-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo_utils.py
152 lines (121 loc) · 5.3 KB
/
ppo_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import datetime
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.distributions.categorical import Categorical
from environment import env
from model import ActorCriticNetwork
from hyper import Hyperparameters
action_type, obs_type = Hyperparameters.all()[10:12]
DEVICE = Hyperparameters.all()[0]
class PPOUtils():
def rollout(model, env, max_steps=1000):
"""
Performs a single rollout.
Returns training data in the shape (n_steps, observation_shape)
and the cumulative reward.
"""
### Create data storage
train_data = [[], [], [], [], []] # obs, act, reward, values, act_log_probs
#env.np_random
seed = 10
# seed = int(np.random.randint(100))
obs = env.reset(seed=seed, options={})
obs = env.reset(options={})
obs, _ = obs
obs = np.array(obs)
# print(f'OBS: {obs}')
# print(f'_: {_}')
ep_reward = 0
for _ in range(max_steps):
obs = obs.reshape(1, -1)
logits, val = model(torch.tensor([obs], dtype=torch.float32,
device=DEVICE))
act_distribution = Categorical(logits=logits)
act = act_distribution.sample()
act_log_prob = act_distribution.log_prob(act).item()
act, val = act.item(), val.item()
next_obs, reward, terminated, truncated, _ = env.step(act)
###
# print(f'next_obs: {next_obs}')
print(f'reward: {reward}')
# print(f'terminated: {terminated}')
###
env.render()
for i, item in enumerate((obs, act, reward, val, act_log_prob)):
train_data[i].append(item)
obs = next_obs
ep_reward += reward
if terminated or truncated:
break
train_data = [np.asarray(x) for x in train_data]
### Do train data filtering
train_data[3] = PPOUtils.calculate_gaes(train_data[2], train_data[3])
return train_data, ep_reward
def discount_rewards(rewards, gamma=0.99):
"""
Return discounted rewards based on the given rewards and gamma param.
"""
new_rewards = [float(rewards[-1])]
for i in reversed(range(len(rewards)-1)):
new_rewards.append(float(rewards[i]) + gamma * new_rewards[-1])
return np.array(new_rewards[::-1])
def calculate_gaes(rewards, values, gamma=0.99, decay=0.97):
"""
Return the General Advantage Estimates from the given rewards and values.
"""
next_values = np.concatenate([values[1:], [0]])
deltas = [rew + gamma * next_val - val for rew, val, next_val in zip(rewards, values, next_values)]
gaes = [deltas[-1]]
for i in reversed(range(len(deltas)-1)):
gaes.append(deltas[i] + decay * gamma * gaes[-1])
return np.array(gaes[::-1])
def create_directory():
now = datetime.datetime.now()
date_time = now.strftime("%Y-%m-%d_%H-%M-%S")
act_n_obs = f'{action_type}_{obs_type}'
env_folder = env.spec.id.replace("-", "_") # Replace hyphens with underscores in the environment name
folder_name = f"{date_time}_{env_folder}_{act_n_obs}"
#os.makedirs(folder_name, exist_ok=True)
return folder_name
def save_models(model, ep_rewards, ppo):
# Create a directory for saving models and plots
model_folder = 'models'
os.makedirs(model_folder, exist_ok=True)
# Create a subdirectory for the current run
output_folder = os.path.join(model_folder, PPOUtils.create_directory())
os.makedirs(output_folder, exist_ok=True)
# Plot episode rewards
plt.figure(figsize=(10, 5))
plt.plot(ep_rewards, label='Episode Rewards')
plt.xlabel('Episode')
plt.ylabel('Reward')
plt.title('Training Progress')
plt.legend()
plt.grid(True)
# Save the actor model
actor_model_path = os.path.join(output_folder, 'actor_model.pth')
torch.save(model.state_dict(), actor_model_path)
# Save the critic model
critic_model_path = os.path.join(output_folder, 'critic_model.pth')
torch.save(ppo.ac.state_dict(), critic_model_path)
# Save the plot as an image inside the directory
plot_path = os.path.join(output_folder, 'training_progress.png')
plt.savefig(plot_path)
print("Saved actor model to:", actor_model_path)
print("Saved critic model to:", critic_model_path)
print("Saved training plot to:", plot_path)
# Display the plot
plt.show()
def load_models(model_path, obs_space, action_space):
# Load saved actor and critic models
actor_model = ActorCriticNetwork(obs_space, action_space) # Use the same architecture as during training
critic_model = ActorCriticNetwork(obs_space, action_space) # Use the same architecture as during training
# Load the saved state dictionaries
actor_model.load_state_dict(torch.load(model_path))
critic_model.load_state_dict(torch.load(model_path))
# Set the models to evaluation mode
actor_model.eval()
critic_model.eval()
return actor_model, critic_model