-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
test_chromadb.py
113 lines (93 loc) · 3.51 KB
/
test_chromadb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, openai_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = "./chromadb_test_dir"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# ChromaDB Configuration
CHROMADB_HOST = os.environ.get("CHROMADB_HOST", "localhost")
CHROMADB_PORT = int(os.environ.get("CHROMADB_PORT", 8000))
CHROMADB_AUTH_TOKEN = os.environ.get("CHROMADB_AUTH_TOKEN", "secret-token")
CHROMADB_AUTH_PROVIDER = os.environ.get(
"CHROMADB_AUTH_PROVIDER", "chromadb.auth.token_authn.TokenAuthClientProvider"
)
CHROMADB_AUTH_HEADER = os.environ.get("CHROMADB_AUTH_HEADER", "X-Chroma-Token")
# Embedding Configuration and Functions
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
# ChromaDB requires knowing the dimension of embeddings upfront when
# creating a collection. The embedding dimension is model-specific
# (e.g. text-embedding-3-large uses 3072 dimensions)
# we dynamically determine it by running a test embedding
# and then pass it to the ChromaDBStorage class
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model=EMBEDDING_MODEL,
)
async def get_embedding_dimension():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
return embedding.shape[1]
async def create_embedding_function_instance():
# Get embedding dimension
embedding_dimension = await get_embedding_dimension()
# Create embedding function instance
return EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func,
)
async def initialize_rag():
embedding_func_instance = await create_embedding_function_instance()
return LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete,
embedding_func=embedding_func_instance,
vector_storage="ChromaVectorDBStorage",
log_level="DEBUG",
embedding_batch_num=32,
vector_db_storage_cls_kwargs={
"host": CHROMADB_HOST,
"port": CHROMADB_PORT,
"auth_token": CHROMADB_AUTH_TOKEN,
"auth_provider": CHROMADB_AUTH_PROVIDER,
"auth_header_name": CHROMADB_AUTH_HEADER,
"collection_settings": {
"hnsw:space": "cosine",
"hnsw:construction_ef": 128,
"hnsw:search_ef": 128,
"hnsw:M": 16,
"hnsw:batch_size": 100,
"hnsw:sync_threshold": 1000,
},
},
)
# Run the initialization
rag = asyncio.run(initialize_rag())
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
# rag.insert(f.read())
# Perform naive search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)
# Perform local search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
)
# Perform global search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
)
# Perform hybrid search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)