forked from fastmachinelearning/hls4ml
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgarnet.py
310 lines (246 loc) · 13.7 KB
/
garnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
"""
Excerpt from https://github.com/jkiesele/caloGraphNN/blob/6d1127d807bc0dbaefcf1ed804d626272f002404/caloGraphNN_keras.py
"""
import tensorflow.keras as keras
K = keras.backend
try:
from qkeras import QDense, ternary, QActivation
class NamedQDense(QDense):
def add_weight(self, name=None, **kwargs):
return super(NamedQDense, self).add_weight(name='%s_%s' % (self.name, name), **kwargs)
def ternary_1_05():
return ternary(alpha=1., threshold=0.5)
except ImportError:
pass
# Hack keras Dense to propagate the layer name into saved weights
class NamedDense(keras.layers.Dense):
def add_weight(self, name=None, **kwargs):
return super(NamedDense, self).add_weight(name='%s_%s' % (self.name, name), **kwargs)
class GarNet(keras.layers.Layer):
def __init__(self, n_aggregators, n_filters, n_propagate,
simplified=False,
collapse=None,
input_format='xn',
output_activation='tanh',
mean_by_nvert=False,
quantize_transforms=False,
total_bits = None,
int_bits = None,
**kwargs):
super(GarNet, self).__init__(**kwargs)
self._simplified = simplified
self._output_activation = output_activation
self._quantize_transforms = quantize_transforms
self._total_bits = total_bits
self._int_bits = int_bits
self._setup_aux_params(collapse, input_format, mean_by_nvert)
self._setup_transforms(n_aggregators, n_filters, n_propagate)
def _setup_aux_params(self, collapse, input_format, mean_by_nvert):
if collapse is None:
self._collapse = None
elif collapse in ['mean', 'sum', 'max']:
self._collapse = collapse
else:
raise NotImplementedError('Unsupported collapse operation')
self._input_format = input_format
self._mean_by_nvert = mean_by_nvert
def _setup_transforms(self, n_aggregators, n_filters, n_propagate):
if self._quantize_transforms:
self._input_feature_transform = NamedQDense(n_propagate,
kernel_quantizer="quantized_bits(%i,%i,0,alpha=1)" %(self._total_bits, self._int_bits),
bias_quantizer="quantized_bits(%i,%i,0,alpha=1)" %(self._total_bits, self._int_bits),
name='FLR')
self._output_feature_transform = NamedQDense(n_filters, kernel_quantizer="quantized_bits(%i,%i,0,alpha=1)" %(self._total_bits, self._int_bits),
name='Fout')
if (self._output_activation == None or self._output_activation == "linear"):
self._output_activation_transform = QActivation("quantized_bits(%i, %i)" %(self._total_bits, self._int_bits))
else:
self._output_activation_transform = QActivation("quantized_%s(%i, %i)" %(self._output_activation, self._total_bits, self._int_bits))
else:
self._input_feature_transform = NamedDense(n_propagate, name='FLR')
self._output_feature_transform = NamedDense(n_filters, activation=self._output_activation, name='Fout')
self._output_activation_transform = keras.layers.Activation(self._output_activation)
self._aggregator_distance = NamedDense(n_aggregators, name='S')
self._sublayers = [self._input_feature_transform, self._aggregator_distance, self._output_feature_transform, self._output_activation_transform]
def build(self, input_shape):
super(GarNet, self).build(input_shape)
if self._input_format == 'x':
data_shape = input_shape
elif self._input_format == 'xn':
data_shape, _ = input_shape
elif self._input_format == 'xen':
data_shape, _, _ = input_shape
data_shape = data_shape[:2] + (data_shape[2] + 1,)
self._build_transforms(data_shape)
for layer in self._sublayers:
self._trainable_weights.extend(layer.trainable_weights)
self._non_trainable_weights.extend(layer.non_trainable_weights)
def _build_transforms(self, data_shape):
self._input_feature_transform.build(data_shape)
self._aggregator_distance.build(data_shape)
if self._simplified:
self._output_activation_transform.build(self._output_feature_transform.build(data_shape[:2] + (self._aggregator_distance.units * self._input_feature_transform.units,)))
else:
self._output_activation_transform.build(self._output_feature_transform.build(data_shape[:2] + (data_shape[2] + self._aggregator_distance.units * self._input_feature_transform.units + self._aggregator_distance.units,)))
def call(self, x):
data, num_vertex, vertex_mask = self._unpack_input(x)
output = self._garnet(data, num_vertex, vertex_mask,
self._input_feature_transform,
self._aggregator_distance,
self._output_feature_transform,
self._output_activation_transform)
output = self._collapse_output(output)
return output
def _unpack_input(self, x):
if self._input_format == 'x':
data = x
vertex_mask = K.cast(K.not_equal(data[..., 3:4], 0.), 'float32')
num_vertex = K.sum(vertex_mask)
elif self._input_format in ['xn', 'xen']:
if self._input_format == 'xn':
data, num_vertex = x
else:
data_x, data_e, num_vertex = x
data = K.concatenate((data_x, K.reshape(data_e, (-1, data_e.shape[1], 1))), axis=-1)
data_shape = K.shape(data)
B = data_shape[0]
V = data_shape[1]
vertex_indices = K.tile(K.expand_dims(K.arange(0, V), axis=0), (B, 1)) # (B, [0..V-1])
vertex_mask = K.expand_dims(K.cast(K.less(vertex_indices, K.cast(num_vertex, 'int32')), 'float32'), axis=-1) # (B, V, 1)
num_vertex = K.cast(num_vertex, 'float32')
return data, num_vertex, vertex_mask
def _garnet(self, data, num_vertex, vertex_mask, in_transform, d_compute, out_transform, act_transform):
features = in_transform(data) # (B, V, F)
distance = d_compute(data) # (B, V, S)
edge_weights = vertex_mask * K.exp(-K.square(distance)) # (B, V, S)
if not self._simplified:
features = K.concatenate([vertex_mask * features, edge_weights], axis=-1)
if self._mean_by_nvert:
def graph_mean(out, axis):
s = K.sum(out, axis=axis)
# reshape just to enable broadcasting
s = K.reshape(s, (-1, d_compute.units * in_transform.units)) / num_vertex
s = K.reshape(s, (-1, d_compute.units, in_transform.units))
return s
else:
graph_mean = K.mean
# vertices -> aggregators
edge_weights_trans = K.permute_dimensions(edge_weights, (0, 2, 1)) # (B, S, V)
aggregated_mean = self._apply_edge_weights(features, edge_weights_trans, aggregation=graph_mean) # (B, S, F)
if self._simplified:
aggregated = aggregated_mean
else:
aggregated_max = self._apply_edge_weights(features, edge_weights_trans, aggregation=K.max)
aggregated = K.concatenate([aggregated_max, aggregated_mean], axis=-1)
# aggregators -> vertices
updated_features = self._apply_edge_weights(aggregated, edge_weights) # (B, V, S*F)
if not self._simplified:
updated_features = K.concatenate([data, updated_features, edge_weights], axis=-1)
return vertex_mask * act_transform(out_transform(updated_features))
def _collapse_output(self, output):
if self._collapse == 'mean':
if self._mean_by_nvert:
output = K.sum(output, axis=1) / num_vertex
else:
output = K.mean(output, axis=1)
elif self._collapse == 'sum':
output = K.sum(output, axis=1)
elif self._collapse == 'max':
output = K.max(output, axis=1)
return output
def compute_output_shape(self, input_shape):
return self._get_output_shape(input_shape, self._output_activation_transform)
def _get_output_shape(self, input_shape, out_transform):
if self._input_format == 'x':
data_shape = input_shape
elif self._input_format == 'xn':
data_shape, _ = input_shape
elif self._input_format == 'xen':
data_shape, _, _ = input_shape
if self._collapse is None:
return data_shape[:2] + (out_transform.units,)
else:
return (data_shape[0], out_transform.units)
def get_config(self):
config = super(GarNet, self).get_config()
config.update({
'simplified': self._simplified,
'collapse': self._collapse,
'input_format': self._input_format,
'output_activation': self._output_activation,
'quantize_transforms': self._quantize_transforms,
'mean_by_nvert': self._mean_by_nvert
})
self._add_transform_config(config)
return config
def _add_transform_config(self, config):
config.update({
'n_aggregators': self._aggregator_distance.units,
'n_filters': self._output_feature_transform.units,
'n_propagate': self._input_feature_transform.units
})
@staticmethod
def _apply_edge_weights(features, edge_weights, aggregation=None):
features = K.expand_dims(features, axis=1) # (B, 1, v, f)
edge_weights = K.expand_dims(edge_weights, axis=3) # (B, u, v, 1)
out = edge_weights * features # (B, u, v, f)
if aggregation:
out = aggregation(out, axis=2) # (B, u, f)
else:
try:
out = K.reshape(out, (-1, edge_weights.shape[1].value, features.shape[-1].value * features.shape[-2].value))
except AttributeError: # TF 2
out = K.reshape(out, (-1, edge_weights.shape[1], features.shape[-1] * features.shape[-2]))
return out
class GarNetStack(GarNet):
"""
Stacked version of GarNet. First three arguments to the constructor must be lists of integers.
Basically offers no performance advantage, but the configuration is consolidated (and is useful
when e.g. converting the layer to HLS)
"""
def _setup_transforms(self, n_aggregators, n_filters, n_propagate):
self._transform_layers = []
# inputs are lists
for it, (p, a, f) in enumerate(zip(n_propagate, n_aggregators, n_filters)):
if self._quantize_transforms != None:
input_feature_transform = NamedQDense(p,
kernel_quantizer="quantized_bits(%i,%i,0,alpha=1)" %(self._total_bits, self._int_bits),
bias_quantizer="quantized_bits(%i,%i,0,alpha=1)" %(self._total_bits, self._int_bits),
name=('FLR%d' % it))
output_feature_transform = NamedQDense(f, kernel_quantizer="quantized_bits(%i,%i,0,alpha=1)" %(self._total_bits, self._int_bits),
name=('Fout%d' % it))
if (self._output_activation == None or self._output_activation == "linear"):
output_activation_transform = QActivation("quantized_bits(%i, %i)" %(self._total_bits, self._int_bits))
else:
output_activation_transform = QActivation("quantized_%s(%i, %i)" %(self._output_activation, self._total_bits, self._int_bits))
else:
input_feature_transform = NamedDense(p, name=('FLR%d' % it))
output_feature_transform = NamedDense(f, name=('Fout%d' % it))
output_activation_transform = keras.layers.Activation(self._output_activation)
aggregator_distance = NamedDense(a, name=('S%d' % it))
self._transform_layers.append((input_feature_transform, aggregator_distance, output_feature_transform))
self._sublayers = sum((list(layers) for layers in self._transform_layers), [])
def _build_transforms(self, data_shape):
for in_transform, d_compute, out_transform in self._transform_layers:
in_transform.build(data_shape)
d_compute.build(data_shape)
if self._simplified:
out_transform.build(data_shape[:2] + (d_compute.units * in_transform.units,))
else:
out_transform.build(data_shape[:2] + (data_shape[2] + d_compute.units * in_transform.units + d_compute.units,))
data_shape = data_shape[:2] + (out_transform.units,)
def call(self, x):
data, num_vertex, vertex_mask = self._unpack_input(x)
for in_transform, d_compute, out_transform, act_transform in self._transform_layers:
data = self._garnet(data, num_vertex, vertex_mask, in_transform, d_compute, out_transform, act_transform)
output = self._collapse_output(data)
return output
def compute_output_shape(self, input_shape):
return self._get_output_shape(input_shape, self._transform_layers[-1][2])
def _add_transform_config(self, config):
config.update({
'n_propagate': list(ll[0].units for ll in self._transform_layers),
'n_aggregators': list(ll[1].units for ll in self._transform_layers),
'n_filters': list(ll[2].units for ll in self._transform_layers),
'n_sublayers': len(self._transform_layers)
})