Skip to content

Hong753/nlp2022

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 

Repository files navigation

NLP Project 2022

Preparing the data

Follow https://github.com/tobran/DF-GAN to prepare data.
Unzip birds.zip inside CUB_200_2011, so that all folders are below CUB_200_2011 (get rid of the folder "birds")

Setting up the environment

conda create -n nlp python=3.8 -y
conda activate nlp
pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu113/torch_stable.html
conda install -c conda-forge nltk pandas scipy
pip3 install yacs==0.1.8
conda install -c conda-forge wandb seaborn

Preprocessing the attributes dataset

Run the codes in ./NLP2022/parse_attributes.ipynb.
Make sure the processed attributes go under ./NLP2022/data/CUB_200_2011/train and ./NLP2022/data/CUB_200_2011/test.

Training and Evaluating the Code

Training baseline

cd NLP2022
python train.py

Training AF-GAN

cd NLP2022
python train_attr.py

Evaluating

cd NLP2022
python eval.py --model_path [MODEL_PATH] --mode [base/attr]

To generate images with different attributes or captions, check ./NLP2022/generate_images.ipynb

Reference

The code was heavily inspired by the following paper and code repository.

@inproceedings{tao2022df,
  title={DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis},
  author={Tao, Ming and Tang, Hao and Wu, Fei and Jing, Xiao-Yuan and Bao, Bing-Kun and Xu, Changsheng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={16515--16525},
  year={2022}
}

For calculating the FID and IS score, the following paper and cod repository was referenced.

@article{kang2022StudioGAN,
  title   = {{StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis}},
  author  = {MinGuk Kang and Joonghyuk Shin and Jaesik Park},
  journal = {2206.09479 (arXiv)},
  year    = {2022}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published