-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
438 lines (365 loc) · 16.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# -*- coding: utf-8 -*-
"""
main.py
Repeats RNN training across different initial hidden weight rank and saves
hidden weight change norm, representation similarity, tangent kernel alignment.
For the default settings below, main.py should take under 30min to execute.
"""
import torch
import torch.nn as nn
from torch.nn import init
from torch.nn import functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, random_split
import math
import numpy as np
import matplotlib.pyplot as plt
import torch.optim as optim
import copy
import neurogym as ngym
import argparse
import os
from file_saver_dumper import save_file, load_file, get_storage_path_reference
## Setup arguments
parser = argparse.ArgumentParser(description='')
parser.add_argument('--save_data', default=False, type=bool, help='to save or not to save')
parser.add_argument('--comment', default="", type=str, help='comment for saved fname')
parser.add_argument('--n_iter', default=10000, type=int, help='number of training iter')
parser.add_argument('--print_step', default=100, type=int, help='frequency of saving data')
parser.add_argument('--task_mode', default='ngym', type=str, choices=['ngym', 'sMNIST'], help='ngym or sequential MNIST tasks')
parser.add_argument('--task', default='2AF', type=str, choices=['2AF', 'DMS', 'CXT'], help='task')
parser.add_argument('--learning_rate0', default=0.003, type=float, help='base learning rate')
parser.add_argument('--var_name', default='rr', type=str, choices=['rr'], help='the knob')
parser.add_argument('--W0sig', default=1.25, type=float, help='relevant only if var_name=rr or kap2, std for the starting W init')
parser.add_argument('--hidden_size', default=300, type=int, help='number of hidden units')
args = parser.parse_args()
if args.save_data:
# Define the flag object as dictionnary for saving purposes
file_reference, storage_path = get_storage_path_reference(__file__, './results/', comment=args.comment)
os.makedirs(storage_path, exist_ok=True)
print('saving data to: ' + storage_path)
### Setup task
task_mode = args.task_mode
t_mult = 1
if task_mode == 'ngym':
# Environment
batch_size = 32
seq_len = 100
if args.task == '2AF':
task = 'PerceptualDecisionMaking-v0'
timing = {
'fixation': 0*t_mult,
'stimulus': 700*t_mult,
'delay': 0*t_mult,
'decision': 100*t_mult}
seq_len = 8*t_mult
kwargs = {'dt': 100, 'timing': timing}
# Make supervised dataset
dataset = ngym.Dataset(task, env_kwargs=kwargs, batch_size=batch_size,
seq_len=seq_len)
elif args.task == 'DMS':
task = 'DelayMatchSample-v0'
seq_len = 8*t_mult
timing = {
'fixation': 0*t_mult,
'sample': 100*t_mult,
'delay': 500*t_mult,
'test': 100*t_mult,
'decision': 100*t_mult}
kwargs = {'dt': 100, 'timing': timing}
# Make supervised dataset
dataset = ngym.Dataset(task, env_kwargs=kwargs, batch_size=batch_size,
seq_len=seq_len)
elif args.task == 'CXT':
task = 'ContextDecisionMaking-v0'
seq_len = 8*t_mult
timing = {
'fixation': 0*t_mult,
# 'target': 350,
'stimulus': 200*t_mult,
'delay': 500*t_mult,
'decision': 100*t_mult}
kwargs = {'dt': 100, 'timing': timing}
# Make supervised dataset
dataset = ngym.Dataset(task, env_kwargs=kwargs, batch_size=batch_size,
seq_len=seq_len)
# A sample environment from dataset
env = dataset.env
# # Visualize the environment with 2 sample trials
# _ = ngym.utils.plot_env(env, num_trials=2)
# Network input and output size
input_size = env.observation_space.shape[0]
output_size = env.action_space.n
dt = env.dt
elif task_mode == 'sMNIST':
batch_size = 200
seq_len = 28
dt = None
input_size = 28
output_size = 10
dataMNIST = datasets.MNIST('data', train=True, download=True, transform=transforms.ToTensor())
train_set, val_set = random_split(dataMNIST, [55000, 5000])
train_loader = DataLoader(train_set, batch_size=batch_size)
val_loader = DataLoader(val_set, batch_size=batch_size)
# testset = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())
# testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=True)
iterData=iter(train_loader)
def dataset():
x, y = next(iterData)
x_ = x[:,0].permute(1,0,2)
return x_, y
### Setup network
W0_Gauss = args.W0sig*np.random.randn(args.hidden_size, args.hidden_size)/np.sqrt(args.hidden_size)
# Define RNN
# Code to setup RNN is adapted from https://github.com/gyyang/nn-brain/blob/master/RNN%2BDynamicalSystemAnalysis.ipynb
class CTRNN(nn.Module):
"""Continuous-time RNN.
Args:
input_size: Number of input neurons
hidden_size: Number of hidden neurons
Inputs:
input: (seq_len, batch, input_size), network input
hidden: (batch, hidden_size), initial hidden activity
"""
def __init__(self, input_size, hidden_size, dt=None, **kwargs):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.tau = 100
if dt is None:
alpha = 1
else:
alpha = dt / self.tau
self.alpha = alpha
self.oneminusalpha = 1 - alpha
self.input2h = nn.Linear(input_size, hidden_size, bias=False)
self.h2h = nn.Linear(hidden_size, hidden_size, bias=False)
def init_hidden(self, input_shape):
batch_size = input_shape[1]
return torch.zeros(batch_size, self.hidden_size)
def recurrence(self, input, hidden):
"""Recurrence helper."""
pre_activation = self.input2h(input) + self.h2h(hidden)
h_new = torch.relu(hidden * self.oneminusalpha +
pre_activation * self.alpha)
return h_new
def forward(self, input, hidden=None):
"""Propogate input through the network."""
if hidden is None:
hidden = self.init_hidden(input.shape).to(input.device)
output = []
steps = range(input.size(0))
for i in steps:
hidden = self.recurrence(input[i], hidden)
output.append(hidden)
output = torch.stack(output, dim=0)
return output, hidden
class Net(nn.Module):
"""Recurrent network model.
Args:
input_size: int, input size
hidden_size: int, hidden size
output_size: int, output size
rnn: str, type of RNN, lstm, rnn, ctrnn, or eirnn
"""
def __init__(self, input_size, hidden_size, output_size, **kwargs):
super().__init__()
# Continuous time RNN
self.rnn = CTRNN(input_size, hidden_size, **kwargs)
self.fc = nn.Linear(hidden_size, output_size, bias=False)
def forward(self, x):
rnn_activity, _ = self.rnn(x)
out = self.fc(rnn_activity)
return out, rnn_activity
## Train the network
# Configure training and net parameters
running_loss = 0
running_acc = 0
print_step = args.print_step
hidden_size = args.hidden_size
var_name = args.var_name
if args.var_name == 'rr':
var_list = [-1, args.hidden_size]
if args.hidden_size < 150:
var_list = [1, 30, args.hidden_size]
elif args.hidden_size > 500:
var_list = [1, 30, 100, 300, args.hidden_size]
else:
var_list = [1, 30, 100, args.hidden_size]
if task_mode == 'sMNIST':
var_list = [5, 30, args.hidden_size]
lr_list = [args.learning_rate0] #[0.001, 0.003, 0.01]
criterion = nn.CrossEntropyLoss()
# Loop across Wsig and store results, etc.
delta_Wr_norm_list = []
all_loss_list = []
sign_sim_list = []
rep_sim_list = []
kernel_alignment_list = []
# Initial input, for alignment computation
if task_mode == 'sMNIST':
try:
inputs0, _ = dataset()
except Exception as e:
print(f"An error occurred: {e}")
else:
if task_mode == 'ngym':
for xx in range(10): # use 10x the batch size for sample
inputs0_ii, _ = dataset()
if xx==0:
inputs0 = inputs0_ii
else:
inputs0 = np.concatenate((inputs0, inputs0_ii), axis=1)
else:
inputs0, _ = dataset()
inputs0 = torch.from_numpy(inputs0).type(torch.float)
### Repeat training across different initializations
for var in var_list:
print('### ' + var_name + '=' + str(var) + ' ###')
# Loop through hyperparameters
bestLoss = 10. #np.Inf
for ii in range(len(lr_list)):
# Instantiate the network and print information
net_ii = Net(input_size=input_size, hidden_size=hidden_size, output_size=output_size, dt=dt)
if args.var_name == 'rr':
rr = var
U_, S_, VT_ = np.linalg.svd(W0_Gauss)
new_S = S_.copy()
W0new = U_[:,:rr] @ np.diag(new_S[:rr]) @ VT_[:rr, :]
# normalize
W0new = W0new / np.linalg.norm(W0new) * np.linalg.norm(W0_Gauss) # by norm
net_ii.rnn.h2h.weight.data.copy_(torch.from_numpy(W0new).type(torch.float))
# Optimizer
n_iter = args.n_iter
optimizer = optim.SGD(net_ii.parameters(), lr=lr_list[ii], momentum=0.9) # default
## Storing initial stuff
Wr_0 = net_ii.rnn.h2h.weight.detach().numpy().copy()
output0, activity0 = net_ii(inputs0)
if task_mode == 'ngym':
activity0_ = activity0[env.start_ind['decision']:env.end_ind['decision']].detach().numpy().copy()
else:
activity0_ = activity0.detach().numpy().copy()
# Get K0
if (task_mode == 'ngym'):
for t in range(seq_len):
for b in range(batch_size):
for k in range(output_size): # output is the inner dim
df_1 = torch.unsqueeze(torch.autograd.grad(output0[t,b,k], \
net_ii.rnn.h2h.weight, retain_graph=True)[0], dim=0) # focus on recurrent weight
if (b==0) and (k==0) and (t==0):
df = df_1
else:
df = torch.cat((df, df_1), dim=0)
elif (task_mode == 'sMNIST'): # output at last step only
for b in range(batch_size):
for k in range(output_size):
df_1 = torch.unsqueeze(torch.autograd.grad(output0[-1,b,k], net_ii.rnn.h2h.weight, retain_graph=True)[0], dim=0)
if (b==0) and (k==0):
df = df_1
else:
df = torch.cat((df, df_1), dim=0)
else:
raise NotImplementedError("Per sample grad not implemented for the task")
K0 = torch.einsum('bij,aij->ba', df, df)
### start training ###
loss_list = []
iter_list = []
for i in range(n_iter):
try:
inputs, labels_ = dataset()
except StopIteration:
iterData=iter(train_loader)
inputs, labels_ = dataset()
if task_mode != 'sMNIST':
inputs = torch.from_numpy(inputs).type(torch.float)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
def get_loss_out(net):
output, activity = net(inputs)
if task_mode == 'ngym':
labels = torch.from_numpy(labels_.flatten()).type(torch.long)
output = output.view(-1, output_size)
loss = criterion(output, labels)
else:
labels = labels_
loss = criterion(output[-1,:,:], labels) # loss at last
return loss, output, labels, activity
loss, output, labels, activity = get_loss_out(net_ii)
loss.backward()
optimizer.step() # Does the update
running_loss += loss.item()
if i % print_step == 0: # (print_step - 1):
if i != 0:
running_loss /= print_step
#print('Step {}, Loss {:0.4f}'.format(i+1, running_loss))
loss_list.append(running_loss)
iter_list.append(i)
running_loss = 0
### End training ###
avLoss = np.mean(np.array(loss_list[-20:])) # average of last 20 sampled loss values
if avLoss < bestLoss: # if this loss is better, save results
bestLoss = avLoss
print('best LR so far, ' + str(lr_list[ii]))
net = net_ii
if ii > 0: # replace the last item, if this loss is better and not the first hyperparam tried
all_loss_list = all_loss_list[:-1]
delta_Wr_norm_list = delta_Wr_norm_list[:-1]
sign_sim_list = sign_sim_list[:-1]
rep_sim_list = rep_sim_list[:-1]
kernel_alignment_list = kernel_alignment_list[:-1]
# View weights
Wr = net.rnn.h2h.weight.detach().numpy()
delta_Wr_norm_list.append(np.linalg.norm(Wr-Wr_0))
all_loss_list.append(loss_list)
### get the linearity measures ###
output, activity_ = net(inputs0)
if task_mode == 'ngym':
activity_ = activity_[env.start_ind['decision']:env.end_ind['decision']].detach().numpy().copy()
else:
activity_ = activity_.detach().numpy().copy()
# Get sign similarity
sign_sim = np.sum(np.sign(activity_)==np.sign(activity0_))/activity_.size
sign_sim_list.append(sign_sim)
# Get rep similarity, based on hidden activity at decision time
KR0 = activity0_[-1,:,:] @ activity0_[-1,:,:].T # (b,j) @ (j,b) -> (b,b)
KR = activity_[-1,:,:] @ activity_[-1,:,:].T # (b,j) @ (j,b) -> (b,b)
rep_sim = np.sum(KR*KR0) / np.linalg.norm(KR0) / np.linalg.norm(KR)
rep_sim_list.append(rep_sim)
# Get Kf
if (task_mode == 'ngym'):
for t in range(seq_len):
for b in range(batch_size):
for k in range(output_size): # output is the inner dim
df_1 = torch.unsqueeze(torch.autograd.grad(output[t,b,k], \
net.rnn.h2h.weight, retain_graph=True)[0], dim=0)
if (b==0) and (k==0) and (t==0):
df = df_1
else:
df = torch.cat((df, df_1), dim=0)
elif (task_mode == 'sMNIST'): # output at last only
for b in range(batch_size):
for k in range(output_size): # output is the inner dim
df_1 = torch.unsqueeze(torch.autograd.grad(output[-1,b,k], \
net.rnn.h2h.weight, retain_graph=True)[0], dim=0)
if (b==0) and (k==0):
df = df_1
else:
df = torch.cat((df, df_1), dim=0)
else:
raise NotImplementedError("Per sample grad not implemented for the task")
Kf = torch.einsum('bij,aij->ba', df, df)
kernel_alignment = torch.sum(Kf*K0) / torch.norm(Kf) / torch.norm(K0)
kernel_alignment_list.append(kernel_alignment.detach().numpy().copy())
if args.save_data:
results = {
'var_list': var_list,
'iter_list': iter_list,
'delta_Wr_norm_list': delta_Wr_norm_list,
'all_loss_list': all_loss_list,
'sign_sim_list': sign_sim_list,
'rep_sim_list': rep_sim_list,
'kernel_alignment_list': kernel_alignment_list,
}
save_file(results, storage_path, 'results', file_type='json')
args_dict = vars(args)
save_file(args_dict, storage_path, 'args_dict', file_type='json')