-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathl_softmax_grad_op.cc
315 lines (279 loc) · 16.5 KB
/
l_softmax_grad_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// MIT License
// Copyright (c) 2018 Changan Wang
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "l_softmax_op.h"
#include "common.h"
#include "work_sharder.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"
#include <cmath>
using namespace tensorflow;
REGISTER_OP("LargeMarginSoftmaxGrad")
.Attr("T: {float}")
.Attr("margin_order: int")
.Input("features: T")
.Input("weights: T")
.Input("labels: int32")
.Input("back_grads: T")
.Input("cur_lambda: float")
.Output("grads_features: T")
.Output("grads_weights: T")
.Doc(R"doc(
LargeMarginSoftmaxGrad is the Gradient op of LargeMarginSoftmax.
The input features should has shape [N, D], where D is the dimension of the input features, N is the number of the input samples.
The input weights should has shape [M, D], where D is the same as the second dimension of input features, while M is the outputs dimensions.
The input labels should has shape [N].
The input back_grads should in shape [N, M].
The input cur_lambda should be one scalar.
)doc")
.SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
c->set_output(0, c->input(0));
c->set_output(1, c->input(1));
return Status::OK();
});
REGISTER_OP("AngularSoftmaxGrad")
.Attr("T: {float}")
.Attr("margin_order: int")
.Input("features: T")
.Input("weights: T")
.Input("labels: int32")
.Input("back_grads: T")
.Input("cur_lambda: float")
.Output("grads_features: T")
.Output("grads_weights: T")
.Doc(R"doc(
AngularSoftmaxGrad is the Gradient op of AngularSoftmax.
The input features should has shape [N, D], where D is the dimension of the input features, N is the number of the input samples.
The input weights should has shape [M, D], where D is the same as the second dimension of input features, while M is the outputs dimensions.
The input labels should has shape [N].
The input back_grads should in shape [N, M].
The input cur_lambda should be one scalar.
)doc")
.SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
c->set_output(0, c->input(0));
c->set_output(1, c->input(1));
return Status::OK();
});
// CPU specialization of actual computation.
//template <typename T>
template <typename T>
struct LargeMarginSoftmaxGradFunctor<CPUDevice, T> {
void operator()(OpKernelContext* context, const CPUDevice& d, typename TTypes<T>::ConstFlat back_grads, typename TTypes<T>::ConstFlat features, typename TTypes<T>::ConstFlat weights, typename TTypes<float>::ConstFlat cur_lambda, typename TTypes<int32_t>::ConstFlat labels,
const int32_t batch_size, const int32_t num_dimensions, const int32_t output_dimensions, const int32_t margin_order, const bool b_angular,
typename TTypes<float>::Flat feat_norm, typename TTypes<float>::Flat weights_norm,
typename TTypes<float>::Flat cos_theta, typename TTypes<float>::Flat theta_seg,
typename TTypes<T>::Flat grad_features, typename TTypes<T>::Flat grad_weights) {
float *p_feat_norm = feat_norm.data();
for(int32_t index = 0;index < batch_size;++index){
T temp_sum{0};
const T *feat_along = features.data() + index * num_dimensions;
for(int32_t dim_ind = 0;dim_ind < num_dimensions;++dim_ind){
temp_sum += feat_along[dim_ind] * feat_along[dim_ind];
}
p_feat_norm[index] = std::pow(static_cast<float>(temp_sum), .5);
}
float *p_weights_norm = weights_norm.data();
for(int32_t index = 0;index < output_dimensions;++index){
T temp_sum{0};
const T *weights_along = weights.data() + index * num_dimensions;
for(int32_t dim_ind = 0;dim_ind < num_dimensions;++dim_ind){
temp_sum += weights_along[dim_ind] * weights_along[dim_ind];
}
p_weights_norm[index] = b_angular ? 1. : std::pow(static_cast<float>(temp_sum), .5);
}
float *p_theta_seg = theta_seg.data();
for(int32_t index = 0;index < margin_order;++index){
p_theta_seg[index] = std::cos(_PI * index / margin_order);
}
p_theta_seg[margin_order] = -1.;
grad_features = grad_features.setZero();
grad_weights = grad_weights.setZero();
auto get_cosine_routine = [&features, &weights, &feat_norm, &weights_norm, &cos_theta, num_dimensions, output_dimensions](int64_t start, int64_t limit){
for (int64_t worker_index = start; worker_index < limit; ++worker_index){
const int32_t output_row = worker_index / output_dimensions;
const int32_t output_col = worker_index % output_dimensions;
const T *feat_start = features.data() + output_row * num_dimensions;
const T *weights_start = weights.data() + output_col * num_dimensions;
T inner_dot{0};
for(int32_t index = 0;index < num_dimensions;++index){
inner_dot += (feat_start[index] * weights_start[index]);
}
*(cos_theta.data() + worker_index) = static_cast<float>(inner_dot) / (feat_norm.data()[output_row] * weights_norm.data()[output_col]);
}
};
auto get_loss_routine = [&back_grads, &features, &weights, &labels, &feat_norm, &weights_norm, &cos_theta, &theta_seg, &cur_lambda, &grad_features, &grad_weights, batch_size, num_dimensions, output_dimensions, margin_order, b_angular](int64_t start, int64_t limit){
for (int64_t worker_index = start; worker_index < limit; ++worker_index){
const int32_t output_row = worker_index / output_dimensions;
const int32_t output_col = worker_index % output_dimensions;
float feat_norm_value = feat_norm.data()[output_row];
T *p_weights_norm = weights_norm.data();
float *p_cos_theta = cos_theta.data() + output_row * output_dimensions;
int32_t k_block = 0;
for(int32_t index = 1;index < margin_order+1;++index){
if(p_cos_theta[output_col] > theta_seg.data()[index]){
k_block = index - 1;
break;
}
}
float single_cos = p_cos_theta[output_col];
float sin2_theta = 1. - single_cos * single_cos;
float cos_n_theta = 0.;
// calculate cons_n_theta
if(labels.data()[output_row] == output_col){
cos_n_theta = std::pow(single_cos, margin_order*1.);
for(int32_t m = 1; m <= margin_order / 2; ++m){
float binomial = _factorial(margin_order) / (_factorial(2 * m) * _factorial(margin_order - 2 * m) * 1.);
cos_n_theta += std::pow(-1, m) * std::pow(sin2_theta, m * 1.) * std::pow(single_cos, margin_order - 2. * m) * binomial;
}
cos_n_theta = std::pow(-1., k_block) * cos_n_theta - 2 * k_block;
}
// grad of cos_n_theta by cos_theta
float grad_of_cos_theta = margin_order * std::pow(single_cos, margin_order - 1.);
for(int32_t m = 1; m <= margin_order / 2; ++m){
float binomial = _factorial(margin_order) / (_factorial(2 * m) * _factorial(margin_order - 2 * m) * 1.);
grad_of_cos_theta += std::pow(-1, m) * std::pow(sin2_theta, m - 1.) * std::pow(single_cos, margin_order - 2 * m - 1.) * (-2 * m + margin_order - margin_order * std::pow(single_cos, 2.)) * binomial;
}
grad_of_cos_theta = grad_of_cos_theta * std::pow(-1., k_block);
// backprop
const float input_grad = *(back_grads.data() + worker_index);
const T *feat_start = features.data() + output_row * num_dimensions;
const T *weights_start = weights.data() + output_col * num_dimensions;
T *grad_feat_start = grad_features.data() + output_row * num_dimensions;
T *grad_weights_start = grad_weights.data() + output_col * num_dimensions;
// softmax
for(int32_t dim_ind = 0; dim_ind < num_dimensions; ++dim_ind){
atomic_float_add(grad_weights_start + dim_ind, input_grad * cur_lambda.data()[0]/(cur_lambda.data()[0] + 1.) * feat_start[dim_ind]);
atomic_float_add(grad_feat_start + dim_ind, input_grad * cur_lambda.data()[0]/(cur_lambda.data()[0] + 1.) * weights_start[dim_ind]);
}
// large margin softmax
if(labels.data()[output_row] == output_col){
for(int32_t dim_ind = 0; dim_ind < num_dimensions; ++dim_ind){
float wx_norm = feat_norm_value * p_weights_norm[output_col];
//
float grad_cos_n_theta_by_w = b_angular ? grad_of_cos_theta * feat_start[dim_ind] / feat_norm_value : grad_of_cos_theta / (feat_norm_value * std::pow(p_weights_norm[output_col], 2.)) *
( (feat_start[dim_ind] * p_weights_norm[output_col]) -
(wx_norm * single_cos * weights_start[dim_ind] / p_weights_norm[output_col])
);
if(b_angular){
atomic_float_add(grad_weights_start + dim_ind, input_grad * feat_norm_value/(cur_lambda.data()[0] + 1.) *grad_cos_n_theta_by_w );
}else{
atomic_float_add(grad_weights_start + dim_ind, input_grad * feat_norm_value/(cur_lambda.data()[0] + 1.) * (
cos_n_theta * weights_start[dim_ind] / p_weights_norm[output_col] +
grad_cos_n_theta_by_w * p_weights_norm[output_col] ) );
}
float grad_cos_n_theta_by_x = grad_of_cos_theta / (p_weights_norm[output_col] * std::pow(feat_norm_value, 2.)) *
( (weights_start[dim_ind] * feat_norm_value) -
(wx_norm * single_cos * feat_start[dim_ind] / feat_norm_value)
);
atomic_float_add(grad_feat_start + dim_ind, input_grad * p_weights_norm[output_col]/(cur_lambda.data()[0] + 1.) * (
cos_n_theta * feat_start[dim_ind] / feat_norm_value +
grad_cos_n_theta_by_x * feat_norm_value ) );
}
}
}
};
const DeviceBase::CpuWorkerThreads& worker_threads = *(context->device()->tensorflow_cpu_worker_threads());
Shard(worker_threads.num_threads, worker_threads.workers, batch_size * output_dimensions, num_dimensions * 2, get_cosine_routine);
Shard(worker_threads.num_threads, worker_threads.workers, batch_size * output_dimensions, output_dimensions + margin_order, get_loss_routine);
}
};
// OpKernel definition.
// template parameter <T> is the datatype of the tensors.
template <typename Device, typename T>
class LargeMarginSoftmaxGradOp : public OpKernel {
public:
explicit LargeMarginSoftmaxGradOp(OpKernelConstruction* context) : OpKernel(context) {
b_angular = string(type_string()).rfind("Angular", 0) == 0;
OP_REQUIRES_OK(context, context->GetAttr("margin_order", &m_margin_order));
OP_REQUIRES(context, m_margin_order > 0, errors::InvalidArgument("Need Attr margin_order >= 1, got ", m_margin_order));
}
void Compute(OpKernelContext* context) override {
const Tensor& features_in = context->input(0);
const Tensor& weights_in = context->input(1);
const Tensor& lables_in = context->input(2);
const Tensor& grads_in = context->input(3);
const Tensor& cur_lambda = context->input(4);
OP_REQUIRES(context, features_in.shape().dims() == 2, errors::InvalidArgument("input features must have shape [N, D]."));
OP_REQUIRES(context, weights_in.shape().dims() == 2, errors::InvalidArgument("input weights must have shape [M, D]."));
OP_REQUIRES(context, features_in.dim_size(1) == weights_in.dim_size(1), errors::InvalidArgument("both input features and weights shoule have the same length in second dimension."));
OP_REQUIRES(context, grads_in.dim_size(1) == weights_in.dim_size(0) && grads_in.dim_size(0) == features_in.dim_size(0), errors::InvalidArgument("input grads must have shape [N, M]."));
OP_REQUIRES(context, lables_in.shape().dims() == 1 && lables_in.dim_size(0) == features_in.dim_size(0), errors::InvalidArgument("input lables must have shape [N]."));
OP_REQUIRES(context, TensorShapeUtils::IsScalar(cur_lambda.shape()), errors::InvalidArgument("the input cur_lambda should be one scalar."));
const int32_t batch_size = features_in.dim_size(0);
const int32_t num_dimensions = features_in.dim_size(1);
const int32_t output_dimensions = weights_in.dim_size(0);
Tensor* grad_features = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(0, {batch_size, num_dimensions}, &grad_features));
Tensor* grad_weights = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(1, {output_dimensions, num_dimensions}, &grad_weights));
Tensor feat_norm;
OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, {batch_size}, &feat_norm));
Tensor weights_norm;
OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, {output_dimensions}, &weights_norm));
Tensor cos_theta;
OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, {batch_size, output_dimensions}, &cos_theta));
Tensor theta_seg;
OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, {m_margin_order + 1}, &theta_seg));
LargeMarginSoftmaxGradFunctor<Device, T>()(context, context->eigen_device<Device>(),
grads_in.template flat<T>(),
features_in.template flat<T>(), weights_in.template flat<T>(),
cur_lambda.template flat<float>(), lables_in.template flat<int32_t>(),
batch_size, num_dimensions, output_dimensions, m_margin_order, b_angular,
feat_norm.template flat<float>(), weights_norm.template flat<float>(),
cos_theta.template flat<float>(), theta_seg.template flat<float>(),
grad_features->template flat<T>(), grad_weights->template flat<T>());
}
private:
int32_t m_margin_order;
float m_base;
float m_gamma;
float m_power;
float m_lambda_min;
bool b_angular;
//PersistentTensor cos_theta_lookup;
};
// Register the CPU kernels.
#define REGISTER_CPU(T) \
REGISTER_KERNEL_BUILDER( \
Name("LargeMarginSoftmaxGrad").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
LargeMarginSoftmaxGradOp<CPUDevice, T>);
REGISTER_CPU(float);
#define REGISTER_CPU(T) \
REGISTER_KERNEL_BUILDER( \
Name("AngularSoftmaxGrad").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
LargeMarginSoftmaxGradOp<CPUDevice, T>);
REGISTER_CPU(float);
// TF_CALL_NUMBER_TYPES(REGISTER_CPU);
// #undef REGISTER_CPU
// Register the GPU kernels.
#if GOOGLE_CUDA == 1
#define REGISTER_GPU(T) \
REGISTER_KERNEL_BUILDER( \
Name("LargeMarginSoftmaxGrad").Device(DEVICE_GPU).TypeConstraint<T>("T"), \
LargeMarginSoftmaxGradOp<GPUDevice, T>);
REGISTER_GPU(float);
#define REGISTER_GPU(T) \
REGISTER_KERNEL_BUILDER( \
Name("AngularSoftmaxGrad").Device(DEVICE_GPU).TypeConstraint<T>("T"), \
LargeMarginSoftmaxGradOp<GPUDevice, T>);
REGISTER_GPU(float);
#endif // GOOGLE_CUDA