This repository has been archived by the owner on Sep 10, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
is_local_max.hhs
111 lines (96 loc) · 3.31 KB
/
is_local_max.hhs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/**
* @author Jianan Lin (林家南)
* @param input - an array, matrix, tensor that you want to get local max
* @param dim - 0 or 1: 0 is local max of each row, 1 is each column.
* dim only supports 2-d matrix. For tensor or array, this para is ignored.
* @returns - a matrix / tensor with elements 0 or 1 denoting whether it is local max.
*
*/
function is_local_max(input, dim = 0) {
*import math: deep_copy
*import math: ndim
// argument check
if (arguments.length === 0) {
throw new Error('Exception occurred in is_local_max - no argument given');
}
if (arguments.length > 2) {
throw new Error('Exception occurred in is_local_max - wrong argument number');
}
if (!(Array.isArray(input)) && !(input instanceof Mat) && !(input instanceof Tensor)) {
throw new Error('Exception occurred in is_local_max - input must be an array, matrix or tensor');
}
if (dim !== 0 && dim !== 1) {
throw new Error('Exception occurred in is_local_max - dim must be 0 or 1');
}
let in_type = input instanceof Mat || input instanceof Tensor;
let raw_in = in_type ? input.clone().val : deep_copy(input);
let result = deep_copy(raw_in);
// row local max
if (dim === 0) {
is_local_max_helper_row(raw_in, result);
if (ndim(result) <= 2) {
return mat(result);
}
else {
return new Tensor(result);
}
}
// column local max, require m * n matrix
else {
if (ndim(raw_in) !== 2) {
throw new Error('Exception occurred in is_local_max - if dim = 1, then input must be a m * n matrix');
}
else if (is_normal_matrix(raw_in) === false) {
throw new Error('Exception occurred in is_local_max - if dim = 1, then input must be a m * n matrix');
}
else {
for (let i = 0; i < raw_in.length; i++) {
for (let j = 0; j < raw_in[i].length; j++) {
if (i === 0 || i === raw_in.length - 1) {
result[i][j] = 0;
}
else if (raw_in[i][j] < raw_in[i - 1][j] || raw_in[i][j] < raw_in[i + 1][j]) {
result[i][j] = 0;
}
else {
result[i][j] = 1;
}
}
}
return mat(result);
}
}
function is_normal_matrix(input) {
let m = input.length;
let n = input[0].length;
for (let i = 0; i < m; i++) {
if (input[i].length !== n) {
return false;
}
}
return true;
}
function judge_row(array, index) {
if (index === 0 || index === array.length - 1) {
return 0;
}
else if (array[index] < array[index + 1] || array[index] < array[index - 1]) {
return 0;
}
else {
return 1;
}
}
function is_local_max_helper_row(array1, array2) {
if (ndim(array1) === 1) {
for (let i = 0; i < array1.length; i++) {
array2[i] = judge_row(array1, i);
}
}
else {
for (let i = 0; i < array1.length; i++) {
is_local_max_helper_row(array1[i], array2[i]);
}
}
}
}