diff --git a/docs/doctrees/about/index.doctree b/docs/doctrees/about/index.doctree index 438b956..ab31829 100644 Binary files a/docs/doctrees/about/index.doctree and b/docs/doctrees/about/index.doctree differ diff --git a/docs/doctrees/environment.pickle b/docs/doctrees/environment.pickle index 98a3e8a..72ec259 100644 Binary files a/docs/doctrees/environment.pickle and b/docs/doctrees/environment.pickle differ diff --git a/docs/doctrees/index.doctree b/docs/doctrees/index.doctree index 13a8f46..8419c1f 100644 Binary files a/docs/doctrees/index.doctree and b/docs/doctrees/index.doctree differ diff --git a/docs/html/_sources/about/index.rst.txt b/docs/html/_sources/about/index.rst.txt index 2ac5483..7efc734 100644 --- a/docs/html/_sources/about/index.rst.txt +++ b/docs/html/_sources/about/index.rst.txt @@ -14,7 +14,7 @@ The main contributors are: * `Haojie Pan `_ Algorithm Expert, Kuaishou Technology. -* Haowen Ke, Mphil student, HKUST. +* `Haowen Ke `_, Algorithm Engineer, Didi. * `Jiefu Ou `_, PhD student, JHU. diff --git a/docs/html/_sources/index.rst.txt b/docs/html/_sources/index.rst.txt index 985b989..eb25ae8 100644 --- a/docs/html/_sources/index.rst.txt +++ b/docs/html/_sources/index.rst.txt @@ -83,15 +83,19 @@ Publications * Zhaowei Wang, Haochen Shi, Weiqi Wang, Tianqing Fang, Hongming Zhang, Sehyun Choi, Xin Liu, and Yangqiu Song. AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph. arXiv, 2311.09174, 2023. [`pdf `_] +* Weiqi Wang*, Tianqing Fang*, Wenxuan Ding, Baixuan Xu, Xin Liu, Yangqiu Song, and Antoine Bosselut. 🚗CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering. Findings of EMNLP, 2023. [`pdf `_] + * Jiaxin Bai, Xin Liu, Weiqi Wang, Chen Luo, and Yangqiu Song. Complex Query Answering on Eventuality Knowledge Graph with Implicit Logical Constraints. Conference on Neural Information Processing Systems (NeurIPS), 2023. [`pdf `_] -* Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, and Bing Yin. FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery. Findings of ACL. 2023. [`pdf `_] +* Weiqi Wang*, Tianqing Fang*, Baixuan Xu, Chun Yi Louis Bo, Yangqiu Song, and Lei Chen. 🐈CAT: A Contextualized Conceptualization and Instantiation Framework for Commonsense Reasoning. Annual Meeting of the Association for Computational Linguistics (ACL), 2023. [`pdf `_] + +* Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, and Bing Yin. FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery. Findings of ACL, 2023. [`pdf `_] * Tianqing Fang*, Quyet V. Do*, Sehyun Choi, Weiqi Wang, and Yangqiu Song. CKBP v2: An Expert-Annotated Evaluation Set for Commonsense Knowledge Base Population. arXiv, abs/2304.10392, 2023. [`pdf `_] -* Tianqing Fang, Quyet V. Do, Hongming Zhang, Yangqiu Song, Ginny Y. Wong, and Simon See. PseudoReasoner: Leveraging Pseudo Labels for Commonsense Knowledge Base Population. Findings of EMNLP. 2022. [`pdf `_] +* Tianqing Fang, Quyet V. Do, Hongming Zhang, Yangqiu Song, Ginny Y. Wong, and Simon See. PseudoReasoner: Leveraging Pseudo Labels for Commonsense Knowledge Base Population. Findings of EMNLP, 2022. [`pdf `_] -* Zhaowei Wang, Hongming Zhang, Tianqing Fang, Yangqiu Song, Ginny Y. Wong, and Simon See. SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller. Conference on Empirical Methods in Natural Language Processing (EMNLP). 2022. [`pdf `_] +* Zhaowei Wang, Hongming Zhang, Tianqing Fang, Yangqiu Song, Ginny Y. Wong, and Simon See. SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022. [`pdf `_] * Mutian He, Tianqing Fang, Weiqi Wang, and Yangqiu Song. Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization. arXiv, abs/2206.01532, 2022. [`pdf `_] @@ -103,17 +107,17 @@ Publications * Tianqing Fang, Hongming Zhang, Weiqi Wang, Yangqiu Song, and Bin He. DISCOS: Bridging the Gap between Discourse Knowledge and Commonsense Knowledge. The Web Conference (WWW), 2021. [`pdf `_] -* Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu Song, and Dan Roth. Analogous Process Structure Induction for Sub-event Sequence Prediction. Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020. [`pdf `_] +* Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu Song, and Dan Roth. Analogous Process Structure Induction for Sub-event Sequence Prediction. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020. [`pdf `_] -* Changlong Yu, Hongming Zhang, Yangqiu Song, Wilfred Ng, and Lifeng Shang . Enriching Large-Scale Eventuality Knowledge Graph with Entailment Relations. Conference on Automated Knowledge Base Construction (AKBC). 2020. [`pdf `_] +* Changlong Yu, Hongming Zhang, Yangqiu Song, Wilfred Ng, and Lifeng Shang . Enriching Large-Scale Eventuality Knowledge Graph with Entailment Relations. Conference on Automated Knowledge Base Construction (AKBC), 2020. [`pdf `_] -* Hongming Zhang, Daniel Khashabi, Yangqiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. International Joint Conference on Artificial Intelligence (IJCAI). 2020. [`pdf `_] +* Hongming Zhang, Daniel Khashabi, Yangqiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. International Joint Conference on Artificial Intelligence (IJCAI), 2020. [`pdf `_] * Mutian He, Yangqiu Song, Kun Xu, and Yu Dong. On the Role of Conceptualization in Commonsense Knowledge Graph Construction. HKUST Technical Report, March 6th, 2020. [`pdf `_] * Hongming Zhang\*, Xin Liu\*, Haojie Pan\*, Yangqiu Song, and Cane Wing-Ki Leung. ASER: A Large-scale Eventuality Knowledge Graph. The Web Conference (WWW), 2020. [`pdf `_] [`ppt `_] -* Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. Annual Meeting of the Association for Computational Linguistics (ACL). 2019. [`pdf `_] +* Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. Annual Meeting of the Association for Computational Linguistics (ACL), 2019. [`pdf `_] .. Tutorial diff --git a/docs/html/about/index.html b/docs/html/about/index.html index 0387f02..709e740 100644 --- a/docs/html/about/index.html +++ b/docs/html/about/index.html @@ -91,7 +91,7 @@

About

Hongming Zhang, Senior Researcher, Tencent AI Lab Seattle.

  • Xin Liu, Applied Scientist, Amazon Search.

  • Haojie Pan Algorithm Expert, Kuaishou Technology.

  • -
  • Haowen Ke, Mphil student, HKUST.

  • +
  • Haowen Ke, Algorithm Engineer, Didi.

  • Jiefu Ou, PhD student, JHU.

  • Tianqing Fang, PhD student, HKUST.

  • Jiaxin Bai, PhD student, HKUST.

  • diff --git a/docs/html/index.html b/docs/html/index.html index 5db6cc3..e585c99 100644 --- a/docs/html/index.html +++ b/docs/html/index.html @@ -138,22 +138,24 @@

    TalksPublications

    • Zhaowei Wang, Haochen Shi, Weiqi Wang, Tianqing Fang, Hongming Zhang, Sehyun Choi, Xin Liu, and Yangqiu Song. AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph. arXiv, 2311.09174, 2023. [pdf]

    • +
    • Weiqi Wang*, Tianqing Fang*, Wenxuan Ding, Baixuan Xu, Xin Liu, Yangqiu Song, and Antoine Bosselut. 🚗CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering. Findings of EMNLP, 2023. [pdf]

    • Jiaxin Bai, Xin Liu, Weiqi Wang, Chen Luo, and Yangqiu Song. Complex Query Answering on Eventuality Knowledge Graph with Implicit Logical Constraints. Conference on Neural Information Processing Systems (NeurIPS), 2023. [pdf]

    • -
    • Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, and Bing Yin. FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery. Findings of ACL. 2023. [pdf]

    • +
    • Weiqi Wang*, Tianqing Fang*, Baixuan Xu, Chun Yi Louis Bo, Yangqiu Song, and Lei Chen. 🐈CAT: A Contextualized Conceptualization and Instantiation Framework for Commonsense Reasoning. Annual Meeting of the Association for Computational Linguistics (ACL), 2023. [pdf]

    • +
    • Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, and Bing Yin. FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery. Findings of ACL, 2023. [pdf]

    • Tianqing Fang*, Quyet V. Do*, Sehyun Choi, Weiqi Wang, and Yangqiu Song. CKBP v2: An Expert-Annotated Evaluation Set for Commonsense Knowledge Base Population. arXiv, abs/2304.10392, 2023. [pdf]

    • -
    • Tianqing Fang, Quyet V. Do, Hongming Zhang, Yangqiu Song, Ginny Y. Wong, and Simon See. PseudoReasoner: Leveraging Pseudo Labels for Commonsense Knowledge Base Population. Findings of EMNLP. 2022. [pdf]

    • -
    • Zhaowei Wang, Hongming Zhang, Tianqing Fang, Yangqiu Song, Ginny Y. Wong, and Simon See. SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller. Conference on Empirical Methods in Natural Language Processing (EMNLP). 2022. [pdf]

    • +
    • Tianqing Fang, Quyet V. Do, Hongming Zhang, Yangqiu Song, Ginny Y. Wong, and Simon See. PseudoReasoner: Leveraging Pseudo Labels for Commonsense Knowledge Base Population. Findings of EMNLP, 2022. [pdf]

    • +
    • Zhaowei Wang, Hongming Zhang, Tianqing Fang, Yangqiu Song, Ginny Y. Wong, and Simon See. SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022. [pdf]

    • Mutian He, Tianqing Fang, Weiqi Wang, and Yangqiu Song. Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization. arXiv, abs/2206.01532, 2022. [pdf]

    • Hongming Zhang*, Xin Liu*, Haojie Pan*, Haowen Ke, Jiefu Ou, Tianqing Fang, and Yangqiu Song. ASER: Towards Large-scale Commonsense Knowledge Acquisition via Higher-order Selectional Preference over Eventualities. Artificial Intelligence, Volume 309, August 2022, 103740. [pdf]

    • Changlong Yu, Hongming Zhang, Yangqiu Song, and Wilfred Ng. CoCoLM: COmplex COmmonsense Enhanced Language Model. Findings of ACL, 2022. [pdf]

    • Tianqing Fang, Weiqi Wang, Sehyun Choi, Shibo Hao, Hongming Zhang, Yangqiu Song, and Bin He. Benchmarking Commonsense Knowledge Base Population with an Effective Evaluation Dataset. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021. [pdf]

    • Tianqing Fang, Hongming Zhang, Weiqi Wang, Yangqiu Song, and Bin He. DISCOS: Bridging the Gap between Discourse Knowledge and Commonsense Knowledge. The Web Conference (WWW), 2021. [pdf]

    • -
    • Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu Song, and Dan Roth. Analogous Process Structure Induction for Sub-event Sequence Prediction. Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020. [pdf]

    • -
    • Changlong Yu, Hongming Zhang, Yangqiu Song, Wilfred Ng, and Lifeng Shang . Enriching Large-Scale Eventuality Knowledge Graph with Entailment Relations. Conference on Automated Knowledge Base Construction (AKBC). 2020. [pdf]

    • -
    • Hongming Zhang, Daniel Khashabi, Yangqiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. International Joint Conference on Artificial Intelligence (IJCAI). 2020. [pdf]

    • +
    • Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu Song, and Dan Roth. Analogous Process Structure Induction for Sub-event Sequence Prediction. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020. [pdf]

    • +
    • Changlong Yu, Hongming Zhang, Yangqiu Song, Wilfred Ng, and Lifeng Shang . Enriching Large-Scale Eventuality Knowledge Graph with Entailment Relations. Conference on Automated Knowledge Base Construction (AKBC), 2020. [pdf]

    • +
    • Hongming Zhang, Daniel Khashabi, Yangqiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. International Joint Conference on Artificial Intelligence (IJCAI), 2020. [pdf]

    • Mutian He, Yangqiu Song, Kun Xu, and Yu Dong. On the Role of Conceptualization in Commonsense Knowledge Graph Construction. HKUST Technical Report, March 6th, 2020. [pdf]

    • Hongming Zhang*, Xin Liu*, Haojie Pan*, Yangqiu Song, and Cane Wing-Ki Leung. ASER: A Large-scale Eventuality Knowledge Graph. The Web Conference (WWW), 2020. [pdf] [ppt]

    • -
    • Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. Annual Meeting of the Association for Computational Linguistics (ACL). 2019. [pdf]

    • +
    • Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. Annual Meeting of the Association for Computational Linguistics (ACL), 2019. [pdf]

    Tutorial

    diff --git a/docs/html/searchindex.js b/docs/html/searchindex.js index 3bfbe7f..191be62 100644 --- a/docs/html/searchindex.js +++ b/docs/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["about/index", "api/aser-cs", "api/conceptualizer", "api/database", "api/extractor", "api/index", "api/object", "index", "tutorial/get-started", "tutorial/index"], "filenames": ["about/index.rst", "api/aser-cs.rst", "api/conceptualizer.rst", "api/database.rst", "api/extractor.rst", "api/index.rst", "api/object.rst", "index.rst", "tutorial/get-started.rst", "tutorial/index.rst"], "titles": ["About", "Server/Client", "Conceptualization", "Database", "Extractor", "API Reference", "Object", "ASER (Activities, States, Events, and their Relations)", "Get Started", "Tutorial"], "terms": {"aser": [0, 2, 3, 4, 5, 6, 9], "i": [0, 1, 3, 4, 7, 8], "from": [0, 1, 3, 4, 6, 7, 8], "knowcomp": [0, 8], "hkust": [0, 7, 8], "led": 0, "prof": 0, "yangqiu": [0, 7], "song": [0, 7], "The": [0, 7, 8], "main": 0, "contributor": 0, "ar": [0, 1, 3, 6, 7, 8], "hongm": [0, 7], "zhang": [0, 7], "senior": 0, "research": [0, 1, 8], "tencent": 0, "ai": 0, "lab": 0, "seattl": 0, "xin": [0, 7], "liu": [0, 7], "appli": [0, 3], "scientist": 0, "amazon": [0, 7], "search": [0, 7], "haoji": [0, 7], "pan": [0, 7], "algorithm": 0, "expert": [0, 7], "kuaishou": 0, "technologi": 0, "haowen": [0, 7], "ke": [0, 7], "mphil": 0, "student": 0, "jiefu": [0, 7], "ou": [0, 7], "phd": 0, "jhu": 0, "tianq": [0, 7], "fang": [0, 7], "jiaxin": [0, 7], "bai": [0, 7], "zhaowei": [0, 7], "wang": [0, 7], "weiqi": [0, 7], "class": [1, 2, 3, 4, 6], "aserdatabas": 1, "opt": 1, "db_sender_addr_list": 1, "sink_addr": 1, "sourc": [1, 2, 3, 4, 6, 8], "base": [1, 2, 3, 4, 6, 7, 8], "process": [1, 4, 7, 8], "provid": [1, 3, 7, 8], "db": [1, 3, 8], "retriev": [1, 3, 4, 6, 8], "function": 1, "close": [1, 2, 3, 4, 8], "safe": [1, 2, 3, 4], "handle_exact_match_concept": 1, "cid": [1, 3, 6], "extract": [1, 4, 6, 7, 9], "match": [1, 3], "concept": [1, 2, 3, 5, 7, 8], "paramet": [1, 2, 3, 4, 6], "str": [1, 2, 3, 4, 6], "return": [1, 2, 3, 4, 6, 8], "exact": [1, 3], "none": [1, 2, 3, 4, 6], "type": [1, 2, 3, 4, 6], "union": [1, 3, 4, 6], "aserconcept": [1, 2, 3, 6], "handle_exact_match_concept_rel": 1, "rid": [1, 3, 6], "relat": [1, 3, 4, 5, 8], "between": [1, 7, 8], "handle_exact_match_eventu": 1, "eid": [1, 3, 6], "eventu": [1, 2, 3, 4, 5, 7, 8], "handle_exact_match_eventuality_rel": 1, "handle_fetch_related_concept": 1, "fetch": [1, 8], "all": [1, 3, 4, 6, 7, 8], "given": [1, 2, 3, 4, 6, 8], "associ": [1, 6, 7], "correspond": [1, 3, 4, 6, 8], "list": [1, 2, 3, 4, 6, 8], "tupl": [1, 2, 3, 4, 6], "handle_fetch_related_eventu": 1, "run": [1, 8], "method": [1, 4, 6, 7], "sub": [1, 7], "can": [1, 8], "overridden": 1, "aserserv": 1, "object": [1, 2, 3, 4, 5, 7], "conceptu": [1, 3, 5, 6, 7, 8], "argpars": 1, "namespac": 1, "includ": [1, 3, 4, 7], "clase": 1, "start": [1, 7, 9], "asersink": 1, "arg": 1, "sink_addr_receiver_addr": 1, "forward": 1, "messag": 1, "aserwork": 1, "id": [1, 3, 4], "worker_addr_list": 1, "serv": 1, "handle_conceptualize_eventu": 1, "handle_extract_eventu": 1, "data": [1, 8], "handle_extract_eventualities_and_rel": 1, "handle_extract_rel": 1, "handle_parse_text": 1, "text": [1, 4, 7, 8], "is_port_occupi": 1, "ip": 1, "127": 1, "0": [1, 3, 4, 6, 7, 8], "1": [1, 4, 6, 7, 8], "port": [1, 4, 8], "80": [1, 8], "check": [1, 7, 8], "whether": [1, 3, 4, 6], "occupi": 1, "default": [1, 3, 4, 6], "address": 1, "int": [1, 3, 4, 6], "bool": [1, 3, 4, 6], "sockets_ipc_bind": 1, "socket": 1, "zmq": 1, "sugar": 1, "bound": 1, "you": [1, 3, 4, 8], "get": [1, 3, 6, 7, 9], "usag": [1, 7], "via": [1, 7], "help": [1, 7], "h": 1, "n_worker": [1, 8], "n_concurrent_back_sock": [1, 8], "port_out": [1, 8], "corenlp_path": [1, 4, 8], "base_corenlp_port": [1, 8], "aser_kg_dir": [1, 8], "concept_kg_dir": [1, 8], "concept_method": [1, 8], "probas": [1, 2, 6, 7, 8], "seed": 1, "probase_path": [1, 2, 8], "concept_topk": [1, 8], "log_path": [1, 8], "number": [1, 4], "worker": 1, "same": [1, 8], "num": 1, "corenlp": [1, 4, 8], "5": [1, 4, 6, 8], "concurr": 1, "10": [1, 4, 8], "receiv": 1, "msg": [1, 6], "8000": [1, 8], "recev": 1, "8001": [1, 8], "stanfordcorenlp": 1, "path": [1, 3, 4, 6], "should": [1, 8], "reserv": 1, "9000": [1, 4, 8], "kg": [1, 3, 6, 8], "directori": [1, 8], "possibl": 1, "choic": 1, "do": [1, 7, 8], "us": [1, 2, 3, 4, 7, 8], "file_path": 1, "txt": [1, 6, 8], "file": [1, 4, 6, 8], "which": [1, 3, 4, 8], "avail": [1, 8], "http": [1, 3, 4, 6, 8], "microsoft": [1, 7, 8], "com": [1, 6, 8], "home": [1, 3, 4, 8], "download": [1, 8], "how": [1, 3, 8], "mani": [1, 3, 8], "top": [1, 8], "kept": 1, "log": [1, 8], "output": [1, 4, 6, 8], "asercli": [1, 8], "localhost": [1, 3], "timeout": 1, "A": [1, 7], "push": 1, "request": [1, 8], "subscrib": 1, "float": [1, 2, 3, 6], "millisecond": 1, "mean": 1, "conceptualize_eventu": [1, 8], "an": [1, 2, 3, 4, 6, 7, 8], "send": 1, "score": [1, 2, 6], "pair": [1, 2, 3, 6], "exact_match_concept": 1, "exact_match_eventu": 1, "extract_eventu": [1, 8], "dict": [1, 3, 4, 6], "raw": [1, 4, 8], "pars": [1, 4, 6, 8], "result": [1, 4, 6, 7, 8], "paragraph": [1, 4], "extract_eventualities_and_rel": 1, "both": [1, 4], "extract_rel": 1, "fetch_related_concept": [1, 8], "fetch_related_eventu": [1, 8], "parse_text": [1, 4], "predict_concept_rel": [1, 8], "concept1": 1, "concept2": 1, "predict": [1, 7], "two": [1, 3, 8], "one": 1, "head": [1, 6], "other": [1, 4, 6, 8], "store": [1, 4], "predict_eventuality_rel": [1, 8], "eventuality1": 1, "eventuality2": 1, "tail": [1, 6], "aser_conceptu": [2, 8], "baseaserconceptu": 2, "probaseaserconceptu": [2, 8], "probase_topk": [2, 8], "3": [2, 4, 8], "ner": [2, 4, 6], "seedruleaserconceptu": [2, 8], "kw": [2, 4, 6], "rule": [2, 4], "conceptualize_from_text": 2, "word": [2, 3, 4, 6], "is_pronoun": 2, "is_seed_concept": 2, "basedbconnect": 3, "db_path": 3, "chunksiz": 3, "connect": [3, 6, 8], "creat": 3, "load": [3, 6, 8], "write": [3, 8], "create_t": 3, "table_nam": 3, "column": 3, "column_typ": 3, "tabl": 3, "name": [3, 4, 6], "get_column": 3, "inform": [3, 6, 7, 8], "row": 3, "get_rows_by_kei": 3, "bys": 3, "kei": 3, "order_bi": 3, "revers": 3, "fals": [3, 4, 8], "top_n": 3, "specif": 3, "some": [3, 8], "order": [3, 4, 7, 8], "valu": [3, 8], "whose": 3, "sort": [3, 6], "get_update_op": 3, "update_column": 3, "oper": 3, "updat": [3, 6], "suit": 3, "backend": 3, "insert_row": 3, "insert": 3, "sever": 3, "select_row": 3, "_id": 3, "select": [3, 7], "update_row": 3, "update_op": 3, "exist": 3, "new": [3, 6, 8], "": [3, 4, 6, 7, 8], "mongodbconnect": 3, "mongodb": 3, "sqlite": 3, "e": [3, 4, 6, 7], "g": [3, 4, 6, 7], "27017": 3, "without": [3, 6], "necessari": [3, 6], "suggest": 3, "consid": 3, "want": [3, 8], "multipl": [3, 8], "sqlitedbconnect": 3, "xliucr": [3, 4], "pleas": [3, 4, 8], "refer": [3, 4], "www": [3, 7, 8], "org": 3, "datatype3": 3, "html": [3, 4, 8], "aserconceptconnect": [3, 8], "mode": [3, 7, 9], "cach": 3, "32768": 3, "concept_instance_pair": [3, 8], "thi": [3, 4, 6, 8], "onli": [3, 6, 8], "content": 3, "have": [3, 8], "been": [3, 8], "memori": 3, "get_concept_column": 3, "get_concept_given_str": 3, "concept_str": [3, 6], "string": 3, "represent": [3, 6, 8], "get_concept_instance_pair_column": 3, "get_concepts_by_kei": 3, "partial": 3, "get_concepts_given_eventu": 3, "link": 3, "get_concepts_given_str": 3, "get_eventualities_given_concept": 3, "origin": [3, 7], "aserconcpet": 3, "get_exact_match_concept": 3, "contain": [3, 4, 6, 7], "get_exact_match_rel": 3, "each": [3, 8], "get_related_concept": 3, "get_relation_column": 3, "get_relations_by_kei": 3, "init": 3, "initi": 3, "build": [3, 7, 8], "insert_concept": 3, "insert_concept_instance_pair": 3, "aserconceptinstancepair": [3, 6], "event": 3, "instanc": [3, 4, 6, 8], "insert_rel": 3, "aserkgconnect": [3, 6], "grain": [3, 8], "built": 3, "verb": [3, 6], "skeleton_word": [3, 6], "get_eventualities_by_kei": 3, "get_eventuality_column": 3, "get_exact_match_eventu": 3, "get_partial_match_eventu": 3, "threshold": 3, "8": [3, 4, 6], "true": [3, 4, 6, 8], "properti": [3, 6], "minimum": 3, "similar": 3, "get_related_eventu": 3, "insert_eventu": 3, "baseaserextractor": 4, "corenlp_port": [4, 8], "It": [4, 8], "baseeventualityextractor": 4, "baserelationextractor": 4, "stanford": [4, 8], "9": [4, 8], "2": [4, 6, 7, 8], "extract_eventualities_from_parsed_result": 4, "parsed_result": [4, 6], "output_format": 4, "in_ord": [4, 8], "use_lemma": [4, 6, 8], "format": [4, 6], "json": 4, "follow": [4, 8], "input": [4, 6], "token": [4, 7, 8], "lemma": [4, 8], "depend": [4, 6, 7], "nmod": 4, "poss": 4, "nsubj": [4, 6], "aux": 4, "dobj": 4, "punct": 4, "6": [4, 6], "4": 4, "my": [4, 8], "armi": 4, "find": [4, 7, 8], "boat": 4, "mention": [4, 6], "o": [4, 8], "root": 4, "np": 4, "prp": 4, "nn": 4, "vp": 4, "md": 4, "vb": 4, "your": [4, 8], "pos_tag": 4, "case": 4, "det": 4, "cop": [4, 6], "ccomp": 4, "13": 4, "7": [4, 6], "iobj": 4, "12": 4, "amod": 4, "11": 4, "meantim": 4, "sure": 4, "we": [4, 7, 8], "could": 4, "suitabl": 4, "accommod": 4, "pp": 4, "IN": 4, "In": [4, 7, 8], "dt": 4, "vbp": 4, "m": 4, "adjp": 4, "jj": 4, "sbar": 4, "extract_eventualities_from_text": 4, "annot": [4, 7], "stanfordnlp": [4, 8], "github": [4, 6, 8], "io": [4, 8], "extract_from_parsed_result": 4, "eventuality_output_format": 4, "relation_output_format": 4, "triplet": [4, 6], "7d9ea9023b66a0ebc167f0dbb6ea8cd75d7b46f9": 4, "25edad6781577dcb3ba715c8230416fb0d4c45c4": 4, "co_occurr": [4, 8], "8540897b645962964fd644242d4cc0032f024e86": 4, "synchron": 4, "extract_from_text": [4, 8], "rtype": 4, "extract_relations_from_parsed_result": 4, "para_eventu": 4, "extract_relations_from_text": 4, "discourseaserextractor": [4, 8], "discours": [4, 7, 8], "v2": [4, 7], "syntax_tree_cach": 4, "seedruleaserextractor": [4, 8], "v1": 4, "discourseeventualityextractor": 4, "constitu": 4, "analysi": [4, 7], "seedruleeventualityextractor": 4, "skip_word": 4, "drop": 4, "sentenc": [4, 6, 8], "rxtractor": 4, "discourserelationextractor": 4, "seedrulerelationextractor": 4, "parsedread": 4, "reader": 4, "read": 4, "disk": 4, "generate_sid": 4, "file_nam": [4, 6], "line_no": 4, "line": [4, 8], "get_parsed_paragraphs_from_fil": 4, "processed_path": 4, "get_parsed_sentence_and_context": 4, "sid": 4, "context_window_s": 4, "its": 4, "context": 4, "window": 4, "size": 4, "dictionari": [4, 6], "left_context": 4, "right_context": 4, "sentence_pars": 4, "sentencepars": 4, "parser": [4, 7], "max_len": 4, "1024": 4, "max": 4, "length": [4, 6], "cannot": 4, "handl": 4, "super": 4, "long": 4, "parse_raw_fil": 4, "raw_path": 4, "databas": [5, 6, 7, 8], "db_connect": [5, 7], "kg_connect": [5, 6, 7, 8], "extractor": [5, 7, 8], "aser_extractor": [5, 7, 8], "eventuality_extractor": [5, 7], "relation_extractor": [5, 7], "parsed_read": [5, 7], "sentence_read": [5, 7], "eventuality_conceptu": [5, 7], "server": [5, 7, 9], "client": [5, 7, 9], "pattern": [6, 7], "unknown": 6, "skeleton_depend": 6, "jsonserializedobject": 6, "option": [6, 8], "edg": [6, 7], "decod": 6, "encod": 6, "utf": 6, "byte": 6, "static": 6, "extract_indices_from_depend": 6, "indic": 6, "involv": 6, "generate_eid": 6, "gener": [6, 7], "uniqu": 6, "phrase": 6, "phrases_n": 6, "phrases_postag": 6, "posit": 6, "averag": 6, "make": [6, 8], "sens": 6, "when": 6, "construct": [6, 7], "while": 6, "instead": 6, "recov": 6, "raw_depend": 6, "skeleton_n": 6, "skeleton_phras": 6, "skeleton_phrases_n": 6, "skeleton_phrases_postag": 6, "skeleton_pos_tag": 6, "sort_dependencies_posit": 6, "reset_posit": 6, "fix": 6, "absolut": 6, "relev": 6, "them": 6, "reset": 6, "map": 6, "invers": 6, "to_dict": 6, "convert": 6, "x": 6, "frequenc": 6, "hid": 6, "tid": 6, "conceptuali": [6, 7], "generate_rid": 6, "to_triplet": 6, "generate_cid": 6, "instanti": 6, "kg_conn": 6, "probabl": 6, "generate_pid": 6, "pid": 6, "probaseconcept": 6, "data_concept_path": 6, "copi": [6, 7], "scarletpan": 6, "concept_s": 6, "score_method": 6, "likelihood": 6, "comput": [6, 7], "sscore": 6, "pmi": 6, "get_concept_chain": 6, "max_chain_length": 6, "chain": 6, "maximum": 6, "get_concept_freq": 6, "get_instance_freq": 6, "instance_s": 6, "save": 6, "larg": 7, "scale": 7, "weight": 7, "knowledg": 7, "graph": [7, 8], "action": 7, "node": 7, "besid": 7, "more": [7, 8], "abstract": 7, "level": 7, "also": [7, 8], "conduct": 7, "total": 7, "full": [7, 8], "438": 7, "million": 7, "648": 7, "core": [7, 8], "53": 7, "52": 7, "With": 7, "now": [7, 8], "call": 7, "15": 7, "224": 7, "complet": 7, "aw": 7, "onedr": 7, "code": [7, 8], "msra": 7, "offici": 7, "websit": 7, "licens": 7, "subject": 7, "releas": 7, "abspyramid": 7, "bechmark": 7, "bbiliti": [], "llm": 7, "atom": 7, "benchmark": 7, "commonsens": 7, "popul": 7, "transfer": 7, "omc": 7, "entail": 7, "folkscop": 7, "intent": 7, "ami": 7, "prefer": 7, "sp": 7, "10k": 7, "known": 7, "2023": 7, "juli": 7, "kdd": 7, "china": 7, "pdf": 7, "ppt": 7, "2022": 7, "scienc": 7, "team": 7, "acquir": 7, "model": 7, "2021": 7, "novermb": 7, "cck": 7, "acquisit": 7, "reason": 7, "present": 7, "septemb": 7, "huawei": 7, "workshop": 7, "april": 7, "renmin": 7, "univers": 7, "thu": 7, "overview": 7, "2020": [7, 8], "nlp": [7, 8], "friend": 7, "angl": 7, "video": 7, "work": 7, "fudan": 7, "higher": 7, "2019": 7, "octob": 7, "centric": 7, "structur": 7, "hit": 7, "workhop": 7, "bupt": 7, "pku": 7, "beihang": 7, "haochen": 7, "shi": 7, "sehyun": 7, "choi": 7, "abil": 7, "languag": 7, "unifi": 7, "arxiv": 7, "2311": 7, "09174": 7, "chen": 7, "luo": 7, "complex": 7, "queri": 7, "answer": 7, "implicit": 7, "logic": 7, "constraint": 7, "confer": [7, 8], "neural": 7, "system": [7, 8], "neurip": 7, "changlong": 7, "yu": 7, "zheng": 7, "li": 7, "yifan": 7, "gao": 7, "tianyu": 7, "cao": 7, "bing": 7, "yin": 7, "commerc": 7, "discoveri": 7, "acl": 7, "quyet": 7, "v": 7, "ckbp": 7, "evalu": 7, "set": [7, 8], "ab": 7, "2304": 7, "10392": 7, "ginni": 7, "y": 7, "wong": 7, "simon": 7, "see": [7, 8], "pseudoreason": 7, "leverag": 7, "pseudo": 7, "label": 7, "emnlp": 7, "subeventwrit": 7, "iter": 7, "sequenc": 7, "coher": 7, "control": 7, "empir": 7, "natur": [7, 8], "mutian": 7, "he": 7, "2206": 7, "01532": 7, "toward": 7, "over": 7, "artifici": 7, "intellig": 7, "volum": 7, "309": 7, "august": 7, "103740": 7, "wilfr": 7, "ng": 7, "cocolm": 7, "enhanc": 7, "shibo": 7, "hao": 7, "bin": 7, "effect": 7, "dataset": 7, "disco": 7, "bridg": 7, "gap": 7, "web": 7, "muhao": 7, "haoyu": 7, "dan": 7, "roth": 7, "analog": 7, "induct": 7, "lifeng": 7, "shang": 7, "enrich": 7, "autom": 7, "akbc": 7, "daniel": 7, "khashabi": 7, "transomc": 7, "linguist": 7, "intern": 7, "joint": 7, "ijcai": 7, "kun": 7, "xu": 7, "dong": 7, "On": [7, 8], "role": 7, "technic": 7, "report": 7, "march": 7, "6th": 7, "cane": 7, "wing": 7, "ki": 7, "leung": 7, "hantian": 7, "ding": 7, "annual": 7, "meet": 7, "instal": [7, 9], "local": [7, 9], "pipelin": [7, 9], "pipe": [7, 9], "step": [7, 9], "current": 8, "support": 8, "setup": 8, "so": 8, "first": 8, "repo": 8, "git": 8, "clone": 8, "Then": 8, "requir": 8, "pip": 8, "r": 8, "final": 8, "python": 8, "packag": 8, "py": 8, "To": 8, "need": 8, "2018": 8, "05": 8, "import": 8, "urllib": 8, "zipfil": 8, "shutil": 8, "urlretriev": 8, "edu": 8, "softwar": 8, "zip": 8, "zip_ref": 8, "extractal": 8, "move": 8, "conceptualizatoin": 8, "startdownload": 8, "rmtree": 8, "befor": 8, "three": 8, "review": 8, "yelp": 8, "pipeplin": 8, "mkdir": 8, "open": 8, "w": 8, "f": 8, "went": 8, "wa": 8, "let": 8, "down": 8, "got": 8, "wild": 8, "mushroom": 8, "person": 8, "pie": 8, "ad": 8, "spinach": 8, "fresh": 8, "jalapeno": 8, "ancient": 8, "crust": 8, "amaz": 8, "perfectli": 8, "cook": 8, "mesh": 8, "well": 8, "togeth": 8, "thei": 8, "vegan": 8, "daiya": 8, "chees": 8, "owner": 8, "employe": 8, "were": 8, "veri": 8, "nice": 8, "friendli": 8, "definit": 8, "go": 8, "back": 8, "next": 8, "time": 8, "am": 8, "town": 8, "n": 8, "experi": 8, "kneader": 8, "locat": 8, "great": 8, "wasn": 8, "t": 8, "dure": 8, "busi": 8, "about": 8, "45": 8, "attent": 8, "place": 8, "readi": 8, "within": 8, "minut": 8, "came": 8, "here": 8, "breakfast": 8, "excit": 8, "try": 8, "think": 8, "highlight": 8, "freshli": 8, "squeez": 8, "orang": 8, "juic": 8, "sweet": 8, "champion": 8, "dai": 8, "egg": 8, "ciabatta": 8, "hous": 8, "made": 8, "sausag": 8, "would": 8, "four": 8, "bread": 8, "had": 8, "toast": 8, "wasnt": 8, "good": 8, "flavor": 8, "like": 8, "littl": 8, "salt": 8, "If": 8, "pastri": 8, "look": 8, "smell": 8, "command": 8, "n_extractor": 8, "raw_dir": 8, "processed_dir": 8, "core_kg_dir": 8, "full_kg_dir": 8, "eventuality_frequency_threshold": 8, "relation_weight_threshold": 8, "eventuality_threshold_to_conceptu": 8, "concept_weight_threshold": 8, "aser_pip": 8, "util": 8, "kind": 8, "aserextractor": 8, "implement": 8, "pprint": 8, "print": 8, "out": 8, "succe": 8, "give": 8, "010ec054737a144cb77e99954ff032bc5dff472c": 8, "55704c606666f41a73ac5ae0eabe582892aa163c": 8, "b875a4b94675e057fa643beb334e071e4ddf3760": 8, "41876cb7188cb3398572af71ff9d98d61f46c20b": 8, "766f00c08dcac14353629c12125f05697eb58a2": 8, "13bb4ed9f70c37253246c2051ef05fe4795f4fe": 8, "condit": 8, "253e8b127b833c3aa7d79e2b91ce030299a646d6": 8, "8dd8fbc06d2810add7b2cfd637a78f90fa2e5e9": 8, "contrast": 8, "dac82e8bc75bd0221e86194e6e3cd607a72aba7": 8, "2dd66bdf5849fe8d4a28d3355f0fc0a50b7f61e2": 8, "a8eec375e86e467cf868a03f64ecd1f9d1fe5fe": 8, "1a18ae76468276b651c178926b380e4e9d607f5": 8, "25": 8, "269dda803d3ec7cea532a0cb1ccda7c855a0c222": 8, "e9267b4cd6282aa5f1cf01e240dfd13279f19816": 8, "9a557e7b3187e7629dd58ef08d59763a934777aa": 8, "53fafd88377265090d2c56afbc8e48554dfbaa38": 8, "253a172029987d5f0ffb80f3322f1232e382b98": 8, "d888d6da459e385903daee9e25067bee341072ac": 8, "15c20abb3accf6f91984efe35076c021fd4cf42f": 8, "bd34f0aa34b4bd0e5b316714b4159de0045bec45": 8, "71f4fdf148e3652c357d6691e2ddd53ad9f6e291": 8, "d8cb5a2e631cc3ad3be6a86f1e452332b8f6c7f1": 8, "5f9816d1ded488fee20664808c8cdbd954743a1c": 8, "30cdf8d3e14cfe9e1ed372399a4dcf4c32fe9cc8": 8, "As": 8, "shown": 8, "abov": 8, "keep": 8, "nest": 8, "contrari": 8, "build_concept_rel": 8, "cid2concept": 8, "cid_to_filter_scor": 8, "__person__0": 8, "food": 8, "carbohydr": 8, "item": 8, "starchi": 8, "product": 8, "meat": 8, "ingredi": 8, "addit": 8, "excipi": 8, "factor": 8, "characterist": 8, "bake": 8, "anim": 8, "protein": 8, "__number__0": 8, "inorgan": 8, "contamin": 8, "season": 8, "substanc": 8, "area": 8, "featur": 8, "17291806206742577": 8, "047555257870060284": 8, "041638758651484704": 8, "04085733422638982": 8, "031033712882339807": 8, "13801169590643275": 8, "1330749354005168": 8, "09395711500974659": 8, "08070175438596491": 8, "06847545219638243": 8, "050387596899224806": 8, "04909560723514212": 8, "040051679586563305": 8, "03391812865497076": 8, "030019493177387915": 8, "018365897517264307": 8, "012503337010340954": 8, "010739380751620654": 8, "009450413285582604": 8, "006954077700711728": 8, "006775768016078094": 8, "006433755937359909": 8, "005527600223642655": 8, "005526089124620336": 8, "004734273236925215": 8, "004612881615465595": 8, "004513652779666651": 8, "004066367469060248": 8, "0039948421153371515": 8, "003962101636520241": 8, "003763140265248248": 8, "0032322408087401967": 8, "002322559197304199": 8, "0020555983700278548": 8, "0017090529942427124": 8, "0016652311225954636": 8, "0015126101213412515": 8, "0014738252464350657": 8, "00135847802106472": 8, "0012023311220917638": 8, "29160382101558574": 8, "10155857214680744": 8, "026646556058320763": 8, "02262443438914027": 8, "016591251885369532": 8, "21908471275559882": 8, "04327599264308125": 8, "03321432435356486": 8, "030236252754573874": 8, "027480255328356594": 8, "025749215622633343": 8, "020584567553255093": 8, "01768052067852201": 8, "0074309434735817135": 8, "00657681203983669": 8, "00597259313670595": 8, "004583965232421818": 8, "004066087417926932": 8, "0037925966418082785": 8, "0035536929163400405": 8, "0034924485290907673": 8, "003120722093258921": 8, "0026804542460771644": 8, "002581965510383602": 8, "0024193220136665247": 8, "0022177048159726376": 8, "0020780068748090068": 8, "0014678406861395978": 8, "001299123365893667": 8, "0011265677266121413": 8, "0009970771833233895": 8, "0009320788356986446": 8, "0008733652082530607": 8, "0008249433373424787": 8, "0007729784027067319": 8, "2110783349721403": 8, "06014421501147165": 8, "0429367420517863": 8, "025401507702392658": 8, "022943297279580464": 8, "06364922206506365": 8, "033946251768033946": 8, "03253182461103253": 8, "0297029702970297": 8, "026874115983026876": 8, "meaning": 8, "show": 8, "becaus": 8, "interest": 8, "forget": 8, "wait": 8, "patient": 8, "until": 8, "finish": 8, "xx": 8, "up": 8, "consol": 8, "access": 8, "And": 8, "__repr__": 8, "e1": 8, "e2": 8, "what": 8, "power": 8, "aggreg": 8, "c1": 8, "c2": 8, "5a49d855f23b29d0a769d638a0944c0d35815ca9": 8, "86e7181b3e449dd70dd9bd0eebcca5b73b432a8c": 8, "02687880595658219": 8, "similarli": 8, "neighbor": 8, "surpris": 8, "much": 8, "denser": 8, "2342e1896c34cac33974473c5b52ac22d7182fe9": 8, "0019171057650086054": 8, "e8809e959614713c0622e23b0ab5dc06e2f2bf46": 8, "0020252501927783217": 8, "69864d92726be0d4b7f52fd4f32e38ad1f97974": 8, "002413587001587757": 8, "58004d785a3ee08eac2f51ea4cbc44bba3a1ba22": 8, "003976765548440927": 8, "novemb": 7, "nvidia": 7, "webank": 7, "rich": 7, "semant": 7}, "objects": {"aser": [[1, 0, 0, "-", "client"], [6, 0, 0, "-", "concept"], [6, 0, 0, "-", "eventuality"], [6, 0, 0, "-", "relation"], [1, 0, 0, "-", "server"]], "aser.client": [[1, 1, 1, "", "ASERClient"]], "aser.client.ASERClient": [[1, 2, 1, "", "close"], [1, 2, 1, "", "conceptualize_eventuality"], [1, 2, 1, "", "exact_match_concept"], [1, 2, 1, "", "exact_match_eventuality"], [1, 2, 1, "", "extract_eventualities"], [1, 2, 1, "", "extract_eventualities_and_relations"], [1, 2, 1, "", "extract_relations"], [1, 2, 1, "", "fetch_related_concepts"], [1, 2, 1, "", "fetch_related_eventualities"], [1, 2, 1, "", "parse_text"], [1, 2, 1, "", "predict_concept_relation"], [1, 2, 1, "", "predict_eventuality_relation"]], "aser.concept": [[6, 1, 1, "", "ASERConcept"], [6, 1, 1, "", "ASERConceptInstancePair"], [6, 1, 1, "", "ProbaseConcept"]], "aser.concept.ASERConcept": [[6, 2, 1, "", "generate_cid"], [6, 2, 1, "", "instantiate"], [6, 3, 1, "", "pattern"]], "aser.concept.ASERConceptInstancePair": [[6, 2, 1, "", "generate_pid"]], "aser.concept.ProbaseConcept": [[6, 3, 1, "", "concept_size"], [6, 2, 1, "", "conceptualize"], [6, 2, 1, "", "get_concept_chain"], [6, 2, 1, "", "get_concept_freq"], [6, 2, 1, "", "get_instance_freq"], [6, 3, 1, "", "instance_size"], [6, 2, 1, "", "instantiate"], [6, 2, 1, "", "load"], [6, 2, 1, "", "save"]], "aser.conceptualize": [[2, 0, 0, "-", "aser_conceptualizer"]], "aser.conceptualize.aser_conceptualizer": [[2, 1, 1, "", "BaseASERConceptualizer"], [2, 1, 1, "", "ProbaseASERConceptualizer"], [2, 1, 1, "", "SeedRuleASERConceptualizer"]], "aser.conceptualize.aser_conceptualizer.BaseASERConceptualizer": [[2, 2, 1, "", "close"], [2, 2, 1, "", "conceptualize"]], "aser.conceptualize.aser_conceptualizer.ProbaseASERConceptualizer": [[2, 2, 1, "", "close"], [2, 2, 1, "", "conceptualize"]], "aser.conceptualize.aser_conceptualizer.SeedRuleASERConceptualizer": [[2, 2, 1, "", "conceptualize"], [2, 2, 1, "", "conceptualize_from_text"], [2, 2, 1, "", "is_pronoun"], [2, 2, 1, "", "is_seed_concept"]], "aser.database": [[3, 0, 0, "-", "db_connection"], [3, 0, 0, "-", "kg_connection"]], "aser.database.db_connection": [[3, 1, 1, "", "BaseDBConnection"], [3, 1, 1, "", "MongoDBConnection"], [3, 1, 1, "", "SqliteDBConnection"]], "aser.database.db_connection.BaseDBConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "create_table"], [3, 2, 1, "", "get_columns"], [3, 2, 1, "", "get_rows_by_keys"], [3, 2, 1, "", "get_update_op"], [3, 2, 1, "", "insert_row"], [3, 2, 1, "", "insert_rows"], [3, 2, 1, "", "select_row"], [3, 2, 1, "", "select_rows"], [3, 2, 1, "", "update_row"], [3, 2, 1, "", "update_rows"]], "aser.database.db_connection.MongoDBConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "create_table"], [3, 2, 1, "", "get_columns"], [3, 2, 1, "", "get_rows_by_keys"], [3, 2, 1, "", "get_update_op"], [3, 2, 1, "", "insert_row"], [3, 2, 1, "", "insert_rows"], [3, 2, 1, "", "select_row"], [3, 2, 1, "", "select_rows"], [3, 2, 1, "", "update_row"], [3, 2, 1, "", "update_rows"]], "aser.database.db_connection.SqliteDBConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "create_table"], [3, 2, 1, "", "get_columns"], [3, 2, 1, "", "get_rows_by_keys"], [3, 2, 1, "", "get_update_op"], [3, 2, 1, "", "insert_row"], [3, 2, 1, "", "insert_rows"], [3, 2, 1, "", "select_row"], [3, 2, 1, "", "select_rows"], [3, 2, 1, "", "update_row"], [3, 2, 1, "", "update_rows"]], "aser.database.kg_connection": [[3, 1, 1, "", "ASERConceptConnection"], [3, 1, 1, "", "ASERKGConnection"]], "aser.database.kg_connection.ASERConceptConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "get_concept_columns"], [3, 2, 1, "", "get_concept_given_str"], [3, 2, 1, "", "get_concept_instance_pair_columns"], [3, 2, 1, "", "get_concepts_by_keys"], [3, 2, 1, "", "get_concepts_given_eventuality"], [3, 2, 1, "", "get_concepts_given_strs"], [3, 2, 1, "", "get_eventualities_given_concept"], [3, 2, 1, "", "get_exact_match_concept"], [3, 2, 1, "", "get_exact_match_concepts"], [3, 2, 1, "", "get_exact_match_relation"], [3, 2, 1, "", "get_exact_match_relations"], [3, 2, 1, "", "get_related_concepts"], [3, 2, 1, "", "get_relation_columns"], [3, 2, 1, "", "get_relations_by_keys"], [3, 2, 1, "", "init"], [3, 2, 1, "", "insert_concept"], [3, 2, 1, "", "insert_concept_instance_pair"], [3, 2, 1, "", "insert_concept_instance_pairs"], [3, 2, 1, "", "insert_concepts"], [3, 2, 1, "", "insert_relation"], [3, 2, 1, "", "insert_relations"]], "aser.database.kg_connection.ASERKGConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "get_eventualities_by_keys"], [3, 2, 1, "", "get_eventuality_columns"], [3, 2, 1, "", "get_exact_match_eventualities"], [3, 2, 1, "", "get_exact_match_eventuality"], [3, 2, 1, "", "get_exact_match_relation"], [3, 2, 1, "", "get_exact_match_relations"], [3, 2, 1, "", "get_partial_match_eventualities"], [3, 2, 1, "", "get_related_eventualities"], [3, 2, 1, "", "get_relation_columns"], [3, 2, 1, "", "get_relations_by_keys"], [3, 2, 1, "", "init"], [3, 2, 1, "", "insert_eventualities"], [3, 2, 1, "", "insert_eventuality"], [3, 2, 1, "", "insert_relation"], [3, 2, 1, "", "insert_relations"]], "aser.eventuality": [[6, 1, 1, "", "Eventuality"]], "aser.eventuality.Eventuality": [[6, 2, 1, "", "decode"], [6, 3, 1, "", "dependencies"], [6, 2, 1, "", "extract_indices_from_dependencies"], [6, 2, 1, "", "generate_eid"], [6, 3, 1, "", "mentions"], [6, 3, 1, "", "ners"], [6, 3, 1, "", "phrases"], [6, 3, 1, "", "phrases_ners"], [6, 3, 1, "", "phrases_postags"], [6, 3, 1, "", "position"], [6, 3, 1, "", "raw_dependencies"], [6, 3, 1, "", "skeleton_dependencies"], [6, 3, 1, "", "skeleton_ners"], [6, 3, 1, "", "skeleton_phrases"], [6, 3, 1, "", "skeleton_phrases_ners"], [6, 3, 1, "", "skeleton_phrases_postags"], [6, 3, 1, "", "skeleton_pos_tags"], [6, 3, 1, "", "skeleton_words"], [6, 2, 1, "", "sort_dependencies_position"], [6, 2, 1, "", "to_dict"], [6, 2, 1, "", "update"], [6, 3, 1, "", "verbs"]], "aser.extract": [[4, 0, 0, "-", "aser_extractor"], [4, 0, 0, "-", "eventuality_extractor"], [4, 0, 0, "-", "parsed_reader"], [4, 0, 0, "-", "relation_extractor"], [4, 0, 0, "-", "sentence_parser"]], "aser.extract.aser_extractor": [[4, 1, 1, "", "BaseASERExtractor"], [4, 1, 1, "", "DiscourseASERExtractor"], [4, 1, 1, "", "SeedRuleASERExtractor"]], "aser.extract.aser_extractor.BaseASERExtractor": [[4, 2, 1, "", "close"], [4, 2, 1, "", "extract_eventualities_from_parsed_result"], [4, 2, 1, "", "extract_eventualities_from_text"], [4, 2, 1, "", "extract_from_parsed_result"], [4, 2, 1, "", "extract_from_text"], [4, 2, 1, "", "extract_relations_from_parsed_result"], [4, 2, 1, "", "extract_relations_from_text"], [4, 2, 1, "", "parse_text"]], "aser.extract.aser_extractor.DiscourseASERExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.eventuality_extractor": [[4, 1, 1, "", "BaseEventualityExtractor"], [4, 1, 1, "", "DiscourseEventualityExtractor"], [4, 1, 1, "", "SeedRuleEventualityExtractor"]], "aser.extract.eventuality_extractor.BaseEventualityExtractor": [[4, 2, 1, "", "close"], [4, 2, 1, "", "extract_from_parsed_result"], [4, 2, 1, "", "extract_from_text"], [4, 2, 1, "", "parse_text"]], "aser.extract.eventuality_extractor.DiscourseEventualityExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.eventuality_extractor.SeedRuleEventualityExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.parsed_reader": [[4, 1, 1, "", "ParsedReader"]], "aser.extract.parsed_reader.ParsedReader": [[4, 2, 1, "", "close"], [4, 2, 1, "", "generate_sid"], [4, 2, 1, "", "get_parsed_paragraphs_from_file"], [4, 2, 1, "", "get_parsed_sentence_and_context"]], "aser.extract.relation_extractor": [[4, 1, 1, "", "BaseRelationExtractor"], [4, 1, 1, "", "DiscourseRelationExtractor"], [4, 1, 1, "", "SeedRuleRelationExtractor"]], "aser.extract.relation_extractor.BaseRelationExtractor": [[4, 2, 1, "", "close"], [4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.relation_extractor.DiscourseRelationExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.relation_extractor.SeedRuleRelationExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.sentence_parser": [[4, 1, 1, "", "SentenceParser"]], "aser.extract.sentence_parser.SentenceParser": [[4, 2, 1, "", "close"], [4, 2, 1, "", "generate_sid"], [4, 2, 1, "", "parse"], [4, 2, 1, "", "parse_raw_file"]], "aser.relation": [[6, 1, 1, "", "Relation"]], "aser.relation.Relation": [[6, 2, 1, "", "generate_rid"], [6, 2, 1, "", "to_triplets"], [6, 2, 1, "", "update"]], "aser.server": [[1, 1, 1, "", "ASERDataBase"], [1, 1, 1, "", "ASERServer"], [1, 1, 1, "", "ASERSink"], [1, 1, 1, "", "ASERWorker"], [1, 4, 1, "", "is_port_occupied"], [1, 4, 1, "", "sockets_ipc_bind"]], "aser.server.ASERDataBase": [[1, 2, 1, "", "close"], [1, 2, 1, "", "handle_exact_match_concept"], [1, 2, 1, "", "handle_exact_match_concept_relation"], [1, 2, 1, "", "handle_exact_match_eventuality"], [1, 2, 1, "", "handle_exact_match_eventuality_relation"], [1, 2, 1, "", "handle_fetch_related_concepts"], [1, 2, 1, "", "handle_fetch_related_eventualities"], [1, 2, 1, "", "run"]], "aser.server.ASERServer": [[1, 2, 1, "", "close"], [1, 2, 1, "", "run"]], "aser.server.ASERSink": [[1, 2, 1, "", "run"]], "aser.server.ASERWorker": [[1, 2, 1, "", "close"], [1, 2, 1, "", "handle_conceptualize_eventuality"], [1, 2, 1, "", "handle_extract_eventualities"], [1, 2, 1, "", "handle_extract_eventualities_and_relations"], [1, 2, 1, "", "handle_extract_relations"], [1, 2, 1, "", "handle_parse_text"], [1, 2, 1, "", "run"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "function", "Python function"]}, "titleterms": {"about": [0, 7], "server": [1, 8], "client": [1, 8], "aser": [1, 7, 8], "name": 1, "argument": 1, "conceptu": 2, "eventuality_conceptu": 2, "databas": 3, "db_connect": 3, "kg_connect": 3, "extractor": 4, "aser_extractor": 4, "eventuality_extractor": 4, "relation_extractor": 4, "parsed_read": 4, "sentence_read": 4, "api": [5, 7], "refer": [5, 7], "object": 6, "eventu": 6, "relat": [6, 7], "concept": 6, "activ": 7, "state": 7, "event": 7, "introduct": 7, "data": 7, "download": 7, "project": 7, "talk": 7, "public": 7, "tutori": [7, 9], "index": 7, "get": 8, "start": 8, "instal": 8, "local": 8, "pipelin": 8, "pipe": 8, "step": 8, "extract": 8, "mode": 8}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 60}, "alltitles": {"Server/Client": [[1, "server-client"]], "ASER server": [[1, "module-aser.server"]], "Named Arguments": [[1, "named-arguments"]], "ASER client": [[1, "module-aser.client"]], "Conceptualization": [[2, "conceptualization"]], "eventuality_conceptualizer": [[2, "module-aser.conceptualize.aser_conceptualizer"]], "Database": [[3, "database"]], "db_connection": [[3, "module-aser.database.db_connection"]], "kg_connection": [[3, "module-aser.database.kg_connection"]], "Extractor": [[4, "extractor"]], "aser_extractor": [[4, "module-aser.extract.aser_extractor"]], "eventuality_extractor": [[4, "module-aser.extract.eventuality_extractor"]], "relation_extractor": [[4, "module-aser.extract.relation_extractor"]], "parsed_reader": [[4, "module-aser.extract.parsed_reader"]], "sentence_reader": [[4, "module-aser.extract.sentence_parser"]], "API Reference": [[5, "api-reference"], [7, null]], "Object": [[6, "object"]], "eventuality": [[6, "module-aser.eventuality"]], "relation": [[6, "module-aser.relation"]], "concept": [[6, "module-aser.concept"]], "Get Started": [[8, "get-started"]], "Installation": [[8, "installation"]], "Local Pipeline: aser-pipe": [[8, "local-pipeline-aser-pipe"]], "Step-by-step extraction": [[8, "step-by-step-extraction"]], "Client/Server Mode": [[8, "client-server-mode"]], "Tutorial": [[9, "tutorial"], [7, null]], "About": [[0, "about"], [7, null]], "ASER (Activities, States, Events, and their Relations)": [[7, "aser-activities-states-events-and-their-relations"]], "Introduction": [[7, "introduction"]], "Data Download": [[7, "data-download"]], "Related Projects": [[7, "related-projects"]], "Talks": [[7, "talks"]], "Publications": [[7, "publications"]], "API Index": [[7, "api-index"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["about/index", "api/aser-cs", "api/conceptualizer", "api/database", "api/extractor", "api/index", "api/object", "index", "tutorial/get-started", "tutorial/index"], "filenames": ["about/index.rst", "api/aser-cs.rst", "api/conceptualizer.rst", "api/database.rst", "api/extractor.rst", "api/index.rst", "api/object.rst", "index.rst", "tutorial/get-started.rst", "tutorial/index.rst"], "titles": ["About", "Server/Client", "Conceptualization", "Database", "Extractor", "API Reference", "Object", "ASER (Activities, States, Events, and their Relations)", "Get Started", "Tutorial"], "terms": {"aser": [0, 2, 3, 4, 5, 6, 9], "i": [0, 1, 3, 4, 7, 8], "from": [0, 1, 3, 4, 6, 7, 8], "knowcomp": [0, 8], "hkust": [0, 7, 8], "led": 0, "prof": 0, "yangqiu": [0, 7], "song": [0, 7], "The": [0, 7, 8], "main": 0, "contributor": 0, "ar": [0, 1, 3, 6, 7, 8], "hongm": [0, 7], "zhang": [0, 7], "senior": 0, "research": [0, 1, 8], "tencent": 0, "ai": 0, "lab": 0, "seattl": 0, "xin": [0, 7], "liu": [0, 7], "appli": [0, 3], "scientist": 0, "amazon": [0, 7], "search": [0, 7], "haoji": [0, 7], "pan": [0, 7], "algorithm": 0, "expert": [0, 7], "kuaishou": 0, "technologi": 0, "haowen": [0, 7], "ke": [0, 7], "mphil": [], "student": 0, "jiefu": [0, 7], "ou": [0, 7], "phd": 0, "jhu": 0, "tianq": [0, 7], "fang": [0, 7], "jiaxin": [0, 7], "bai": [0, 7], "zhaowei": [0, 7], "wang": [0, 7], "weiqi": [0, 7], "class": [1, 2, 3, 4, 6], "aserdatabas": 1, "opt": 1, "db_sender_addr_list": 1, "sink_addr": 1, "sourc": [1, 2, 3, 4, 6, 8], "base": [1, 2, 3, 4, 6, 7, 8], "process": [1, 4, 7, 8], "provid": [1, 3, 7, 8], "db": [1, 3, 8], "retriev": [1, 3, 4, 6, 8], "function": 1, "close": [1, 2, 3, 4, 8], "safe": [1, 2, 3, 4], "handle_exact_match_concept": 1, "cid": [1, 3, 6], "extract": [1, 4, 6, 7, 9], "match": [1, 3], "concept": [1, 2, 3, 5, 7, 8], "paramet": [1, 2, 3, 4, 6], "str": [1, 2, 3, 4, 6], "return": [1, 2, 3, 4, 6, 8], "exact": [1, 3], "none": [1, 2, 3, 4, 6], "type": [1, 2, 3, 4, 6], "union": [1, 3, 4, 6], "aserconcept": [1, 2, 3, 6], "handle_exact_match_concept_rel": 1, "rid": [1, 3, 6], "relat": [1, 3, 4, 5, 8], "between": [1, 7, 8], "handle_exact_match_eventu": 1, "eid": [1, 3, 6], "eventu": [1, 2, 3, 4, 5, 7, 8], "handle_exact_match_eventuality_rel": 1, "handle_fetch_related_concept": 1, "fetch": [1, 8], "all": [1, 3, 4, 6, 7, 8], "given": [1, 2, 3, 4, 6, 8], "associ": [1, 6, 7], "correspond": [1, 3, 4, 6, 8], "list": [1, 2, 3, 4, 6, 8], "tupl": [1, 2, 3, 4, 6], "handle_fetch_related_eventu": 1, "run": [1, 8], "method": [1, 4, 6, 7], "sub": [1, 7], "can": [1, 8], "overridden": 1, "aserserv": 1, "object": [1, 2, 3, 4, 5, 7], "conceptu": [1, 3, 5, 6, 7, 8], "argpars": 1, "namespac": 1, "includ": [1, 3, 4, 7], "clase": 1, "start": [1, 7, 9], "asersink": 1, "arg": 1, "sink_addr_receiver_addr": 1, "forward": 1, "messag": 1, "aserwork": 1, "id": [1, 3, 4], "worker_addr_list": 1, "serv": 1, "handle_conceptualize_eventu": 1, "handle_extract_eventu": 1, "data": [1, 8], "handle_extract_eventualities_and_rel": 1, "handle_extract_rel": 1, "handle_parse_text": 1, "text": [1, 4, 7, 8], "is_port_occupi": 1, "ip": 1, "127": 1, "0": [1, 3, 4, 6, 7, 8], "1": [1, 4, 6, 7, 8], "port": [1, 4, 8], "80": [1, 8], "check": [1, 7, 8], "whether": [1, 3, 4, 6], "occupi": 1, "default": [1, 3, 4, 6], "address": 1, "int": [1, 3, 4, 6], "bool": [1, 3, 4, 6], "sockets_ipc_bind": 1, "socket": 1, "zmq": 1, "sugar": 1, "bound": 1, "you": [1, 3, 4, 8], "get": [1, 3, 6, 7, 9], "usag": [1, 7], "via": [1, 7], "help": [1, 7], "h": 1, "n_worker": [1, 8], "n_concurrent_back_sock": [1, 8], "port_out": [1, 8], "corenlp_path": [1, 4, 8], "base_corenlp_port": [1, 8], "aser_kg_dir": [1, 8], "concept_kg_dir": [1, 8], "concept_method": [1, 8], "probas": [1, 2, 6, 7, 8], "seed": 1, "probase_path": [1, 2, 8], "concept_topk": [1, 8], "log_path": [1, 8], "number": [1, 4], "worker": 1, "same": [1, 8], "num": 1, "corenlp": [1, 4, 8], "5": [1, 4, 6, 8], "concurr": 1, "10": [1, 4, 8], "receiv": 1, "msg": [1, 6], "8000": [1, 8], "recev": 1, "8001": [1, 8], "stanfordcorenlp": 1, "path": [1, 3, 4, 6], "should": [1, 8], "reserv": 1, "9000": [1, 4, 8], "kg": [1, 3, 6, 8], "directori": [1, 8], "possibl": 1, "choic": 1, "do": [1, 7, 8], "us": [1, 2, 3, 4, 7, 8], "file_path": 1, "txt": [1, 6, 8], "file": [1, 4, 6, 8], "which": [1, 3, 4, 8], "avail": [1, 8], "http": [1, 3, 4, 6, 8], "microsoft": [1, 7, 8], "com": [1, 6, 8], "home": [1, 3, 4, 8], "download": [1, 8], "how": [1, 3, 8], "mani": [1, 3, 8], "top": [1, 8], "kept": 1, "log": [1, 8], "output": [1, 4, 6, 8], "asercli": [1, 8], "localhost": [1, 3], "timeout": 1, "A": [1, 7], "push": 1, "request": [1, 8], "subscrib": 1, "float": [1, 2, 3, 6], "millisecond": 1, "mean": 1, "conceptualize_eventu": [1, 8], "an": [1, 2, 3, 4, 6, 7, 8], "send": 1, "score": [1, 2, 6], "pair": [1, 2, 3, 6], "exact_match_concept": 1, "exact_match_eventu": 1, "extract_eventu": [1, 8], "dict": [1, 3, 4, 6], "raw": [1, 4, 8], "pars": [1, 4, 6, 8], "result": [1, 4, 6, 7, 8], "paragraph": [1, 4], "extract_eventualities_and_rel": 1, "both": [1, 4], "extract_rel": 1, "fetch_related_concept": [1, 8], "fetch_related_eventu": [1, 8], "parse_text": [1, 4], "predict_concept_rel": [1, 8], "concept1": 1, "concept2": 1, "predict": [1, 7], "two": [1, 3, 8], "one": 1, "head": [1, 6], "other": [1, 4, 6, 8], "store": [1, 4], "predict_eventuality_rel": [1, 8], "eventuality1": 1, "eventuality2": 1, "tail": [1, 6], "aser_conceptu": [2, 8], "baseaserconceptu": 2, "probaseaserconceptu": [2, 8], "probase_topk": [2, 8], "3": [2, 4, 8], "ner": [2, 4, 6], "seedruleaserconceptu": [2, 8], "kw": [2, 4, 6], "rule": [2, 4], "conceptualize_from_text": 2, "word": [2, 3, 4, 6], "is_pronoun": 2, "is_seed_concept": 2, "basedbconnect": 3, "db_path": 3, "chunksiz": 3, "connect": [3, 6, 8], "creat": 3, "load": [3, 6, 8], "write": [3, 8], "create_t": 3, "table_nam": 3, "column": 3, "column_typ": 3, "tabl": 3, "name": [3, 4, 6], "get_column": 3, "inform": [3, 6, 7, 8], "row": 3, "get_rows_by_kei": 3, "bys": 3, "kei": 3, "order_bi": 3, "revers": 3, "fals": [3, 4, 8], "top_n": 3, "specif": 3, "some": [3, 8], "order": [3, 4, 7, 8], "valu": [3, 8], "whose": 3, "sort": [3, 6], "get_update_op": 3, "update_column": 3, "oper": 3, "updat": [3, 6], "suit": 3, "backend": 3, "insert_row": 3, "insert": 3, "sever": 3, "select_row": 3, "_id": 3, "select": [3, 7], "update_row": 3, "update_op": 3, "exist": 3, "new": [3, 6, 8], "": [3, 4, 6, 7, 8], "mongodbconnect": 3, "mongodb": 3, "sqlite": 3, "e": [3, 4, 6, 7], "g": [3, 4, 6, 7], "27017": 3, "without": [3, 6], "necessari": [3, 6], "suggest": 3, "consid": 3, "want": [3, 8], "multipl": [3, 8], "sqlitedbconnect": 3, "xliucr": [3, 4], "pleas": [3, 4, 8], "refer": [3, 4], "www": [3, 7, 8], "org": 3, "datatype3": 3, "html": [3, 4, 8], "aserconceptconnect": [3, 8], "mode": [3, 7, 9], "cach": 3, "32768": 3, "concept_instance_pair": [3, 8], "thi": [3, 4, 6, 8], "onli": [3, 6, 8], "content": 3, "have": [3, 8], "been": [3, 8], "memori": 3, "get_concept_column": 3, "get_concept_given_str": 3, "concept_str": [3, 6], "string": 3, "represent": [3, 6, 8], "get_concept_instance_pair_column": 3, "get_concepts_by_kei": 3, "partial": 3, "get_concepts_given_eventu": 3, "link": 3, "get_concepts_given_str": 3, "get_eventualities_given_concept": 3, "origin": [3, 7], "aserconcpet": 3, "get_exact_match_concept": 3, "contain": [3, 4, 6, 7], "get_exact_match_rel": 3, "each": [3, 8], "get_related_concept": 3, "get_relation_column": 3, "get_relations_by_kei": 3, "init": 3, "initi": 3, "build": [3, 7, 8], "insert_concept": 3, "insert_concept_instance_pair": 3, "aserconceptinstancepair": [3, 6], "event": 3, "instanc": [3, 4, 6, 8], "insert_rel": 3, "aserkgconnect": [3, 6], "grain": [3, 8], "built": 3, "verb": [3, 6], "skeleton_word": [3, 6], "get_eventualities_by_kei": 3, "get_eventuality_column": 3, "get_exact_match_eventu": 3, "get_partial_match_eventu": 3, "threshold": 3, "8": [3, 4, 6], "true": [3, 4, 6, 8], "properti": [3, 6], "minimum": 3, "similar": 3, "get_related_eventu": 3, "insert_eventu": 3, "baseaserextractor": 4, "corenlp_port": [4, 8], "It": [4, 8], "baseeventualityextractor": 4, "baserelationextractor": 4, "stanford": [4, 8], "9": [4, 8], "2": [4, 6, 7, 8], "extract_eventualities_from_parsed_result": 4, "parsed_result": [4, 6], "output_format": 4, "in_ord": [4, 8], "use_lemma": [4, 6, 8], "format": [4, 6], "json": 4, "follow": [4, 8], "input": [4, 6], "token": [4, 7, 8], "lemma": [4, 8], "depend": [4, 6, 7], "nmod": 4, "poss": 4, "nsubj": [4, 6], "aux": 4, "dobj": 4, "punct": 4, "6": [4, 6], "4": 4, "my": [4, 8], "armi": 4, "find": [4, 7, 8], "boat": 4, "mention": [4, 6], "o": [4, 8], "root": 4, "np": 4, "prp": 4, "nn": 4, "vp": 4, "md": 4, "vb": 4, "your": [4, 8], "pos_tag": 4, "case": 4, "det": 4, "cop": [4, 6], "ccomp": 4, "13": 4, "7": [4, 6], "iobj": 4, "12": 4, "amod": 4, "11": 4, "meantim": 4, "sure": 4, "we": [4, 7, 8], "could": 4, "suitabl": 4, "accommod": 4, "pp": 4, "IN": 4, "In": [4, 7, 8], "dt": 4, "vbp": 4, "m": 4, "adjp": 4, "jj": 4, "sbar": 4, "extract_eventualities_from_text": 4, "annot": [4, 7], "stanfordnlp": [4, 8], "github": [4, 6, 8], "io": [4, 8], "extract_from_parsed_result": 4, "eventuality_output_format": 4, "relation_output_format": 4, "triplet": [4, 6], "7d9ea9023b66a0ebc167f0dbb6ea8cd75d7b46f9": 4, "25edad6781577dcb3ba715c8230416fb0d4c45c4": 4, "co_occurr": [4, 8], "8540897b645962964fd644242d4cc0032f024e86": 4, "synchron": 4, "extract_from_text": [4, 8], "rtype": 4, "extract_relations_from_parsed_result": 4, "para_eventu": 4, "extract_relations_from_text": 4, "discourseaserextractor": [4, 8], "discours": [4, 7, 8], "v2": [4, 7], "syntax_tree_cach": 4, "seedruleaserextractor": [4, 8], "v1": 4, "discourseeventualityextractor": 4, "constitu": 4, "analysi": [4, 7], "seedruleeventualityextractor": 4, "skip_word": 4, "drop": 4, "sentenc": [4, 6, 8], "rxtractor": 4, "discourserelationextractor": 4, "seedrulerelationextractor": 4, "parsedread": 4, "reader": 4, "read": 4, "disk": 4, "generate_sid": 4, "file_nam": [4, 6], "line_no": 4, "line": [4, 8], "get_parsed_paragraphs_from_fil": 4, "processed_path": 4, "get_parsed_sentence_and_context": 4, "sid": 4, "context_window_s": 4, "its": 4, "context": 4, "window": 4, "size": 4, "dictionari": [4, 6], "left_context": 4, "right_context": 4, "sentence_pars": 4, "sentencepars": 4, "parser": [4, 7], "max_len": 4, "1024": 4, "max": 4, "length": [4, 6], "cannot": 4, "handl": 4, "super": 4, "long": 4, "parse_raw_fil": 4, "raw_path": 4, "databas": [5, 6, 7, 8], "db_connect": [5, 7], "kg_connect": [5, 6, 7, 8], "extractor": [5, 7, 8], "aser_extractor": [5, 7, 8], "eventuality_extractor": [5, 7], "relation_extractor": [5, 7], "parsed_read": [5, 7], "sentence_read": [5, 7], "eventuality_conceptu": [5, 7], "server": [5, 7, 9], "client": [5, 7, 9], "pattern": [6, 7], "unknown": 6, "skeleton_depend": 6, "jsonserializedobject": 6, "option": [6, 8], "edg": [6, 7], "decod": 6, "encod": 6, "utf": 6, "byte": 6, "static": 6, "extract_indices_from_depend": 6, "indic": 6, "involv": 6, "generate_eid": 6, "gener": [6, 7], "uniqu": 6, "phrase": 6, "phrases_n": 6, "phrases_postag": 6, "posit": 6, "averag": 6, "make": [6, 8], "sens": 6, "when": 6, "construct": [6, 7], "while": 6, "instead": 6, "recov": 6, "raw_depend": 6, "skeleton_n": 6, "skeleton_phras": 6, "skeleton_phrases_n": 6, "skeleton_phrases_postag": 6, "skeleton_pos_tag": 6, "sort_dependencies_posit": 6, "reset_posit": 6, "fix": 6, "absolut": 6, "relev": 6, "them": 6, "reset": 6, "map": 6, "invers": 6, "to_dict": 6, "convert": 6, "x": 6, "frequenc": 6, "hid": 6, "tid": 6, "conceptuali": [6, 7], "generate_rid": 6, "to_triplet": 6, "generate_cid": 6, "instanti": [6, 7], "kg_conn": 6, "probabl": 6, "generate_pid": 6, "pid": 6, "probaseconcept": 6, "data_concept_path": 6, "copi": [6, 7], "scarletpan": 6, "concept_s": 6, "score_method": 6, "likelihood": 6, "comput": [6, 7], "sscore": 6, "pmi": 6, "get_concept_chain": 6, "max_chain_length": 6, "chain": 6, "maximum": 6, "get_concept_freq": 6, "get_instance_freq": 6, "instance_s": 6, "save": 6, "larg": 7, "scale": 7, "weight": 7, "knowledg": 7, "graph": [7, 8], "action": 7, "node": 7, "besid": 7, "more": [7, 8], "abstract": 7, "level": 7, "also": [7, 8], "conduct": 7, "total": 7, "full": [7, 8], "438": 7, "million": 7, "648": 7, "core": [7, 8], "53": 7, "52": 7, "With": 7, "now": [7, 8], "call": 7, "15": 7, "224": 7, "complet": 7, "aw": 7, "onedr": 7, "code": [7, 8], "msra": 7, "offici": 7, "websit": 7, "licens": 7, "subject": 7, "releas": 7, "abspyramid": 7, "bechmark": 7, "bbiliti": [], "llm": 7, "atom": 7, "benchmark": 7, "commonsens": 7, "popul": 7, "transfer": 7, "omc": 7, "entail": 7, "folkscop": 7, "intent": 7, "ami": 7, "prefer": 7, "sp": 7, "10k": 7, "known": 7, "2023": 7, "juli": 7, "kdd": 7, "china": 7, "pdf": 7, "ppt": 7, "2022": 7, "scienc": 7, "team": 7, "acquir": 7, "model": 7, "2021": 7, "novermb": 7, "cck": 7, "acquisit": 7, "reason": 7, "present": 7, "septemb": 7, "huawei": 7, "workshop": 7, "april": 7, "renmin": 7, "univers": 7, "thu": 7, "overview": 7, "2020": [7, 8], "nlp": [7, 8], "friend": 7, "angl": 7, "video": 7, "work": 7, "fudan": 7, "higher": 7, "2019": 7, "octob": 7, "centric": 7, "structur": 7, "hit": 7, "workhop": 7, "bupt": 7, "pku": 7, "beihang": 7, "haochen": 7, "shi": 7, "sehyun": 7, "choi": 7, "abil": 7, "languag": 7, "unifi": 7, "arxiv": 7, "2311": 7, "09174": 7, "chen": 7, "luo": 7, "complex": 7, "queri": 7, "answer": 7, "implicit": 7, "logic": 7, "constraint": 7, "confer": [7, 8], "neural": 7, "system": [7, 8], "neurip": 7, "changlong": 7, "yu": 7, "zheng": 7, "li": 7, "yifan": 7, "gao": 7, "tianyu": 7, "cao": 7, "bing": 7, "yin": 7, "commerc": 7, "discoveri": 7, "acl": 7, "quyet": 7, "v": 7, "ckbp": 7, "evalu": 7, "set": [7, 8], "ab": 7, "2304": 7, "10392": 7, "ginni": 7, "y": 7, "wong": 7, "simon": 7, "see": [7, 8], "pseudoreason": 7, "leverag": 7, "pseudo": 7, "label": 7, "emnlp": 7, "subeventwrit": 7, "iter": 7, "sequenc": 7, "coher": 7, "control": 7, "empir": 7, "natur": [7, 8], "mutian": 7, "he": 7, "2206": 7, "01532": 7, "toward": 7, "over": 7, "artifici": 7, "intellig": 7, "volum": 7, "309": 7, "august": 7, "103740": 7, "wilfr": 7, "ng": 7, "cocolm": 7, "enhanc": 7, "shibo": 7, "hao": 7, "bin": 7, "effect": 7, "dataset": 7, "disco": 7, "bridg": 7, "gap": 7, "web": 7, "muhao": 7, "haoyu": 7, "dan": 7, "roth": 7, "analog": 7, "induct": 7, "lifeng": 7, "shang": 7, "enrich": 7, "autom": 7, "akbc": 7, "daniel": 7, "khashabi": 7, "transomc": 7, "linguist": 7, "intern": 7, "joint": 7, "ijcai": 7, "kun": 7, "xu": 7, "dong": 7, "On": [7, 8], "role": 7, "technic": 7, "report": 7, "march": 7, "6th": 7, "cane": 7, "wing": 7, "ki": 7, "leung": 7, "hantian": 7, "ding": 7, "annual": 7, "meet": 7, "instal": [7, 9], "local": [7, 9], "pipelin": [7, 9], "pipe": [7, 9], "step": [7, 9], "current": 8, "support": 8, "setup": 8, "so": 8, "first": 8, "repo": 8, "git": 8, "clone": 8, "Then": 8, "requir": 8, "pip": 8, "r": 8, "final": 8, "python": 8, "packag": 8, "py": 8, "To": 8, "need": 8, "2018": 8, "05": 8, "import": 8, "urllib": 8, "zipfil": 8, "shutil": 8, "urlretriev": 8, "edu": 8, "softwar": 8, "zip": 8, "zip_ref": 8, "extractal": 8, "move": 8, "conceptualizatoin": 8, "startdownload": 8, "rmtree": 8, "befor": 8, "three": 8, "review": 8, "yelp": 8, "pipeplin": 8, "mkdir": 8, "open": 8, "w": 8, "f": 8, "went": 8, "wa": 8, "let": 8, "down": 8, "got": 8, "wild": 8, "mushroom": 8, "person": 8, "pie": 8, "ad": 8, "spinach": 8, "fresh": 8, "jalapeno": 8, "ancient": 8, "crust": 8, "amaz": 8, "perfectli": 8, "cook": 8, "mesh": 8, "well": 8, "togeth": 8, "thei": 8, "vegan": 8, "daiya": 8, "chees": 8, "owner": 8, "employe": 8, "were": 8, "veri": 8, "nice": 8, "friendli": 8, "definit": 8, "go": 8, "back": 8, "next": 8, "time": 8, "am": 8, "town": 8, "n": 8, "experi": 8, "kneader": 8, "locat": 8, "great": 8, "wasn": 8, "t": 8, "dure": 8, "busi": 8, "about": 8, "45": 8, "attent": 8, "place": 8, "readi": 8, "within": 8, "minut": 8, "came": 8, "here": 8, "breakfast": 8, "excit": 8, "try": 8, "think": 8, "highlight": 8, "freshli": 8, "squeez": 8, "orang": 8, "juic": 8, "sweet": 8, "champion": 8, "dai": 8, "egg": 8, "ciabatta": 8, "hous": 8, "made": 8, "sausag": 8, "would": 8, "four": 8, "bread": 8, "had": 8, "toast": 8, "wasnt": 8, "good": 8, "flavor": 8, "like": 8, "littl": 8, "salt": 8, "If": 8, "pastri": 8, "look": 8, "smell": 8, "command": 8, "n_extractor": 8, "raw_dir": 8, "processed_dir": 8, "core_kg_dir": 8, "full_kg_dir": 8, "eventuality_frequency_threshold": 8, "relation_weight_threshold": 8, "eventuality_threshold_to_conceptu": 8, "concept_weight_threshold": 8, "aser_pip": 8, "util": 8, "kind": 8, "aserextractor": 8, "implement": 8, "pprint": 8, "print": 8, "out": 8, "succe": 8, "give": 8, "010ec054737a144cb77e99954ff032bc5dff472c": 8, "55704c606666f41a73ac5ae0eabe582892aa163c": 8, "b875a4b94675e057fa643beb334e071e4ddf3760": 8, "41876cb7188cb3398572af71ff9d98d61f46c20b": 8, "766f00c08dcac14353629c12125f05697eb58a2": 8, "13bb4ed9f70c37253246c2051ef05fe4795f4fe": 8, "condit": 8, "253e8b127b833c3aa7d79e2b91ce030299a646d6": 8, "8dd8fbc06d2810add7b2cfd637a78f90fa2e5e9": 8, "contrast": 8, "dac82e8bc75bd0221e86194e6e3cd607a72aba7": 8, "2dd66bdf5849fe8d4a28d3355f0fc0a50b7f61e2": 8, "a8eec375e86e467cf868a03f64ecd1f9d1fe5fe": 8, "1a18ae76468276b651c178926b380e4e9d607f5": 8, "25": 8, "269dda803d3ec7cea532a0cb1ccda7c855a0c222": 8, "e9267b4cd6282aa5f1cf01e240dfd13279f19816": 8, "9a557e7b3187e7629dd58ef08d59763a934777aa": 8, "53fafd88377265090d2c56afbc8e48554dfbaa38": 8, "253a172029987d5f0ffb80f3322f1232e382b98": 8, "d888d6da459e385903daee9e25067bee341072ac": 8, "15c20abb3accf6f91984efe35076c021fd4cf42f": 8, "bd34f0aa34b4bd0e5b316714b4159de0045bec45": 8, "71f4fdf148e3652c357d6691e2ddd53ad9f6e291": 8, "d8cb5a2e631cc3ad3be6a86f1e452332b8f6c7f1": 8, "5f9816d1ded488fee20664808c8cdbd954743a1c": 8, "30cdf8d3e14cfe9e1ed372399a4dcf4c32fe9cc8": 8, "As": 8, "shown": 8, "abov": 8, "keep": 8, "nest": 8, "contrari": 8, "build_concept_rel": 8, "cid2concept": 8, "cid_to_filter_scor": 8, "__person__0": 8, "food": 8, "carbohydr": 8, "item": 8, "starchi": 8, "product": 8, "meat": 8, "ingredi": 8, "addit": 8, "excipi": 8, "factor": 8, "characterist": 8, "bake": 8, "anim": 8, "protein": 8, "__number__0": 8, "inorgan": 8, "contamin": 8, "season": 8, "substanc": 8, "area": 8, "featur": 8, "17291806206742577": 8, "047555257870060284": 8, "041638758651484704": 8, "04085733422638982": 8, "031033712882339807": 8, "13801169590643275": 8, "1330749354005168": 8, "09395711500974659": 8, "08070175438596491": 8, "06847545219638243": 8, "050387596899224806": 8, "04909560723514212": 8, "040051679586563305": 8, "03391812865497076": 8, "030019493177387915": 8, "018365897517264307": 8, "012503337010340954": 8, "010739380751620654": 8, "009450413285582604": 8, "006954077700711728": 8, "006775768016078094": 8, "006433755937359909": 8, "005527600223642655": 8, "005526089124620336": 8, "004734273236925215": 8, "004612881615465595": 8, "004513652779666651": 8, "004066367469060248": 8, "0039948421153371515": 8, "003962101636520241": 8, "003763140265248248": 8, "0032322408087401967": 8, "002322559197304199": 8, "0020555983700278548": 8, "0017090529942427124": 8, "0016652311225954636": 8, "0015126101213412515": 8, "0014738252464350657": 8, "00135847802106472": 8, "0012023311220917638": 8, "29160382101558574": 8, "10155857214680744": 8, "026646556058320763": 8, "02262443438914027": 8, "016591251885369532": 8, "21908471275559882": 8, "04327599264308125": 8, "03321432435356486": 8, "030236252754573874": 8, "027480255328356594": 8, "025749215622633343": 8, "020584567553255093": 8, "01768052067852201": 8, "0074309434735817135": 8, "00657681203983669": 8, "00597259313670595": 8, "004583965232421818": 8, "004066087417926932": 8, "0037925966418082785": 8, "0035536929163400405": 8, "0034924485290907673": 8, "003120722093258921": 8, "0026804542460771644": 8, "002581965510383602": 8, "0024193220136665247": 8, "0022177048159726376": 8, "0020780068748090068": 8, "0014678406861395978": 8, "001299123365893667": 8, "0011265677266121413": 8, "0009970771833233895": 8, "0009320788356986446": 8, "0008733652082530607": 8, "0008249433373424787": 8, "0007729784027067319": 8, "2110783349721403": 8, "06014421501147165": 8, "0429367420517863": 8, "025401507702392658": 8, "022943297279580464": 8, "06364922206506365": 8, "033946251768033946": 8, "03253182461103253": 8, "0297029702970297": 8, "026874115983026876": 8, "meaning": 8, "show": 8, "becaus": 8, "interest": 8, "forget": 8, "wait": 8, "patient": 8, "until": 8, "finish": 8, "xx": 8, "up": 8, "consol": 8, "access": 8, "And": 8, "__repr__": 8, "e1": 8, "e2": 8, "what": 8, "power": 8, "aggreg": 8, "c1": 8, "c2": 8, "5a49d855f23b29d0a769d638a0944c0d35815ca9": 8, "86e7181b3e449dd70dd9bd0eebcca5b73b432a8c": 8, "02687880595658219": 8, "similarli": 8, "neighbor": 8, "surpris": 8, "much": 8, "denser": 8, "2342e1896c34cac33974473c5b52ac22d7182fe9": 8, "0019171057650086054": 8, "e8809e959614713c0622e23b0ab5dc06e2f2bf46": 8, "0020252501927783217": 8, "69864d92726be0d4b7f52fd4f32e38ad1f97974": 8, "002413587001587757": 8, "58004d785a3ee08eac2f51ea4cbc44bba3a1ba22": 8, "003976765548440927": 8, "novemb": 7, "nvidia": 7, "webank": 7, "rich": 7, "semant": 7, "engin": 0, "didi": 0, "wenxuan": 7, "baixuan": 7, "antoin": 7, "bosselut": 7, "car": 7, "augment": 7, "zero": 7, "shot": 7, "question": 7, "chun": 7, "yi": 7, "loui": 7, "bo": 7, "lei": 7, "cat": 7, "contextu": 7, "framework": 7}, "objects": {"aser": [[1, 0, 0, "-", "client"], [6, 0, 0, "-", "concept"], [6, 0, 0, "-", "eventuality"], [6, 0, 0, "-", "relation"], [1, 0, 0, "-", "server"]], "aser.client": [[1, 1, 1, "", "ASERClient"]], "aser.client.ASERClient": [[1, 2, 1, "", "close"], [1, 2, 1, "", "conceptualize_eventuality"], [1, 2, 1, "", "exact_match_concept"], [1, 2, 1, "", "exact_match_eventuality"], [1, 2, 1, "", "extract_eventualities"], [1, 2, 1, "", "extract_eventualities_and_relations"], [1, 2, 1, "", "extract_relations"], [1, 2, 1, "", "fetch_related_concepts"], [1, 2, 1, "", "fetch_related_eventualities"], [1, 2, 1, "", "parse_text"], [1, 2, 1, "", "predict_concept_relation"], [1, 2, 1, "", "predict_eventuality_relation"]], "aser.concept": [[6, 1, 1, "", "ASERConcept"], [6, 1, 1, "", "ASERConceptInstancePair"], [6, 1, 1, "", "ProbaseConcept"]], "aser.concept.ASERConcept": [[6, 2, 1, "", "generate_cid"], [6, 2, 1, "", "instantiate"], [6, 3, 1, "", "pattern"]], "aser.concept.ASERConceptInstancePair": [[6, 2, 1, "", "generate_pid"]], "aser.concept.ProbaseConcept": [[6, 3, 1, "", "concept_size"], [6, 2, 1, "", "conceptualize"], [6, 2, 1, "", "get_concept_chain"], [6, 2, 1, "", "get_concept_freq"], [6, 2, 1, "", "get_instance_freq"], [6, 3, 1, "", "instance_size"], [6, 2, 1, "", "instantiate"], [6, 2, 1, "", "load"], [6, 2, 1, "", "save"]], "aser.conceptualize": [[2, 0, 0, "-", "aser_conceptualizer"]], "aser.conceptualize.aser_conceptualizer": [[2, 1, 1, "", "BaseASERConceptualizer"], [2, 1, 1, "", "ProbaseASERConceptualizer"], [2, 1, 1, "", "SeedRuleASERConceptualizer"]], "aser.conceptualize.aser_conceptualizer.BaseASERConceptualizer": [[2, 2, 1, "", "close"], [2, 2, 1, "", "conceptualize"]], "aser.conceptualize.aser_conceptualizer.ProbaseASERConceptualizer": [[2, 2, 1, "", "close"], [2, 2, 1, "", "conceptualize"]], "aser.conceptualize.aser_conceptualizer.SeedRuleASERConceptualizer": [[2, 2, 1, "", "conceptualize"], [2, 2, 1, "", "conceptualize_from_text"], [2, 2, 1, "", "is_pronoun"], [2, 2, 1, "", "is_seed_concept"]], "aser.database": [[3, 0, 0, "-", "db_connection"], [3, 0, 0, "-", "kg_connection"]], "aser.database.db_connection": [[3, 1, 1, "", "BaseDBConnection"], [3, 1, 1, "", "MongoDBConnection"], [3, 1, 1, "", "SqliteDBConnection"]], "aser.database.db_connection.BaseDBConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "create_table"], [3, 2, 1, "", "get_columns"], [3, 2, 1, "", "get_rows_by_keys"], [3, 2, 1, "", "get_update_op"], [3, 2, 1, "", "insert_row"], [3, 2, 1, "", "insert_rows"], [3, 2, 1, "", "select_row"], [3, 2, 1, "", "select_rows"], [3, 2, 1, "", "update_row"], [3, 2, 1, "", "update_rows"]], "aser.database.db_connection.MongoDBConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "create_table"], [3, 2, 1, "", "get_columns"], [3, 2, 1, "", "get_rows_by_keys"], [3, 2, 1, "", "get_update_op"], [3, 2, 1, "", "insert_row"], [3, 2, 1, "", "insert_rows"], [3, 2, 1, "", "select_row"], [3, 2, 1, "", "select_rows"], [3, 2, 1, "", "update_row"], [3, 2, 1, "", "update_rows"]], "aser.database.db_connection.SqliteDBConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "create_table"], [3, 2, 1, "", "get_columns"], [3, 2, 1, "", "get_rows_by_keys"], [3, 2, 1, "", "get_update_op"], [3, 2, 1, "", "insert_row"], [3, 2, 1, "", "insert_rows"], [3, 2, 1, "", "select_row"], [3, 2, 1, "", "select_rows"], [3, 2, 1, "", "update_row"], [3, 2, 1, "", "update_rows"]], "aser.database.kg_connection": [[3, 1, 1, "", "ASERConceptConnection"], [3, 1, 1, "", "ASERKGConnection"]], "aser.database.kg_connection.ASERConceptConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "get_concept_columns"], [3, 2, 1, "", "get_concept_given_str"], [3, 2, 1, "", "get_concept_instance_pair_columns"], [3, 2, 1, "", "get_concepts_by_keys"], [3, 2, 1, "", "get_concepts_given_eventuality"], [3, 2, 1, "", "get_concepts_given_strs"], [3, 2, 1, "", "get_eventualities_given_concept"], [3, 2, 1, "", "get_exact_match_concept"], [3, 2, 1, "", "get_exact_match_concepts"], [3, 2, 1, "", "get_exact_match_relation"], [3, 2, 1, "", "get_exact_match_relations"], [3, 2, 1, "", "get_related_concepts"], [3, 2, 1, "", "get_relation_columns"], [3, 2, 1, "", "get_relations_by_keys"], [3, 2, 1, "", "init"], [3, 2, 1, "", "insert_concept"], [3, 2, 1, "", "insert_concept_instance_pair"], [3, 2, 1, "", "insert_concept_instance_pairs"], [3, 2, 1, "", "insert_concepts"], [3, 2, 1, "", "insert_relation"], [3, 2, 1, "", "insert_relations"]], "aser.database.kg_connection.ASERKGConnection": [[3, 2, 1, "", "close"], [3, 2, 1, "", "get_eventualities_by_keys"], [3, 2, 1, "", "get_eventuality_columns"], [3, 2, 1, "", "get_exact_match_eventualities"], [3, 2, 1, "", "get_exact_match_eventuality"], [3, 2, 1, "", "get_exact_match_relation"], [3, 2, 1, "", "get_exact_match_relations"], [3, 2, 1, "", "get_partial_match_eventualities"], [3, 2, 1, "", "get_related_eventualities"], [3, 2, 1, "", "get_relation_columns"], [3, 2, 1, "", "get_relations_by_keys"], [3, 2, 1, "", "init"], [3, 2, 1, "", "insert_eventualities"], [3, 2, 1, "", "insert_eventuality"], [3, 2, 1, "", "insert_relation"], [3, 2, 1, "", "insert_relations"]], "aser.eventuality": [[6, 1, 1, "", "Eventuality"]], "aser.eventuality.Eventuality": [[6, 2, 1, "", "decode"], [6, 3, 1, "", "dependencies"], [6, 2, 1, "", "extract_indices_from_dependencies"], [6, 2, 1, "", "generate_eid"], [6, 3, 1, "", "mentions"], [6, 3, 1, "", "ners"], [6, 3, 1, "", "phrases"], [6, 3, 1, "", "phrases_ners"], [6, 3, 1, "", "phrases_postags"], [6, 3, 1, "", "position"], [6, 3, 1, "", "raw_dependencies"], [6, 3, 1, "", "skeleton_dependencies"], [6, 3, 1, "", "skeleton_ners"], [6, 3, 1, "", "skeleton_phrases"], [6, 3, 1, "", "skeleton_phrases_ners"], [6, 3, 1, "", "skeleton_phrases_postags"], [6, 3, 1, "", "skeleton_pos_tags"], [6, 3, 1, "", "skeleton_words"], [6, 2, 1, "", "sort_dependencies_position"], [6, 2, 1, "", "to_dict"], [6, 2, 1, "", "update"], [6, 3, 1, "", "verbs"]], "aser.extract": [[4, 0, 0, "-", "aser_extractor"], [4, 0, 0, "-", "eventuality_extractor"], [4, 0, 0, "-", "parsed_reader"], [4, 0, 0, "-", "relation_extractor"], [4, 0, 0, "-", "sentence_parser"]], "aser.extract.aser_extractor": [[4, 1, 1, "", "BaseASERExtractor"], [4, 1, 1, "", "DiscourseASERExtractor"], [4, 1, 1, "", "SeedRuleASERExtractor"]], "aser.extract.aser_extractor.BaseASERExtractor": [[4, 2, 1, "", "close"], [4, 2, 1, "", "extract_eventualities_from_parsed_result"], [4, 2, 1, "", "extract_eventualities_from_text"], [4, 2, 1, "", "extract_from_parsed_result"], [4, 2, 1, "", "extract_from_text"], [4, 2, 1, "", "extract_relations_from_parsed_result"], [4, 2, 1, "", "extract_relations_from_text"], [4, 2, 1, "", "parse_text"]], "aser.extract.aser_extractor.DiscourseASERExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.eventuality_extractor": [[4, 1, 1, "", "BaseEventualityExtractor"], [4, 1, 1, "", "DiscourseEventualityExtractor"], [4, 1, 1, "", "SeedRuleEventualityExtractor"]], "aser.extract.eventuality_extractor.BaseEventualityExtractor": [[4, 2, 1, "", "close"], [4, 2, 1, "", "extract_from_parsed_result"], [4, 2, 1, "", "extract_from_text"], [4, 2, 1, "", "parse_text"]], "aser.extract.eventuality_extractor.DiscourseEventualityExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.eventuality_extractor.SeedRuleEventualityExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.parsed_reader": [[4, 1, 1, "", "ParsedReader"]], "aser.extract.parsed_reader.ParsedReader": [[4, 2, 1, "", "close"], [4, 2, 1, "", "generate_sid"], [4, 2, 1, "", "get_parsed_paragraphs_from_file"], [4, 2, 1, "", "get_parsed_sentence_and_context"]], "aser.extract.relation_extractor": [[4, 1, 1, "", "BaseRelationExtractor"], [4, 1, 1, "", "DiscourseRelationExtractor"], [4, 1, 1, "", "SeedRuleRelationExtractor"]], "aser.extract.relation_extractor.BaseRelationExtractor": [[4, 2, 1, "", "close"], [4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.relation_extractor.DiscourseRelationExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.relation_extractor.SeedRuleRelationExtractor": [[4, 2, 1, "", "extract_from_parsed_result"]], "aser.extract.sentence_parser": [[4, 1, 1, "", "SentenceParser"]], "aser.extract.sentence_parser.SentenceParser": [[4, 2, 1, "", "close"], [4, 2, 1, "", "generate_sid"], [4, 2, 1, "", "parse"], [4, 2, 1, "", "parse_raw_file"]], "aser.relation": [[6, 1, 1, "", "Relation"]], "aser.relation.Relation": [[6, 2, 1, "", "generate_rid"], [6, 2, 1, "", "to_triplets"], [6, 2, 1, "", "update"]], "aser.server": [[1, 1, 1, "", "ASERDataBase"], [1, 1, 1, "", "ASERServer"], [1, 1, 1, "", "ASERSink"], [1, 1, 1, "", "ASERWorker"], [1, 4, 1, "", "is_port_occupied"], [1, 4, 1, "", "sockets_ipc_bind"]], "aser.server.ASERDataBase": [[1, 2, 1, "", "close"], [1, 2, 1, "", "handle_exact_match_concept"], [1, 2, 1, "", "handle_exact_match_concept_relation"], [1, 2, 1, "", "handle_exact_match_eventuality"], [1, 2, 1, "", "handle_exact_match_eventuality_relation"], [1, 2, 1, "", "handle_fetch_related_concepts"], [1, 2, 1, "", "handle_fetch_related_eventualities"], [1, 2, 1, "", "run"]], "aser.server.ASERServer": [[1, 2, 1, "", "close"], [1, 2, 1, "", "run"]], "aser.server.ASERSink": [[1, 2, 1, "", "run"]], "aser.server.ASERWorker": [[1, 2, 1, "", "close"], [1, 2, 1, "", "handle_conceptualize_eventuality"], [1, 2, 1, "", "handle_extract_eventualities"], [1, 2, 1, "", "handle_extract_eventualities_and_relations"], [1, 2, 1, "", "handle_extract_relations"], [1, 2, 1, "", "handle_parse_text"], [1, 2, 1, "", "run"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "function", "Python function"]}, "titleterms": {"about": [0, 7], "server": [1, 8], "client": [1, 8], "aser": [1, 7, 8], "name": 1, "argument": 1, "conceptu": 2, "eventuality_conceptu": 2, "databas": 3, "db_connect": 3, "kg_connect": 3, "extractor": 4, "aser_extractor": 4, "eventuality_extractor": 4, "relation_extractor": 4, "parsed_read": 4, "sentence_read": 4, "api": [5, 7], "refer": [5, 7], "object": 6, "eventu": 6, "relat": [6, 7], "concept": 6, "activ": 7, "state": 7, "event": 7, "introduct": 7, "data": 7, "download": 7, "project": 7, "talk": 7, "public": 7, "tutori": [7, 9], "index": 7, "get": 8, "start": 8, "instal": 8, "local": 8, "pipelin": 8, "pipe": 8, "step": 8, "extract": 8, "mode": 8}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 60}, "alltitles": {"Server/Client": [[1, "server-client"]], "ASER server": [[1, "module-aser.server"]], "Named Arguments": [[1, "named-arguments"]], "ASER client": [[1, "module-aser.client"]], "Conceptualization": [[2, "conceptualization"]], "eventuality_conceptualizer": [[2, "module-aser.conceptualize.aser_conceptualizer"]], "Database": [[3, "database"]], "db_connection": [[3, "module-aser.database.db_connection"]], "kg_connection": [[3, "module-aser.database.kg_connection"]], "Extractor": [[4, "extractor"]], "aser_extractor": [[4, "module-aser.extract.aser_extractor"]], "eventuality_extractor": [[4, "module-aser.extract.eventuality_extractor"]], "relation_extractor": [[4, "module-aser.extract.relation_extractor"]], "parsed_reader": [[4, "module-aser.extract.parsed_reader"]], "sentence_reader": [[4, "module-aser.extract.sentence_parser"]], "API Reference": [[5, "api-reference"], [7, null]], "Object": [[6, "object"]], "eventuality": [[6, "module-aser.eventuality"]], "relation": [[6, "module-aser.relation"]], "concept": [[6, "module-aser.concept"]], "Get Started": [[8, "get-started"]], "Installation": [[8, "installation"]], "Local Pipeline: aser-pipe": [[8, "local-pipeline-aser-pipe"]], "Step-by-step extraction": [[8, "step-by-step-extraction"]], "Client/Server Mode": [[8, "client-server-mode"]], "Tutorial": [[9, "tutorial"], [7, null]], "About": [[0, "about"], [7, null]], "ASER (Activities, States, Events, and their Relations)": [[7, "aser-activities-states-events-and-their-relations"]], "Introduction": [[7, "introduction"]], "Data Download": [[7, "data-download"]], "Related Projects": [[7, "related-projects"]], "Talks": [[7, "talks"]], "Publications": [[7, "publications"]], "API Index": [[7, "api-index"]]}, "indexentries": {}}) \ No newline at end of file diff --git a/docs/source/about/index.rst b/docs/source/about/index.rst index 2ac5483..7efc734 100644 --- a/docs/source/about/index.rst +++ b/docs/source/about/index.rst @@ -14,7 +14,7 @@ The main contributors are: * `Haojie Pan `_ Algorithm Expert, Kuaishou Technology. -* Haowen Ke, Mphil student, HKUST. +* `Haowen Ke `_, Algorithm Engineer, Didi. * `Jiefu Ou `_, PhD student, JHU. diff --git a/docs/source/index.rst b/docs/source/index.rst index 985b989..eb25ae8 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -83,15 +83,19 @@ Publications * Zhaowei Wang, Haochen Shi, Weiqi Wang, Tianqing Fang, Hongming Zhang, Sehyun Choi, Xin Liu, and Yangqiu Song. AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph. arXiv, 2311.09174, 2023. [`pdf `_] +* Weiqi Wang*, Tianqing Fang*, Wenxuan Ding, Baixuan Xu, Xin Liu, Yangqiu Song, and Antoine Bosselut. 🚗CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering. Findings of EMNLP, 2023. [`pdf `_] + * Jiaxin Bai, Xin Liu, Weiqi Wang, Chen Luo, and Yangqiu Song. Complex Query Answering on Eventuality Knowledge Graph with Implicit Logical Constraints. Conference on Neural Information Processing Systems (NeurIPS), 2023. [`pdf `_] -* Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, and Bing Yin. FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery. Findings of ACL. 2023. [`pdf `_] +* Weiqi Wang*, Tianqing Fang*, Baixuan Xu, Chun Yi Louis Bo, Yangqiu Song, and Lei Chen. 🐈CAT: A Contextualized Conceptualization and Instantiation Framework for Commonsense Reasoning. Annual Meeting of the Association for Computational Linguistics (ACL), 2023. [`pdf `_] + +* Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, and Bing Yin. FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery. Findings of ACL, 2023. [`pdf `_] * Tianqing Fang*, Quyet V. Do*, Sehyun Choi, Weiqi Wang, and Yangqiu Song. CKBP v2: An Expert-Annotated Evaluation Set for Commonsense Knowledge Base Population. arXiv, abs/2304.10392, 2023. [`pdf `_] -* Tianqing Fang, Quyet V. Do, Hongming Zhang, Yangqiu Song, Ginny Y. Wong, and Simon See. PseudoReasoner: Leveraging Pseudo Labels for Commonsense Knowledge Base Population. Findings of EMNLP. 2022. [`pdf `_] +* Tianqing Fang, Quyet V. Do, Hongming Zhang, Yangqiu Song, Ginny Y. Wong, and Simon See. PseudoReasoner: Leveraging Pseudo Labels for Commonsense Knowledge Base Population. Findings of EMNLP, 2022. [`pdf `_] -* Zhaowei Wang, Hongming Zhang, Tianqing Fang, Yangqiu Song, Ginny Y. Wong, and Simon See. SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller. Conference on Empirical Methods in Natural Language Processing (EMNLP). 2022. [`pdf `_] +* Zhaowei Wang, Hongming Zhang, Tianqing Fang, Yangqiu Song, Ginny Y. Wong, and Simon See. SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022. [`pdf `_] * Mutian He, Tianqing Fang, Weiqi Wang, and Yangqiu Song. Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization. arXiv, abs/2206.01532, 2022. [`pdf `_] @@ -103,17 +107,17 @@ Publications * Tianqing Fang, Hongming Zhang, Weiqi Wang, Yangqiu Song, and Bin He. DISCOS: Bridging the Gap between Discourse Knowledge and Commonsense Knowledge. The Web Conference (WWW), 2021. [`pdf `_] -* Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu Song, and Dan Roth. Analogous Process Structure Induction for Sub-event Sequence Prediction. Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020. [`pdf `_] +* Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu Song, and Dan Roth. Analogous Process Structure Induction for Sub-event Sequence Prediction. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020. [`pdf `_] -* Changlong Yu, Hongming Zhang, Yangqiu Song, Wilfred Ng, and Lifeng Shang . Enriching Large-Scale Eventuality Knowledge Graph with Entailment Relations. Conference on Automated Knowledge Base Construction (AKBC). 2020. [`pdf `_] +* Changlong Yu, Hongming Zhang, Yangqiu Song, Wilfred Ng, and Lifeng Shang . Enriching Large-Scale Eventuality Knowledge Graph with Entailment Relations. Conference on Automated Knowledge Base Construction (AKBC), 2020. [`pdf `_] -* Hongming Zhang, Daniel Khashabi, Yangqiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. International Joint Conference on Artificial Intelligence (IJCAI). 2020. [`pdf `_] +* Hongming Zhang, Daniel Khashabi, Yangqiu Song, and Dan Roth. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. International Joint Conference on Artificial Intelligence (IJCAI), 2020. [`pdf `_] * Mutian He, Yangqiu Song, Kun Xu, and Yu Dong. On the Role of Conceptualization in Commonsense Knowledge Graph Construction. HKUST Technical Report, March 6th, 2020. [`pdf `_] * Hongming Zhang\*, Xin Liu\*, Haojie Pan\*, Yangqiu Song, and Cane Wing-Ki Leung. ASER: A Large-scale Eventuality Knowledge Graph. The Web Conference (WWW), 2020. [`pdf `_] [`ppt `_] -* Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. Annual Meeting of the Association for Computational Linguistics (ACL). 2019. [`pdf `_] +* Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. Annual Meeting of the Association for Computational Linguistics (ACL), 2019. [`pdf `_] .. Tutorial