.shape[0]]).astype(int)
heatmap = np.zeros(shape=resized.shape[:2], dtype=np.float64)
for point in points:
gaussian_x_axis = np.arange(0, DEXTR_SIZE, 1, float) - point[0]
gaussian_y_axis = np.arange(0, DEXTR_SIZE, 1, float)[:, np.newaxis] - point[1]
gaussian = np.exp(-4 * np.log(2) * ((gaussian_x_axis ** 2 + gaussian_y_axis ** 2) / 100)).astype(np.float64)
heatmap = np.maximum(heatmap, gaussian)
cv2.normalize(heatmap, heatmap, 0, 255, cv2.NORM_MINMAX)
# Concat an image and a heatmap
input_dextr = np.concatenate((resized, heatmap[:, :, np.newaxis].astype(resized.dtype)), axis=2)
input_dextr = input_dextr.transpose((2,0,1))
pred = self.model.infer(input_dextr[np.newaxis, ...], False)[0, 0, :, :]
pred = cv2.resize(pred, tuple(reversed(numpy_cropped.shape[:2])), interpolation = cv2.INTER_CUBIC)
result = np.zeros(numpy_image.shape[:2])
result[bounding_box[1]:bounding_box[1] + pred.shape[0], bounding_box[0]:bounding_box[0] + pred.shape[1]] = pred > DEXTR_TRESHOLD
# Convert a mask to a polygon
result = np.array(result, dtype=np.uint8)
cv2.normalize(result,result,0,255,cv2.NORM_MINMAX)
contours = None
if int(cv2.__version__.split('.')[0]) > 3:
contours = cv2.findContours(result, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0]
else:
contours = cv2.findContours(result, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1]
contours = max(contours, key=lambda arr: arr.size)
if contours.shape.count(1):
contours = np.squeeze(contours)
if contours.size < 3 * 2:
raise Exception('Less then three point have been detected. Can not build a polygon.')
result = []
for point in contours:
result.append([int(point[0]), int(point[1])])
return result