-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.sh
75 lines (57 loc) · 4.19 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/bin/bash
# mkdir -p /path/to/Sparkles/models/SparklesChat && ./run.sh 2>&1 | tee "/path/to/Sparkles/models/SparklesChat/run.log"
# This function will be called when Ctrl+C is pressed
cleanup() {
# Kill all child processes
pkill -P $$
}
# Set the trap
trap "cleanup" SIGINT SIGTERM
echo "Training"
start_time=$SECONDS
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc-per-node 8 train.py --cfg-path train_configs/sparkleschat.yaml
train_time=$(( SECONDS - start_time ))
wait
# run evaluation simultaneously on 8 GPUs
echo "Evaluating"
set_root="--sparkles_root /path/to/Sparkles/"
start=$(date +%s)
(
start_A=$(date +%s)
CUDA_VISIBLE_DEVICES=0 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset NLVR2 --data-from 0 --data-to 19 &
CUDA_VISIBLE_DEVICES=1 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset NLVR2 --data-from 19 --data-to 38 &
CUDA_VISIBLE_DEVICES=2 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset NLVR2 --data-from 38 --data-to 57 &
CUDA_VISIBLE_DEVICES=3 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset NLVR2 --data-from 57 --data-to 76 &
CUDA_VISIBLE_DEVICES=4 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset NLVR2 --data-from 76 --data-to 95 &
CUDA_VISIBLE_DEVICES=5 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset NLVR2 --data-from 95 --data-to 114 &
CUDA_VISIBLE_DEVICES=6 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset NLVR2 --data-from 114 --data-to 133 &
CUDA_VISIBLE_DEVICES=7 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset NLVR2 --data-from 133 --data-to 150 &
wait
CUDA_VISIBLE_DEVICES=0 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --merge-results --dataset NLVR2
end_A=$(date +%s)
runtime_A=$((end_A-start_A))
echo "NLVR2 evaluation time: $runtime_A seconds"
) &
(
start_B=$(date +%s)
CUDA_VISIBLE_DEVICES=0 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset BISON --data-from 0 --data-to 19 &
CUDA_VISIBLE_DEVICES=1 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset BISON --data-from 19 --data-to 38 &
CUDA_VISIBLE_DEVICES=2 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset BISON --data-from 38 --data-to 57 &
CUDA_VISIBLE_DEVICES=3 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset BISON --data-from 57 --data-to 76 &
CUDA_VISIBLE_DEVICES=4 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset BISON --data-from 76 --data-to 95 &
CUDA_VISIBLE_DEVICES=5 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset BISON --data-from 95 --data-to 114 &
CUDA_VISIBLE_DEVICES=6 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset BISON --data-from 114 --data-to 133 &
CUDA_VISIBLE_DEVICES=7 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --inference --gpu-id 0 --dataset BISON --data-from 133 --data-to 150 &
wait
CUDA_VISIBLE_DEVICES=0 python evaluate.py ${set_root} --cfg-path eval_configs/sparkles_eval.yaml --num-beams 1 --merge-results --dataset BISON
end_B=$(date +%s)
runtime_B=$((end_B-start_B))
echo "BISON evaluation time: $runtime_B seconds"
) &
wait
end=$(date +%s)
runtime=$((end-start))
total_time=$(( SECONDS - start_time ))
echo "Overall evaluation time: $runtime seconds"
echo "Time taken by train.py: $train_time seconds"
echo "Total time taken: $total_time seconds"