-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain2.py
146 lines (133 loc) · 5.76 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from models.net2 import Solo
from utiles.dataset2 import MyDataset
from utiles.loss_function import FocalLoss, DiceLoss
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm
import torch
import cv2, numpy
class Trainer:
def __init__(self):
self.net = Solo()
self.device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
self.net = self.net.to(self.device)
self.dataset = MyDataset()
self.data_loader = DataLoader(self.dataset, 1, True, num_workers=2)
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=0.00001)
self.f_loss = FocalLoss(alpha=0.75)
# torch.nn.MSELoss
self.dice_loss = FocalLoss(alpha=0.75)
# self.net.load_state_dict(torch.load('weights/solo2.pt', map_location='cpu'))
def __call__(self):
i = 0
epoch = 0 # 训练轮次
accumulation_steps = 50 # 梯度累积步数
self.net.train()
while True:
loss_sum = 0
loss1_sum = 0
loss2_sum = 0
loss3_sum = 0
loss4_sum = 0
loss5_sum = 0
for image, maskes, target_40, target_32, target_24, target_16, target_12 in tqdm(self.data_loader):
images = image.to(self.device)
maskes = maskes.to(self.device)
target_40 = target_40.to(self.device)
target_32 = target_32.to(self.device)
target_24 = target_24.to(self.device)
target_16 = target_16.to(self.device)
target_12 = target_12.to(self.device)
# print(images.shape)
# print(maskes.shape)
# print(target_40.shape)
(f_4_c, f_4_k), (f_8_c, f_8_k), (f_16_c, f_16_k), (f_32_c, f_32_k), (
f_64_c, f_64_k), mask_feature = self.net(images)
# print(p80.shape)
# print(p40.shape)
# print(p20.shape)
# print(mask_feature.shape)
# exit()
'''计算损失'''
loss1 = self.compute_loss(f_4_c, f_4_k, target_40, mask_feature, maskes)
loss2 = self.compute_loss(f_8_c, f_8_k, target_32, mask_feature, maskes)
loss3 = self.compute_loss(f_16_c, f_16_k, target_24, mask_feature, maskes)
loss4 = self.compute_loss(f_32_c, f_32_k, target_16, mask_feature, maskes)
loss5 = self.compute_loss(f_64_c, f_64_k, target_12, mask_feature, maskes)
loss = loss1 + loss2 + loss3 + loss4 + loss5
# print(loss.item())
'''反向传播,梯度更新'''
# self.optimizer.zero_grad()
loss.backward()
# self.optimizer.step()
if (i + 1) % accumulation_steps == 0:
self.optimizer.step()
self.optimizer.zero_grad()
'''统计损失信息'''
i += 1
loss1_sum += loss1.item()
loss2_sum += loss2.item()
loss3_sum += loss3.item()
loss4_sum += loss4.item()
loss5_sum += loss5.item()
loss_sum += loss.item()
if (i + 1) % 1000 == 0:
torch.save(self.net.state_dict(), 'weights/solo2.pt')
print(epoch,loss.item())
epoch += 1
'''写日志文件'''
logs = f'''{epoch},loss_sum: {loss_sum / len(self.data_loader)},loss_64:{loss1_sum / len(self.data_loader)},loss_32:{loss2_sum / len(self.data_loader)},loss_16:{loss3_sum / len(self.data_loader)},{loss4_sum},{loss5_sum}'''
print(logs)
torch.save(self.net.state_dict(), 'weights/solo2.pt')
with open('logs2.txt', 'a') as file:
file.write(logs + '\n')
def compute_loss(self, cate, kernel, target, mask_feature, maskes):
# print(cate.shape,kernel.shape,target.shape,maskes.shape)
# print(maskes.shape)
positive = target[:, :, :, 0] == 1
negative = target[:, :, :, 0] == 0
# plt.imshow(target[:, :, 0] == 1)
# plt.show()
target_positive = target[positive]
target_negative = target[negative]
cate_positive = cate[positive]
cate_negative = cate[negative]
kernel_positive = kernel[positive]
number, _ = target_positive.shape
'''置信度损失'''
if number > 0:
# print(cate_positive[:, 0])
loss_c_p = self.f_loss(cate_positive[:, 0], target_positive[:, 0].float())
# print(loss_c_p)
# print('positive')
else:
loss_c_p = 0
loss_c_n = self.f_loss(cate_negative[:, 0], target_negative[:, 0].float())
loss_c = loss_c_n + loss_c_p
'''mask损失'''
loss_mask = 0
mask = []
for i in range(number):
mask.append(self.get_mask(mask_feature, kernel_positive[i]))
# print(mask.max())
# mask_ = (mask.reshape(160, 160) * 255).detach().cpu().numpy().astype(numpy.uint8)
# cv2.imshow('a', mask_)
# cv2.waitKey(1)
# print(mask.shape,maskes[:, target_positive[i, 1].long()].shape)
if len(mask) == 0:
pass
else:
mask = torch.cat(mask, dim=1)
if number > 0:
loss_mask = self.dice_loss(mask, maskes[:, target_positive[:, 1].long()])
else:
loss_mask = 0
# print(loss_mask)
# print(loss_mask)
return loss_mask + loss_c
def get_mask(self, mask_feature, kernel):
return torch.sigmoid(F.conv2d(mask_feature, kernel.reshape(1, 256, 1, 1)))
if __name__ == '__main__':
trainer = Trainer()
trainer()