forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCPUBlas.h
226 lines (195 loc) · 6.57 KB
/
CPUBlas.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#pragma once
#include <ATen/OpMathType.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TransposeType.h>
#include <c10/util/complex.h>
#include <c10/core/ScalarType.h>
#include <c10/core/Scalar.h>
namespace at::native::cpublas {
namespace internal {
void normalize_last_dims(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
int64_t *lda, int64_t *ldb, int64_t *ldc);
} // namespace internal
using gemm_fn = void(*)(
at::ScalarType type,
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
const Scalar& alpha,
const void *a, int64_t lda,
const void *b, int64_t ldb,
const Scalar& beta,
void *c, int64_t ldc);
DECLARE_DISPATCH(gemm_fn, gemm_stub);
template <typename scalar_t>
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
at::opmath_type<scalar_t> alpha,
const scalar_t *a, int64_t lda,
const scalar_t *b, int64_t ldb,
at::opmath_type<scalar_t> beta,
scalar_t *c, int64_t ldc) {
internal::normalize_last_dims(transa, transb, m, n, k, &lda, &ldb, &ldc);
gemm_stub(
kCPU, c10::CppTypeToScalarType<scalar_t>::value,
transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
}
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
double alpha,
const double *a, int64_t lda,
const double *b, int64_t ldb,
double beta,
double *c, int64_t ldc);
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const float *a, int64_t lda,
const float *b, int64_t ldb,
float beta,
float *c, int64_t ldc);
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const at::BFloat16 *a, int64_t lda,
const at::BFloat16 *b, int64_t ldb,
float beta,
at::BFloat16 *c, int64_t ldc);
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
const float alpha,
const at::BFloat16 *a, int64_t lda,
const at::BFloat16 *b, int64_t ldb,
const float beta,
float *c, int64_t ldc);
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const at::Half *a, int64_t lda,
const at::Half *b, int64_t ldb,
float beta,
at::Half *c, int64_t ldc);
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
const float alpha,
const at::Half *a, int64_t lda,
const at::Half *b, int64_t ldb,
const float beta,
float *c, int64_t ldc);
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
c10::complex<double> alpha,
const c10::complex<double> *a, int64_t lda,
const c10::complex<double> *b, int64_t ldb,
c10::complex<double> beta,
c10::complex<double> *c, int64_t ldc);
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
c10::complex<float> alpha,
const c10::complex<float> *a, int64_t lda,
const c10::complex<float> *b, int64_t ldb,
c10::complex<float> beta,
c10::complex<float> *c, int64_t ldc);
void gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
int64_t alpha,
const int64_t *a, int64_t lda,
const int64_t *b, int64_t ldb,
int64_t beta,
int64_t *c, int64_t ldc);
template <typename scalar_t>
void gemm_batched(
TransposeType transa, TransposeType transb,
int64_t batch_size, int64_t m, int64_t n, int64_t k,
scalar_t alpha,
const scalar_t * const *a, int64_t lda,
const scalar_t * const *b, int64_t ldb,
const scalar_t beta,
scalar_t * const *c, int64_t ldc);
template <typename scalar_t>
void gemm_batched_with_stride(
TransposeType transa, TransposeType transb,
int64_t batch_size, int64_t m, int64_t n, int64_t k,
scalar_t alpha,
const scalar_t *a, int64_t lda, int64_t batch_stride_a,
const scalar_t *b, int64_t ldb, int64_t batch_stride_b,
scalar_t beta,
scalar_t *c, int64_t ldc, int64_t batch_stride_c);
using axpy_fn = void(*)(at::ScalarType type, int64_t n, const Scalar& a, const void *x, int64_t incx, void *y, int64_t incy);
DECLARE_DISPATCH(axpy_fn, axpy_stub);
template<typename scalar_t>
void axpy(int64_t n, scalar_t a, const scalar_t *x, int64_t incx, scalar_t *y, int64_t incy){
if(n == 1)
{
incx = 1;
incy = 1;
}
axpy_stub(
kCPU, c10::CppTypeToScalarType<scalar_t>::value,
n, a, x, incx, y, incy);
}
void axpy(int64_t n, double a, const double *x, int64_t incx, double *y, int64_t incy);
void axpy(int64_t n, float a, const float *x, int64_t incx, float *y, int64_t incy);
void axpy(int64_t n, c10::complex<double> a, const c10::complex<double> *x, int64_t incx, c10::complex<double> *y, int64_t incy);
void axpy(int64_t n, c10::complex<float> a, const c10::complex<float> *x, int64_t incx, c10::complex<float> *y, int64_t incy);
using copy_fn = void(*)(at::ScalarType type, int64_t n, const void *x, int64_t incx, void *y, int64_t incy);
DECLARE_DISPATCH(copy_fn, copy_stub);
template<typename scalar_t>
void copy(int64_t n, const scalar_t *x, int64_t incx, scalar_t *y, int64_t incy) {
if(n == 1)
{
incx = 1;
incy = 1;
}
copy_stub(
kCPU, c10::CppTypeToScalarType<scalar_t>::value,
n, x, incx, y, incy);
}
void copy(int64_t n, const double *x, int64_t incx, double *y, int64_t incy);
void copy(int64_t n, const float *x, int64_t incx, float *y, int64_t incy);
void copy(int64_t n, const c10::complex<double> *x, int64_t incx, c10::complex<double> *y, int64_t incy);
void copy(int64_t n, const c10::complex<float> *x, int64_t incx, c10::complex<float> *y, int64_t incy);
// Batch-reduce GEMM
// Operates by the following formula:
// C = alpha * SUM(A[i] x B[i]) + beta * C, i = 0 to batch size
// A Base pointer to a tensor A.
// B Base pointer to a tensor B.
// C Pointer to a tensor C (accumulation buffer).
TORCH_API void brgemm(
int64_t M,
int64_t N,
int64_t K,
int64_t ld_a,
int64_t ld_b,
int64_t ld_c,
const float alpha,
const float beta,
const at::Half* A,
const at::Half* B,
float* C);
// Release brgemm hardware context
void brgemm_release();
// Pack B matrix to get better performance if needed
void pack(
int64_t K,
int64_t N,
int64_t ld_in,
int64_t ld_out,
ScalarType dt_in,
ScalarType dt_out,
const void* in,
void* out);
// Whether pack is needed in the platform.
bool need_pack(ScalarType dt_in);
} // namespace at::native::cpublas