forked from Evolutionary-Intelligence/D-LM-MA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lmmaes.py
92 lines (78 loc) · 4.17 KB
/
lmmaes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
from es import ES
from maes import MAES
class LMMAES(ES):
"""Limited-Memory Matrix Adaptation Evolution Strategy (LMMAES).
Reference
---------
Loshchilov, I., Glasmachers, T. and Beyer, H.G., 2019.
Large scale black-box optimization by limited-memory matrix adaptation.
IEEE Transactions on Evolutionary Computation, 23(2), pp.353-358.
https://ieeexplore.ieee.org/abstract/document/8410043
"""
def __init__(self, problem, options):
ES.__init__(self, problem, options)
n_evolution_paths = 4 + int(3 * np.log(self.ndim_problem))
self.n_evolution_paths = options.get('n_evolution_paths', n_evolution_paths) # m in Algorithm 1
self.c_s = options.get('c_s', self._set_c_s()) # c_sigma in Algorithm 1
self._s_1 = self._set__s_1() # for Line 13 in Algorithm 1
self._s_2 = self._set__s_2() # for Line 13 in Algorithm 1
self._c_d = self._set__c_d()
self._c_c = self._set__c_c()
def _set_c_s(self):
return 2 * self.n_individuals / self.ndim_problem
def _set__s_1(self):
return 1 - self.c_s
def _set__s_2(self):
return np.sqrt(self._mu_eff * self.c_s * (2 - self.c_s))
def _set__c_d(self):
return 1 / (self.ndim_problem * np.power(1.5, np.arange(self.n_evolution_paths)))
def _set__c_c(self):
return self.n_individuals / (self.ndim_problem * np.power(4.0, np.arange(self.n_evolution_paths)))
def initialize(self, is_restart=False):
self.c_s = self._set_c_s() # c_sigma in Algorithm 1
self._s_1 = self._set__s_1()
self._s_2 = self._set__s_2() # for Line 13 in Algorithm 1
self._c_c = self._set__c_c()
z = np.empty((self.n_individuals, self.ndim_problem)) # Gaussian noise for mutation
d = np.empty((self.n_individuals, self.ndim_problem)) # search directions
mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution
s = np.zeros((self.ndim_problem,)) # evolution path (p in Algorithm 1)
tm = np.zeros((self.n_evolution_paths, self.ndim_problem)) # transformation matrix M
y = np.empty((self.n_individuals,)) # fitness (no evaluation)
return z, d, mean, s, tm, y
def iterate(self, z=None, d=None, mean=None, tm=None, y=None, args=None):
for k in range(self.n_individuals):
if self._check_terminations():
return z, d, y
z[k] = self.rng_optimization.standard_normal((self.ndim_problem,))
d[k] = z[k]
for j in range(np.minimum(self._n_generations, self.n_evolution_paths)):
d[k] = (1 - self._c_d[j]) * d[k] + self._c_d[j] * tm[j] * np.dot(tm[j], d[k])
y[k] = self._evaluate_fitness(mean + self.sigma * d[k], args)
return z, d, y
def _update_distribution(self, z=None, d=None, mean=None, s=None, tm=None, y=None):
order = np.argsort(y)
d_w, z_w = np.zeros((self.ndim_problem,)), np.zeros((self.ndim_problem,))
for k in range(self.n_parents):
d_w += self._w[k] * d[order[k]]
z_w += self._w[k] * z[order[k]]
# update distribution mean
mean += (self.sigma * d_w)
# update evolution path (p_c, s) and low-rank transformation matrix (tm)
s = self._s_1 * s + self._s_2 * z_w
for k in range(self.n_evolution_paths): # rank-m
c_c_2 = self._mu_eff * self._c_c[k] * (2 - self._c_c[k])
if c_c_2 < 0:
c_c_2 = 0
tm[k] = (1 - self._c_c[k]) * tm[k] + np.sqrt(c_c_2) * z_w
# update global step-size
self.sigma *= np.exp(self.c_s / 2 * (np.sum(np.power(s, 2)) / self.ndim_problem - 1))
return mean, s, tm
def restart_initialize(self, z=None, d=None, mean=None, s=None, tm=None, y=None):
is_restart = ES.restart_initialize(self)
if is_restart:
z, d, mean, s, tm, y = self.initialize(is_restart)
return z, d, mean, s, tm, y
def optimize(self, fitness_function=None, args=None): # for all generations (iterations)
return MAES.optimize(self, fitness_function, args)