-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path10_Saving and Loading Models.py
158 lines (113 loc) · 3.85 KB
/
10_Saving and Loading Models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
!pip install -U tensorflow_hub
!pip install -U tensorflow_datasets
"""
import time
import numpy as np
import matplotlib.pylab as plt
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_datasets as tfds
tfds.disable_progress_bar()
from tensorflow.keras import layers
(train_examples, validation_examples), info = tfds.load(
'cats_vs_dogs',
split=['train[:80%]', 'train[80%:]'],
with_info=True,
as_supervised=True,
)
def format_image(image, label):
# `hub` image modules exepct their data normalized to the [0,1] range.
image = tf.image.resize(image, (IMAGE_RES, IMAGE_RES))/255.0
return image, label
num_examples = info.splits['train'].num_examples
BATCH_SIZE = 32
IMAGE_RES = 224
train_batches = train_examples.cache().shuffle(num_examples//4).map(format_image).batch(BATCH_SIZE).prefetch(1)
validation_batches = validation_examples.cache().map(format_image).batch(BATCH_SIZE).prefetch(1)
URL = "https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4"
feature_extractor = hub.KerasLayer(URL,
input_shape=(IMAGE_RES, IMAGE_RES,3))
feature_extractor.trainable = False
model = tf.keras.Sequential([
feature_extractor,
layers.Dense(2)
])
model.summary()
model.compile(
optimizer='adam',
loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
EPOCHS = 3
history = model.fit(train_batches,
epochs=EPOCHS,
validation_data=validation_batches)
class_names = np.array(info.features['label'].names)
class_names
image_batch, label_batch = next(iter(train_batches.take(1)))
image_batch = image_batch.numpy()
label_batch = label_batch.numpy()
predicted_batch = model.predict(image_batch)
predicted_batch = tf.squeeze(predicted_batch).numpy()
predicted_ids = np.argmax(predicted_batch, axis=-1)
predicted_class_names = class_names[predicted_ids]
predicted_class_names
print("Labels: ", label_batch)
print("Predicted labels: ", predicted_ids)
plt.figure(figsize=(10,9))
for n in range(30):
plt.subplot(6,5,n+1)
plt.imshow(image_batch[n])
color = "blue" if predicted_ids[n] == label_batch[n] else "red"
plt.title(predicted_class_names[n].title(), color=color)
plt.axis('off')
_ = plt.suptitle("Model predictions (blue: correct, red: incorrect)")
t = time.time()
export_path_keras = "./{}.h5".format(int(t))
print(export_path_keras)
model.save(export_path_keras)
"""
!ls
"""
reloaded = tf.keras.models.load_model(
export_path_keras,
# `custom_objects` tells keras how to load a `hub.KerasLayer`
custom_objects={'KerasLayer': hub.KerasLayer})
reloaded.summary()
result_batch = model.predict(image_batch)
reloaded_result_batch = reloaded.predict(image_batch)
(abs(result_batch - reloaded_result_batch)).max()
EPOCHS = 3
history = reloaded.fit(train_batches,
epochs=EPOCHS,
validation_data=validation_batches)
t = time.time()
export_path_sm = "./{}".format(int(t))
print(export_path_sm)
tf.saved_model.save(model, export_path_sm)
"""
!ls {export_path_sm}
"""
reloaded_sm = tf.saved_model.load(export_path_sm)
reload_sm_result_batch = reloaded_sm(image_batch, training=False).numpy()
(abs(result_batch - reload_sm_result_batch)).max()
t = time.time()
export_path_sm = "./{}".format(int(t))
print(export_path_sm)
tf.saved_model.save(model, export_path_sm)
reload_sm_keras = tf.keras.models.load_model(
export_path_sm,
custom_objects={'KerasLayer': hub.KerasLayer})
reload_sm_keras.summary()
result_batch = model.predict(image_batch)
reload_sm_keras_result_batch = reload_sm_keras.predict(image_batch)
(abs(result_batch - reload_sm_keras_result_batch)).max()
"""
!zip -r model.zip {export_path_sm}
!ls
"""
try:
from google.colab import files
files.download('./model.zip')
except ImportError:
pass