forked from udacity/pdsnd_github
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare.py
191 lines (134 loc) · 5.85 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
months = ['january', 'february', 'march', 'april', 'may', 'june']
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
while True:
city = input('Enter City "Chicago", "New York City", "Washington": ').lower()
if city in CITY_DATA.keys():
break
# get user input for month (all, january, february, ... , june)
while True:
month = input("Enter month to filter by month 'january', 'february', 'march', 'april', 'may', 'june'\nor 'all' for no filter: ").lower()
if month.lower() in ['january', 'february', 'march', 'april', 'may', 'june', 'all']:
break
# get user input for day of week (all, monday, tuesday, ... sunday)
while True:
day = input("Enter month to filter by month 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday'\nor 'all' for no filter: ").lower()
if day.lower() in ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'all']:
break
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
month = months.index(month) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# display the most common month
m = df['Start Time'].dt.month.mode()[0]
print('Most common Month', months[m - 1])
# display the most common day of week
d = df['Start Time'].dt.weekday_name.mode()[0]
print('\nMost common Day', d)
# display the most common start hour
h = df['Start Time'].dt.hour.mode()[0]
print('\nMost common Hour', h)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# display most commonly used start station
startst = df['Start Station'].mode()[0]
print('Most common Start Station', startst)
# display most commonly used end station
endst = df['End Station'].mode()[0]
print('\nMost common End Station', endst)
# display most frequent combination of start station and end station trip
df['st_concat'] = pd.concat([df['Start Station'], df['End Station']], ignore_index = True)
st = df['st_concat'].mode()[0]
print('\nMost common Station', st)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# display total travel time
print("Total travel time:", df["Trip Duration"].sum())
# display mean travel time
print("\nTotal travel time:", df["Trip Duration"].mean())
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
print("counts of User Type")
print(df["User Type"].value_counts())
# Display counts of gender
print("\ncounts of gender")
print(df["Gender"].value_counts())
# Display earliest, most recent, and most common year of birth
print("\nearliest year of birth")
print(df["Birth Year"].min())
print("\nmost recent year of birth")
print(df["Birth Year"].max())
print("\nmost common year of birth")
print(df["Birth Year"].mode()[0])
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()