forked from domuhe/MuSTEM5.3_PGIcommunity19.4
-
Notifications
You must be signed in to change notification settings - Fork 1
/
MS_utilities.f90
797 lines (629 loc) · 27 KB
/
MS_utilities.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
!--------------------------------------------------------------------------------
!
! Copyright (C) 2017 L. J. Allen, H. G. Brown, A. J. D’Alfonso, S.D. Findlay, B. D. Forbes
!
! This program is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------
!Checks the list of atom labels and will append 2,3,4 etc. if there are duplicates
!Note that this method is not robust to cases where there are three labels of the form
!eg. Sr, Sr2, Sr
subroutine correct_duplicate_atom_labels(substance_atom_types,nt)
use m_string
implicit none
character*10::substance_atom_types(nt)
integer*4,intent(in)::nt
integer*4:: unique_list(nt),j,i,ii
logical::unique
j=1
do i=1,nt
unique = .true.
do ii=1,i-1
unique = .not.(trim(adjustl(substance_atom_types(ii)))==trim(adjustl(substance_atom_types(i))))
if(.not.unique) then
unique_list(i)=unique_list(ii)+1
exit
endif
enddo
if(unique) unique_list(i) = 1
enddo
do i=1,nt
if(unique_list(i)>1) substance_atom_types(i)=trim(adjustl(substance_atom_types(i)))//to_string(unique_list(i))
enddo
end subroutine
subroutine set_xtl_global_params()
use m_precision
use global_variables
use m_electron
use m_user_input
use m_string, only:is_numeric
use m_crystallography, only: cryst, zone, subuvw, subhkl, rshkl, angle, trimr, trimi, rsd
implicit none
integer(4) iunit,nm_curr
character*120 xtl_fnam
character*20 junk
character*2 junk4
logical:: contains_kev
real(fp_kind) junk2(6), junk3, junk5(1:3)
integer(4) nb
real(fp_kind) ag1,ag2,ct,proj,temp_vec_length
real(fp_kind) uvwm1,uvwm2,gg(3),rzone(3)
integer(4) izone1(3),i,j,jm,icount,itrue,zindex,k
iunit = 15
100 write(6,101)
101 format(1x, 'Please enter the name of the input .xtl file.')
call get_input("Input crystal file name", xtl_fnam)
open(unit=iunit,file=xtl_fnam,status='old',err=998)
!First check if accelerating voltage is in xtl file
do i=1,4
read(iunit,*) junk
enddo
!If the fourth line is numeric (ie number of atoms) then
!the accelerating voltage is in the xtl file
contains_kev = is_numeric(junk)
if(.not.contains_keV) then
write(*,*) char(10),'Please input the probe accelerating voltage in kV'
call get_input("Probe accelerating voltage (kV)",ekv)
endif
rewind(iunit)
nm = 0
! Determine the maximum number of atoms an types to allocate the
! pertinent automatic objects stored in the module
! global_variables.
read(iunit,*) junk
read(iunit,*) junk2(1:6)
if(contains_kev) read(iunit,*) junk3
read(iunit,*) nt
do i = 1, nt
read(iunit,*) junk4
read(iunit,*) nm_curr
if (nm_curr.gt.nm) nm = nm_curr
do j=1,nm_curr
read(iunit,*) junk5(1:3)
enddo
enddo
rewind(iunit)
allocate(atf(3,nt),tau(3,nt,nm),nat(nt),atomf(13,nt),substance_atom_types(nt),fx(nt),dz(nt))
102 format( a20 )
read(iunit,102) substance
write(6,111) substance
111 format(/,1x,a20)
read(iunit,*) a0(1:3), deg(1:3)
write(6,121) a0(1:3), char(143), deg(1:3)
121 format(4x,' a = ',f9.4,7x,'b = ',f9.4,6x,'c = ',f9.4,1x,a1,/,&
&' alpha = ',f9.4,2x,' beta = ',f9.4,2x,'gamma = ',f9.4,&
&' degrees',/)
if(contains_kev) then
read(iunit,*) ekv
write(6,131) ekv
131 format(' Incident beam energy = ',f12.3,' keV',/)
endif
read(iunit,*) nt
write(6,141) nt
141 format(' Number of atom atom types = ',i2,/)
do i = 1, nt
read(iunit,*) substance_atom_types(i)
if (ionic) then
read(iunit,*) nat(i), atf(1:3,i),dz(i)
else
read(iunit,*) nat(i), atf(1:3,i)
endif
if(nat(i).gt.nm.or.nat(i).lt.0) then
write(6,171) i,nat(i)
171 format(' Type ',i3,2x,' nat = ',i5,' this is wrong - EXIT')
go to 999
endif
write(6,181) i,substance_atom_types(i),atf(1:3,i)
181 format(' Type ',i2,2x,a10,8X,' Z = ',F5.0,/,' Occupancy = ',f6.3,2x,' <us> ** 2 = ',g12.5)
jm = nat(i)
write(6,191)
191 format(/,' x ',5x,'y',9x,'z',/)
icount = 0
do j = 1, jm
icount = icount + 1
read(iunit,*) tau(1:3,i,j)
if (icount.le.100) then
write(6,201) icount,tau(1:3,i,j)
201 format(i5, 3f10.6)
elseif (icount.eq.101) then
write(*,*) 'Number of atoms exceeds 100.'
write(*,*) 'See xtl file for full list.'
write(*,*)
endif
if (any(tau(:,i,j)<0) .or. any(tau(:,i,j)>1)) then
write(*,*) 'ERROR: fractional coordinates must be between 0 and 1'
write(*,*) 'Program will now halt.'
pause
stop
endif
!if(icount.gt.12) then
!icount = 0
!write(6,191)
!endif
enddo
enddo
call correct_duplicate_atom_labels(substance_atom_types,nt)
call cryst(a0,deg,ss) !Establish the triclinic information
icount = 0
! Force to 001 convention
izone1 = [0, 0, 1]
ig1 = [1, 0, 0]
ig2 = [0, 1, 0]
write(6,231) izone1(1:3)
231 format(' Zone Axis = [ ', 3i4, ' ]')
write(6,241) ig1(1:3)
241 format(' X-scan reciprocal lattice vector = ( ', 3i4, ' )')
write(6,251) ig2(1:3)
251 format(' Y-scan reciprocal lattice vector = ( ', 3i4, ' )')
ag1 = trimi(ig1,ss)
ag2 = trimi(ig2,ss)
call angle(ig1,ig2,ss,thetad)
if(abs(thetad).lt.0.1_fp_kind.or.abs(thetad-180.0_fp_kind).lt.0.1_fp_kind) then
write(6,261)
261 format(' Scan vectors form a linear array',/,&
& ' You need two vectors that are NOT co-linear',/,&
& ' Please terminate the program and ammend your',&
& ' .xtl file',/)
endif
call zone(ig1, ig2, izone)
itrue = 0
do i = 1,3
if(izone1(i).ne.izone(i)) itrue = 1
enddo
if(itrue.eq.1) then
write(6,271) izone1(1:3),izone(1:3)
271 format(' Entered zone = [',3i5,'] is incorrect',/,&
& ' New zone defined by scan vectors is [',3i5,' ]')
endif
call subuvw(ig1,uvw1,a0,deg,ss)
call subuvw(ig2,uvw2,a0,deg,ss)
call subhkl(izone,gg,a0,deg,ss)
uvwm1 = rsd(uvw1,a0,deg)
uvwm2 = rsd(uvw2,a0,deg)
! find orthogonal reciprocal lattice vectors
!
ct = 180.0_fp_kind/(atan(1.0_fp_kind)*4.0_fp_kind)
ct = cos(thetad/ct)
if(ct.gt.0.9999_fp_kind) ct = 1.0_fp_kind
proj = ag2 * ct / ag1
do i = 1, 3
orthog(i,1) = dble(ig1(i))
orthog(i,2) = dble(ig2(i)) - proj * dble(ig1(i))
orthog(i,3) = gg(i)
enddo
rzone(1:3) = dble(izone(1:3))
call rshkl(rzone,surfn,a0,deg,ss)
temp_vec_length = trimr(surfn,ss)
!
! make unit vector surfn for surface normal
surfn(1:3) = surfn(1:3) / temp_vec_length
do i = 1,nt
atomf(1:13,i)=xrayFF(2:14,int(atf(1,i)))
enddo
write(6,321)
321 format(' Successfully read all atomic X-ray scattering factors',/,&
&' from D. Waasmaier & A. Kirfel Acta. Cryst. A51, 416 (1995)',/, &
&' Mott formula used for conversion to electron form factors', /)
i_xtl=1 !set the flag ixtl=1 as in the file has been read
close(iunit)
goto 999
998 write(6,*) 'ERROR: Crystal file ', trim(xtl_fnam), ' does not exist!'
goto 100
999 continue
return
end
subroutine validate_xtl()
use global_variables, only: deg, ig1, ig2
implicit none
if (any(abs(deg - 90) .gt. 1e-3)) then
write(*,*) ' You have set one or more triclinic angles to something other than 90 degrees.'
write(*,*) ' This program only works when the inputted crystal structure is given in terms'
write(*,*) ' of an orthorhombic coordinate system. Please see the manual for more details.'
write(*,*)
write(*,*) ' The program will now halt.'
write(*,*)
pause
stop
endif
end subroutine
subroutine set_volts(nt, atf, nat, atomf, volts, ss)
use m_precision, only: fp_kind
use m_electron, only:elsa_ext
implicit none
integer(4) :: nt, nat(nt)
real(fp_kind) :: atf(3,nt), atomf(13,nt), volts, ss(7)
integer :: m
real(fp_kind),parameter :: evconv = 47.87801_fp_kind
if(abs(ss(7)).lt.1.0e-10_fp_kind) then
volts = 0.0_fp_kind
else
volts = 0.0_fp_kind
do m = 1, nt
volts = volts + nat(m)*elsa_ext(nt, m, atomf, 0.0_fp_kind)*atf(2,m)
enddo
volts = volts * evconv / ss(7)
endif
if(abs(volts).gt.50.0_fp_kind) then
write(6,102) volts
102 format(/,' Inner potential = ',g16.9,' volts. This is unrealistic.',/,&
& ' Resetting inner potential to 20 volts.')
volts = 20.0_fp_kind
endif
write(6,101) volts
101 format(/,' Inner potential = ', g16.9,' volts')
end
subroutine set_tiling_grid()
use m_precision, only: fp_kind
use m_user_input, only: get_input
use global_variables, only: ifactory, ifactorx, nopiy, nopix, nopiy_ucell, nopix_ucell, &
ig1, ig2, ss, a0, deg, uvw1, uvw2, ak1, deltay, deltax, npixels, normalisation
use m_lens, only: pw_illum
use m_potential, only: quick_shift
use m_crystallography, only: trimi, rsd
use m_string
implicit none
integer(4) ich, i, j
real(fp_kind) sitey(3),sitex(3),site(3)
logical::chosen
real(fp_kind) max_qy,max_qx,max_mrady,max_mradx
real(fp_kind) k
call command_line_title_box('Unit cell tiling and grid size')
chosen=.false.
do while(.not.chosen)
131 format( ' Enter the integer by which to tile the unit cell in the ', a1,' direction:')
110 write(6,131) 'x'
call get_input('Tile supercell x', ifactorx)
write(*,131) 'y'
call get_input('Tile supercell y', ifactory)
write(*,*)
if (pw_illum) then
if (a0(1)*ifactorx .ne. a0(2)*ifactory) then
write(*,10) a0(1)*ifactorx, char(143), a0(2)*ifactory, char(143)
10 format(1x, 'Warning: the supercell has the non-square dimensions ', f8.2, 1x, a1, ' x ', f8.2, 1x, a1)
write(*,*) 'If a square grid of pixels is specified, the outputted'
write(*,*) 'images and diffraction patterns will have the wrong'
write(*,*) 'aspect ratio. The user may wish to choose the number of'
write(*,*) 'pixels to avoid this, whilst still taking into consideration'
write(*,*) 'the other guidelines mentioned in the manual regarding'
write(*,*) 'choice of grid size.'
write(*,*)
endif
endif
write(6,111) 'x'
111 format(' Enter number of pixels in the ', a1, ' direction:')
call get_input('Number of pixels in x',nopix)
write(6,111) 'y'
call get_input('Number of pixels in y',nopiy)
write(*,*)
!----------------------------------------------------------------
!Summarise the choices thus far
!----------------------------------------------------------------
nopiy_ucell = nopiy / ifactory;nopix_ucell = nopix / ifactorx
max_qy = trimi(ig2,ss)*float(nopiy_ucell)/3.0_fp_kind
max_qx = trimi(ig1,ss)*float(nopix_ucell)/3.0_fp_kind
max_mrady = atan(max_qy/ak1)*1000.0_fp_kind
max_mradx = atan(max_qx/ak1)*1000.0_fp_kind
! Test if quick shift is possible
! (and if unit cell is actually tiled in both directions)
quick_shift = mod(nopiy,ifactory).eq.0 .and. (mod(nopix,ifactorx)).eq.0 .and. (ifactory.gt.1 .or. ifactorx.gt.1)
write(6,161) nopix_ucell, nopiy_ucell
if (.not.quick_shift) write(6,162)
write(6,163) ifactorx, ifactory, nopix, nopiy, max_qx, char(143),&
&max_qy, char(143),max_mradx, max_mrady
161 format( ' x y', /, &
& ' ---------------------------------------------------------', /, &
& ' Pixels per unit cell | ',i13,' | ',i13)
162 format( ' (Not integer! Quick-shifting not possible for QEP calculations.)')
163 format( ' Tiling of unit cell | ',i13,' | ',i13,/,&
& ' Pixels in super cell | ',i13,' | ',i13,/,&
& ' Max scattering vector | ',f9.1,' ', a1, '-1 | ', f9.1, ' ', a1, '-1', /, &
& ' | (',f6.1,' mrad) | (', f6.1, ' mrad)', /, &
& ' ---------------------------------------------------------', /, &
& ' <1> Continue', /, &
& ' <2> Change')
call get_input('<1> Continue <2> Change', ich)
write(*,*)
chosen = ich==1
enddo
sitey = uvw2 / (float(nopiy)/float(ifactory))
sitex = uvw1 / (float(nopix)/float(ifactorx))
deltay = rsd(sitey,a0,deg)
deltax = rsd(sitex,a0,deg)
npixels = nopiy*nopix
normalisation = 1.0_fp_kind/float(npixels)
end subroutine
subroutine setup_integration_measurements()
use m_precision, only: fp_kind
use m_user_input, only: get_input
use global_variables
use m_crystallography, only: trimi
use m_string
use output
use m_multislice
implicit none
character*100::dstring
integer*4::comaindex,i,j
logical::detectors,outputdetectors
call command_line_title_box(' Diffraction plane detectors')
write(6,*) 'Enter the number of detectors in the diffraction plane:'
write(6,*) '(e.g. 3 if you wish to simulate BF/ABF/ADF simultaneously.)'
write(6,*) "To segment detectors input a comma ',' and then the number"
write(6,*) "of angular segments (eg. for 4 rings and 4 quadrants input '4,4')."
write(6,*) 'To output the detectors for inspection end the input with a '
write(6,*) "question mark ('?'), ie '4,4?'."
call get_input('Number of detectors', dstring)
write(*,*)
!Check if there is a ',' which indicates the user
!wants segmented detectors
comaindex = index(dstring,',')
segments = (comaindex.ne.0)
!Check if there is a ?, which indicates the user would
!like to output the detectors
outputdetectors = (index(dstring,'?').ne.0)
!Remove the ? so that it doesn't cause problems later
if (outputdetectors) dstring = dstring(:index(dstring,'?')-1)
!Read detector string
if(segments) then
read(dstring(:comaindex),*) ndet
read(dstring(comaindex+1:),*) nseg
ndet = ndet*nseg
write(*,*) 'Please input orientation offset for segmented detectors in degrees'
call get_input('Segment orientation offset (degrees)', seg_det_offset)
seg_det_offset = seg_det_offset/180*pi !Convert from degrees to mrad
else
read(dstring,*) ndet
nseg = 1
endif
if(allocated(outer)) deallocate(outer)
if(allocated(inner)) deallocate(inner)
allocate(inner(ndet/nseg),outer(ndet/nseg))
if (ndet.eq.0) return
call get_cbed_detector_info(outer,inner,ndet/nseg,ak1)
if(outputdetectors) then
do i=1,ndet/nseg
do j=1,nseg
if(nseg>1) call binary_out_unwrap(nopiy,nopix,make_detector(nopiy,nopix,ifactory,ifactorx,ss,inner(i),outer(i),2*pi*j/nseg-seg_det_offset,2*pi/nseg),'detector_'//to_string((i-1)*nseg+j))
if(nseg==1) call binary_out_unwrap(nopiy,nopix,make_detector(nopiy,nopix,ifactory,ifactorx,ss,inner(i),outer(i)),'detector_'//to_string((i-1)*nseg+j))
enddo
enddo
endif
end
subroutine get_cbed_detector_info(outer,inner,ndet,k)
use m_precision, only: fp_kind
use m_user_input, only: get_input
use m_string, only: to_string
implicit none
integer(4) ndet,ichoice,i
integer*4:: mrad
real(fp_kind) outer(ndet),inner(ndet),k,dummy
real(fp_kind) :: inner_mrad(ndet), outer_mrad(ndet)
write(*,*) 'Select a method for choosing inner and outer angles:'
write(*,*) '<1> Manual',char(10),' <2> Automatic'
call get_input("manual detector <1> auto <2>",ichoice)
write(*,*)
mrad =-1
do while(.not.((mrad==1).or.(mrad==2)))
write(*,*) 'Select how angles will be specified:'
write(*,*) '<1> mrad',char(10),' <2> inverse Angstroms'
call get_input("<1> mrad <2> inv A", mrad)
write(*,*)
enddo
if(ichoice.eq.1) then
do i = 1, ndet
write(*,*) char(10),' Detector ', to_string(i),char(10),' Inner angle:'
call get_input("inner",dummy)
if(mrad.eq.1) inner_mrad(i) = dummy
if(mrad.eq.2) inner(i) = dummy
write(*,*) "Outer angle:"
call get_input("outer",dummy)
if(mrad.eq.1) outer_mrad(i) = dummy
if(mrad.eq.2) outer(i) = dummy
enddo
else
write(*,*) "Initial inner angle:"
call get_input("initial inner angle", dummy)
if(mrad.eq.1) inner_mrad(1) = dummy
if(mrad.eq.2) inner(1) = dummy
write(*,*) "Initial outer angle:"
call get_input("initial outer angle", dummy)
if(mrad.eq.1) outer_mrad(1) = dummy
if(mrad.eq.2) outer(1) = dummy
write(*,*) "Increment (both angles incremented by this amount):"
call get_input("increment", dummy)
write(*,*)
if(mrad.eq.1) then
inner_mrad(2:) = (/((i-1)*dummy+inner_mrad(1), i=2,ndet,1)/)
outer_mrad(2:) = (/((i-1)*dummy+outer_mrad(1), i=2,ndet)/)
else
inner(2:) = (/((i-1)*dummy+inner(1), i=2,ndet)/)
outer(2:) = (/((i-1)*dummy+outer(1), i=2,ndet)/)
endif
endif
if(mrad.eq.2) then
outer_mrad = 1000*atan(outer/k)
inner_mrad = 1000*atan(inner/k)
else
inner = k*tan(inner_mrad/1000.0_fp_kind)
outer = k*tan(outer_mrad/1000.0_fp_kind)
endif
write(*,*) 'Summary of diffraction plane detectors:'
write(*,*)
write(*,*) ' inner outer'
write(*,*) ' --------------------------------'
do i = 1, ndet
write(*,50) i, inner_mrad(i), outer_mrad(i)
write(*,55) inner(i), outer(i), char(143)
write(*,60)
enddo
50 format(1x, i5, ' | ', f6.2, ' | ', f6.2, ' (mrad)')
55 format(1x, 5x, ' | ', f6.2, ' | ', f6.2, ' (', a1, '^-1)')
60 format(1x, 5x, ' | ', 6x, ' | ')
write(*,*)
end subroutine
subroutine setup_specimen_thickness()
use global_variables, only: thickness, n_cells, a0,nz,zarray,ncells
use m_user_input, only: get_input
use m_precision, only: fp_kind
use m_string, only: read_sequence_string,command_line_title_box
implicit none
integer*4::i
character*120::thickness_string
call command_line_title_box('Specimen thickness')
10 write(6,11)
11 format( ' Enter the specimen thickness in Angstroms:')
call get_input("Thickness", thickness_string)
call read_sequence_string(thickness_string,120,nz,minstep=a0(3))
allocate(zarray(nz),ncells(nz))
call read_sequence_string(thickness_string,120,nz,zarray,a0(3))
ncells = nint(zarray/a0(3))
zarray = ncells*a0(3)
thickness = zarray(nz)
n_cells = nint(thickness/a0(3))
thickness = n_cells*a0(3)
do i=1,nz
write(6, 15) ncells(i), zarray(i), char(143)
enddo
15 format(' This corresponds to ', i5, ' unit cells with a total thickness of ', f6.1, ' ', a1, '.')
write(*,*)
end subroutine
subroutine fourD_STEM_options(fourdSTEM,nopiyout,nopixout,nopiy,nopix)
use m_user_input
use m_string
integer*4,intent(in)::nopiy,nopix
integer*4,intent(out)::nopiyout,nopixout
logical,intent(out)::fourdSTEM
integer*4::idum
call command_line_title_box('4D-STEM options')
write(*,*) 'Output diffraction patterns for each scan position?'
write(*,*) '<1> Yes',char(10),' <2> Output cropped diffraction patterns (saves memory)',char(10),' <3> No'
call get_input('<1> Diffraction pattern for each probe position',idum)
fourDSTEM = (idum == 1).or.(idum ==2)
if(idum==2) then
write(*,*) 'Please input number of y pixels in diffration pattern output'
call get_input('diffraction pattern y pixels',nopiyout)
write(*,*) 'Please input number of x pixels in diffration pattern output'
call get_input('diffraction pattern x pixels',nopixout)
else
nopiyout = nopiy
nopixout = nopix
endif
end subroutine
!--------------------------------------------------------------------------------------
subroutine make_bwl_mat()
! subroutine make_bwl_mat forms a real matrix with entries 1 for
! reciprocal space vectors with magnitude inside the cutoff for
! band-width limitting, and 0 outside. Multiplying a reciprocal
! space array with the resultant bwl_mat *is* applying band-width
! limitting.
use global_variables
use m_precision
use m_crystallography, only: rsd
implicit none
real(fp_kind) return_array(nopiy, nopix)
integer(4) middlex, middley
real(fp_kind) rad, xstep, ystep,a1,a2
real(fp_kind) xstep2, ystep2, xpos, ypos
integer(4) i, j
if(allocated(bwl_mat)) deallocate(bwl_mat)
allocate(bwl_mat(nopiy, nopix))
middlex = (nopix+1)/2
middley = (nopiy+1)/2
a1 = rsd(uvw1,a0,deg)
a2 = rsd(uvw2,a0,deg)
ystep = 1.0_fp_kind/(float(ifactory)*a2)
xstep = 1.0_fp_kind/(float(ifactorx)*a1)
ystep2 = ystep*ystep
xstep2 = xstep*xstep
bwl_rad = min( ystep*nopiy, xstep*nopix )
bwl_rad = 1.0_fp_kind*bwl_rad/3.0_fp_kind
do i=1, nopiy
do j=1, nopix
ypos = float(middley - i)
xpos = float(middlex - j)
rad = sqrt(ypos*ypos*ystep2 + xpos*xpos*xstep2)
if( rad .gt. bwl_rad ) then
bwl_mat(i,j) = 0.0_fp_kind
else
bwl_mat(i,j) = 1.0_fp_kind
endif
enddo
enddo
return_array=cshift(bwl_mat,SHIFT=-middlex,DIM=2)
bwl_mat=cshift(return_array,SHIFT=-middley,DIM=1)
return
end
!-------------------------------------------------------------------------------------
! subroutine to make the 1D factorisation array to speed up the array shift
!
subroutine make_shift_oned(shift, dim_shift, coord)
use m_precision, only: fp_kind
use global_variables, only: pi
use m_crystallography, only: make_g_vec_array
implicit none
integer(4) :: i,half_shift
integer(4),intent(in) :: dim_shift
real(fp_kind),intent(in) :: coord
real(fp_kind) :: q
complex(fp_kind),dimension(dim_shift),intent(out) :: shift
half_shift = (dim_shift-1)/2-1
do i = 1, dim_shift
q = float(mod( i+half_shift, dim_shift) - half_shift -1)
shift(i) = exp(cmplx(0.0_fp_kind, -2.0_fp_kind*pi*q*coord))
enddo
end
!----------------------------------------------------------------
!Subroutine to do the fastest shift array from the precomputed
!1D factorised shift arrays
subroutine phase_shift_array(input, output, shifty, shiftx)
use m_precision, only: fp_kind
use global_variables, only: nopiy, nopix
use cufft_wrapper, only: ifft2
implicit none
complex(fp_kind),intent(in) :: shifty(nopiy), shiftx(nopix),input(nopiy,nopix)
complex(fp_kind),dimension(nopiy,nopix),intent(out) :: output
output = input*spread(shiftx,dim=1,ncopies=nopiy)*spread(shifty,dim=2,ncopies = nopix)
call ifft2(nopiy, nopix, output, nopiy, output, nopiy)
end
subroutine STEM_options(STEM,ionization,PACBED)
use m_string
use m_user_input
logical,intent(out)::STEM,ionization,PACBED
integer*4::i
STEM= .false.
ionization = .false.
PACBED = .false.
i=-1
do while(i.ne.0)
call command_line_title_box('STEM modes')
write(*,*)'muSTEM offers a number of options for STEM modes,'
write(*,*)' you can choose to do any number of them simultaneously'
write(*,*)'-----------------------------------------------------------'
write(*,*)'Option | Included(y/n)'
write(*,*)'-----------------------------------------------------------'
write(*,*)'<1> Conventional STEM (ADF,ABF,BF etc.) | ',logical_to_yn(STEM)
write(*,*)'<2> Ionization based STEM (EELS and EDX) | ',logical_to_yn(ionization)
write(*,*)'<3> Diffraction (PACBED and 4D-STEM) | ',logical_to_yn(PACBED)
write(*,*)'<0> Continue',char(10)
write(*,*)'-----------------------------------------------------------'
call get_input('STEM modes',i)
write(*,*)
if(i==1) STEM = .not.STEM
if(i==2) ionization = .not.ionization
if(i==3) PACBED = .not.PACBED
if(i==0.and.(.not.any([STEM,ionization,PACBED]))) then
write(*,*) "You must choose at least one imaging mode to proceed"
i=-1
endif
enddo
end subroutine