-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_helper.py
417 lines (363 loc) · 17.4 KB
/
data_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#!/usr/bin/python3
import os
import pickle
from collections import defaultdict
from typing import List
import numpy as np
import pandas as pd
import torch
import json
from torch.utils.data import Dataset
from tqdm import tqdm
from fol import parse_formula, beta_query_v2
all_normal_form = ['original', 'DeMorgan', 'DeMorgan+MultiI', 'DNF', 'diff', 'DNF+diff', 'DNF+MultiIU', 'DNF+MultiIUd',
'DNF+MultiIUD']
class Task:
def __init__(self, filename, task_betaname):
self.filename = filename
self.device = None
self.query_instance = None
self.beta_name = task_betaname
self.answer_set = None
self.easy_answer_set = None
self.hard_answer_set = None
self.i = 0
self.length = 0
self._load()
self.idxlist = np.random.permutation(len(self))
# self.idxlist = np.arange(len(self))
def to(self, device):
self.query_instance.to(device)
self.device = device
def _load(self):
dense = self.filename.replace('data', 'tmp').replace('csv', 'pickle')
if os.path.exists(dense):
print("load from existed files")
with open(dense, 'rb') as f:
data = pickle.load(f)
self.query_instance = data['query_instance']
self.answer_set = data['answer_set']
self.easy_answer_set = data['easy_answer_set']
self.hard_answer_set = data['hard_answer_set']
self.length = len(self.query_instance)
else:
df = pd.read_csv(self.filename)
self.query_instance = parse_formula(beta_query_v2[self.beta_name])
self._parse(df)
data = {'query_instance': self.query_instance, 'answer_set': self.answer_set,
'easy_answer_set': self.easy_answer_set, 'hard_answer_set': self.hard_answer_set}
try:
os.makedirs(os.path.dirname(dense), exist_ok=True)
print(f"save to {dense}")
with open(dense, 'wb') as f:
pickle.dump(data, f)
except:
print(f"can't save to {dense}")
def __len__(self):
return self.length
def setup_iteration(self):
self.idxlist = np.random.permutation(len(self))
# self.idxlist = np.arange(len(self))
def batch_estimation_iterator(self, estimator, batch_size):
assert self.device == estimator.device
i = 0
while i < len(self):
batch_indices = self.idxlist[i: i + batch_size].tolist()
i += batch_size
batch_embedding = self.query_instance.embedding_estimation(
estimator=estimator,
batch_indices=batch_indices)
yield batch_embedding, batch_indices
def _parse(self, df):
for q in tqdm(df['query']):
self.query_instance.additive_ground(json.loads(q))
if 'answer_set' in df.columns:
self.answer_set = df.answer_set.map(lambda x: list(eval(x))).tolist()
assert len(self.query_instance) == len(self.answer_set)
if 'easy_answer_set' in df.columns:
self.easy_answer_set = df.easy_answer_set.map(
lambda x: list(eval(x))).tolist()
assert len(self.query_instance) == len(self.easy_answer_set)
if 'hard_answer_set' in df.columns:
self.hard_answer_set = df.hard_answer_set.map(
lambda x: list(eval(x))).tolist()
assert len(self.query_instance) == len(self.hard_answer_set)
self.length = len(self.query_instance)
class TaskManager:
def __init__(self, mode, tasks: List[Task], device):
self.tasks = {t.query_instance.formula: t for t in tasks}
self.task_iterators = {}
self.mode = mode
partition = []
for t in self.tasks:
self.tasks[t].to(device)
partition.append(len(self.tasks[t]))
p = np.asarray(partition)
self.partition = p / p.sum()
def build_iterators(self, estimator, batch_size):
self.task_iterators = {}
for i, tmf in enumerate(self.tasks):
self.tasks[tmf].setup_iteration()
self.task_iterators[tmf] = \
self.tasks[tmf].batch_estimation_iterator(
estimator,
int(batch_size * self.partition[i]))
while True:
finish = 0
data = defaultdict(dict)
for tmf in self.task_iterators:
try:
emb, batch_id = next(self.task_iterators[tmf])
data[tmf]['emb'] = emb
if self.mode == 'train':
ans_sets = [self.tasks[tmf].answer_set[j] for j in batch_id]
data[tmf]['answer_set'] = ans_sets
else:
easy_ans_sets = [self.tasks[tmf].easy_answer_set[j] for j in batch_id]
data[tmf]['easy_answer_set'] = easy_ans_sets
hard_ans_sets = [self.tasks[tmf].hard_answer_set[j] for j in batch_id]
data[tmf]['hard_answer_set'] = hard_ans_sets
except StopIteration:
finish += 1
if finish == len(self.tasks):
break
yield data
class TestDataset(Dataset):
def __init__(self, flattened_queries):
# flattened_queries is a list of (query, easy_ans_set, hard_ans_set, query_structure) list
self.len = len(flattened_queries)
self.flattened_queries = flattened_queries
def __len__(self):
return self.len
def __getitem__(self, idx):
return self.flattened_queries[idx]
@staticmethod
def collate_fn(flattened_queries):
query = [_[0] for _ in flattened_queries]
easy_ans_set = [_[1] for _ in flattened_queries]
hard_ans_set = [_[2] for _ in flattened_queries]
beta_name = [_[3] for _ in flattened_queries]
return query, easy_ans_set, hard_ans_set, beta_name
class MyDataIterator:
def __init__(self, tasks) -> None:
self.tasks = tasks
class TrainDataset(Dataset):
def __init__(self, flattened_queries):
# flattened_queries is a list of (query, ans_set, query_structure) list
self.len = len(flattened_queries)
self.flattened_queries = flattened_queries
def __len__(self):
return self.len
def __getitem__(self, idx):
return self.flattened_queries[idx]
@staticmethod
def collate_fn(flattened_queries):
query = [_[0] for _ in flattened_queries]
ans_set = [_[1] for _ in flattened_queries]
beta_name = [_[2] for _ in flattened_queries]
return query, ans_set, beta_name
class BenchmarkFormManager: # A FormManager is actually managing all different normal forms of the same formula
def __init__(self, mode, query_inform_dict: dict, filename: str, device, model): # type_str: type0001
self.mode = mode
self.query_inform_dict = query_inform_dict
self.tasks, self.form2formula = {}, {}
self.all_formula, self.allowed_formula = set(), set()
for normal_form in all_normal_form:
formula = query_inform_dict[normal_form]
self.form2formula[normal_form] = formula
self.all_formula.add(formula)
print(f'[data] load query from file {filename}')
self._load(filename, model)
self.task_iterators = {}
for t in self.tasks:
self.tasks[t].set_up(device, self.len)
self.partition = [1 / len(self.tasks) for i in range(len(self.tasks))]
def _load(self, filename, model):
dense = filename.replace('data', 'tmp').replace('csv', 'pickle')
if os.path.exists(dense):
print("load from existed files")
with open(dense, 'rb') as f:
data = pickle.load(f)
if self.mode == 'train':
self.answer_set = data['answer_set']
self.len = len(self.answer_set)
else:
self.easy_answer_set = data['easy_answer_set']
self.hard_answer_set = data['hard_answer_set']
self.len = len(self.easy_answer_set)
for formula in self.all_formula:
query_instance = data[formula]
try:
query_instance.to(model.device)
pred_emb = query_instance.embedding_estimation(estimator=model, batch_indices=[0, 1, 2, 3])
assert pred_emb.ndim == 2 + ('u' in formula or 'U' in formula)
self.allowed_formula.add(formula)
except (AssertionError, RuntimeError):
pass
if formula in self.allowed_formula:
self.tasks[formula] = BenchmarkTask(data[formula])
assert len(data[formula]) == self.len
else:
df = pd.read_csv(filename)
self.len = len(df)
loaded = {formula: False for formula in self.all_formula}
data = {}
# todo: 'easy_answers' all change to easy_answer_set, and so does hard answers
if self.mode == 'train':
if 'answer_set' in df.columns:
self.answer_set = df.answer_set.map(lambda x: list(eval(x))).tolist()
data = {'answer_set': self.answer_set}
elif self.mode == 'valid' or self.mode == 'test':
if 'easy_answers' in df.columns or 'easy_answer_set' in df.columns:
if 'easy_answer_set' in df.columns:
self.easy_answer_set = df.easy_answer_set.map(
lambda x: list(eval(x))).tolist()
else:
self.easy_answer_set = df.easy_answers.map(
lambda x: list(eval(x))).tolist()
assert self.len == len(self.easy_answer_set)
if 'hard_answers' in df.columns or 'hard_answer_set' in df.columns:
if 'hard_answer_set' in df.columns:
self.hard_answer_set = df.hard_answer_set.map(
lambda x: list(eval(x))).tolist()
else:
self.hard_answer_set = df.hard_answers.map(
lambda x: list(eval(x))).tolist()
assert self.len == len(self.hard_answer_set)
data = {'easy_answer_set': self.easy_answer_set, 'hard_answer_set': self.hard_answer_set}
else:
assert False, 'not valid mode!'
for normal_form in all_normal_form:
formula = self.form2formula[normal_form]
if not loaded[formula]:
query_instance = parse_formula(formula)
for q in df[normal_form]:
query_instance.additive_ground(json.loads(q))
data[formula] = query_instance
query_instance.to(model.device)
try:
pred_emb = query_instance.embedding_estimation(estimator=model, batch_indices=[0, 1, 2, 3])
assert pred_emb.ndim == 2 + ('u' in formula or 'U' in formula)
self.allowed_formula.add(formula)
except (AssertionError, RuntimeError):
pass
if formula in self.allowed_formula:
self.tasks[formula] = BenchmarkTask(query_instance)
loaded[formula] = True
try:
os.makedirs(os.path.dirname(dense), exist_ok=True)
print(f"save to {dense}")
with open(dense, 'wb') as f:
pickle.dump(data, f)
except:
print(f"can't save to {dense}")
def build_iterators(self, estimator, batch_size):
self.task_iterators = {}
for i, tmf in enumerate(self.tasks):
self.task_iterators[tmf] = \
self.tasks[tmf].batch_estimation_iterator(
estimator,
int(batch_size * self.partition[i]))
while True:
finish = 0
data = defaultdict(dict)
for tmf in self.task_iterators:
try:
emb, batch_id = next(self.task_iterators[tmf])
data[tmf]['emb'] = emb
easy_ans_sets = [self.easy_answer_set[j] for j in batch_id]
data[tmf]['easy_answer_set'] = easy_ans_sets
hard_ans_sets = [self.hard_answer_set[j] for j in batch_id]
data[tmf]['hard_answer_set'] = hard_ans_sets
except StopIteration:
finish += 1
if finish == len(self.tasks):
break
yield data
class BenchmarkTask: # A Task is a formula(corresponding to a query_instance), thus it only needs idxlist
def __init__(self, query_instance):
self.query_instance = query_instance
self.device = None
self.answer_set = None
self.easy_answer_set = None
self.hard_answer_set = None
self.i = 0
self.length = 0
self.idxlist = np.arange(len(self))
def set_up(self, device, length):
self.length = length
self.query_instance.to(device)
self.device = device
self.idxlist = np.arange(len(self))
def setup_iteration(self):
self.idxlist = np.random.permutation(len(self))
def __len__(self):
return self.length
def batch_estimation_iterator(self, estimator, batch_size):
assert self.device == estimator.device
i = 0
while i < len(self):
batch_indices = self.idxlist[i: i + batch_size].tolist()
i += batch_size
batch_embedding = self.query_instance.embedding_estimation(
estimator=estimator,
batch_indices=batch_indices)
yield batch_embedding, batch_indices
class BenchmarkWholeManager: # It manages all tasks in machine learning algorithm
def __init__(self, mode, formula_id_data, data_folder: str, interested_normal_form: list, device, model):
self.mode = mode
self.formula_id_data = formula_id_data
self.query_classes = {}
self.partition = {}
self.task_iterators = {}
self.formula_to_type_str = {}
self.all_task_length = 0
self.interested_normal_form = interested_normal_form
for i in formula_id_data.index:
type_str = formula_id_data['formula_id'][i]
filename = os.path.join(data_folder, f'{mode}-{type_str}.csv')
# real_index = formula_id_data.loc[formula_id_data['formula_id'] == f'{type_str}'].index[0]
# index != formula id
query_class_dict = formula_id_data.loc[i]
self.query_classes[type_str] = BenchmarkFormManager(mode, query_class_dict, filename, device, model)
# all types of queries are sampled together
for i, type_str in enumerate(self.query_classes):
interested_formulas = set([self.query_classes[type_str].form2formula[form] for form in
self.interested_normal_form])
final_allowed_formulas = interested_formulas.intersection(self.query_classes[type_str].allowed_formula)
for specific_formula in final_allowed_formulas:
self.formula_to_type_str[specific_formula] = type_str
self.partition[specific_formula] = len(self.query_classes[type_str].tasks[specific_formula])
self.all_task_length += self.partition[specific_formula]
for specific_formula in self.formula_to_type_str:
self.partition[specific_formula] /= self.all_task_length
def build_iterators(self, estimator, batch_size):
self.task_iterators = {}
for specific_formula in self.formula_to_type_str:
self.query_classes[self.formula_to_type_str[specific_formula]].tasks[specific_formula].setup_iteration()
self.task_iterators[specific_formula] = \
self.query_classes[self.formula_to_type_str[specific_formula]].tasks[specific_formula]\
.batch_estimation_iterator(estimator, int(batch_size * self.partition[specific_formula]))
while True:
finish = 0
data = defaultdict(dict)
for task_formula in self.task_iterators:
try:
emb, batch_id = next(self.task_iterators[task_formula])
data[task_formula]['emb'] = emb
if self.mode == 'train':
ans_sets = [self.query_classes[self.formula_to_type_str[task_formula]].answer_set[j]
for j in batch_id]
data[task_formula]['answer_set'] = ans_sets
else:
easy_ans_sets = [self.query_classes[self.formula_to_type_str[task_formula]].easy_answer_set[j]
for j in batch_id]
data[task_formula]['easy_answer_set'] = easy_ans_sets
hard_ans_sets = [self.query_classes[self.formula_to_type_str[task_formula]].hard_answer_set[j]
for j in batch_id]
data[task_formula]['hard_answer_set'] = hard_ans_sets
except StopIteration:
finish += 1
if finish == len(self.formula_to_type_str):
break
yield data