-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgnn_mnist.py
210 lines (175 loc) · 8.64 KB
/
gnn_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
from scipy.spatial.distance import cdist
from iMetDataset import *
from torch.utils.data.sampler import SubsetRandomSampler
class BorisNet(nn.Module):
def __init__(self):
super(BorisNet, self).__init__()
self.fc = nn.Linear(49152, 10, bias=False)
def forward(self, x):
return self.fc(x.view(x.size(0), -1))
class BorisConvNet(nn.Module):
def __init__(self):
super(BorisConvNet, self).__init__()
self.conv = nn.Conv2d(1, 10, 128, stride=1, padding=14)
self.fc = nn.Linear(4 * 4 * 10, 10, bias=False)
def forward(self, x):
x = F.relu(self.conv(x))
x = F.max_pool2d(x, 7)
return self.fc(x.view(x.size(0), -1))
class BorisGraphNet(nn.Module):
def __init__(self, img_size=128, pred_edge=False):
super(BorisGraphNet, self).__init__()
self.pred_edge = pred_edge
N = img_size ** 2
self.fc = nn.Linear(N, 20, bias=False)
if pred_edge:
col, row = np.meshgrid(np.arange(img_size), np.arange(img_size))
coord = np.stack((col, row), axis=2).reshape(-1, 2)
coord = (coord - np.mean(coord, axis=0)) / (np.std(coord, axis=0) + 1e-5)
coord = torch.from_numpy(coord).float() # 784,2
coord = torch.cat((coord.unsqueeze(0).repeat(N, 1, 1),
coord.unsqueeze(1).repeat(1, N, 1)), dim=2)
#coord = torch.abs(coord[:, :, [0, 1]] - coord[:, :, [2, 3]])
self.pred_edge_fc = nn.Sequential(nn.Linear(4, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Tanh())
self.register_buffer('coord', coord)
else:
# precompute adjacency matrix before training
A = self.precompute_adjacency_images(img_size)
self.register_buffer('A', A)
@staticmethod
def precompute_adjacency_images(img_size):
col, row = np.meshgrid(np.arange(img_size), np.arange(img_size))
coord = np.stack((col, row), axis=2).reshape(-1, 2) / img_size
dist = cdist(coord, coord)
sigma = 0.05 * np.pi
# Below, I forgot to square dist to make it a Gaussian (not sure how important it can be for final results)
A = np.exp(- dist / sigma ** 2)
print('WARNING: try squaring the dist to make it a Gaussian')
A[A < 0.01] = 0
A = torch.from_numpy(A).float()
# Normalization as per (Kipf & Welling, ICLR 2017)
D = A.sum(1) # nodes degree (N,)
D_hat = (D + 1e-5) ** (-0.5)
A_hat = D_hat.view(-1, 1) * A * D_hat.view(1, -1) # N,N
# Some additional trick I found to be useful
# A_hat[A_hat > 0.0001] = A_hat[A_hat > 0.0001] - 0.2
print(A_hat[:10, :10])
return A_hat
def forward(self, x):
B = x.size(0)
if self.pred_edge:
self.A = self.pred_edge_fc(self.coord).squeeze()
avg_neighbor_features = (torch.bmm(self.A.unsqueeze(0).expand(B, -1, -1),
x.view(B, -1, 1)).view(B, -1))
return self.fc(avg_neighbor_features)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print(
'\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--model', type=str, default='graph', choices=['fc', 'graph', 'conv'],
help='model to use for training (default: fc)')
parser.add_argument('--batch-size', type=int, default=64,
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000,
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10,
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate (default: 0.001)')
parser.add_argument('--pred_edge', action='store_true', default=False,
help='predict edges instead of using predefined ones')
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=200,
help='how many batches to wait before logging training status')
args = parser.parse_args()
use_cuda = False
torch.manual_seed(args.seed)
device = torch.device("cpu")
# Pytorch has default MNIST dataloader which loads data at each iteration
train_dataset_no_aug = TrainDataset(True, 'data/imet-2020-fgvc7/labels.csv',
'data/imet-2020-fgvc7/train_20country.csv', 'data/imet-2020-fgvc7/train/',
transform=transforms.Compose([ # Data preprocessing
transforms.ToPILImage(), # Add data augmentation here
transforms.RandomResizedCrop(128),
transforms.Grayscale(),
transforms.ToTensor(),
# transforms.Normalize(mean=(0.485,0.456,0.406), std=(0.229,0.224,0.225))
]))
train_dataset_with_aug = train_dataset_no_aug
assert(len(train_dataset_no_aug) == len(train_dataset_with_aug))
np.random.seed(args.seed)
subset_indices_valid = np.random.choice( len(train_dataset_no_aug), int(0.15*len(train_dataset_no_aug)), replace=False )
subset_indices_train = [i for i in range(len(train_dataset_no_aug)) if i not in subset_indices_valid]
assert (len(subset_indices_train) + len(subset_indices_valid)) == len(train_dataset_no_aug)
assert len(np.intersect1d(subset_indices_train,subset_indices_valid)) == 0
train_loader = torch.utils.data.DataLoader(
train_dataset_with_aug, batch_size=args.batch_size,
sampler=SubsetRandomSampler(subset_indices_train)
)
val_loader = torch.utils.data.DataLoader(
train_dataset_no_aug, batch_size=args.test_batch_size,
sampler=SubsetRandomSampler(subset_indices_valid)
)
if args.model == 'fc':
assert not args.pred_edge, "this flag is meant for graphs"
model = BorisNet()
elif args.model == 'graph':
model = BorisGraphNet(pred_edge=args.pred_edge)
elif args.model == 'conv':
model = BorisConvNet()
else:
raise NotImplementedError(args.model)
model.to(device)
print(model)
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=1e-1 if args.model == 'conv' else 1e-4)
print('number of trainable parameters: %d' %
np.sum([np.prod(p.size()) if p.requires_grad else 0 for p in model.parameters()]))
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, val_loader)
if __name__ == '__main__':
main()
# Examples:
# python mnist_fc.py --model fc
# python mnist_fc.py --model graph
# python mnist_fc.py --model graph --pred_edge