From 8c9562c584672996dc5d01914305c3f2c48e96e6 Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 8 Aug 2023 16:12:11 -0400 Subject: [PATCH 01/50] deleted unnecessary lines in tests/seir/test_seir.py::test_check_values() --- flepimop/gempyor_pkg/tests/seir/test_seir.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/flepimop/gempyor_pkg/tests/seir/test_seir.py b/flepimop/gempyor_pkg/tests/seir/test_seir.py index d173c785f..2127034ed 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_seir.py +++ b/flepimop/gempyor_pkg/tests/seir/test_seir.py @@ -51,8 +51,8 @@ def test_check_values(): seeding[0, 0] = 1 - if np.all(seeding == 0): - warnings.warn("provided seeding has only value 0", UserWarning) + #if np.all(seeding == 0): + # warnings.warn("provided seeding has only value 0", UserWarning) if np.all(s.mobility.data < 1): warnings.warn("highest mobility value is less than 1", UserWarning) From 83edd0a1a78520828c67cbd8f8da509b97ac3f05 Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 8 Aug 2023 16:32:37 -0400 Subject: [PATCH 02/50] modified type(s.mobility) to scipy.sparse.csr_matrix in assert line because deprecated --- flepimop/gempyor_pkg/src/gempyor/seir.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/seir.py b/flepimop/gempyor_pkg/src/gempyor/seir.py index d01d360a9..44e1e6bf2 100644 --- a/flepimop/gempyor_pkg/src/gempyor/seir.py +++ b/flepimop/gempyor_pkg/src/gempyor/seir.py @@ -23,7 +23,7 @@ def steps_SEIR( seeding_data, seeding_amounts, ): - assert type(s.mobility) == scipy.sparse.csr.csr_matrix + assert type(s.mobility) == scipy.sparse.csr_matrix mobility_data = s.mobility.data mobility_data = mobility_data.astype("float64") assert type(s.compartments.compartments.shape[0]) == int From 0ea5a1a838d481abc3b35391ea089b92528383cb Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 15 Aug 2023 16:38:24 -0400 Subject: [PATCH 03/50] create a testcode for gempyor/file_paths.py, and added comments on the target file --- .../gempyor_pkg/src/gempyor/file_paths.py | 2 + .../tests/utils/test_file_paths.py | 75 +++++++++++++++++++ 2 files changed, 77 insertions(+) create mode 100644 flepimop/gempyor_pkg/tests/utils/test_file_paths.py diff --git a/flepimop/gempyor_pkg/src/gempyor/file_paths.py b/flepimop/gempyor_pkg/src/gempyor/file_paths.py index f20f7048c..0760508e1 100644 --- a/flepimop/gempyor_pkg/src/gempyor/file_paths.py +++ b/flepimop/gempyor_pkg/src/gempyor/file_paths.py @@ -13,10 +13,12 @@ def create_file_name(run_id, prefix, index, ftype, extension, create_directory=T def create_file_name_without_extension(run_id, prefix, index, ftype, create_directory=True): if create_directory: os.makedirs(create_dir_name(run_id, prefix, ftype), exist_ok=True) +# hardcoded, target dir to be modified later return "model_output/%s/%s%09d.%s.%s" % (ftype, prefix, index, run_id, ftype) def run_id(): +# if multiplatforms, to be modified esp on Windows return datetime.datetime.strftime(datetime.datetime.now(), "%Y.%m.%d.%H:%M:%S.%Z") diff --git a/flepimop/gempyor_pkg/tests/utils/test_file_paths.py b/flepimop/gempyor_pkg/tests/utils/test_file_paths.py new file mode 100644 index 000000000..a460f14b1 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/utils/test_file_paths.py @@ -0,0 +1,75 @@ +import pytest +import datetime +import os +from mock import MagicMock + +from gempyor import file_paths + +FAKE_TIME = datetime.datetime(2023,8,9,16,00,0) + +@pytest.fixture(scope="module") +def mock_datetime_now(monkeypatch): + datetime_mock = MagicMock(wraps=datetime.datetime) + datetime_mock.now.return_value = FAKE_TIME + monkeypatch.setattr(datetime, "datetime", datetime_mock) + +@pytest.fixture(scope="module") +def test_datetime(mock_datetime_now): + assert datetime.datetime.now() == FAKE_TIME + +def test_run_id(): + run_id = file_paths.run_id() + assert run_id == datetime.datetime.strftime(datetime.datetime.now(), "%Y.%m.%d.%H:%M:%S.%Z") + +@pytest.fixture(scope="module") +def set_run_id(): + return lambda: file_path.run_id() + + +tmp_path = "/tmp" + +@pytest.mark.parametrize(('prefix','ftype'),[ + ('test0001','seed'), + ('test0002','seed'), + ('test0003','seed'), + ('test0004','seed'), + ('test0001','seed'), + ('test0002','seed'), + ('test0003','seed'), + ('test0004','seed'), +]) +def test_create_dir_name(set_run_id, prefix, ftype): + #run_id = set_run_id() + os.chdir(tmp_path) + os.path.exists(file_paths.create_dir_name(set_run_id, prefix, ftype)) + + +@pytest.mark.parametrize(('prefix','index','ftype','extension','create_directory'),[ + ('test0001','0','seed','csv', True), + ('test0002','0','seed','parquet', True), + ('test0003','0','seed','csv', False), + ('test0004','0','seed','parquet', False), + ('test0001','1','seed','csv', True), + ('test0002','1','seed','parquet', True), + ('test0003','1','seed','csv', False), + ('test0004','1','seed','parquet', False), +]) +def test_create_file_name(set_run_id, prefix, index, ftype, extension, create_directory): + os.chdir(tmp_path) + os.path.isfile(file_paths.create_file_name(set_run_id, prefix, int(index), ftype, extension, create_directory)) + + +@pytest.mark.parametrize(('prefix','index','ftype','create_directory'),[ + ('test0001','0','seed', True), + ('test0002','0','seed', True), + ('test0003','0','seed', False), + ('test0004','0','seed', False), + ('test0001','1','seed', True), + ('test0002','1','seed', True), + ('test0003','1','seed', False), + ('test0004','1','seed', False), +]) +def test_create_file_name_without_extension(set_run_id, prefix, index, ftype, create_directory): + os.chdir(tmp_path) + os.path.isfile(file_paths.create_file_name_without_extension(set_run_id, prefix, int(index), ftype, create_directory)) + From 49ebec36498dc9f3442cd5df8ad18995a8708377 Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 16 Aug 2023 12:22:54 -0400 Subject: [PATCH 04/50] mofified test_file_paths.py to activate mock when datetime.datetime.now was called at run_id() --- .../tests/utils/test_file_paths.py | 21 +++++++++++-------- 1 file changed, 12 insertions(+), 9 deletions(-) diff --git a/flepimop/gempyor_pkg/tests/utils/test_file_paths.py b/flepimop/gempyor_pkg/tests/utils/test_file_paths.py index a460f14b1..da7bf282e 100644 --- a/flepimop/gempyor_pkg/tests/utils/test_file_paths.py +++ b/flepimop/gempyor_pkg/tests/utils/test_file_paths.py @@ -7,19 +7,24 @@ FAKE_TIME = datetime.datetime(2023,8,9,16,00,0) +''' @pytest.fixture(scope="module") def mock_datetime_now(monkeypatch): datetime_mock = MagicMock(wraps=datetime.datetime) datetime_mock.now.return_value = FAKE_TIME monkeypatch.setattr(datetime, "datetime", datetime_mock) - @pytest.fixture(scope="module") def test_datetime(mock_datetime_now): assert datetime.datetime.now() == FAKE_TIME +''' + +def test_run_id(monkeypatch): + datetime_mock = MagicMock(wraps=datetime.datetime) + datetime_mock.now.return_value = FAKE_TIME + monkeypatch.setattr(datetime, "datetime", datetime_mock) -def test_run_id(): run_id = file_paths.run_id() - assert run_id == datetime.datetime.strftime(datetime.datetime.now(), "%Y.%m.%d.%H:%M:%S.%Z") + assert run_id == datetime.datetime.strftime(FAKE_TIME, "%Y.%m.%d.%H:%M:%S.%Z") @pytest.fixture(scope="module") def set_run_id(): @@ -33,13 +38,12 @@ def set_run_id(): ('test0002','seed'), ('test0003','seed'), ('test0004','seed'), - ('test0001','seed'), - ('test0002','seed'), - ('test0003','seed'), - ('test0004','seed'), + ('test0005','hosp'), + ('test0006','hosp'), + ('test0007','hosp'), + ('test0008','hosp'), ]) def test_create_dir_name(set_run_id, prefix, ftype): - #run_id = set_run_id() os.chdir(tmp_path) os.path.exists(file_paths.create_dir_name(set_run_id, prefix, ftype)) @@ -72,4 +76,3 @@ def test_create_file_name(set_run_id, prefix, index, ftype, extension, create_di def test_create_file_name_without_extension(set_run_id, prefix, index, ftype, create_directory): os.chdir(tmp_path) os.path.isfile(file_paths.create_file_name_without_extension(set_run_id, prefix, int(index), ftype, create_directory)) - From 442106f467d40b354b209990ad20cec01a43eb77 Mon Sep 17 00:00:00 2001 From: Shaun Truelove Date: Mon, 28 Aug 2023 23:01:17 -0400 Subject: [PATCH 05/50] fix missing rates in config SEIR section --- flepimop/R_packages/config.writer/R/yaml_utils.R | 16 ++++++++++------ 1 file changed, 10 insertions(+), 6 deletions(-) diff --git a/flepimop/R_packages/config.writer/R/yaml_utils.R b/flepimop/R_packages/config.writer/R/yaml_utils.R index 41445d07d..fa95714ef 100644 --- a/flepimop/R_packages/config.writer/R/yaml_utils.R +++ b/flepimop/R_packages/config.writer/R/yaml_utils.R @@ -1976,15 +1976,19 @@ seir_chunk <- function(resume_modifier = NULL, " proportion_exponent: [\n", " [",rate_propexp_parts, ",\"1\",\"1\",\"1\"],\n", " [",rate_alpha_parts, ",\"1\",\"1\",\"1\"]]\n", - " rate: [\n", - paste0(sapply(X = na.omit(c(rate_seir_parts, rate_vacc_parts, rate_var_parts, rate_age_parts)), - function(x = X){ paste0(" ",x,",\n")}) ), - " ]\n"), + " rate: [", + ifelse(nchar(rate_seir_parts)<100, + paste(na.omit(c(rate_seir_parts, rate_vacc_parts, rate_var_parts, rate_age_parts)), collapse = ", "), + paste0("\n ", paste(na.omit(c(rate_seir_parts, rate_vacc_parts, rate_var_parts, rate_age_parts)), collapse = ",\n "))), + "]\n"), paste0( " proportional_to: [\"source\"]\n", " proportion_exponent: [[\"1\",\"1\",\"1\",\"1\"]]\n", - " rate: [", paste(na.omit(c(rate_seir_parts, rate_vacc_parts, rate_var_parts, rate_age_parts)), collapse = ", "), "]\n")), - # " rate: [", glue::glue_collapse(na.omit(c(rate_seir_parts, rate_vacc_parts, rate_var_parts, rate_age_parts)), collapse = ", "), "]\n")), + " rate: [", + ifelse(nchar(rate_seir_parts)<100, + paste(na.omit(c(rate_seir_parts, rate_vacc_parts, rate_var_parts, rate_age_parts)), collapse = ", "), + paste0("\n ", paste(na.omit(c(rate_seir_parts, rate_vacc_parts, rate_var_parts, rate_age_parts)), collapse = ",\n "))), + "]\n")), "\n") return(tmp) From d144544ea6603135ce8698f2d3a323954ce6fe27 Mon Sep 17 00:00:00 2001 From: Shaun Truelove Date: Mon, 28 Aug 2023 23:07:51 -0400 Subject: [PATCH 06/50] rearrange the API pull for delphi --- datasetup/build_covid_data.R | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/datasetup/build_covid_data.R b/datasetup/build_covid_data.R index 2aa339315..5cb71c415 100644 --- a/datasetup/build_covid_data.R +++ b/datasetup/build_covid_data.R @@ -49,12 +49,12 @@ source(file.path(opt$path, "datasetup/data_setup_source.R")) # SET DELPHI API KEY ------------------------------------------------------ if (any(grepl("nchs|hhs", opt$gt_data_source))){ - if (!is.null(opt$delphi_api_key)){ - cat(paste0("Using Environment variable for Delphi API key: ", opt$delphi_api_key)) - options(covidcast.auth = opt$delphi_api_key) - } else if (!is.null(config$inference$gt_api_key)){ + if (!is.null(config$inference$gt_api_key)){ cat(paste0("Using Config variable for Delphi API key: ", config$inference$gt_api_key)) options(covidcast.auth = config$inference$gt_api_key) + } else if (!is.null(opt$delphi_api_key)){ + cat(paste0("Using Environment variable for Delphi API key: ", opt$delphi_api_key)) + options(covidcast.auth = opt$delphi_api_key) } else { newkey <- readline(prompt = "Please enter your Delphi API key before proceeding:") #check From 7826ad03e98872ec083853190e363902cff4796b Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 31 Aug 2023 11:36:40 -0400 Subject: [PATCH 07/50] added test functions in test_setup.py, divided SpatialSetup part to test_SpatialSetup.py, modified src/setup.py to suit to the correspoinding tests, added NOTE comments on TBM --- flepimop/gempyor_pkg/src/gempyor/setup.py | 25 +- flepimop/gempyor_pkg/tests/seir/test_setup.py | 600 +++++++++++++++++- 2 files changed, 617 insertions(+), 8 deletions(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/setup.py b/flepimop/gempyor_pkg/src/gempyor/setup.py index fbd8e2114..664c576a6 100644 --- a/flepimop/gempyor_pkg/src/gempyor/setup.py +++ b/flepimop/gempyor_pkg/src/gempyor/setup.py @@ -84,11 +84,17 @@ def __init__( # I'm not really sure if we should impose defaut or make setup really explicit and # have users pass - if seir_config is None and config["seir"].exists(): + #if seir_config is None and config["seir"].exists(): + if not seir_config and config["seir"].exists(): self.seir_config = config["seir"] + # added below to cope with the imcompleteness of config["seir"] + if not parameters_config and config["seir"]["parameters"].exists(): + self.parameters_config = config["seir"]["parameters"] # Set-up the integration method and the time step - if config["seir"].exists() and (seir_config or parameters_config): + #if config["seir"].exists() and (seir_config or parameters_config): + if (self.seir_config and self.parameters_config): + #if ((seir_config or self.seir_config) and parameters_config): # modified to handle the case of "T and (F or F)) -> F" if "integration" in self.seir_config.keys(): if "method" in self.seir_config["integration"].keys(): self.integration_method = self.seir_config["integration"]["method"].get() @@ -97,7 +103,7 @@ def __init__( if self.integration_method == "rk4": self.integration_method = "rk4.jit" if self.integration_method not in ["rk4.jit", "legacy"]: - raise ValueError(f"Unknow integration method {self.integration_method}.") + raise ValueError(f"Unknown integration method {self.integration_method}.") if "dt" in self.seir_config["integration"].keys() and self.dt is None: self.dt = float( eval(str(self.seir_config["integration"]["dt"].get())) @@ -122,6 +128,7 @@ def __init__( f"Should be either non-specified (default: 'v3'), or set to 'old' or 'v2'." ) elif config_version == "old" or config_version == "v2": + # NOTE: even behaved as old, "v2" seems by default in parameter.py raise ValueError( f"Configuration version 'old' and 'v2' are no longer supported by flepiMoP\n" f"Please use a 'v3' instead, or use the COVIDScenarioPipeline package. " @@ -148,7 +155,8 @@ def __init__( # 3. Outcomes self.npi_config_outcomes = None if self.outcomes_config: - if self.outcomes_config["interventions"]["settings"][self.outcome_scenario].exists(): + # if self.outcomes_config["interventions"]["settings"][self.outcome_scenario].exists(): + if self.outcomes_config["interventions"]["settings"][self.outcome_scenario].keys(): # type dict self.npi_config_outcomes = self.outcomes_config["interventions"]["settings"][self.outcome_scenario] # 4. Inputs and outputs @@ -161,9 +169,12 @@ def __init__( self.out_run_id = out_run_id if in_prefix is None: +# NOTE: hard-coded "model_output" +# NOTE: asymmetric with out_prefix in_prefix = f"model_output/{setup_name}/{in_run_id}/" self.in_prefix = in_prefix if out_prefix is None: +# NOTE: hard-coded "model_output" out_prefix = f"model_output/{setup_name}/{npi_scenario}/{out_run_id}/" self.out_prefix = out_prefix @@ -176,6 +187,8 @@ def __init__( ftypes.extend(["hosp", "hpar", "hnpi"]) for ftype in ftypes: datadir = file_paths.create_dir_name(self.out_run_id, self.out_prefix, ftype) +# NOTE: owing to file_paths.py dirname will be used as hard-coded one +# NOTE: owing to run_id form, %Y.%m.%d. is not good to be appled on Windows os.makedirs(datadir, exist_ok=True) if self.write_parquet and self.write_csv: @@ -184,6 +197,9 @@ def __init__( self.extension = "parquet" elif self.write_csv: self.extension = "csv" + else: + # there were cases in which self.extension was not set then: + self.extension = "parquet" # to avoid no self.extension in anytime def get_input_filename(self, ftype: str, sim_id: int, extension_override: str = ""): return self.get_filename( @@ -314,6 +330,7 @@ def __init__(self, *, setup_name, geodata_file, mobility_file, popnodes_key, nod elif mobility_file.suffix == ".npz": self.mobility = scipy.sparse.load_npz(mobility_file).astype(int) # Validate mobility data + # data valication/arrangement is needed if self.mobility.shape != (self.nnodes, self.nnodes): raise ValueError( f"mobility data must have dimensions of length of geodata ({self.nnodes}, {self.nnodes}). Actual: {self.mobility.shape}" diff --git a/flepimop/gempyor_pkg/tests/seir/test_setup.py b/flepimop/gempyor_pkg/tests/seir/test_setup.py index 48582dfff..c38941e6f 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_setup.py +++ b/flepimop/gempyor_pkg/tests/seir/test_setup.py @@ -5,7 +5,7 @@ import pytest import confuse -from gempyor import setup +from gempyor import setup, parameters from gempyor.utils import config @@ -15,12 +15,544 @@ os.chdir(os.path.dirname(__file__)) -class TestSpatialSetup: - def test_SpatialSetup_success(self): +class TestSetup: + def test_Setup_success(self): ss = setup.SpatialSetup( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.txt", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + ) + + def test_tf_is_ahead_of_ti_fail(self): + # time to finish (tf) is ahead of time to start(ti) error + with pytest.raises(ValueError, match=r".*tf.*less.*"): + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-03-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + ) + + def test_w_config_seir_exists_success(self): + # if seir_config is None and config["seir"].exists() then update + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_seir.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + ) + + assert s.seir_config != None + + assert s.integration_method == 'legacy' + + def test_w_config_seir_integration_method_rk4_1_success(self): + # if seir_config["integration"]["method"] is best.current + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_1.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + ) + assert s.integration_method == "rk4.jit" + + assert s.dt == float(1/6) + + def test_w_config_seir_integration_method_rk4_2_success(self): + # if seir_config["integration"]["method"] is rk4 + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_2.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + ) + assert s.integration_method == "rk4.jit" + + def test_w_config_seir_no_integration_success(self): + # if not seir_config["integration"] + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_seir_no_integration.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + ) + assert s.integration_method == "rk4.jit" + + assert s.dt == 2.0 + + def test_w_config_seir_unknown_integration_method_fail(self): + with pytest.raises(ValueError, match=r".*Unknown.*integration.*"): + # if in seir unknown integration method + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_seir_unknown_integration.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + # first_sim_index=1, + ) + # print(s.integration_method) + + def test_w_config_seir_integration_but_no_dt_success(self): + # if not seir_config["integration"]["dt"] + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_seir_no_dt.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + dt=None, # step size, in days + ) + + assert s.dt == 2.0 + + def test_w_config_seir_old_integration_method_fail(self): + with pytest.raises(ValueError, match=r".*Configuration.*no.*longer.*"): + # if old method in seir + #config.clear() + #config.read(user=False) + #config.set_file(f"{DATA_DIR}/config_seir_unknown_integration.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + config_version="v2", + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + ) + + def test_w_config_seir_config_version_not_provided_fail(self): + with pytest.raises(ValueError, match=r".*Should.*non-specified.*"): + # if not seir_config["integration"]["dt"] + # config.clear() + # config.read(user=False) + # config.set_file(f"{DATA_DIR}/config_seir_no_dt.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version="v1", + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + dt=None, # step size, in days + ) + + def test_w_config_compartments_and_seir_config_not_None_success(self): + # if config["compartments"] and iself.seir_config was set + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_compartment.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + dt=None, # step size, in days + ) + + def test_config_outcome_config_and_scenario_success(self): + # if outcome_config and outcome_scenario were set + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + dt=None, # step size, in days + outcomes_config={"interventions":{"settings":{"None": + {"template":"Reduce", + "parameter":"r0", + "value": + { + "distribution":"fixed", + "value":0 + } + } + }}}, + outcome_scenario="None", # caution! selected the defined "None" + write_csv=True, + ) + assert s.npi_config_outcomes == s.outcomes_config["interventions"]["settings"]["None"] + assert s.extension == "csv" + + def test_config_write_csv_and_write_parquet_success(self): + # if both write_csv and write_parquet are True + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + dt=None, # step size, in days + outcomes_config={"interventions":{"settings":{"None": + {"template":"Reduce", + "parameter":"r0", + "value": + { + "distribution":"fixed", + "value":0 + } + } + }}}, + outcome_scenario="None", # caution! selected the defined "None" + write_csv=True, + write_parquet=True, + ) + assert s.write_parquet + + def test_w_config_seir_exists_and_outcomes_config(self): + # if seir_config is None and config["seir"].exists() then update + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_seir.yml") + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={"interventions":{"settings":{"None": + {"template":"Reduce", + "parameter":"r0", + "value": + { + "distribution":"fixed", + "value":0 + } + } + }}}, + outcome_scenario="None", + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id="in_run_id_0", + in_prefix=None, + out_run_id="out_run_id_0", + out_prefix=None, + stoch_traj_flag=False, + ) + #s.get_input_filename(ftype="spar", sim_id=0, extension_override="") + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="seir", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="spar", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="snpi", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hosp", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hpar", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hnpi", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="seir", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="spar", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="snpi", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hosp", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hpar", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hnpi", sim_id=0)) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="seir", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="spar", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="snpi", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hosp", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hpar", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hnpi", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="seir", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="spar", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="snpi", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hosp", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hpar", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hnpi", sim_id=1, extension_override="csv")) + + + ''' + def test_SpatialSetup_npz_success3(self): + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.npz", + popnodes_key="population", + nodenames_key="geoid", + ) + def test_SpatialSetup_wihout_mobility_success3(self): + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility0.csv", popnodes_key="population", nodenames_key="geoid", ) @@ -36,6 +568,26 @@ def test_bad_popnodes_key_fail(self): nodenames_key="geoid", ) + def test_population_0_nodes_fail(self): + with pytest.raises(ValueError, match=r".*population.*zero.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata0.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + + def test_mobility_fileformat_fail(self): + with pytest.raises(ValueError, match=r".*Mobility.*longform.*matrix.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility", + popnodes_key="population", + nodenames_key="geoid", + ) + def test_bad_nodenames_key_fail(self): with pytest.raises(ValueError, match=r".*nodenames_key.*"): setup.SpatialSetup( @@ -46,6 +598,26 @@ def test_bad_nodenames_key_fail(self): nodenames_key="wrong", ) + def test_duplicate_nodenames_key_fail(self): + with pytest.raises(ValueError, match=r".*duplicate.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata_dup.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + ''' + def test_mobility_shape_in_npz_fail(self): + with pytest.raises(ValueError, match=r".*mobility.*Actual.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_2x3.npz", + popnodes_key="population", + nodenames_key="geoid", + ) + ''' def test_mobility_dimensions_fail(self): with pytest.raises(ValueError, match=r".*mobility.*dimensions.*"): setup.SpatialSetup( @@ -56,6 +628,16 @@ def test_mobility_dimensions_fail(self): nodenames_key="geoid", ) + def test_mobility_same_ori_dest_fail(self): + with pytest.raises(ValueError, match=r".*Mobility.*same.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_same_ori_dest.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + def test_mobility_too_big_fail(self): with pytest.raises(ValueError, match=r".*mobility.*population.*"): setup.SpatialSetup( @@ -65,3 +647,13 @@ def test_mobility_too_big_fail(self): popnodes_key="population", nodenames_key="geoid", ) + def test_mobility_data_exceeded_fail(self): + with pytest.raises(ValueError, match=r".*mobility.*exceed.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility1001.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + ''' From c4d83397666fbaf83267f0bc56537dde5bc37faa Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 31 Aug 2023 11:39:06 -0400 Subject: [PATCH 08/50] added tests/interface --- .../tests/interface/data/config_min_test.yml | 123 + .../tests/interface/data/config_minimal.yaml | 123 + .../tests/interface/data/geodata.csv | 6 + .../data/geodata_2019_statelevel.csv | 52 + .../tests/interface/data/mobility.csv | 12 + .../data/mobility_2011-2015_statelevel.csv | 2330 +++++++++++++++++ .../tests/interface/test_interface.py | 50 + 7 files changed, 2696 insertions(+) create mode 100644 flepimop/gempyor_pkg/tests/interface/data/config_min_test.yml create mode 100644 flepimop/gempyor_pkg/tests/interface/data/config_minimal.yaml create mode 100644 flepimop/gempyor_pkg/tests/interface/data/geodata.csv create mode 100644 flepimop/gempyor_pkg/tests/interface/data/geodata_2019_statelevel.csv create mode 100644 flepimop/gempyor_pkg/tests/interface/data/mobility.csv create mode 100644 flepimop/gempyor_pkg/tests/interface/data/mobility_2011-2015_statelevel.csv create mode 100644 flepimop/gempyor_pkg/tests/interface/test_interface.py diff --git a/flepimop/gempyor_pkg/tests/interface/data/config_min_test.yml b/flepimop/gempyor_pkg/tests/interface/data/config_min_test.yml new file mode 100644 index 000000000..e155a65d8 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/interface/data/config_min_test.yml @@ -0,0 +1,123 @@ +name: minimal for interface +setup_name: minimal4interface +start_date: 2020-01-31 +end_date: 2020-05-31 +data_path: data +nslots: 1 + + +spatial_setup: + geodata: geodata.csv + mobility: mobility.csv + popnodes: population + nodenames: geoid + +seeding: + method: FolderDraw + seeding_file_type: seed + +initial_conditions: + method: Default + +compartments: + infection_stage: ["S", "E", "I1", "I2", "I3", "R"] + vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy + dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +interventions: + scenarios: + - None + - Scenario1 + - Scenario2 + settings: + None: + template: ReduceR0 + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: fixed + value: 0 + Wuhan: + template: Reduce + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: uniform + low: .14 + high: .33 + KansasCity: + template: MultiTimeReduce + parameter: r0 + groups: + - periods: + - start_date: 2020-04-01 + end_date: 2020-05-15 + affected_geoids: "all" + value: + distribution: uniform + low: .04 + high: .23 + Scenario1: + template: Stacked + scenarios: + - KansasCity + - Wuhan + - None + Scenario2: + template: Stacked + scenarios: + - Wuhan diff --git a/flepimop/gempyor_pkg/tests/interface/data/config_minimal.yaml b/flepimop/gempyor_pkg/tests/interface/data/config_minimal.yaml new file mode 100644 index 000000000..15ab5792b --- /dev/null +++ b/flepimop/gempyor_pkg/tests/interface/data/config_minimal.yaml @@ -0,0 +1,123 @@ +name: minimal +setup_name: minimal +start_date: 2020-01-31 +end_date: 2020-05-31 +data_path: data +nslots: 15 + + +spatial_setup: + geodata: geodata.csv + mobility: mobility.txt + popnodes: population + nodenames: geoid + +seeding: + method: FolderDraw + seeding_file_type: seed + +initial_conditions: + method: Default + +compartments: + infection_stage: ["S", "E", "I1", "I2", "I3", "R"] + vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy + dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +interventions: + scenarios: + - None + - Scenario1 + - Scenario2 + settings: + None: + template: ReduceR0 + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: fixed + value: 0 + Wuhan: + template: Reduce + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: uniform + low: .14 + high: .33 + KansasCity: + template: MultiTimeReduce + parameter: r0 + groups: + - periods: + - start_date: 2020-04-01 + end_date: 2020-05-15 + affected_geoids: "all" + value: + distribution: uniform + low: .04 + high: .23 + Scenario1: + template: Stacked + scenarios: + - KansasCity + - Wuhan + - None + Scenario2: + template: Stacked + scenarios: + - Wuhan diff --git a/flepimop/gempyor_pkg/tests/interface/data/geodata.csv b/flepimop/gempyor_pkg/tests/interface/data/geodata.csv new file mode 100644 index 000000000..f4fa78f6a --- /dev/null +++ b/flepimop/gempyor_pkg/tests/interface/data/geodata.csv @@ -0,0 +1,6 @@ +"geoid","USPS","population" +"15005","HI",75 +"15007","HI",71377 +"15009","HI",165281 +"15001","HI",197658 +"15003","HI",987638 diff --git a/flepimop/gempyor_pkg/tests/interface/data/geodata_2019_statelevel.csv b/flepimop/gempyor_pkg/tests/interface/data/geodata_2019_statelevel.csv new file mode 100644 index 000000000..f0bbbd8f7 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/interface/data/geodata_2019_statelevel.csv @@ -0,0 +1,52 @@ +USPS,geoid,pop2019est +WY,56000,581024 +VT,50000,624313 +DC,11000,692683 +AK,02000,737068 +ND,38000,756717 +SD,46000,870638 +DE,10000,957248 +MT,30000,1050649 +RI,44000,1057231 +ME,23000,1335492 +NH,33000,1348124 +HI,15000,1422094 +ID,16000,1717750 +WV,54000,1817305 +NE,31000,1914571 +NM,35000,2092454 +KS,20000,2910652 +NV,32000,2972382 +MS,28000,2984418 +AR,05000,2999370 +UT,49000,3096848 +IA,19000,3139508 +CT,09000,3575074 +OK,40000,3932870 +OR,41000,4129803 +KY,21000,4449052 +LA,22000,4664362 +AL,01000,4876250 +SC,45000,5020806 +MN,27000,5563378 +CO,08000,5610349 +WI,55000,5790716 +MD,24000,6018848 +MO,29000,6104910 +IN,18000,6665703 +TN,47000,6709356 +MA,25000,6850553 +AZ,04000,7050299 +WA,53000,7404107 +VA,51000,8454463 +NJ,34000,8878503 +MI,26000,9965265 +NC,37000,10264876 +GA,13000,10403847 +OH,39000,11655397 +IL,17000,12770631 +PA,42000,12791530 +NY,36000,19572319 +FL,12000,20901636 +TX,48000,28260856 +CA,06000,39283497 diff --git a/flepimop/gempyor_pkg/tests/interface/data/mobility.csv b/flepimop/gempyor_pkg/tests/interface/data/mobility.csv new file mode 100644 index 000000000..c850a7021 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/interface/data/mobility.csv @@ -0,0 +1,12 @@ +"ori","dest","amount" +"15001","15003",625 +"15001","15007",4 +"15001","15009",181 +"15003","15001",62 +"15003","15007",34 +"15003","15009",614 +"15005","15009",4 +"15007","15003",232 +"15007","15009",97 +"15009","15001",25 +"15009","15003",418 diff --git a/flepimop/gempyor_pkg/tests/interface/data/mobility_2011-2015_statelevel.csv b/flepimop/gempyor_pkg/tests/interface/data/mobility_2011-2015_statelevel.csv new file mode 100644 index 000000000..a2da772ba --- /dev/null +++ b/flepimop/gempyor_pkg/tests/interface/data/mobility_2011-2015_statelevel.csv @@ -0,0 +1,2330 @@ +ori,dest,amount +01000,02000,198 +01000,04000,292 +01000,05000,570 +01000,06000,1030 +01000,08000,328 +01000,09000,36 +01000,11000,478 +01000,12000,17592 +01000,13000,93000 +01000,15000,104 +01000,16000,24 +01000,17000,682 +01000,18000,578 +01000,19000,300 +01000,20000,142 +01000,21000,1228 +01000,22000,5922 +01000,23000,74 +01000,24000,280 +01000,25000,538 +01000,26000,698 +01000,27000,452 +01000,28000,26864 +01000,29000,600 +01000,30000,102 +01000,31000,58 +01000,32000,96 +01000,33000,16 +01000,34000,390 +01000,35000,124 +01000,36000,770 +01000,37000,1288 +01000,38000,100 +01000,39000,880 +01000,40000,280 +01000,41000,132 +01000,42000,968 +01000,45000,924 +01000,46000,16 +01000,47000,16562 +01000,48000,4242 +01000,49000,120 +01000,50000,34 +01000,51000,1052 +01000,53000,370 +01000,54000,114 +01000,55000,314 +01000,56000,142 +02000,04000,60 +02000,06000,164 +02000,08000,128 +02000,09000,6 +02000,10000,40 +02000,11000,84 +02000,12000,34 +02000,13000,112 +02000,15000,46 +02000,16000,20 +02000,18000,20 +02000,21000,154 +02000,22000,96 +02000,24000,8 +02000,26000,60 +02000,27000,34 +02000,28000,18 +02000,30000,2 +02000,31000,76 +02000,32000,100 +02000,33000,22 +02000,34000,116 +02000,36000,2 +02000,38000,92 +02000,40000,14 +02000,41000,26 +02000,42000,40 +02000,46000,66 +02000,47000,18 +02000,48000,160 +02000,49000,76 +02000,51000,32 +02000,53000,514 +02000,56000,24 +04000,01000,144 +04000,02000,912 +04000,05000,248 +04000,06000,22416 +04000,08000,2466 +04000,09000,238 +04000,10000,32 +04000,11000,430 +04000,12000,1046 +04000,13000,1060 +04000,15000,384 +04000,16000,578 +04000,17000,1980 +04000,18000,506 +04000,19000,560 +04000,20000,424 +04000,21000,112 +04000,22000,436 +04000,23000,82 +04000,24000,190 +04000,25000,368 +04000,26000,1210 +04000,27000,1512 +04000,28000,242 +04000,29000,760 +04000,30000,400 +04000,31000,672 +04000,32000,18420 +04000,33000,80 +04000,34000,1234 +04000,35000,6438 +04000,36000,1284 +04000,37000,324 +04000,38000,1636 +04000,39000,574 +04000,40000,928 +04000,41000,622 +04000,42000,1372 +04000,44000,26 +04000,45000,200 +04000,46000,278 +04000,47000,398 +04000,48000,5326 +04000,49000,5678 +04000,50000,94 +04000,51000,480 +04000,53000,2396 +04000,54000,40 +04000,55000,752 +04000,56000,690 +05000,01000,246 +05000,02000,214 +05000,04000,566 +05000,06000,1038 +05000,08000,516 +05000,10000,8 +05000,11000,162 +05000,12000,456 +05000,13000,526 +05000,15000,24 +05000,17000,834 +05000,18000,492 +05000,19000,170 +05000,20000,698 +05000,21000,504 +05000,22000,5600 +05000,24000,154 +05000,25000,200 +05000,26000,206 +05000,27000,236 +05000,28000,4226 +05000,29000,11504 +05000,30000,126 +05000,31000,452 +05000,32000,52 +05000,34000,134 +05000,35000,24 +05000,36000,488 +05000,37000,174 +05000,38000,200 +05000,39000,724 +05000,40000,13062 +05000,41000,88 +05000,42000,818 +05000,44000,44 +05000,45000,156 +05000,46000,96 +05000,47000,18362 +05000,48000,26580 +05000,49000,18 +05000,51000,318 +05000,53000,142 +05000,54000,158 +05000,55000,262 +05000,56000,68 +06000,01000,382 +06000,02000,1468 +06000,04000,13198 +06000,05000,654 +06000,08000,3174 +06000,09000,938 +06000,10000,156 +06000,11000,1712 +06000,12000,3888 +06000,13000,3658 +06000,15000,2804 +06000,16000,524 +06000,17000,6232 +06000,18000,920 +06000,19000,962 +06000,20000,1112 +06000,21000,426 +06000,22000,1744 +06000,23000,338 +06000,24000,1348 +06000,25000,2360 +06000,26000,1746 +06000,27000,1790 +06000,28000,464 +06000,29000,2004 +06000,30000,706 +06000,31000,1276 +06000,32000,23282 +06000,33000,122 +06000,34000,2704 +06000,35000,1226 +06000,36000,9876 +06000,37000,1582 +06000,38000,782 +06000,39000,2308 +06000,40000,1336 +06000,41000,6292 +06000,42000,3214 +06000,44000,370 +06000,45000,744 +06000,46000,182 +06000,47000,1732 +06000,48000,11246 +06000,49000,2746 +06000,50000,82 +06000,51000,2900 +06000,53000,7636 +06000,54000,308 +06000,55000,1126 +06000,56000,286 +08000,01000,392 +08000,02000,784 +08000,04000,2716 +08000,05000,228 +08000,06000,5786 +08000,09000,344 +08000,11000,514 +08000,12000,1578 +08000,13000,1020 +08000,15000,466 +08000,16000,132 +08000,17000,2042 +08000,18000,370 +08000,19000,356 +08000,20000,1394 +08000,21000,364 +08000,22000,470 +08000,23000,12 +08000,24000,300 +08000,25000,608 +08000,26000,784 +08000,27000,814 +08000,28000,146 +08000,29000,1248 +08000,30000,394 +08000,31000,2980 +08000,32000,616 +08000,33000,58 +08000,34000,1138 +08000,35000,5528 +08000,36000,1886 +08000,37000,922 +08000,38000,3156 +08000,39000,1708 +08000,40000,1040 +08000,41000,290 +08000,42000,1034 +08000,44000,28 +08000,45000,84 +08000,46000,626 +08000,47000,706 +08000,48000,5478 +08000,49000,2724 +08000,50000,32 +08000,51000,1096 +08000,53000,1072 +08000,54000,16 +08000,55000,508 +08000,56000,9230 +09000,01000,58 +09000,02000,134 +09000,04000,92 +09000,06000,1402 +09000,08000,168 +09000,10000,78 +09000,11000,592 +09000,12000,1026 +09000,13000,318 +09000,15000,34 +09000,17000,858 +09000,18000,150 +09000,19000,32 +09000,20000,8 +09000,21000,128 +09000,22000,126 +09000,23000,604 +09000,24000,680 +09000,25000,43272 +09000,26000,464 +09000,27000,204 +09000,29000,368 +09000,30000,34 +09000,31000,12 +09000,32000,228 +09000,33000,920 +09000,34000,6392 +09000,36000,147078 +09000,37000,444 +09000,38000,12 +09000,39000,280 +09000,40000,64 +09000,41000,42 +09000,42000,1810 +09000,44000,16350 +09000,45000,200 +09000,47000,246 +09000,48000,680 +09000,49000,118 +09000,50000,654 +09000,51000,830 +09000,53000,66 +09000,54000,34 +09000,55000,146 +09000,56000,42 +10000,04000,76 +10000,05000,44 +10000,06000,50 +10000,08000,22 +10000,09000,70 +10000,11000,2052 +10000,12000,224 +10000,13000,76 +10000,17000,168 +10000,18000,48 +10000,21000,94 +10000,22000,32 +10000,24000,42700 +10000,25000,296 +10000,26000,36 +10000,27000,246 +10000,28000,38 +10000,29000,14 +10000,31000,24 +10000,32000,26 +10000,34000,12472 +10000,36000,3004 +10000,37000,172 +10000,38000,16 +10000,39000,194 +10000,40000,38 +10000,41000,42 +10000,42000,61180 +10000,44000,6 +10000,45000,56 +10000,48000,358 +10000,49000,66 +10000,51000,2346 +10000,53000,94 +10000,55000,70 +10000,56000,16 +11000,01000,32 +11000,05000,34 +11000,06000,406 +11000,08000,28 +11000,10000,14 +11000,12000,250 +11000,13000,264 +11000,17000,74 +11000,18000,68 +11000,19000,16 +11000,21000,42 +11000,22000,22 +11000,24000,86346 +11000,25000,482 +11000,26000,126 +11000,27000,40 +11000,29000,40 +11000,31000,14 +11000,33000,116 +11000,34000,352 +11000,36000,1088 +11000,37000,174 +11000,39000,200 +11000,41000,44 +11000,42000,434 +11000,44000,54 +11000,47000,34 +11000,48000,136 +11000,50000,12 +11000,51000,73604 +11000,53000,256 +11000,54000,106 +11000,56000,26 +12000,01000,17986 +12000,02000,490 +12000,04000,1258 +12000,05000,592 +12000,06000,4912 +12000,08000,1494 +12000,09000,1884 +12000,10000,702 +12000,11000,2336 +12000,13000,25990 +12000,15000,340 +12000,16000,22 +12000,17000,8650 +12000,18000,2884 +12000,19000,1026 +12000,20000,910 +12000,21000,2548 +12000,22000,7054 +12000,23000,740 +12000,24000,5162 +12000,25000,4992 +12000,26000,5974 +12000,27000,2174 +12000,28000,1968 +12000,29000,3012 +12000,31000,1130 +12000,32000,860 +12000,33000,1042 +12000,34000,6916 +12000,35000,254 +12000,36000,17402 +12000,37000,7318 +12000,38000,1252 +12000,39000,6348 +12000,40000,998 +12000,41000,294 +12000,42000,6328 +12000,44000,1212 +12000,45000,3748 +12000,46000,270 +12000,47000,3908 +12000,48000,11822 +12000,49000,488 +12000,50000,200 +12000,51000,6390 +12000,53000,1004 +12000,54000,740 +12000,55000,2078 +12000,56000,452 +13000,01000,24456 +13000,02000,266 +13000,04000,852 +13000,05000,1008 +13000,06000,3278 +13000,08000,732 +13000,09000,570 +13000,10000,138 +13000,11000,1404 +13000,12000,30618 +13000,15000,248 +13000,17000,3214 +13000,18000,1544 +13000,19000,882 +13000,20000,714 +13000,21000,1806 +13000,22000,1904 +13000,23000,42 +13000,24000,2166 +13000,25000,1432 +13000,26000,1792 +13000,27000,1480 +13000,28000,1832 +13000,29000,1020 +13000,30000,54 +13000,31000,524 +13000,32000,670 +13000,33000,32 +13000,34000,1676 +13000,35000,298 +13000,36000,4060 +13000,37000,11004 +13000,38000,310 +13000,39000,2346 +13000,40000,634 +13000,41000,180 +13000,42000,2634 +13000,44000,94 +13000,45000,41754 +13000,46000,108 +13000,47000,74086 +13000,48000,7152 +13000,49000,212 +13000,50000,40 +13000,51000,4714 +13000,53000,664 +13000,54000,172 +13000,55000,914 +13000,56000,152 +15000,02000,172 +15000,04000,248 +15000,06000,1964 +15000,08000,64 +15000,09000,26 +15000,10000,10 +15000,11000,42 +15000,12000,144 +15000,13000,20 +15000,17000,70 +15000,18000,12 +15000,20000,10 +15000,21000,20 +15000,22000,20 +15000,24000,194 +15000,25000,92 +15000,26000,48 +15000,27000,82 +15000,29000,114 +15000,32000,194 +15000,33000,10 +15000,34000,42 +15000,36000,170 +15000,37000,92 +15000,38000,32 +15000,39000,20 +15000,40000,130 +15000,41000,132 +15000,44000,22 +15000,45000,68 +15000,47000,20 +15000,48000,168 +15000,49000,88 +15000,51000,78 +15000,53000,500 +16000,01000,12 +16000,02000,1190 +16000,04000,312 +16000,05000,4 +16000,06000,1830 +16000,08000,718 +16000,09000,8 +16000,11000,78 +16000,12000,170 +16000,13000,186 +16000,15000,80 +16000,17000,452 +16000,18000,236 +16000,19000,266 +16000,20000,6 +16000,21000,6 +16000,22000,84 +16000,25000,170 +16000,26000,38 +16000,27000,30 +16000,28000,6 +16000,29000,100 +16000,30000,1884 +16000,31000,132 +16000,32000,2198 +16000,33000,6 +16000,34000,116 +16000,35000,128 +16000,36000,210 +16000,37000,118 +16000,38000,3288 +16000,39000,152 +16000,40000,52 +16000,41000,11738 +16000,42000,100 +16000,45000,362 +16000,46000,78 +16000,47000,148 +16000,48000,452 +16000,49000,7238 +16000,51000,170 +16000,53000,37972 +16000,54000,42 +16000,55000,136 +16000,56000,5760 +17000,01000,570 +17000,02000,88 +17000,04000,874 +17000,05000,936 +17000,06000,4242 +17000,08000,942 +17000,09000,646 +17000,10000,198 +17000,11000,976 +17000,12000,2768 +17000,13000,2316 +17000,15000,142 +17000,16000,144 +17000,18000,69686 +17000,19000,66826 +17000,20000,866 +17000,21000,8262 +17000,22000,630 +17000,23000,90 +17000,24000,780 +17000,25000,1258 +17000,26000,4472 +17000,27000,2150 +17000,28000,378 +17000,29000,166126 +17000,30000,208 +17000,31000,1444 +17000,32000,526 +17000,33000,146 +17000,34000,1410 +17000,35000,120 +17000,36000,3064 +17000,37000,1886 +17000,38000,402 +17000,39000,3240 +17000,40000,586 +17000,41000,350 +17000,42000,2366 +17000,44000,272 +17000,45000,372 +17000,46000,132 +17000,47000,2116 +17000,48000,4146 +17000,49000,104 +17000,50000,84 +17000,51000,1666 +17000,53000,506 +17000,54000,40 +17000,55000,47624 +17000,56000,116 +18000,01000,666 +18000,02000,266 +18000,04000,248 +18000,05000,386 +18000,06000,1544 +18000,08000,578 +18000,09000,206 +18000,10000,20 +18000,11000,404 +18000,12000,1166 +18000,13000,804 +18000,15000,48 +18000,16000,128 +18000,17000,133476 +18000,19000,1116 +18000,20000,244 +18000,21000,104654 +18000,22000,440 +18000,23000,58 +18000,24000,636 +18000,25000,388 +18000,26000,19488 +18000,27000,772 +18000,28000,222 +18000,29000,1468 +18000,31000,270 +18000,32000,74 +18000,34000,768 +18000,35000,44 +18000,36000,982 +18000,37000,906 +18000,38000,376 +18000,39000,50636 +18000,40000,306 +18000,41000,114 +18000,42000,1248 +18000,44000,28 +18000,45000,496 +18000,46000,152 +18000,47000,1852 +18000,48000,1630 +18000,49000,78 +18000,50000,104 +18000,51000,532 +18000,53000,248 +18000,54000,264 +18000,55000,1122 +18000,56000,28 +19000,01000,108 +19000,02000,28 +19000,04000,176 +19000,05000,254 +19000,06000,450 +19000,08000,480 +19000,11000,30 +19000,12000,324 +19000,13000,308 +19000,15000,30 +19000,16000,32 +19000,17000,44400 +19000,18000,686 +19000,20000,550 +19000,21000,82 +19000,22000,216 +19000,23000,4 +19000,24000,38 +19000,25000,154 +19000,26000,388 +19000,27000,10512 +19000,28000,50 +19000,29000,2784 +19000,30000,58 +19000,31000,62690 +19000,32000,60 +19000,34000,56 +19000,35000,122 +19000,36000,282 +19000,37000,86 +19000,38000,474 +19000,39000,336 +19000,40000,160 +19000,41000,38 +19000,42000,224 +19000,44000,20 +19000,45000,108 +19000,46000,11166 +19000,47000,124 +19000,48000,958 +19000,49000,68 +19000,51000,380 +19000,53000,88 +19000,54000,22 +19000,55000,6446 +19000,56000,120 +20000,01000,104 +20000,02000,72 +20000,04000,68 +20000,05000,442 +20000,06000,886 +20000,08000,1390 +20000,09000,12 +20000,10000,60 +20000,11000,72 +20000,12000,354 +20000,13000,480 +20000,15000,56 +20000,16000,32 +20000,17000,778 +20000,18000,512 +20000,19000,1172 +20000,21000,118 +20000,22000,200 +20000,24000,124 +20000,25000,74 +20000,26000,188 +20000,27000,312 +20000,28000,84 +20000,29000,179362 +20000,30000,54 +20000,31000,3202 +20000,32000,122 +20000,34000,156 +20000,35000,172 +20000,36000,246 +20000,37000,132 +20000,38000,328 +20000,39000,246 +20000,40000,10128 +20000,41000,68 +20000,42000,298 +20000,44000,32 +20000,45000,18 +20000,46000,202 +20000,47000,410 +20000,48000,3000 +20000,49000,22 +20000,51000,308 +20000,53000,334 +20000,55000,418 +20000,56000,100 +21000,01000,652 +21000,02000,126 +21000,04000,124 +21000,05000,500 +21000,06000,740 +21000,08000,286 +21000,09000,22 +21000,10000,18 +21000,11000,324 +21000,12000,1528 +21000,13000,2208 +21000,15000,30 +21000,16000,24 +21000,17000,4890 +21000,18000,51444 +21000,19000,236 +21000,20000,104 +21000,22000,304 +21000,23000,46 +21000,24000,370 +21000,25000,338 +21000,26000,1042 +21000,27000,334 +21000,28000,312 +21000,29000,1010 +21000,30000,48 +21000,31000,116 +21000,32000,100 +21000,34000,488 +21000,35000,160 +21000,36000,322 +21000,37000,904 +21000,38000,72 +21000,39000,121244 +21000,40000,294 +21000,41000,20 +21000,42000,1342 +21000,44000,6 +21000,45000,370 +21000,46000,104 +21000,47000,26162 +21000,48000,1406 +21000,49000,192 +21000,50000,84 +21000,51000,3258 +21000,53000,234 +21000,54000,13392 +21000,55000,298 +21000,56000,20 +22000,01000,1384 +22000,02000,366 +22000,04000,248 +22000,05000,5614 +22000,06000,1374 +22000,08000,408 +22000,09000,204 +22000,11000,48 +22000,12000,1258 +22000,13000,1062 +22000,15000,80 +22000,16000,178 +22000,17000,808 +22000,18000,362 +22000,19000,262 +22000,20000,340 +22000,21000,342 +22000,24000,272 +22000,25000,420 +22000,26000,518 +22000,27000,182 +22000,28000,18906 +22000,29000,502 +22000,30000,300 +22000,31000,92 +22000,32000,228 +22000,34000,506 +22000,35000,298 +22000,36000,1226 +22000,37000,554 +22000,38000,884 +22000,39000,618 +22000,40000,2158 +22000,41000,78 +22000,42000,1136 +22000,44000,110 +22000,45000,342 +22000,46000,30 +22000,47000,966 +22000,48000,38944 +22000,49000,304 +22000,51000,466 +22000,53000,178 +22000,54000,144 +22000,55000,188 +22000,56000,126 +23000,01000,32 +23000,02000,12 +23000,04000,232 +23000,05000,24 +23000,06000,230 +23000,08000,36 +23000,09000,660 +23000,10000,24 +23000,11000,64 +23000,12000,462 +23000,13000,182 +23000,15000,34 +23000,17000,164 +23000,18000,22 +23000,19000,84 +23000,20000,40 +23000,21000,14 +23000,22000,542 +23000,24000,210 +23000,25000,10044 +23000,26000,106 +23000,27000,128 +23000,28000,32 +23000,29000,100 +23000,30000,6 +23000,31000,56 +23000,33000,34376 +23000,34000,510 +23000,36000,1292 +23000,37000,148 +23000,38000,6 +23000,39000,66 +23000,40000,4 +23000,41000,12 +23000,42000,434 +23000,44000,288 +23000,45000,180 +23000,46000,22 +23000,47000,44 +23000,48000,338 +23000,49000,18 +23000,50000,730 +23000,51000,250 +23000,53000,96 +23000,54000,20 +23000,55000,92 +24000,01000,338 +24000,02000,154 +24000,04000,130 +24000,05000,90 +24000,06000,1518 +24000,08000,314 +24000,09000,324 +24000,10000,39186 +24000,11000,641524 +24000,12000,1742 +24000,13000,1078 +24000,15000,232 +24000,16000,20 +24000,17000,954 +24000,18000,354 +24000,19000,100 +24000,20000,132 +24000,21000,268 +24000,22000,342 +24000,23000,162 +24000,25000,1554 +24000,26000,534 +24000,27000,506 +24000,28000,68 +24000,29000,724 +24000,30000,12 +24000,31000,110 +24000,32000,146 +24000,33000,46 +24000,34000,3792 +24000,35000,18 +24000,36000,4618 +24000,37000,1938 +24000,38000,86 +24000,39000,1080 +24000,40000,50 +24000,41000,224 +24000,42000,29610 +24000,44000,300 +24000,45000,288 +24000,47000,544 +24000,48000,1348 +24000,49000,76 +24000,50000,38 +24000,51000,250534 +24000,53000,552 +24000,54000,13040 +24000,55000,412 +24000,56000,36 +25000,01000,112 +25000,02000,34 +25000,04000,302 +25000,05000,68 +25000,06000,2454 +25000,08000,260 +25000,09000,59766 +25000,10000,108 +25000,11000,1104 +25000,12000,1944 +25000,13000,824 +25000,15000,78 +25000,16000,26 +25000,17000,1012 +25000,18000,492 +25000,19000,178 +25000,20000,106 +25000,21000,202 +25000,22000,238 +25000,23000,3042 +25000,24000,1340 +25000,26000,418 +25000,27000,412 +25000,28000,86 +25000,29000,358 +25000,30000,92 +25000,31000,92 +25000,32000,284 +25000,33000,67002 +25000,34000,2804 +25000,35000,60 +25000,36000,13520 +25000,37000,584 +25000,38000,16 +25000,39000,530 +25000,40000,106 +25000,41000,94 +25000,42000,2762 +25000,44000,91154 +25000,45000,326 +25000,47000,304 +25000,48000,1444 +25000,49000,234 +25000,50000,4918 +25000,51000,1428 +25000,53000,414 +25000,54000,38 +25000,55000,200 +25000,56000,14 +26000,01000,476 +26000,02000,164 +26000,04000,618 +26000,05000,334 +26000,06000,2178 +26000,08000,542 +26000,09000,684 +26000,10000,80 +26000,11000,384 +26000,12000,2036 +26000,13000,1114 +26000,15000,198 +26000,16000,76 +26000,17000,11026 +26000,18000,50894 +26000,19000,708 +26000,20000,536 +26000,21000,1322 +26000,22000,482 +26000,23000,72 +26000,24000,788 +26000,25000,656 +26000,27000,1808 +26000,28000,342 +26000,29000,1428 +26000,30000,178 +26000,31000,314 +26000,32000,256 +26000,33000,64 +26000,34000,996 +26000,35000,64 +26000,36000,2462 +26000,37000,860 +26000,38000,748 +26000,39000,50202 +26000,40000,394 +26000,41000,306 +26000,42000,2626 +26000,44000,96 +26000,45000,416 +26000,46000,118 +26000,47000,1516 +26000,48000,2742 +26000,49000,360 +26000,50000,124 +26000,51000,802 +26000,53000,604 +26000,54000,98 +26000,55000,15276 +26000,56000,144 +27000,01000,50 +27000,02000,266 +27000,04000,394 +27000,05000,184 +27000,06000,1798 +27000,08000,572 +27000,09000,62 +27000,10000,28 +27000,11000,324 +27000,12000,1148 +27000,13000,1072 +27000,15000,22 +27000,16000,96 +27000,17000,3068 +27000,18000,626 +27000,19000,8776 +27000,20000,396 +27000,21000,190 +27000,22000,44 +27000,23000,52 +27000,24000,316 +27000,25000,538 +27000,26000,744 +27000,28000,50 +27000,29000,672 +27000,30000,230 +27000,31000,798 +27000,32000,234 +27000,33000,26 +27000,34000,390 +27000,35000,148 +27000,36000,1120 +27000,37000,430 +27000,38000,62180 +27000,39000,536 +27000,40000,254 +27000,41000,176 +27000,42000,442 +27000,44000,8 +27000,45000,142 +27000,46000,7426 +27000,47000,528 +27000,48000,1540 +27000,49000,310 +27000,50000,88 +27000,51000,242 +27000,53000,432 +27000,54000,62 +27000,55000,39470 +27000,56000,80 +28000,01000,16080 +28000,02000,350 +28000,04000,150 +28000,05000,3368 +28000,06000,668 +28000,08000,156 +28000,09000,86 +28000,10000,46 +28000,11000,114 +28000,12000,1058 +28000,13000,1416 +28000,15000,42 +28000,17000,698 +28000,18000,492 +28000,19000,244 +28000,20000,68 +28000,21000,648 +28000,22000,43626 +28000,24000,282 +28000,25000,26 +28000,26000,246 +28000,27000,500 +28000,29000,640 +28000,30000,40 +28000,31000,118 +28000,32000,62 +28000,33000,32 +28000,34000,136 +28000,35000,234 +28000,36000,568 +28000,37000,400 +28000,38000,566 +28000,39000,398 +28000,40000,416 +28000,41000,30 +28000,42000,436 +28000,45000,468 +28000,47000,110686 +28000,48000,10108 +28000,49000,194 +28000,50000,60 +28000,51000,286 +28000,53000,152 +28000,54000,120 +28000,55000,272 +28000,56000,118 +29000,01000,174 +29000,02000,86 +29000,04000,646 +29000,05000,19324 +29000,06000,1378 +29000,08000,952 +29000,09000,104 +29000,10000,84 +29000,11000,370 +29000,12000,1260 +29000,13000,1022 +29000,15000,10 +29000,16000,126 +29000,17000,49906 +29000,18000,2000 +29000,19000,8854 +29000,20000,199556 +29000,21000,1344 +29000,22000,950 +29000,23000,58 +29000,24000,442 +29000,25000,174 +29000,26000,776 +29000,27000,1300 +29000,28000,492 +29000,30000,482 +29000,31000,2648 +29000,32000,284 +29000,33000,64 +29000,34000,910 +29000,35000,174 +29000,36000,1100 +29000,37000,612 +29000,38000,616 +29000,39000,1154 +29000,40000,5916 +29000,41000,210 +29000,42000,1250 +29000,44000,8 +29000,45000,350 +29000,46000,128 +29000,47000,1562 +29000,48000,3846 +29000,49000,150 +29000,50000,44 +29000,51000,728 +29000,53000,552 +29000,54000,206 +29000,55000,1396 +29000,56000,142 +30000,02000,602 +30000,04000,344 +30000,06000,880 +30000,08000,608 +30000,09000,10 +30000,11000,4 +30000,12000,104 +30000,13000,78 +30000,16000,1062 +30000,17000,134 +30000,18000,86 +30000,19000,14 +30000,20000,70 +30000,21000,10 +30000,22000,42 +30000,23000,20 +30000,24000,10 +30000,25000,96 +30000,26000,60 +30000,27000,228 +30000,28000,16 +30000,29000,76 +30000,31000,72 +30000,32000,274 +30000,34000,150 +30000,35000,76 +30000,36000,126 +30000,37000,58 +30000,38000,7122 +30000,39000,176 +30000,40000,16 +30000,41000,260 +30000,42000,62 +30000,45000,18 +30000,46000,342 +30000,47000,72 +30000,48000,502 +30000,49000,376 +30000,51000,44 +30000,53000,776 +30000,54000,8 +30000,55000,296 +30000,56000,1874 +31000,01000,10 +31000,02000,60 +31000,04000,168 +31000,05000,90 +31000,06000,472 +31000,08000,1484 +31000,09000,14 +31000,10000,10 +31000,11000,34 +31000,12000,68 +31000,13000,50 +31000,16000,4 +31000,17000,348 +31000,18000,78 +31000,19000,34304 +31000,20000,4226 +31000,21000,84 +31000,22000,14 +31000,24000,48 +31000,25000,294 +31000,26000,70 +31000,27000,398 +31000,28000,58 +31000,29000,1328 +31000,30000,86 +31000,32000,136 +31000,34000,116 +31000,35000,146 +31000,36000,226 +31000,37000,130 +31000,38000,174 +31000,39000,154 +31000,40000,202 +31000,41000,36 +31000,42000,62 +31000,45000,24 +31000,46000,5816 +31000,47000,176 +31000,48000,538 +31000,49000,156 +31000,51000,52 +31000,53000,48 +31000,55000,102 +31000,56000,1010 +32000,01000,22 +32000,02000,434 +32000,04000,2762 +32000,05000,12 +32000,06000,29830 +32000,08000,864 +32000,09000,56 +32000,10000,20 +32000,11000,352 +32000,12000,600 +32000,13000,434 +32000,15000,398 +32000,16000,316 +32000,17000,1288 +32000,18000,242 +32000,19000,302 +32000,20000,172 +32000,21000,92 +32000,22000,176 +32000,24000,124 +32000,25000,218 +32000,26000,250 +32000,27000,188 +32000,28000,132 +32000,29000,342 +32000,30000,322 +32000,31000,302 +32000,33000,60 +32000,34000,12 +32000,35000,394 +32000,36000,846 +32000,37000,594 +32000,38000,518 +32000,39000,264 +32000,40000,120 +32000,41000,322 +32000,42000,334 +32000,45000,114 +32000,46000,134 +32000,47000,282 +32000,48000,1790 +32000,49000,2164 +32000,50000,12 +32000,51000,164 +32000,53000,516 +32000,55000,404 +32000,56000,290 +33000,01000,38 +33000,02000,62 +33000,04000,56 +33000,06000,378 +33000,08000,128 +33000,09000,1302 +33000,10000,110 +33000,11000,196 +33000,12000,420 +33000,13000,312 +33000,15000,14 +33000,17000,214 +33000,18000,82 +33000,19000,34 +33000,20000,60 +33000,21000,44 +33000,22000,118 +33000,23000,13458 +33000,24000,242 +33000,25000,170524 +33000,26000,120 +33000,27000,158 +33000,28000,24 +33000,29000,96 +33000,30000,58 +33000,31000,68 +33000,32000,80 +33000,34000,758 +33000,35000,64 +33000,36000,1954 +33000,37000,176 +33000,38000,72 +33000,39000,456 +33000,40000,54 +33000,41000,84 +33000,42000,672 +33000,44000,534 +33000,45000,64 +33000,46000,8 +33000,47000,46 +33000,48000,372 +33000,49000,54 +33000,50000,18408 +33000,51000,358 +33000,53000,48 +33000,54000,46 +33000,55000,138 +34000,01000,96 +34000,02000,48 +34000,04000,456 +34000,05000,130 +34000,06000,2640 +34000,08000,416 +34000,09000,7208 +34000,10000,16794 +34000,11000,1672 +34000,12000,2278 +34000,13000,1074 +34000,15000,36 +34000,16000,12 +34000,17000,1884 +34000,18000,286 +34000,19000,38 +34000,20000,188 +34000,21000,302 +34000,22000,220 +34000,23000,354 +34000,24000,5364 +34000,25000,3044 +34000,26000,770 +34000,27000,452 +34000,28000,66 +34000,29000,436 +34000,30000,76 +34000,31000,122 +34000,32000,426 +34000,33000,210 +34000,35000,30 +34000,36000,833742 +34000,37000,1322 +34000,38000,178 +34000,39000,1634 +34000,40000,214 +34000,41000,82 +34000,42000,250494 +34000,44000,454 +34000,45000,360 +34000,47000,502 +34000,48000,2092 +34000,49000,136 +34000,50000,322 +34000,51000,2130 +34000,53000,278 +34000,54000,222 +34000,55000,410 +35000,01000,6 +35000,02000,38 +35000,04000,4570 +35000,06000,1216 +35000,08000,4378 +35000,09000,20 +35000,11000,66 +35000,12000,370 +35000,13000,168 +35000,16000,60 +35000,17000,174 +35000,18000,70 +35000,19000,162 +35000,20000,228 +35000,21000,36 +35000,22000,464 +35000,24000,48 +35000,25000,32 +35000,26000,58 +35000,27000,154 +35000,28000,14 +35000,29000,246 +35000,30000,116 +35000,31000,84 +35000,32000,428 +35000,33000,72 +35000,34000,72 +35000,36000,316 +35000,37000,90 +35000,38000,172 +35000,39000,166 +35000,40000,206 +35000,41000,184 +35000,42000,186 +35000,45000,112 +35000,47000,172 +35000,48000,37800 +35000,49000,464 +35000,51000,224 +35000,53000,150 +35000,54000,44 +35000,55000,54 +35000,56000,104 +36000,01000,394 +36000,02000,42 +36000,04000,544 +36000,05000,92 +36000,06000,4926 +36000,08000,502 +36000,09000,90980 +36000,10000,728 +36000,11000,2120 +36000,12000,4048 +36000,13000,2152 +36000,15000,192 +36000,16000,42 +36000,17000,2488 +36000,18000,1000 +36000,19000,444 +36000,20000,424 +36000,21000,736 +36000,22000,1168 +36000,23000,986 +36000,24000,3722 +36000,25000,12470 +36000,26000,1420 +36000,27000,1080 +36000,28000,212 +36000,29000,666 +36000,30000,82 +36000,31000,344 +36000,32000,412 +36000,33000,804 +36000,34000,254064 +36000,35000,48 +36000,37000,2380 +36000,38000,78 +36000,39000,2864 +36000,40000,272 +36000,41000,340 +36000,42000,36648 +36000,44000,1500 +36000,45000,500 +36000,46000,110 +36000,47000,974 +36000,48000,3108 +36000,49000,408 +36000,50000,11490 +36000,51000,3208 +36000,53000,514 +36000,54000,358 +36000,55000,936 +36000,56000,62 +37000,01000,1136 +37000,02000,314 +37000,04000,1000 +37000,05000,360 +37000,06000,2774 +37000,08000,534 +37000,09000,648 +37000,10000,378 +37000,11000,1892 +37000,12000,6284 +37000,13000,12498 +37000,15000,200 +37000,17000,2002 +37000,18000,1172 +37000,19000,774 +37000,20000,284 +37000,21000,1108 +37000,22000,1014 +37000,23000,318 +37000,24000,3416 +37000,25000,1300 +37000,26000,1012 +37000,27000,522 +37000,28000,306 +37000,29000,550 +37000,30000,210 +37000,31000,544 +37000,32000,264 +37000,33000,162 +37000,34000,2580 +37000,35000,390 +37000,36000,4632 +37000,38000,588 +37000,39000,2754 +37000,40000,280 +37000,41000,370 +37000,42000,3416 +37000,44000,44 +37000,45000,83998 +37000,46000,48 +37000,47000,6558 +37000,48000,3934 +37000,49000,124 +37000,50000,190 +37000,51000,58234 +37000,53000,334 +37000,54000,1142 +37000,55000,1444 +37000,56000,42 +38000,02000,24 +38000,04000,44 +38000,06000,56 +38000,08000,132 +38000,11000,90 +38000,12000,28 +38000,15000,36 +38000,16000,4 +38000,17000,64 +38000,19000,154 +38000,20000,68 +38000,24000,66 +38000,26000,20 +38000,27000,22104 +38000,28000,6 +38000,29000,44 +38000,30000,1058 +38000,31000,54 +38000,32000,24 +38000,35000,2 +38000,37000,80 +38000,40000,22 +38000,41000,68 +38000,42000,90 +38000,46000,1672 +38000,47000,2 +38000,48000,162 +38000,49000,60 +38000,51000,20 +38000,55000,102 +38000,56000,24 +39000,01000,664 +39000,02000,182 +39000,04000,684 +39000,05000,408 +39000,06000,2622 +39000,08000,738 +39000,09000,530 +39000,10000,218 +39000,11000,820 +39000,12000,2064 +39000,13000,1474 +39000,15000,154 +39000,16000,24 +39000,17000,4644 +39000,18000,29418 +39000,19000,808 +39000,20000,370 +39000,21000,79754 +39000,22000,300 +39000,23000,118 +39000,24000,1288 +39000,25000,940 +39000,26000,25154 +39000,27000,1376 +39000,28000,398 +39000,29000,1100 +39000,30000,34 +39000,31000,744 +39000,32000,310 +39000,33000,38 +39000,34000,2300 +39000,35000,128 +39000,36000,3166 +39000,37000,1590 +39000,38000,286 +39000,40000,506 +39000,41000,348 +39000,42000,42560 +39000,44000,242 +39000,45000,478 +39000,46000,94 +39000,47000,1824 +39000,48000,3564 +39000,49000,120 +39000,50000,104 +39000,51000,2746 +39000,53000,332 +39000,54000,72536 +39000,55000,1528 +39000,56000,112 +40000,01000,260 +40000,02000,324 +40000,04000,414 +40000,05000,28738 +40000,06000,1300 +40000,08000,842 +40000,09000,22 +40000,10000,28 +40000,11000,18 +40000,12000,490 +40000,13000,336 +40000,15000,64 +40000,16000,24 +40000,17000,610 +40000,18000,250 +40000,19000,624 +40000,20000,11702 +40000,21000,138 +40000,22000,860 +40000,24000,66 +40000,25000,190 +40000,26000,206 +40000,27000,290 +40000,28000,352 +40000,29000,5712 +40000,30000,72 +40000,31000,586 +40000,32000,160 +40000,33000,26 +40000,34000,230 +40000,35000,294 +40000,36000,396 +40000,37000,198 +40000,38000,738 +40000,39000,358 +40000,41000,170 +40000,42000,826 +40000,45000,20 +40000,46000,74 +40000,47000,650 +40000,48000,25850 +40000,49000,202 +40000,50000,10 +40000,51000,282 +40000,53000,220 +40000,54000,174 +40000,55000,566 +40000,56000,204 +41000,02000,1296 +41000,04000,886 +41000,05000,120 +41000,06000,8970 +41000,08000,606 +41000,09000,86 +41000,10000,12 +41000,11000,136 +41000,12000,326 +41000,13000,370 +41000,15000,118 +41000,16000,3940 +41000,17000,356 +41000,18000,174 +41000,19000,244 +41000,20000,48 +41000,21000,58 +41000,22000,90 +41000,23000,66 +41000,24000,58 +41000,25000,208 +41000,26000,252 +41000,27000,248 +41000,29000,178 +41000,30000,302 +41000,31000,282 +41000,32000,466 +41000,33000,22 +41000,34000,320 +41000,35000,120 +41000,36000,408 +41000,37000,202 +41000,38000,532 +41000,39000,98 +41000,40000,184 +41000,42000,188 +41000,45000,84 +41000,46000,18 +41000,47000,118 +41000,48000,906 +41000,49000,518 +41000,50000,22 +41000,51000,220 +41000,53000,52184 +41000,54000,18 +41000,55000,114 +41000,56000,172 +42000,01000,480 +42000,02000,160 +42000,04000,620 +42000,05000,392 +42000,06000,2636 +42000,08000,616 +42000,09000,2388 +42000,10000,63810 +42000,11000,4106 +42000,12000,2988 +42000,13000,1676 +42000,15000,168 +42000,16000,104 +42000,17000,2732 +42000,18000,810 +42000,19000,332 +42000,20000,308 +42000,21000,642 +42000,22000,492 +42000,23000,360 +42000,24000,117938 +42000,25000,3178 +42000,26000,1638 +42000,27000,1234 +42000,28000,166 +42000,29000,1006 +42000,30000,210 +42000,31000,150 +42000,32000,282 +42000,33000,292 +42000,34000,249616 +42000,35000,226 +42000,36000,85116 +42000,37000,2564 +42000,38000,94 +42000,39000,24386 +42000,40000,700 +42000,41000,220 +42000,44000,274 +42000,45000,1040 +42000,46000,46 +42000,47000,1170 +42000,48000,3374 +42000,49000,490 +42000,50000,200 +42000,51000,7264 +42000,53000,452 +42000,54000,20410 +42000,55000,872 +42000,56000,146 +44000,04000,108 +44000,06000,248 +44000,09000,20840 +44000,10000,28 +44000,11000,174 +44000,12000,310 +44000,13000,114 +44000,17000,214 +44000,18000,70 +44000,20000,20 +44000,21000,38 +44000,22000,16 +44000,23000,254 +44000,24000,178 +44000,25000,130868 +44000,26000,30 +44000,27000,44 +44000,28000,22 +44000,29000,42 +44000,30000,58 +44000,31000,188 +44000,32000,20 +44000,33000,270 +44000,34000,540 +44000,36000,2062 +44000,37000,150 +44000,39000,268 +44000,40000,82 +44000,42000,466 +44000,45000,28 +44000,47000,88 +44000,48000,168 +44000,50000,256 +44000,51000,190 +44000,53000,154 +44000,55000,90 +45000,01000,1338 +45000,02000,174 +45000,04000,246 +45000,05000,158 +45000,06000,910 +45000,08000,98 +45000,09000,554 +45000,10000,40 +45000,11000,416 +45000,12000,2952 +45000,13000,49722 +45000,16000,146 +45000,17000,686 +45000,18000,536 +45000,19000,332 +45000,20000,206 +45000,21000,508 +45000,22000,308 +45000,23000,166 +45000,24000,1036 +45000,25000,444 +45000,26000,488 +45000,27000,186 +45000,28000,182 +45000,29000,430 +45000,30000,16 +45000,31000,252 +45000,32000,166 +45000,33000,18 +45000,34000,1332 +45000,35000,140 +45000,36000,1826 +45000,37000,134650 +45000,38000,86 +45000,39000,1166 +45000,40000,190 +45000,41000,132 +45000,42000,1272 +45000,44000,16 +45000,46000,52 +45000,47000,1704 +45000,48000,2358 +45000,50000,20 +45000,51000,3132 +45000,53000,226 +45000,54000,470 +45000,55000,338 +45000,56000,14 +46000,01000,42 +46000,02000,58 +46000,04000,54 +46000,05000,34 +46000,06000,342 +46000,08000,312 +46000,09000,32 +46000,11000,184 +46000,12000,90 +46000,13000,24 +46000,15000,30 +46000,16000,10 +46000,17000,98 +46000,18000,20 +46000,19000,8234 +46000,20000,190 +46000,21000,58 +46000,22000,20 +46000,24000,6 +46000,25000,30 +46000,26000,4 +46000,27000,4206 +46000,28000,8 +46000,29000,134 +46000,30000,320 +46000,31000,3266 +46000,32000,18 +46000,34000,62 +46000,36000,22 +46000,37000,4 +46000,38000,4262 +46000,39000,12 +46000,40000,2 +46000,42000,84 +46000,45000,12 +46000,47000,8 +46000,48000,370 +46000,49000,66 +46000,51000,94 +46000,53000,42 +46000,55000,98 +46000,56000,2638 +47000,01000,20524 +47000,02000,216 +47000,04000,408 +47000,05000,7864 +47000,06000,1464 +47000,08000,1144 +47000,09000,82 +47000,10000,56 +47000,11000,254 +47000,12000,2300 +47000,13000,21358 +47000,15000,114 +47000,17000,2372 +47000,18000,1462 +47000,19000,556 +47000,20000,398 +47000,21000,66888 +47000,22000,1600 +47000,23000,152 +47000,24000,556 +47000,25000,400 +47000,26000,1278 +47000,27000,924 +47000,28000,36434 +47000,29000,1464 +47000,30000,40 +47000,31000,524 +47000,32000,190 +47000,33000,18 +47000,34000,746 +47000,35000,158 +47000,36000,1974 +47000,37000,8174 +47000,38000,344 +47000,39000,2682 +47000,40000,552 +47000,41000,198 +47000,42000,1396 +47000,45000,1206 +47000,46000,34 +47000,48000,4278 +47000,49000,166 +47000,50000,72 +47000,51000,22500 +47000,53000,240 +47000,54000,620 +47000,55000,560 +47000,56000,90 +48000,01000,1786 +48000,02000,1914 +48000,04000,2852 +48000,05000,14548 +48000,06000,12176 +48000,08000,4934 +48000,09000,796 +48000,10000,164 +48000,11000,1122 +48000,12000,6812 +48000,13000,5242 +48000,15000,256 +48000,16000,296 +48000,17000,5606 +48000,18000,2832 +48000,19000,1050 +48000,20000,3990 +48000,21000,1236 +48000,22000,36898 +48000,23000,324 +48000,24000,2464 +48000,25000,1494 +48000,26000,2614 +48000,27000,2360 +48000,28000,1776 +48000,29000,3710 +48000,30000,460 +48000,31000,1728 +48000,32000,816 +48000,33000,172 +48000,34000,2892 +48000,35000,29704 +48000,36000,4346 +48000,37000,3036 +48000,38000,1732 +48000,39000,3572 +48000,40000,27914 +48000,41000,932 +48000,42000,3840 +48000,45000,804 +48000,46000,410 +48000,47000,4454 +48000,49000,1420 +48000,50000,354 +48000,51000,3676 +48000,53000,2256 +48000,54000,952 +48000,55000,2158 +48000,56000,632 +49000,01000,172 +49000,02000,378 +49000,04000,2732 +49000,05000,56 +49000,06000,3336 +49000,08000,2144 +49000,09000,80 +49000,10000,16 +49000,11000,82 +49000,12000,190 +49000,13000,496 +49000,15000,68 +49000,16000,1946 +49000,17000,536 +49000,18000,228 +49000,19000,218 +49000,20000,72 +49000,21000,80 +49000,22000,370 +49000,23000,50 +49000,24000,148 +49000,25000,470 +49000,26000,160 +49000,27000,344 +49000,28000,116 +49000,29000,82 +49000,30000,582 +49000,31000,162 +49000,32000,4814 +49000,33000,26 +49000,34000,234 +49000,35000,434 +49000,36000,538 +49000,37000,102 +49000,38000,1486 +49000,39000,190 +49000,40000,270 +49000,41000,262 +49000,42000,200 +49000,45000,98 +49000,46000,114 +49000,47000,238 +49000,48000,1598 +49000,50000,96 +49000,51000,204 +49000,53000,638 +49000,54000,44 +49000,55000,108 +49000,56000,3188 +50000,01000,10 +50000,02000,18 +50000,04000,38 +50000,06000,64 +50000,08000,16 +50000,09000,680 +50000,11000,30 +50000,12000,36 +50000,13000,98 +50000,17000,94 +50000,19000,8 +50000,21000,20 +50000,22000,10 +50000,23000,386 +50000,24000,66 +50000,25000,5722 +50000,26000,76 +50000,27000,10 +50000,28000,14 +50000,29000,116 +50000,33000,28070 +50000,34000,386 +50000,35000,30 +50000,36000,4124 +50000,37000,30 +50000,39000,134 +50000,41000,8 +50000,42000,168 +50000,44000,94 +50000,45000,4 +50000,47000,44 +50000,48000,70 +50000,49000,76 +50000,51000,120 +50000,53000,56 +50000,54000,6 +50000,55000,32 +51000,01000,318 +51000,02000,104 +51000,04000,638 +51000,05000,112 +51000,06000,2518 +51000,08000,438 +51000,09000,668 +51000,10000,768 +51000,11000,456078 +51000,12000,2448 +51000,13000,2176 +51000,15000,326 +51000,16000,36 +51000,17000,1486 +51000,18000,676 +51000,19000,382 +51000,20000,266 +51000,21000,3742 +51000,22000,264 +51000,23000,100 +51000,24000,142712 +51000,25000,1692 +51000,26000,722 +51000,27000,304 +51000,28000,224 +51000,29000,652 +51000,30000,10 +51000,31000,184 +51000,32000,170 +51000,33000,166 +51000,34000,2918 +51000,35000,28 +51000,36000,4714 +51000,37000,33018 +51000,38000,162 +51000,39000,1690 +51000,40000,230 +51000,41000,140 +51000,42000,4440 +51000,44000,438 +51000,45000,1420 +51000,47000,24280 +51000,48000,2632 +51000,49000,158 +51000,50000,144 +51000,53000,782 +51000,54000,16454 +51000,55000,380 +51000,56000,48 +53000,01000,114 +53000,02000,4536 +53000,04000,848 +53000,05000,90 +53000,06000,9494 +53000,08000,548 +53000,09000,134 +53000,10000,26 +53000,11000,960 +53000,12000,760 +53000,13000,574 +53000,15000,728 +53000,16000,22940 +53000,17000,1344 +53000,18000,234 +53000,19000,342 +53000,20000,340 +53000,21000,260 +53000,22000,220 +53000,23000,4 +53000,24000,466 +53000,25000,764 +53000,26000,650 +53000,27000,622 +53000,28000,284 +53000,29000,412 +53000,30000,666 +53000,31000,208 +53000,32000,1112 +53000,33000,42 +53000,34000,624 +53000,35000,316 +53000,36000,1184 +53000,37000,254 +53000,38000,858 +53000,39000,266 +53000,40000,46 +53000,41000,144914 +53000,42000,324 +53000,44000,64 +53000,45000,126 +53000,46000,130 +53000,47000,290 +53000,48000,1784 +53000,49000,1122 +53000,50000,22 +53000,51000,604 +53000,54000,176 +53000,55000,510 +53000,56000,246 +54000,01000,30 +54000,05000,18 +54000,06000,274 +54000,08000,48 +54000,09000,132 +54000,10000,8 +54000,11000,3254 +54000,12000,324 +54000,13000,150 +54000,17000,360 +54000,18000,344 +54000,19000,158 +54000,20000,60 +54000,21000,9154 +54000,22000,64 +54000,24000,43570 +54000,25000,182 +54000,26000,122 +54000,27000,186 +54000,28000,48 +54000,29000,134 +54000,30000,6 +54000,31000,30 +54000,32000,22 +54000,33000,38 +54000,34000,286 +54000,36000,264 +54000,37000,748 +54000,38000,30 +54000,39000,31286 +54000,40000,98 +54000,41000,30 +54000,42000,24052 +54000,45000,94 +54000,46000,60 +54000,47000,488 +54000,48000,530 +54000,49000,6 +54000,50000,28 +54000,51000,59320 +54000,53000,36 +54000,55000,98 +54000,56000,8 +55000,01000,152 +55000,02000,182 +55000,04000,378 +55000,05000,148 +55000,06000,1354 +55000,08000,520 +55000,09000,250 +55000,10000,36 +55000,11000,150 +55000,12000,856 +55000,13000,514 +55000,15000,48 +55000,16000,68 +55000,17000,83150 +55000,18000,1362 +55000,19000,9982 +55000,20000,274 +55000,21000,218 +55000,22000,170 +55000,23000,68 +55000,24000,198 +55000,25000,334 +55000,26000,10472 +55000,27000,101178 +55000,28000,126 +55000,29000,458 +55000,30000,152 +55000,31000,236 +55000,32000,216 +55000,33000,58 +55000,34000,370 +55000,35000,120 +55000,36000,832 +55000,37000,460 +55000,38000,1028 +55000,39000,1152 +55000,40000,264 +55000,41000,96 +55000,42000,454 +55000,44000,20 +55000,45000,374 +55000,46000,312 +55000,47000,378 +55000,48000,1392 +55000,49000,188 +55000,51000,310 +55000,53000,398 +55000,54000,66 +55000,56000,30 +56000,01000,62 +56000,02000,194 +56000,04000,64 +56000,06000,300 +56000,08000,3528 +56000,09000,62 +56000,11000,26 +56000,12000,22 +56000,13000,12 +56000,16000,628 +56000,17000,124 +56000,18000,18 +56000,19000,40 +56000,20000,58 +56000,21000,62 +56000,22000,34 +56000,23000,18 +56000,25000,22 +56000,26000,28 +56000,27000,26 +56000,28000,28 +56000,29000,94 +56000,30000,1674 +56000,31000,1506 +56000,32000,102 +56000,34000,80 +56000,35000,92 +56000,36000,174 +56000,37000,40 +56000,38000,2606 +56000,39000,92 +56000,40000,292 +56000,42000,116 +56000,45000,10 +56000,46000,942 +56000,48000,440 +56000,49000,916 +56000,53000,216 +56000,54000,100 diff --git a/flepimop/gempyor_pkg/tests/interface/test_interface.py b/flepimop/gempyor_pkg/tests/interface/test_interface.py new file mode 100644 index 000000000..38ba7a396 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/interface/test_interface.py @@ -0,0 +1,50 @@ +import pytest +import datetime +import os +import pandas as pd +#import dask.dataframe as dd +import pyarrow as pa +import time +import confuse + +from gempyor import utils, interface, setup, parameters +from gempyor.utils import config + +TEST_SETUP_NAME = "minimal_test" + +DATA_DIR = os.path.dirname(__file__) + "/data" +os.chdir(os.path.dirname(__file__)) + +tmp_path = "/tmp" + +class TestInferenceSimulator: + def test_InferenceSimulator_success(self): + # the minimum model test, choices are: npi_scenario="None" + # config.set_file(f"{DATA_DIR}/config_min_test.yml") + i = interface.InferenceSimulator(config_path=f"{DATA_DIR}/config_min_test.yml", npi_scenario="None") + ''' run_id="test_run_id" = in_run_id, + prefix="test_prefix" = in_prefix = out_prefix, + out_run_id = in_run_id, + ''' + + i.update_prefix("test_new_in_prefix") + assert i.s.in_prefix == "test_new_in_prefix" + assert i.s.out_prefix == "test_new_in_prefix" + + i.update_prefix("test_newer_in_prefix", "test_newer_out_prefix") + assert i.s.in_prefix == "test_newer_in_prefix" + assert i.s.out_prefix == "test_newer_out_prefix" + + i.update_run_id("test_new_run_id") + assert i.s.in_run_id == "test_new_run_id" + assert i.s.out_run_id == "test_new_run_id" + + i.update_run_id("test_newer_in_run_id", "test_newer_out_run_id") + assert i.s.in_run_id == "test_newer_in_run_id" + assert i.s.out_run_id == "test_newer_out_run_id" + + # i.one_simulation_legacy(sim_id2write=0) + i.build_structure() + assert i.already_built + + # i.one_simulation(sim_id2write=0) From fcc46b4f90c9ed49d394ba4a70c7b02604764c44 Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 31 Aug 2023 11:40:19 -0400 Subject: [PATCH 09/50] create tests/utils/* to cover utils.py --- .../gempyor_pkg/tests/utils/data/mobility | 3 + .../gempyor_pkg/tests/utils/data/mobility.csv | 12 ++++ .../data/usa-geoid-params-output.parquet | Bin 0 -> 86209 bytes .../gempyor_pkg/tests/utils/test_utils.py | 67 ++++++++++++++++++ 4 files changed, 82 insertions(+) create mode 100644 flepimop/gempyor_pkg/tests/utils/data/mobility create mode 100644 flepimop/gempyor_pkg/tests/utils/data/mobility.csv create mode 100644 flepimop/gempyor_pkg/tests/utils/data/usa-geoid-params-output.parquet create mode 100644 flepimop/gempyor_pkg/tests/utils/test_utils.py diff --git a/flepimop/gempyor_pkg/tests/utils/data/mobility b/flepimop/gempyor_pkg/tests/utils/data/mobility new file mode 100644 index 000000000..82b7fe6c3 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/utils/data/mobility @@ -0,0 +1,3 @@ +ori,dest,amount +10001,20002,500 +20002,10001,1500 diff --git a/flepimop/gempyor_pkg/tests/utils/data/mobility.csv b/flepimop/gempyor_pkg/tests/utils/data/mobility.csv new file mode 100644 index 000000000..c850a7021 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/utils/data/mobility.csv @@ -0,0 +1,12 @@ +"ori","dest","amount" +"15001","15003",625 +"15001","15007",4 +"15001","15009",181 +"15003","15001",62 +"15003","15007",34 +"15003","15009",614 +"15005","15009",4 +"15007","15003",232 +"15007","15009",97 +"15009","15001",25 +"15009","15003",418 diff --git a/flepimop/gempyor_pkg/tests/utils/data/usa-geoid-params-output.parquet b/flepimop/gempyor_pkg/tests/utils/data/usa-geoid-params-output.parquet new file mode 100644 index 0000000000000000000000000000000000000000..ccadc92e18e4ccb80e6931ab74dac039ac8814d0 GIT binary patch literal 86209 zcmeFZ3p|ut+c-QVIZkFU7@AZPLNkMLNS01Q2q7j(B|A2SoQV!f2ZSV~l2nokIj56K z=e8tC?RMJLmK^3plCAH$=ODHBe*e$&{eS=OeZTK}_RpGio!7P2y$;v9?tAAv-<75; zq1<|Fg7Q#}n1ga9U0H&N!*#zA)0~LI;ixn!l}3=p89_0DVhY7vUK&Ru82qKsf%aoD z0@{zo7-&Bh6QKQA7(n~6m;&v`Vg|Gyi#gD~EArqkt?_@a7&PMOE;HrmR2pNkHB@ve zj083+3}tDYnY=o9M#M%(f<{%A)}1Itr_l&R2|8VxAwe@D5D82v8pBv#o!}xtGb3mj z#DajCd<2eWuo@t9c_NJ7Stv{iy0JXM(H&=kE`f=o8w^R&>1OijIJ*3031h0kQPGcl zlL!*hq>QOFXE{>+K z)a7l(q>0JW@UvYCN28d^O3>&8Em*5TV$#yWns^pA1p&ncR(KFB?h|6t1Ow?#AY&kL z1Plt)0ldHrathl?9&+-S4RtEq$iJ{VjWLhHt zQZyr4>J$kh8p&-k=Ah^h`rn~}DZW`HoDq3I9-baPRY}5#PO1i29wu057>-V>!_i6S z7*Spd>@6f=h{FlG)|z13GxXdOW$g87anWp z8{wM<42d%4>_0Ha3xXftnlb`oMwpvMFkt^>fm7L}{19a+jIQoceiiTv2XO=CsT@o| zK}9f-Pv_%801jg67{$>QSg>+2`MWjz%I;67BxnqZjuam!FvklCF&L@NRN24fe^17S z8D@|vEd^)Fb`})MSqP>uL`38hM2M&!FCfyyYD(pJZ7-ZD*$JH2tpk&Qu)QQqsRqy( zEd_w!R|4t}h)7h#6d475e(QWYI8*Z!kv?Ww;I)t?XlfksJMK6{!ju;51V85r_|P~F zkqN9OOAy4Q?ef0)#U~gvev=VueYl9h_jdkJg3#A{<`SHxZ z5XLkAJ(%)A0cNEpzp{G+6?l!22nGhRIP*|T33DpBPYP%LxaFTqsO2}_-@$)J6WRMG z-gr7DJ0AagSi&4`4;V|t#+(Pz;})n=N58o!GAEM#f2xkK#9F4z#((b$Mts}6zpLH#9=3YK%4}f8VoFg!5%mO;k2KP$44j;n0IRc zOC~+X&i>@PHDgkIIwtia<+Fd} z8*Jbsouc0{GqgtF&zuUU831DH*wGt2)*U_(zmh~?k|xVx9pg)%m{5sHY!zESusb&9Ni zhlA|{r3w6#))G`MP{HEINYIA_ z0Z~w4IL-)eH^M^6&;~t*pkm^TAAhAJ0!5e3uV5-q6atR7amJ83Fjh+rj>E)o#x6h+ z6v#A?UZ_H2Oo;l8O-Qmj5_A)?EfFlYQ{G_aHb4a)VK8{m$p_#T1c?SAoD3uhI)jiv z>B1J2mY{N>T-E|CK~S9q;x`!r(_l3az$&IeV5VyGr3lFn^M#bZ@CAaffQ15NAE_TK z2qeZV@NGg1m=|L$$TKOE<@h9dW(L-%PyoYl42q8wjzQi#S&Gh}Ia*6FXu-ue2F4IF zf$}gPerSz+Nx{!#xxZ3`rbGhYp;#N=GfZ7RQkJN}Nb3qJkMWot#*?6nWZ*Fg2^sc$ zF^FFX-%A+qC7@%NO+qCf1E5m`2rP*B0t_3XaeRobFr(wB@=T$VLO`gFVL0$jRD?>j zMgd8H!hZ1=ROlSW0dRc(U~uhZA>g!=1qL*84JM~_5apZ>gqm-llAxQhy+qU^pz5CH zV=$*2DHu*LNHr4x0t(pRlgIc>vL{}sLe`W4NZ1PB0@fUXNnWDx_Y%RAg>=$5HGw^$ z6_{c|^8oS9!{)~f#q`G7fo*y`j&0k2heKD(hXw7y0Vf2dnG}EUQJE->D9d!A`94$GTy^~0WW8dvj_4N3&QsV9F25dPfY!;GG!Ci^Ho^S)q6{D=Hxk3 zg;(!53XLFP4%c0%At3vP01><2e!Js}1VDSeJkE$R2-YU1i%Bomfci4jcKFYDVl@BG zAe}A-yS#L|Pz(bx!rflH!fXQ5&JK{|J^TQTG*fm=h-AT!Z}!OIizXA21yZCDX~?RO z`S~UTKFMGYX@ZlEbRv#IZ1j2pfaeg*Z z>`5?+>iGFn@TL&D+g-sIYseEJ%9Yf>&iixo@H5rr)eUy=#ww<$8nuuxGA3{-kr*|ZUqLcXfWr|z z0u<;x#w8>>Mhf{4sW=ldc9nyO!4+7=bP>QjHwnj}=~Dj0%%uw|hM-#ajVNWrpc=gA<1lM509?UT z08I;AoC-;CwTrSYw?*f+`4SnxRBVHh^{wX$NYe0oHl_$?6~N#*SQ3m7w6kX_ znBiksl6B8iF?9$mtFRF@;8&2ptAg<{3r!MGllc`)ghq&fAH#;} zT!nzb3{C<73{aY71*!&QybM5~f;Gce5dZ=@rVLiT2?#KZOui#8&=EpH6EK8eyG#*$ zR;Q5QYN-1wRKUbY;NY(UULl{y$1x$e;~f()e)*9B8hm}eSTY~Onm@NjASeJNjLc~Q z%fco^4PpxXmd5}lpCaVTGfjSl?X{6|as7^wGt2OGa>PI6uz}F^z}8rRs!-?~0WW1s zVDeKKkgWijLWaM42OM&)&RI65!F(TR=|u%i>sxM6Sx zHWe4_3Tr^IC4ww=orQh6NdPc|A5czUSLb9Qv5^4>xk0De-5=0SH4d zHSArWP=XJLEF_D_*r;HJ_`}nU4bK>cnGur5fbo1x5Kcsaz7P=d$H+hGOBtK;&wm&l z%sodt=!M88{}hwQGHGNZIf3_l=$iy~y6(Xwn3#mXQ2`{ffk^;e9X1U9j1Wu=T|8hQ z!hcQ%W8*EH0@9U~Fs!QvfR6(}o{uGq$YWDR0Eq1UK*olOZ}_i#><|=86#*oafVlt+ ztSx|kk^T-6IRX6&T>%^s4*R7*X&iwsAYp9AufYun8pz)?_!e+xdmV~1}d;!uAUx2#aQczD8f>;w6!2pj{#MJdriD-OhfT~WzL$Y%mo%ziU z_V_Uo0`mtEK3!xMaF-zkAP$`S~3Ig4geG=*$>iZi6$z3MM0>!*>;6 zLGUZm{T{<4MbenW_uTKXA7qV5UoF97V`$VERE^niEMYZ>jlm)utN#ZV6Yy=Uz}swd ziirZ{p$EKxjH4t#d>T+pc?8+BJ#+ZPJ>rzNizSTBDSc9WE-bnC00=3VAgpE)Ww9Jz zl}~wuof~|9CGY_=pGO`-shRyN^OK2(KoJ5#h8+ zf>)@Jl^uoLn6efmWHB7}U=a`y01AAWcD@WmXaRUJ9|BW%hZvEVjxCtZ9b$57ZPPLqq|@k+kX0>;NezB7|BDHUwTNe1E~8N9bIs2>Fg;y)MiRvjr5 znh9+K&V&@P4g-Iv+P@?IBEW*yLC4Z@3=-WBR2U?RC04r+g>{9^3I{3WuhXUJm8r>j(-9GSd0~5%wS0&kXkL^GlM6?imx<~Ffq!grr7dTAR%gtsqnGn zU{#z^##IpN*AUSltQOKXk}$=qLebQ#lwmCG_aaVGeB4c&u}DR@gr?MTCS zuw?9OGFWO2u$cK3IEulrjQa%uQwT_R3K_vp;{gd16Pi#`pdvC*DKd~O0tA+%Okmy1 zOHtCbV1eq4U;ed z8Tf=!{xU_I?<0H(%b-HQ%pl)_cb9}@_z;az-Zo}wqJb2HO1;~HV~EL2bCh6UU)P%A z(K0az+-B~8-L44=Jn4zKP`KE4AAwlU1#iN2%OKrw6%x84f;1Oj?mkxC)bR_vv3Lu zVnnK#lCu~oL`*eZj9ezB(JV$`iD@c`Pp67&Ig4wDi0h<_>y?S?H;Wsx#Hk7s=+p_u z&J!3R6U@>lSd>k$Y@T4nnqaLUv4ASE$XUWBM8Y;*!oEzxp;^L-CE=_v(Um&U&3U3n z$VAWdiOjNz-pvzzSQC8}B-c_U{hTHJLnJq(O9qxn1~p4=WJ!i7ObVk;3U{6q88Rt4 zeNt@Mr1<7Z39Lz56{NOPrIMVbc7;goPM6wSCY91GmBx}vSCG!6N@qDsXNO4Vq)X?O zN#{39A7x1wD9992Ws00-PKC%6r^}R-$&@zBoM*|DDack(Wh&b zbux&0HTJ6pdXJ8KH`18HyI=ik6QRt=Njz1f>NurA01EHla$k8A|r$ zN)C^eoY+dv1ZDW22;5whJwlZ|GnAR-%HEHaeb~yr1kzd>$eU z)G}#mSuSeXp=vo9YI)^q`H$6(vegO*@MlgkL|6*Toq z7xn5;_1X;e`f~M#$Ld$u>emPwjWms$E*edt8h0`@?v-mic&zb=tN2G* zbV_^1l#cQ#FCR~N#h&t-KzRe7dbv>Ehf=ySDBb0hp2w6vHibo)%Arl=xlA1lotik5 zF?G0n>d51%qwJ|TqNX@qQ^HkKGE7q{Q&XlwQ?5l5&(TyMP9xH%DY;G~g-uhYWPHE6&s_sn9EJ(L2x4DcAn(4zl{qu)$4XrUXlx*D{F8MJ2_bW|9;Y%zGnF?dZhd_y;U>uUHu%&;rd zu)D&rr^T?3W5^=T;n3&sT;~ji%^Av^Gh8ueq-D-1XAVx0DsDuTSWcDPOqDu7mAOcj zdqTx?sS1iTq7hALIgPZLrh0%zzDUz}LZfhLnu_%4Ms%&^bnVS_oda~ei*)@bbVDwk zs%S(vGBRFn#Mo?PcEHHuqLJkjBP*_vwW9F?BjZKOjcqm?+a55szi906#Mp^z?5t?w zYGmTJ+{9zEiRS?m=0y|lCni2z6JJHfS|f(va)$qA#)booz>AEaCyb3;Mu?(mn2~At za?{AorqKsXV=tPAz+iql*wA^ghX0zP~%=TV1OL=0J#x+Yi? zTYF$`{l&QrPv&0X&b_8+*=S^WbGc>HX3IMVEbm>keDK8b5!bR=abAnjyw>IO+BVN? zKQOQ3;=Gqn=Dp(1d#z~o#>ndJa;x{7t-20abzijVd1BSawMt|uB90N_Ek}c!(a-@j zd=ZU2L8DxRQ?eE}ww7?SmJGL+%CeTJw3chN#`CNdl;#tS=PS9*Cxy>f&6-cHoUhS3 zpTe83skC6a@d7Qk1=`^Ybg~xcRW8tPU0}#tKvh~uH(qG$wvZ9N&@5}AMdd=v)`eEQ zh1N=o78oyD6C}W|tjqmy>0eS812uYIl@pSD<8HXl!5P zW`8Q&zBtRiq|&~$)&4xszD#Lph4Io#x24tLOKY>1)>kfVXkB`RxAdBlL!+_7O*e<8 zaECit4)-b@9<(|<;yE-cIkp%(wz@gCg*&!qId)V!zHD`T#dCbE8+d7`*5eO zET`^Dr=C`)KAsaxX&J|O8P9FmVED43tYyQM%SKw4jq;Y^l%2&*oF&|yB_o`r4m!(J zImRS)yt==UJa~zt?cv0#OJNM&-)0U#IA!r-Bmt4Pks6Zd|1k>IVP)l?yCnQ zRu3IqJzTYV#YuQoNPT%(%3 zhFrZyqiqdkaE&Hu?R3UkEswR@k!y9b*XmWT)o)vCIJlNdT1RKBGxk`=h+Jouz0RU~ zon_lPtHE{FB)E{Z@&y^lOS4aL_oBeZr_0J7$KVKRA`5Gyx zkr8y$Bd94d=uURfz3QL`Z9$I)gPKXfEsWq+kKne*;P&j`j_Tl-ZNaYwgI|+2zF};9 z>#^~Da|_)j4UDxpNvP^A^2q^MBUL!soFP>pAylux0WDq+)2!?ad}X-9?W z917E`3DbWTX80+Ls`&op~rwCt_$hD@Cek&sVqarsPiVUoY z40;y1@l#}oN>rF>RQQUh$f&63Ls79cQSr~B5yqx5tAJilXEC0uO=q{S|<%+oKsJPlgarHHE4bS4Pe2TlK65nVVe{)5AQ&jw&L-F@&;vYPVfAlH7 zS!GL$>6X?NTiT+wv>)2iQM2Xcvn{VaZApBslJLef;q8iq_fZL5hZ4GL5_+B`^nFTT zsU&ht6L~8V2cr^)4kZrPB#t~w9Q~AtQ{5_VwpGG&t7P<6shq7cwOi%dx8jGkDyVKF znr&0^+(wGtrkb;jT)R!9eH&$Ho2Kga>1NxtJhy8{Z`aA$u2;KVzkR#m&~~co4!YS6 zW6vFo=pAM`J1lB~lNPLh3Xl0$ov(@>JL>P}a)oo=2x zJ)(Dd=ImtF?(}Zo=`*y`S9RA~vt53kyZobfZOGXbSi38zeb>gJT_LK;VP?tUp2?BX z$LMoYaom z)R*n4uZB`ztERm%OMB~?_C7kTD<`eHHm#>Ut#2rerMjPEwx8#@e=vIgP|p70+WjN# z`$vcNeA(&r{h1TE2w1<%`=p|GDtBQs<|2Dx(toy8I;c% znrfNT%`>&UGPPqeb#gQH>N548XBvLaq^cdDn;$UtI>3lIV3vEpqV9m@^8;3&4_K>Z zEilhoLvV)#yZ~UAcqIM|E{7|^pp~#p+(Yc3W>kh>~Ka}wK&{nma?dCa2 zUOBsBa(3tD?5)d5d7hK@IVW8$H`6>f%PTiKCO0QHH?J-?|9S4w&$$I^d4=YAMP7NQ zV)BY}^GfRSN}uPQ|D0E*cDTa)aHZGb>X^f|xrgiP4mUhMeC6}uYijw8=J_|h@|$Av z@8ss+tIL1zJpa+>{ARTyE#^mBy^gfS97$}?Jfw)D11hYUgwm>Sc zK&HMxuA=}yT%bTcPP90##5_)lJ+7K}oLqlgqvJSb__!vyaJogI7PC-0wooUpP_MpF zzoXD_xR6RdLAN+z%sjz}Jz9dMfUYY4jn~K z!$r>Ildcvg-IymmVo!SJon+RZ^zJz6GknsQd}^)5DL>{Z|JYL-@=gWTp9<EoF#p!V7>B!jA(Rrt1>rcmboK6@%y_H&S-dN@cz0g$-umK{j^ec8;&k$v zOp7yF%rn`sXL9n+KXG_)G!0q|lzwa7h{YY=y*t4~HXY1?FHguf5GJN(LxwO%u^d_^kDYo=ZUg^F1(gz)-kA_Q|$>&-u&b2bn zwZ)!m&pX#qf9_?+xmUyIUX#ziu{i&hdH#Lu`L4Y4-Sy{tI?neEpJ$OTa4atHm=^|P zFAU{f7_PrC(s5yQ_ySJ7Onh#c#L6M=OEvK? zY7)NGY*nw_KDRb$W$muG+TDk1_g<<^c~P78r8Zr?E^}^O*2=o) z{Zdz;USBx3zG!9rskr*$!}TSX>PuhLpZ`){rhchn?xo6=m#X6~)gHc7f9X=gi%VC& zT)L*-&^Wi@=E{bqxQ0828}40dc<`d((U*qAX7$T0b1%29yxbOdx&83vj!TzczPSAA z%jMVVSKiFM@^#*wBFjoV?Cx5K?}N5tvo!$9&_BPx}d3h&oAWEqSm)m!4E2ccJ~r}6aVQNI%Wj`W*^b>AFf}2wOZXv)JPP@`Qwco?IZF^#s3q~ z{(m5#P5l2!L<`fG(noaoyLj}k^S-f{$SW30{7>BTZ^b?TZDG$356}>v-bV4n{~X}| z)&c&X^ZWnK`91csYP4e}{E<3l;u1$+%>1XnNMP|#e2-qDTjJkl+5bru=+nn(`zHQV zy7Ip;KpJNN{2Uiw)b|mMzds3nSX6*^z`8OPOZ?B}`QN`h|8+2d!tzP{KYJ(prIr!7q7Gu$Fk6Z zX>A3A&u{aGU*b3y6cVv4-VXxf(eYynYv6xw`eXEt*+2dH-!Y?3!0xc3|Fl!CiEAj! zshLRNB-K0*_1 z@h(4{c6;MEFC{l`iU?b`Ug&1K7^ziEyZySjcG7im%+0^GE1|qm+0{W=hVQDW&X}vV zQUn<}yM^x31UWg6^&7*LXXq>%V=e^0smjJb_$|%%784daz7QN&^%glkVa)MLI=~Xz z&9}z+K50`#__|HOBInb@NrPhAcW#PnciiAR|F_0rpur6XWpTdus@_V_VA%SgHQ@n~ z>sN<_ZCbl#Z9q^!cnr8pR;K*muF~I0s{Sn%%*sbAIcTNB^=zqR_0Z9%tQpORGWIVI_!+~ddZTiJmLybE_<%hj8o9_U4S zC36+tIdV|xudB0vy2V0eK}SryNh}oEotE74j)h!S?wa>t0}HKPTpuZ*JZN@XnTz^xnkPjqq6)ApNn){{9%uJE*?!+92pUz&RCH+?ShHd{={ zEe5*-o)s+=4)P^Rr~G2dLTo9Y6{RX%>rd0UX!ta)La&mATBV7k z$(Q<3Bjv$|@=a`{P@plfZc86xz1TszRmwu#Lr*@tQrKwT%)EpwNe&9ocqCzK*N6NX zO9{jgHj1KE*8JAmj|wRb>GO+7qC#H?z5%T7aSBRyFF-8NH@w+O*Gyc z)`LbzLW3q*b)%M(Y8t^d@6hN~SBm||KD6f@?ZLUDJ?O*`snfHx3lR?-p0>WG3uz^8 znW(gP5Xr`@{Jno77ddA!Zc-9^QR}>f9g?5=k#C`&i0~LzB_LOKYxQVHg$H!aM@_D=F;DHY4#(B zXIjnPpL@`?l99MaQ9WqHR6MI{76*C6&kQOqZk`kXsj zeQ1L$eZLInGn(34_p!dD7oAQ|tJXCiKy%Bso^hPlha7(9b=pd?k*mM_luU6Ja-SQz z?x+3zXx%OR(@PSA$PaN=yMs?69KfGzS$u4%@D4&qCY2Hf(rb z&qaSqUh)gMIDlN2$42=Svr#nlt;B>GY!rEA!!#L~FHe^^TrYmwi~bakeK-4BKYC7L zyq>hL2Zft8WoPTK(b35Xl%EFBqo{83`VBm!Rr|o>U_T3Got&6apT$D>J-1x@U>&F`>U6KZ%to3IN1fzJ zY?K@r+okHnMm)Twlt#+{8de()Z0ctt2i(eM4eBiP^XKgeDSKGRNBr~Wd^s+%eC69} z5zIkXo{L?JJIY3^=c>;qtnWupX_?!+VEjswdf$6RanSin`IncSd(rZWYi6> z@s`&Bdc*ON)_d5Gt}vEWDwOo0Yt!9G_6CE<>iD_~sm=rFPS(W|#}jO1_>#U`v0?xP zl4X`_)_0>a`cK^FQ&}iZ`Q^DcWcVmZOV8rc4Hnw!I=pGs2G~FLACf8hsULl`ZM)%P z3GMV|D2*;+qvR=M8KA5h1IX0G0QF497gg^QJYk^7dj6|WBTAj0uvdfUIL#?{hLECd?h+Wd}MM{NJf&#CwQJ5s!a6Nnw zrMLD4|LFzm)q>@hKcyF0o~aG-%j!YCdsJuUp5>ut25ILPZ!WTZ{HM7FoI`y_GILZ^ z;5=fcxu&cfF37yb%m7A2nLwbZaix-;rBH!N4+w9(R(9q1K zDQc%bptC7wx6ZZfLNSF8%lqH=BO9qx@iU;k=ourqsgt>gCH2+%Ls{tltW~yYRUgrko9=&{?)!`i-<{{ZpnO7lHpCOZ74neJf$op9;XK#cb$v?= zn}@W;C@-QU#1T^z1=tMHk^ZzZ&iyH*Km;clN7@Wa~9&v zi@EuGKL;%+QfGY#;~FFmBUH7t)$IMwBPY=MkzFThP zQwugSbC$&;Kgtbb~_y29^Q)@G%nnK4Ew-N z=cN_$Y>4A-CkB5uH6g2% zi_BINZp&@yL5~Z&CRw~@Bdy~efr@M3oHaWU9_2QO`gX55lKIOgROV6K*d5D)bLWty z|8p)Pwaij{JC}p>Y*Ay^au%Xa+#&lI=E!{N9h^<>=F^ zLs&>ME$U*&sy<}ndl_Fpk%bn-EWqn7{D^F395vcah5c#WgWg^@7HY1JmNr?dab$1r>cjA$P*41bzJ+1Hl}6WwJHAtb*x_YOTbhfT6}Md z*`e!yARXeArzb4>kSE!#X}#S?v?yv?kF{ej%DVnBX;(xaB26l~RGQq2oFnxkr$+T7 zYtoa2O9y(;^v}0K(q^#Gtw7tQoIDn4X{#qzZe^jt&lY~mYv4YyihHI^hlO5S%~^9V z;3L`<^0RW3D#TS;m-;#PSV&oMYl_8$KE$9C@6^V2Bgc24>ASYD(JWKP-V9pp6R5?g1Wp2>nJs;7)CPw>*SPt@^QEW|zIIa27vZ{BB;XHUdb;riX zy=WkM?PpzO7MgzKVoktTE^592|2)r=E|fxa$Xx^XitXB~&TOjfK^rocSFY}1qgT(5 zj*cX=kSpcRyJH4yH0{GhFS!m5^7(DqtV|-@6F1YmPt5N|)z5H--luwyxRa;dhgEE3 zS#eVL5`yur>Uw=!f`#-m9W_?H?MHH7I`0>~V4?hrbrxRnuCDLMgvdJ{#uu zqa*INrG>C>Gi>EGbTKe!J2RVw?6ct-r>D})WLIO zCR4v+_ok{jz1Mp#_o6Plccv=N@Z3unP0}!r-c9v?vhWWU3iqoPQ;X?B^NM;8U$yT= zTU!lcr4>17qk>z1$$$vq6qGXx@yBS%KDMG;ft4Bli=K6_Sx&jFC5fWf5+m@ zDGuV9OFS++#zPNp{rYH@ESwKs_lJ#Oo`x-Qb=N%Ei;QO!Yu>*15uMx>_;mOV3sr}^ zb}oi0pu4S5_C*ww2T>B~im zkMtZ%p7o*KX@e72=d)0EMs4^yn7?mpvs(+^Lj3<;-GeuB5J-5%=dz0&YR)B)vl`4 z7Yh63OU2C-<>6eu(mFf&k2Vgnx@A|#SPl2s`*w%DAP$!N>8U?=E*EL&=WpB;%0@w6 z3poR=EL7_sPb)qL=M`6$?ED(mbN-jd^6zohODUE}+ zOfWg=OXH%j&F44X)a*gkAti6Gh;dL-=P=7ZkB7*zE@{TqeduyWW97SfACc99lR-hd z*{Ec@LuJh=h{vWRf9g8KL1|M?Zhfygh-N0X8kDi2-6hNPe$Rw;_SQmnty?duR!(;x z4(mr0uWrwPqmbVj&Cb@1f#>yQV(mJ8xZkqp(G(%R94wgjF0SVznp)IZ>^RRq76wok3~oXbOXtaJ6Op)N$Ns?BSH{XweM z{};SD7e(hrRwloIdxg`o-D~1GXz9*dhb~ugP}SF5ZAVu&GJDo7dvZrFir$kknu}+l z_s-J2vv6=8^Y2RRH&Er^QqJ;og^>{L^uE zPB*%i^eAw~RLC2>k^HpMn2qwRW>iidggCT!$(3I>!Z~}&<2}Ox*45k9CKfP%W({?i zC*-iv;@5?(*C9?7D^}5eJ^=UCU007qz&$8^zVt|FHy8DM#ffi^fORI`vsbsh7hP_M zMD8CTA7!#;l=UYUEwD;eqp#tide;wEaBm<^pesG|_vE0Fr7kP~T*pPSLDE|J=Xwz1 z)~B5ZQz0Mcwj+DtCpLQ9g1fho1 zH*2faU}#_$y65mk$p!Lmy$!+Td*pkO=F&;WjRx7M^$59ipEd`{zSc{62mAf>J<9VB z-D0Eg7fq)h7qU?bnfSSH3FPIx{#bu~S})2hoBVh(y$7`|dKsew?a{+GZVEfdL9PCy zsd=|qs6ck^H-S>0Q>lN>P6(C=efPXZd0Cv_kKbd)b1{#8;65K)_Wr6j8^xv`3JTc^_ZlxN z$F7z>0T$XV0gEJegZZ~gh*beKv zH23q*sce+ks-iG53+_u{cO@n{Ks+PuacJWO7Rr-aVX1zxAL+3lr%qYPLSKg-o!K)8 z@sG+9pU(PTWVohr$uj7tap~d@OKn&vyXTiRzHndLY`@ zF|Z$RT^y?oap-DW<5TP21HNb;!Kkkr`Ds3pz==Ve7q%nWdmo$|G~>YSuDz(ZKb>l% z4(rN)O8?^vY~*%q^7`rUoD5aYv|lZNcnoeaA7Gz){$VJvTov-q?q)CVavV> zx@acscbhF(i`TNzr%M~2&zj$hsCPHqnRStcESyi$FTnh~^4rGgL-2fpc3x?4c-xH@ zJWZdl4c23{XArNF!a{r1zu+&x^Gxe&yy>?N;?-AcvbOiJ(dg^xuFYj^Iz=+OQ8*yDpHjh5m(j`3AJWeW-m8en%4QgN(?1+OH?G(d0Rko<3)>QQ@H}PoF@Z z@$JuNeBXi}cg{|clDNx45^;p({t2!MZ0uQQf_6G3XC(TRPGR=cjwct=eO3 z6tB>lAs@v?icNl6O%iORP4uVs=(Ew?4!eYK77Oh--Fe{?9`eBw3uGt5`Z|Ajxqh-7 z8x3=-!)Pxd-d#<_T?^$vKW-`BKrj#I8)TUkbC9atnNKla*@z*R+s=dg#ra?7O*Mph zbn=yq_QOs#vbDIo3)?GxbJ!Nyqafpj*IkKjpBA&@=$!|tCeoDJoI4qALkkMJak!u zsV@uhTlBu)x(i=%5r^*8`w{XSAt`;6Pdwrx2TH`Bw-k9ug;=7+;&IT5@(a@axl? z+BU=P52(5Z|JnTn2jxt#c|nioBIcnN8wr#Fq`v;?)@%16?&$J){^dzOlG54Uc^l?O z#Bbig5&L1kyt}Hzp9J}|{9S1QJQlj)J894r;+#cd70zK$pXA}EEy zUgMq2q`~ugr@2%9>i{Aim*p;o=i-GN;x+;O%9+R)x{fSVOuc%_GYam}kN%8(n$1NL zYYg^165}Bq)~iXK3wg+1EqnAQ*pKEZv}UQ44y>vm*LAYN>>=|}7tKgu8GgK}H$iVqM`p$9d0K5k}VEZm!i-oNBESa;nl!Izq zSKYq3dH^}ZzNhrVJSAJlZoCcogGIk>I>3T_!7rH(?!j=c7jH3`6A$OgBguzRS0L~1 zw^j|`1pBD!May^kws3CDik)ZknguIv-R<8?d8lYhv$_3zSf3il@On%RvR{)jV?Q49 z>hC`sJ;LorOKFo$_r>wh+j-qHo%{yTvFTS*7u{#0eY3aqR$TamUg!9`ZioBdahWrw z2P=8V)`Un7_2!|njm!JI4s+0kl1RCe(}z&FR`F-T9JoK0N2yMMd=tr8%eVH~5PEv3 zy(jYl2lf11w96g#ckvYOxiOIUd}Wc<=hnhSL$4eS5=sWq>;<;7%i%pq*ss&O?+tO$ z&k8b}h*clZ(x)Sv#Akg(@#Lk-GH`$XIgifRcB%_0+>7Wqo&b6B-;XB#-Zg-lbL|G? zc)jRW^!r9x9f)`9cXrW@;JF`&J*wq7fK+$1nm_xs59xJX@;y1gL#khvRxQDE(AmPy zl!-$0u07=e%*6UON z@&3Y?g1K->I{1{?vRP3QsgVq}T*`&+bo3xCSgqWc-ox{}txLb}#6ftEz%2}!0d#Gn>TOm48=c1$m523k5#A?)+aCh=Q_1X> zljjDJf6~{L6*?6@%y&jg?dK3&c&A3RE9LzuR`tnp^_UH)M6Y zpRPX4=eE0wjZ`jDs{g+zy6$+a_b;wARLY1Fr6^KVD3Z#NB$Q~#h$LiWG-$}GR6>%y z5~U(Snk33fNK%Rvkv*Q}v7`IGzklxQSNHPxem|dc-s>D!iXI7!5dXG~#z|W_)sY`AanS7&hO)#)`tkmItcuds zu<5a%n4~@K&w6=%+n>OFt;IY=j;PCDV>=TaBY>keWj!p{LVvE4b?dzbJd~7Ls{6H< zG|MA(nv$SnZB@(zCvaMz=*aW;#}#_whfhO?<5 zx^=fV>WDUvQ<%1W4|uHbCDCdYe8a3aH;+T7I~;shsGm(k&1LWQ)pBTy&-D#Mz@=)T zy444PU+Qgq#kv&WpRK(cP?o}?knj(o8o*uJnMyrX@E2D59@AU~oa7{%t~*)>92Hug z^%>74eu{gQ*@^*DmYo0Q+z#merr$@8im)kfZE?KyuRh9s)xE%|i%k}hWm{9=E30j< zSZp_IfTVSIrG2vIkim&RB@KUp+kB>7|M#VzJXUAVdlv@1MEc(*KIkjX%Y<$g18-<% zWM2!Jis!tngl8srdD+m=6CM}zr9N?CDg6BI`eBOZ4_UNYIZ0LEGV1+W>CU+w{iM48 z&1M66HpQRXAD3(hy}$IwQVsN#Nv`+1%g^CMe80T#kQtjK&&`NVUI4%T(WN^T_&$Fk zinL{bH?`vr&pHKtp~9<*BMtqbqrfpTWi^`|%f+)L%UHDCv?|rm3iw`OhsrAGQosH( zW_swu$13nLcXEeMD_prxMHo1^TxjyAF!=m+xkR_^{q#xTb7k=|7Ks@0reIwQJzLAk zY=Ry>?U8!wloke=-)Xg)2E6s{ytA%LDv)yeYHS3-$h*(F0{6=*+tcw2uSdmoeZwK&Ov+=_DD4^Tls|M@n{D zKdsT>T=)ZBZTi=|*`vTYQ|&Kp$;pJCrfa5Z2>drG#nFw&d-rYR$^|cE(LpY81Sc32e8FBY7WXc}(oJYO^rfNvkM_c-??$7CE_zn>(r}-;kmFq@*&S8(cf<4k z*4bKO30-sg`KtWxH}GZG)ft|50&j0g*Zhk-#k6CA^8}!aHwD-ksengx#kH+xH1|>Y zeO)V#3;4C8qwF&1LcWK-rT)0drt{Mzqk^4T)NI~+IM)_G-x1#^pC2p=KVr19RfI`e z_uby9@`I1aT(rK$?V+pb^Il}wu!!rhKwLf!zCyg>pIK>4>Q;&$^hxKCdeNju$r1*w z)!=$6bS{J?F^Oy05>z#vO>8}HX+zwr1hR?ag-)s~zh-*S4>tY&QhtvLfR}f# zx$qX}~jOT6YcDYS8m) zPp$sq$)Ld75kKn}FexNs<`HpUoVQ(OujPP0%Fq1p>evfCZPT~=37LHqa^crP<$nws z^i5@L27f-OIi0yqv5$<3J|t`r>7y3==J=VYC$<+aC@i%9U(YCVDsIHNO17GxItBXP z&QsU+oyL9e&`?o#fzMN?9#e?=G_!t2_Kh_x)Yn6=ScxpEPW~Gz=?5M4$!k$xQRpB1 zPn&101+S?%{v?lZzfS%*@udk!%6P8{GfVjW8MHOD zNA7ba>hw{ihNUX-$9S{asy-qA;jk@X*%t7?!Mrp2iT%{u`Y7x>>J%e;Y;#Bvlag{Q zl7v_FkhySMpyFcaf7RB@9`kTWLF3Ex7X0@OQN9ivuA&drJ*l@rJ$w+)AIP1@Cb8uw z?1cxRD{>ZGzwjQoT)Qs1Vh?f{w=3CCz)#k)8pYs6tN{gM^8x{he2YQyTnu~nGhCNme1bh`dy`21tw{McC*&$_gkO`DTuD2ShA&{)Pl{k>`|+T+F? zAB7*{&pV|{N{~tY+ebs6!hhSHy(#nGT+~UGBL@C{$eB3z?p&V$eq6fkfx#~(NlWJP zroo5K|Jh^UYi+t+GA&vg4I z;WIu+j=Sb58$zF*nh}v)gWN~xsJ>>!;2?Q+Y;C*{$)Jw0)GaglhAH>t`*xR?==<-A zFZqqK$guocLKl3eRm0(H_>tq{+-2J3LKibX@$va>oWo^Kv6MOsI{A-7GoO3nUUnDk z2++Wv2i?4R4|U?%g8N#EJuG^-cD=^;BYpHe;n~?Yz|Vi5NuGZ3Z1tFR8?fXHK%{E$h!V=S3WP;&x`?DRbzGhqV*dW^&1* zR`KmloR>44$|Y7(TymOoW2P9szwo>MZl!Bn3LS1(>Q)cEXrq0V+%ztU9CUpYR0lux zMYYaV@U~gMc3$OCWYJjLTxKQm71ph%XLUpk(#jY6BD`*(|H-7CvCGHT|KuZA4SeQc zX6K!G4D~1BmrUL?_=dq@RyX$cQ4`;XLaq#himaZ$wze6jK*5>OK2jsJdCQ6SQJLLj zVcJyu2hVwh_;<;nOa>XN)~G#4US(y=)w4Xh&FieqQbWXWut2 zIT|zlTAkVSQ9ye~`a|58=|OYGP=_|S%(gTW0Pnt68?>hve4Kgo-U~d3x8*PI@|;7x zm9@G1CLDG6$LRoLjS>VVt)ib%@(bocunmmKi z-}!&unf(WKPS7V=)C$jkcFq39f-X!-n<2Ku!5ekm`i=Ql)-Z*2C~5IN#CbJnI51j( z+|^WB?SGxfyUi_a*ieo7t|rJ+-#tY8{G(sZT-r}+*%4~O-~q>+x0?%GLJpuLsfu?2 zeEj#*2bP@zPwx(CNVz;fo>?KMhu|+J{x+z2Ijj?$GRzy9S+f*|xDB-a!iARn<}i-7&zgQ&*k1 zWIc90Ko<8RRJ)HYw{ei7wu{uaJZ6xm{v*vNs88u<<7}K$kn30>-8+%NAblZ$?BVPI z%Ih>O;s|j`HNC>i4*C%@DSt5!aM`y@Gu=PJpD)u}ejoyTx4wO|%j57Ns+bcev_E-} z<~?rNa{mT+iB8O!M-#{^24zeb&KM%~Uh$!&lE8T{i-c7a+9_4MJ?sf z$JgjdjaqUk$7K;`MIUktW!@|{>cx#^Zbg2tpxdr-I3^1ov!$>&;5PW3?NM`fqdS8# zW*r)?I0T*Ohsc0h4wvpbjD?Dze~SFzJhSoV(gJh2;_h_xzY^6|InWJsAGGkkhaPj$ zvf*Ao`dMaf^753oT=ElCOf#=%khC|izwig-1C9*~9eFiCZRH9Fv{C%i7lEWrN6OIjw-B0yJ z>+io0K^@{5o#}Z1dfkA|4Ks5tWgLDXpritx==GL=_s|e2M0_{vaKPsZwddI&%q8>2 z*eFftgQu#S3<8?^seG-;qs`l)M+r_1(!u-djyzU46@Ho#BUpL6S}z5$hm$uwAE31+ z*#V-^nL5H(3mk)9PB#7R zdAe&5I$P20xg%}RZ9lL!9_&trF0c43-ywuS!|%2kWM<;)uAOOZ416}iw?1=Q7JSM% zdp)c9;Df!s8-4o|i!`dYZPt`Vj!?28OE$lcl-rN-d$$8;M}1uJ;s%2}(oEL9F+x64 zV46=3c*K^#drSA3v#H>L9xD^R-pdafVYUr@RPB8J(Q!ToY0t^AkkDO%^p(w9A$Xn3Gz_WETtXLe-+MO+xSTc`QYc06SD&t*uRWP9=G&22TJ$T z&)$|a!B`fpacP+!6vU)ojY|55kuOwuyhidhc%1a-h4bf41%H@baiR<7adY0|<|jB` z^LKCTY+^7eE3xXxBj9Y^j=2w>H3DC|x?R)X(@j<%2J5O00e>EC)sg-Q{pXI!mHFtK z@4jZe*b6@JjcwAM)~3V-M38kjYp1R+bo?_maRrm#z5Q9QR|Ni@+4r1OG+#=BmIU zwcRzH?ZBmt$B#8BS+hwbU2n{FC6oR>{W7g|H=9DOvxKjRcGBa|s^MQ_DI$|_SYy|f_DKWgV1ou!kFd@2B7e0b`KaSNfZ9nvId_VLO z<(%Klhwz(a4UT*WGJ?)rt5^{P-S)~2&pWxm)t?m}eqX&3{X8r+V!sP~fniSptK)-Y z$_nkQ+Wrwv6o)`uJrV3gU*<+|HuVyFV&W$ACwClq*F34a_9OEQQgJ?KVDrX zbq;RoytNHDX47=pCA&t+JVSk?4tkaU``+XKa83ms4vG3C571TFo_9jcSXg@F4Ho`>)m) z{<7@#lm4#ASw!>+ToX!SkWsQzUoCKWU)DPzVUJX9&N)O zpeEjKZNo+I1Afo)E=PUrx{@F|?-!R|jnqHW-T|HcPD4-Lmtj&};=$j~J4DRakr|vC z=wKGYm(HTE3)!6>o1WenrgTx4IK{chXBcMl3I`6-u?nfTJAhxkYM1|hx{^&QDYL(3 z;oRS9vl=db!=;#Lov$l&a6hB}dK4j_ly!M-xVP#6`5#u$xCs5=YoFv#*-_{@hgMrg z#&9X5^$pLIo#3lCd=0~q=Pk?O3t9<%pnOfB$)>kMRG)9Ex*Gb{H+Sd8UGR+@yn=eO zMfyp=LQTc``4CMlObna48+nDRny0ToPuCq!;$DD{Q}V(5olD;!U5oSn<9`cz3)gAi z-fkPE%=FjJH}VHbdr!~QDPMpWj|d2#dB>r4S&3B^_waRI*14;S!ms|J)Oh#;hiVk~ z^^9i?(Jk%q-C@9ujaoYMJ6GfT1}8*ld2lIV`nk&%>LbL%U$FM5?ErL%rB=S0gS61ijIPKBxDctBTBb7wmdFA{{5T(h{&GwB0?zrNGhVQ$cjHjn3FwQVzg;KFps$*mh4CytiF}Co z=O|S*hk{l!}epv@O?i8@Xxx+rGG(H<_8r9$bF$i-v-Qy@V|Q9?u6&;HF-2r*PBI_ z1)*7rnwY<-63S}nh0dbVRk#WIpS$2}+b}uk?Y#;oE78Z5YZhEC4#xA&iq+HGF+``? zqaMLN(4Y65x2W4OOo|RFce0lalK8*ce*NuzbjZPc-rBYy+Ft#tEC_XVb>4BsZs5xj zll!SrMMLD?^HBBvq5+bbyjzw#!68%Y$BAQ0fDhS^`5iIOl&`JmXP5~8_sQ*9)28*( zFQZ$M9l3vr$LL0|ST1z9PvbHDMg62{dn0D~ZOlJ>U>`V8$fRtK$DYXws29<@Yc3WI z)65TM(?aocKe4nsK+s3TmI$wX0KZ8wz2&qeaAiWomgzmnRc{e)Yutvut~$cpHO#?z zDgEi&D>Fz3{cr62XvC%>Z=Smw_kj1P{f%Ykp}yHk4Ef|S>A?Fb9%GX%%6Ppsr}F`H z9<3{Gyx@&f*1JrTt^>{q$jyET9f7qy_+Tyi6zH zlzzS(zX~1M(ZnOh8M)KjOKKQ3Op5XzuT;QX#K*vftwrb~p7Up~j>3PJt-ZbE&_yPl z`@Zr-;23n=i^`uQy3q#@m7My!fJ?KxR%#3&w-;z!f4UfbDJseK2k&M)HwB)Q)5}~8U8GkL+9|Esi%_@Id2%XzE_pK0eiHlnn?pf!Bxe{;ZQ?sIg z7Z;c$*Ev9++GG8o4D%hbaksx#;+`HUURhu~f_(KGb=!30-2MMls@;_6A*Udzoj-Tt z-r3wfwg&w@EMkiD?%8dI z?yS96@f^NxO^B~{LeB{F8QoYnRp>c0vK;tu?rz#=?5_g8Gg8_oU0?#=_sQzr|IC=w z5qaa@p(eb~Ob@%=z$0@ThRu^iF^BPKhk^4bd<&tMA&bG2^}nA^o_ZI2Bf=q28W3_Z?ecW z^Nh+H_^)eYd~aTcUlUX<@h|)yc*dTlDGF-v1KOe*rSbRNF*|N*E9$5Ja4loqFe!L% zn=k`jC@@H$D`19tqgQo%5Ijocd|%l)_!x0K^_`KAkp~&OAD|0-obp&Y+dmyR=g+H; z@8ILvI^~M2D1<&@cujmA-pkEyrwJzbjNtQSdt~`={&n9S>wAQ`t_078X>ZVPwqF^` zF6gIw4e7mea9%iuwX3dvX3|d&pY`3~0Ui>ujT{3O>8ww$Gu*@?wM)E1A92ptuP_Rp zxt2wBf2X$$l_YUvSD!-@F3euAuyP8gPqtpSX9tEAHc-)4S)@ zpj7=bSmbeTz7B$&MLe;VY1nsaWH#-3tHfkltkHA2w;!Y@U4$@7uk7^OnEJ zkz_y2ekDD9kiwR2-FFIo_uLzbovHv_8_Vy!;Vp-(et%XxfIc{;m-@2?_^e&ZeLM&} zT&$~R$MjLmSu7S?+9k`O1-GghU(tu<&RI{3`_NBukF>rw;pen*{8)6^nnmXW9!?qx za!I4o#yryr`eM70+{_Xd=41=JTBQbP#<981lrTs`MU|2H=zF`)I>~G>7$U!)B_7Yz z*)%0gfAX*%^2ytxo_xhQ9a*)6v+f>p@_Tk2x|;~S>&QU-qoc^1{R{JL?0}9Dkx=n+ zHS%?%GTNb6QI8LEzqm{EQ9W-lXI(pZi18-AKX^Zy%Q*j9C82Z9eg0-O&P8BW{}Fyq z=rbOxs{f^;-^?|PxPB0emN6ut6j)ke%$Di0cJg5N!xx~;TAqmMLIk0>7i z9@PKo(sb1nCV4$9A9Rvb0$BR)S}H`nq(`o?$KR096&x3br7=An+C9Zjk= z5f~(yeNzkqP+xO)er~?zi8;Ax4(A6-hN#cw>PZ7UmIzh>w~pQiD7KjP3;x4nNS@Lo2^tO*JNusYbFDYS64pA?DGgDwQe8`M}yV=>jlxgK6>bM{L;GQXke(IqWivHod z-VP8qGICrUb?#N< zH6x_?p{=^t1$u$7=fb1qy;LS4EO9h)mWbl9h-p5t> zvnLucM`tRtX-Pl&w4lb!%c?I?huojp{+|za-DtOqd2j@CG3nu<+FUGQ*9uwG&!r{L z^d`?JVgBys6WQ8jc%D)FORJG5`?h7KiS2phJkHJvTzCTdbZe-B%;H`O-G0x@yJ~0cxC5sJ^TZc>s2kuI+|F%6XP1{Jb6ScjYnREn>rD zo4d~}26%Mt$se9ECeR1$CuHNs8ML%}NYD1{D6KJbo47m|dDN}xJ#+e4bimb;G~O_00<+qZ7t0vC%i}IF>p5RYP zkIQ-;^?(ajT#|T>dsg2z`ygWj=9`7L@m`ZfuI(kOLmoV|UVga)8_%QSyrSEdUEt|8 zRu^;+^-}YsGLJg&P|3K#bcvs+j~ypONl+%{$p@L zjrTbf_*hh*Ed(9Wh=1Nb1LPLUC*2?UOTibleB59v$fCZqf5%=(3{ZpJrI1>5xUi{cG%%%kZ!K)@)3w zh94r6vo6m@82aj&%CENXn4~B=aoK(XzCc!5ap-ouCykQdMX!-BEY)1TUL5*B-Rz;CFYno3jLa!@bg-&aK1Rq zpxg?DA7PEiWoD{QbAukRaIDDI#feM7e-FzW$s-R_YO^~8`HxGnp=(A&;FqxvjXcKp zYrV>y_qc{bIjXIP-T8}a(uS3N$JAyne%%cjW!}j^7LWogevm= z71nAp+XIo)w*JGnZyIv%eU=^CAAqlw8e{eeVP3~y*2EXM!{XywfhzQovc1JZl48iQ zjIFP%X=M_l@@|JOa^xQ#>_2(~c&z8%<(sBb$n%Dso7JR<`QL4-;VyNkE3+J)G+|C5 zCPY^9AnL`}+52J}pg%nt_}o4LT#&P({b?EAPif!Sg=X}fy9Xw^+0eh@+LJTCf_IHL z{4z2)f?VxN_t>X+uSKs_Z=@oplsLvSsk0Zk{Q&mP_>mr(VsueqJI;-I>iB^{+*fvZ z?e715@!P*yUKgQv3OgTumaGjv8@HeFn+JF?r^U@3=aF^A{)6iqM8gYCOc+j-}6>Bd1mTS9S&D#lIt4s0Hl6COgZdWGT zWru+;UYYyo%hXYF4(eSUB?-T;*CuKv_z3Oe1YRl}A|=K;mEH|QG>_Lf{f;AY!J3~6 zNY(iCq74opCmX7y+77)cEcv<1^8IYuG-Zv3 zdg~z7Rw~;SIRGyiPg=~ojCEBbF+z zg`el6Kkaq|bk))e$^R}#Gigj^WKZxs%o8YI>yM2YqTtlvxEj=_!iXcTXH)wqZ+nEn z_oPwETf&Y1&Vep?#wkk_b;-EUW80Y&4k;-|N1$pG3<>v?9(9nS%_^IA& zD{v);V`S&ph`eX&==P1!b>kA_KYcoiysM2x{3r0fjxj#H5cI!G-tk|3k;`;Tm~mNZ z%>Y@8sIAE4#~zMnH~;REN57ibrZF$?f1e?XcOx&Lyg`Xu03AH@2O}gI{7{y2AUAai ze1w;Esp~}ss7y`1{eOSQxn||eQxTXi-1IA>bO-uf@%@Dw8*%Pm*d}Qpmu$4mov#GA zR>8`l?uZ>UvT+S*bvU`GRyLTZ&5g}i_6}xG6G(F z(U|G>9(_Dk{#N#OJQqH0WX=HP4W`@NK*qt${729#C@*(fu0lE%Z#N0COZ8XSSAjQdIr0Vf5=bnQM2UfgD;9aN!!y&~>wBl&m2AKaxX z?A3?4g1utTR(GJzHC1?BpJdYBzbRLC0hh|Hd|mhCSPvCdn9A3pkEgrN@m_@bJY#>* z@V&$~%32_|w6hNNqeK4AoGj?BQ}ga}z_-6u%J-fq;9?(y5y#Md4B2ER$iCj!g(uL_PkLR;n}Ip_ zz^gGC6GJ2^c~gEXe7~ucY^VFUFCDQ~J3=MkCvLy}qZD7atU!0P=h(Ly66?vuah+=l^r5Rq{F&q5|me)e#D0Ny0GrlhfiJw&%-miAq5 zhHq~<*X1D2VQp@TLaYXKkg4_qDewj4jm7mIDvl7M^(RgP^C$cCpXN^)py0S^;)6PW zNX^>)QS@%Sr&+wd)4zg0-`MS50v$ededn9BFKu+`Tbg(5JT5UC7tKqJMn37Ez~*;$ z;K3OWfBii@L|OyCC*E!VU$9!AxL2%`_HC9raJ?M9&YjLz+a;Lf$)nrmrp!fNG=(MK zkN4grcF?8;d4KVRIrb6IV_ru-ue15TE}2!A;(6?yt^TDDcvU3mh(_%6C+aG{){fkZG?C)S+t4f8tWj>26S_2*(0Uz6$(`h5Q1^SHi^7rY) zA>WCP*SCO=0s}II7EVQe&^7+VPyC#w-APM=zr&9`y}9dkFg~}Grcx(#TbY}BHf8Xw zUIb(Zb!#Fg6m`P%*H7s6R{28XUGM?I1Dm_1Vy->mZTJ7WnyshTk1GKzx~G4$!fqY% ze9Ir&Cg%-McF?X_)BM5L)5ojUq;e?0Y`%m7>VTT?9p#rB2go;WBxNP~Thnsdh~GL! z^)1o!LZDAf1jt$ zB1dV*L+_z$UcF;3x%Ug3(yoohJf7c85i&DXid3L~ycFsE3%z;w^X%WH_&L9(w~Lf% zu&)d!M6zzdyExrHeZ3XY*ot5azUM(nTw;z;_WkwY(!0 z`!t?qGOqPu-_IRkxAbEyvb|kX(az7N*P9+md`Uu~vO@=4I2mELt;QKi#oGTf}#WVSk ze-L?-FW-tjad>;dLMJBn;WY7;^)*AcR^DPV;j%BjA^)sy9YI3xJDC^iBP%xisg3{=3ub;NMvM&^Nz>^KkxCf5-ejs*F0znzNvT z#GW5|xOFjjllOtdG4(;xz1&=93x0f8y<*lv=*M}9MiPSH)t8Tps<=Y`GL-f=nl}@B z(>4Y*^#ec^iA3+o%8t9x(!_V62WN=vm$0*^uG-{75WdXr6d zdiyl5hIGIKO(aefB5%=y6f7qFuzi2U`X&=^SN~@IyNktX>OBsTx@`T9q&74R?tgJhWqmQq1QNW6UERXoUoqG zO5_MHulVu>c{YvfXLhG43{&q)M!6CpcfS8saT0XL%#0NC&7I&K?@dlvodKTv8f93C z=bDf?--CFeUmR!I#l1p4e`8BU1^T`>-#*oKj{TJT;mXFZtC8=kmUiD$Gf0~lU2{#u zu*c{AkSZVM19PuO@l^nCN;I5*=kvLngjSsVJ$noMqpyz*-d{(aIG6XG^wB{ISl7Z; zZ|bJ_QFSpjS2o4+{5{(OJ@xHQL(b#WE?TXf#A>e{bdiItK{>JB7N*F+t;1lxgK>h=FCiu>i@sa42kdH z>2V@2)y$yttghQ&{j>>shS zM>-Sw|&qbcr`5N!zJ-Dxnr{^92 zf#*0ir^BKcxYzwo|H~cF^_^P&{wdNOqnwkX2RW8q6#twjr0fv*YzAlX2^G9|&wtHp zCAf60Q=`3HoI(CpqWWHVE=NU{`!DSM-`^~^yHEgM;ORNPGs^J)Ecpkkz75gY*~bgF z02eEqaylJa)k9n@frLwo(OIAJQuu5+)IU)>hYfvoagyRA zPw34@6wk?=hrUr@KCMa+^ZboYi?dgV_L7*2pQ-ac0Y3G_baTq*KI*<1 zveW!3`0(Qk&ky!PFL<+7>kD$A#r3zJ9{<#h&nf=-Skn+WPf5Ke3I0L`=c`X$W{{-t z#=9TpAm_Q(?NthRk1OxIG<_lXTf^^sEPwUVY$-EUN6e)@61ecKX%YIG+d`>-nZu;v zI-0c}@XsaQey**;dr!AkP{(^0oEy`n-rhqWzK=BgsbP@9+EI~CA^4^%n$B9BML#xp z?$vj0h`b8qB4RT7NYJQiZ7q0HYI;ki-OO&9T)%Pexd!adi*0cUlfk^;2g$o>@Gtvk zNQPcjM()&R@`5(@iKaw8=#o3$k3Eiwv;B~BIDav0VoL*)>Zdx+wnR=dqr@;O0q1m| zQFHt*H}I*Eq`%7|;bS~q?7v#Llb9#A{g%4)|K7-WmbeM@%Xv#W3^~w;9G~T?gMXDi z-7ji-tdBy2_jR?pquv{KS!pdnj^t}t`geEik+7cW?u&hUhZRH4dptmnIq-h`Mkn|$ zD;8Bp&IZrr9X%*%-Ah&HYy2&-S8e7Y;|1gS{nT3WUBU_b(_X|#@Ye0>AjhTIHl7B^ zM?Sk_aS?N$zw^u6l_olAvHs(bwb<`3GFQK$>Co{V_;NhkW>vOeT z@Tq&_-hb>S^?8h|Vy_42wWGx>GvMe~ti5>)hfdS%IHvMx)6#cq;W#^0= z-NgAZ+vwSaUWzGV*Zo-1OBScaPkMm2b8gR&S^>h zNH=X-6;X`dI0{*$?bB|d?z~P%*$yEn) zd*A+Ss=Wuh;y9Xr{YQ3tm1iTnQUr{cxpY5&iEv2CC79D`1h zm-lpJc{rOC=6A4-rvM*snVC5U_nR+YJn=g8GPzr4R0>ef^%L^NHSv8n?0@K|h@rPtGv`1)* zNQ8ko_#ii7aQdQu`1!ge3Pl$V(8DKJ^CG|Wkq>LeoKs4;-xBBFKRr5zc?FI6mEc3R z=BoVrPIO@}S^C0ud|uv*4&TP{Udx!}_c<)g4~-Qr7E>OkEBV>cOW_wdGSqGz3-w= zB0v0p>tjz6bJLx#$XDHJ$=f#F0rgk*pzZH^%z4;}r5r#${_kD?4X;qw<)%dc>$rt; zd)sz}^Z$9cD}5Y86ZmTfJ|C9Y)&!sZ2O%3~#uKl>&tmW2Cv6*`ssswR< z8GXwye}EsJEU};mI3#&R(O$Q0$X9$AY)Zx4quH52|5N3dKN-GLV!sl;$(54QAn3BG zf;XRbpJO7I@3!S8_J?X!gxN201fT3I>fUYzf9&dMY0X#2@m|r$zGU4)EjD*sFekub%pYVK6~)gs3)IuWxG_uq;9*8D zBSSTcducS~79D^d`|Ejl>PhT1-e5ZMMBqvXnS7rxw}ellzpCKHw&XtA!WhoJg}G#f z$?x-;1-eOYOZZu9lMY&uy7!~*An=5K4}RG#@MguV_YK&itav!=PcwLDjfDHeE8q@? zB^5pU!EfTt%Z(c<;E(05?~PUJAYoR)Zrj3s`Y~{8*#_XZBKwa?Gms0(ys$`cFY*Qj z%*m#TTMXKlVX4fwpr0b66?4S;a6kUu$VtRp*DEvGB_r0jr$UNFH&T0uu`b-U7Q9iV z`}1_E5(ZtEqOsd34*jL&l$a`XihJ)LHzi=-scM|xjjW496wdtH>)an175=hYF_E%wX06x2F}{bHiMY zkm14YuTgg{yWV&E27IIy|Lge}aDA6lcbO6cdu&&B|I)+$NLS%+S0ifKG;(0Qcoq7^ zx#O>bny}w3J(ANo34GguPJBs&aml$fcVux?YL*dND%Sd$JexlXlEYgfFSQdGQHf=z*Ep zr;238u>V8Q*7%A5e*WhDUhBlU^mBK3&L`wKpXyd>CV;ohQLUan1Nnpg2DjvAR!lk? zv#tCW^mn=MVouL-{_m<47cT%_P;2M8E)4zRnwsK}o z5(z=@gA!Gim@mLQjAnh!$TZ{#d{(J@jN|9cGZr1p=hDTlPgaj`u4|S?Js$@S5;L)z z!fZ#Md*r3!2E3-V*wnEN`rvl$Sj|N~@SpO=X->!h+1>LMS1HDPPf*RtW#ALKc0>FB zD51a2(26}VZ;1Y-_+Qa|fxS7q!atnSiU;6 zQ3p8$$6ex{$Qy*;J{_6>pCPHpN502`L23P-+uoL#;fe9cm3ceiTq0BwDmpO7@bCB6+IKB+pGi$82(=!-qh6^?z0 zrQox{mB~``Q5S1d?*(TV4w4BkqhK?10^gf$rUvzxSJLAwI6VvRYs%2dt-t%o&rbbH z2Jk!QreA+L>bAVmN1mvCgXAX~zo&aI=0snxwn^js&mL6@7Fvy**Bm{;4(Q-h$FKi3 z!2b6y2?>oFd!bj%QLNhXfJ=dY63kPF(9aDwRfYopN3h;-9>8bv@!jp%-3z`N-ni=W zdYqqK^JX8vGECJXANO2>4k~#oO4!c>d$t9F&#Z&agY7cELvhY89197(3EXk}JDXSQ z1eaDi)Jo{@f&aSOR_cU5hq9LsuWv@*;%WRRRD*MKFrv=(vc~ZqBhH5O%9RXI?FH*SyaK~yz#4A923^-_wW+>zB9m&ER>8c; z$8GSaD|P_iQXTW2rqhL=BPofk`wx8EwBn8FDK2d*uunR80(;4hujo`n|6bP}UoqPc zI>^)O5&!SmtNyZX;<0}(86BT%9&(aH8@~=J>EFfPJdv?evrSv+kC1qZ_VZ2}6W=`1 zaIKvVU6!+HTn9bD$w%YSDkkMl1U;II-xHvC^X#)&ykAMZe6e!Xau)9m z-fQFgX0}g!zYYE$5Phd*0p?3yuKE*{pUWgx*b9>|%qhs-x|7uhUz7bo#dZtoAM5wF z<;k{~?@ej@xx5m(iT;`wCfN7i=9#r93;h3vmtElZLI&B3*oJlM0q@E9gvzL5|HiV4 z<-agrz_(IxbwVG0KftGke53UY+AGSwCA^S9H@_$>-X_K%lSbj^HQg*?)aobf4#$4d zz}cg>>+y9gCi6wtfOkEdr7WF_T!`eG0)elpcKHgq2rp9dL?8`!^MJ#r*&K2NIf&eG|s#5jB~ayrQ4Z z&u+fC=Lhtqzbnq(!23(k(OR&~8+!wqwN^So?^&IdJ7p~g@8!Y+J~`xIGAk+q=i?l% zeroC;=*XZM24|~E&LCHrruRT96#n!qH}A+a%$o+Sv=sT!O9?qOvu$5O&$ZKfv-=3% zPnX>`-X;Cymojy9~@_tkw&pFZbigjBFlLi;hD|_-5d6%v&X#!W6 z6sE$cxg~~qlqW{^vA)P}L_Vu{*$O>g)BCc225_9xjn}2t&?WSLm#>80V>Uy7@-gPp zBD7ZsT*e+&R_3_V9YH3kzu6gcG?_uqbzKV_y^s?N_#Xex6@2kh!HXO4&D&nx?G5{c zzH89)e#^=}N?jUbd1;bCw|FA6s&GFnFAoLp$Y&9LuL}OhqSs$iX4XOfnV#Qrv<$vx zaANkcr8DulOjmi;nPAS(W%)&8Pt@B`DPsZT4c|&HmMcAr-&f*Qv{e!H*Vv1%c=8hT z2C4JBCk`U#{K{gx%yt$DFXQ!zYQgV2II7*z3?JY?PV~FS;9FxQUf=5F;d9;>i&F|= zQ@6ix%w5c}2iR+AWn+()u8nVO(t%stnMuY4z0E;zxF#G`PI&^3#a|Y{rx9AJeY+1SHk-~UEmSc z!*5@Wq0=ggyL1K{;QLN@I{iQb^IhRNC;g={|L@c4V2^y#P5IpDWrDy#X(c+h4nbG- z7hGtBJqO%7AKxh9znkrnFVElu@A_qa$njt&#eJG>CeY5Hs65u7Jp8_~PdQ9e{Bv{r z`9-?dpqoP<8d2Z{Ty?yijN-+!Vmp$ z^LeROO%F|-d~L6fe#5yK?s|AJa?OD2)e78$<6x4E>eB1 z7ViA$7yWSJk5oQ}xwx;#Zk>Y8RHpepO~*dj1LabKc|4k@2YV-?pr^PB>+GGpHA2ghqJ zKKF1_Q)LJI;-5S%iVMJF-`EzrG@gdfUvAXukvmG;ceU^^e`AhGSm|s6{LvYDvBRcO zz=tiyV~ZjuXyQOA=kWmc(T;D(QwHziGB*ABAJ2A8o%d4d0B|TaRLT2d?|Oqx`3mT* z2OruPiJwG1AZc&hD<5jmT{YPmmJkeGkdP_jupY_YCIV8C&<8LPXQ^^f~=NftR z(__coFNH0!m&iVNvn4O|#zy{2`7_afch}_U07tsI8XpyBpx=jueM+(f9~;hlvlnyR z-+he6h{8v%veecFst}eO@AMw)zWvnJqtTu1lbv9)1?~xfuOA zW>4z_A1CB_!rtz92>hO+cwFYHQ&;d@<{eP2S`dsnA9-SK3HX!i z!^I{Ky+sEj>g35RjNaj zqL(}49Rs-=P5p8EMBs7XZBKsov8gw}Q6>SohaBU?oyDkM0?{w{x`r^17jQrHNj#G> zF6|n8F@k*~JCZAZ0mrI3u8cYG0r}p!O5+bZFz5S6=BF+0#4Bl8p;S3S z_TLR%{L}G!L*B$se8YbESN1ZeFLaDye_Q}V&SQiEiru!1Jwe^ji&$JIT?v<{m9&*?1j$KtBlAosR0Gm{lSqius?a--k*w9ENFVqlLl{ zaMV||v?cG3jZkfRig2B8AGtA_ijNyHDbiSR`&Dt|+@|KPpC~~7;)%I)*!6Ds#C=Ct zyO_u!ei zIU!D%7ZvQfr>oaRpOabx%*}e~XojXq3vzjfHJ%%NP936iUv^1v`~-dVvzAHSXXIS_ zkH~z}9VVZk>3jv4Uw`XbTUBU{`I8j>$py@A+F>&guClU|0=OKr9PEwykD}|2$8rtB zD5S_JA!U@vDv`44v9eO4l9dobWF{jO%8HUL5h+S3N>+pxp$JKm?7he5v(I(@I=@b* zc~3g@6CUhBZuIl@L~l;Af5zOGj!_#61#;>L9Q1DHSBnyXzs z6p)fe^JmlC{res||9ex0tnlBS}Mq`@Zj+{E%s4u0Qao?DQhh zO(<&XU;vMJLO&*M=MX7NqDC058zd=*iNiL0U*SToH#aC!$QF*Mi(0Jk>A2JHYrX`X zh(jPlj}Mic-ko6G;Wk7N?$58SIs zY)6HKrijh2e3qdFI^`+uACByU!-Q++yGLh}rinpB+xv?*;BT0$yza_{_mcgFannoe zX?p*$i)k1+TR)a*#esLvM6Da{18*dd6Ec{Le4_Z>*F|0e|1J4E6I$&HTuP1ebR2T$ zZ@*{@Ru=(|HRUfhNH;*H#Lbg6pFkI{G`#W(_qcAu`>KJkK9c*I?g{1Y3d#AwICe;~ z5Bp8bod#(pNxW~5&_nDoiZmQ7-I+T;*6UPyv}og;k>O^I_u%nN_U1l~4kp4&X z1CC`gF7N=5>RFplwWupqvNWbin2#k+c!cFOj}oiG=lWgf@21>;F+QUpwoOxDE=JH<( zsa=;8^9{KZHN`UFO|;EX%~>M!DrHYvk))r@LyX2z1dE}a{dVcAr65HaoX;tw7(ou20dkFU}pMq=6i-&#W$Z?|=KQ;qr z8aC3ulGrZ3m7S2Ce1i!1qepX?t8jUi;oW=N>zvv(18+=vv zVTqT+;uB|_s{nG_|6>?%nBwENcp3*uq)=(^rg-=~z2k;iy|AZ)99Z|320ED7F}-Nu zWMAx0S^FwNH!Zk7$IWz*jM#bWP2)T@nT^h;7$Yz2=jlW@_!*mY&T2Cq8YctiWWA&V z2gsTNMX}RqLxe5qf_hyg&TU7qI5)muh3{zsR^#JDT_`Nm6ZnMVEy+g@IWXTEI_|rX ziTjONwk>k~04d~t>dU{opBQQg^4LO;a(~mtH$6{BNd=p{^Ic}}T$^S>eX{$=p?ySq z#{=l6K99P7|2#x$=qB=xf(MF}5(zWFd%NR;?!a^fcua?lo<1&3q?!Ba;xTvhUFzQs zi!lz6dY$`Ec%^%Z&#_Y!n+(*seI7~liCv^`I;UC$Igt_}?}G)D`pE;WlNXv>;fE^f z{8S13$ApkUaL531@}EpK$<@KfDziBA|NSv`Q7ShQdHCOxEl)l~{r_`RQ&ti@(6Mw= zUN7K3y1V!UcclOaVt&ALbGDyknt0#$5&M7T2(*UVtBOJ9(^p;j*ZDKVuCpF`Gmc|9KTd>xjNBxj;!l^ z;eO%iIN8T~=W81q@a#2m)gK)CiGY}fb>kcG0-uA~HgOG*bCLAX>TjpXTXiQ^J}2me zv}`lZ(*xHX?QMGW!EJczv1I1+oU8hLwB5<8Niw^5ZDntE||hUj)AjAV~Mci}cv&brb|*rz>q{)&ZO zC3f+0^IPytw?*Doy5hdJ4J)@Q7$-w_elyyLfLH$#vfu??VrK6BvEXv}@ovO?+zj3F zkk`_{W8}M}-eyf<-T@x{6}!ubz!3TVdPG8g2k^ngn#${<{n+PXv-#R=2eEh-SFCy* z{#WjH&h=H@#G^EZRU7Z!wT=))9_+(;VgK~!X9M8OTy~4^4`ZGhrA;z@2S4cAVc|CT zG`%X`OU8Hur`k#LREleg7~99~J9>DQn5qrY`6CbOIFowTa~aHO5s|7Kz#B&P%GzFO z1W$j8(fn#M-kT7wv6~Lq^V7QHzEA@0`}f^z99qZS|ehCGKIz1KaOp=;ytRrJ|Bj(e)>hfLKtbX4869H^UH9wcV|&zGeHP_@nv z&ybTF16g^`%n_x@q1)QZz%k#eR&;{j*gC#i7wG)fRc-BU zeYZlqSai?&fM2?=b$)6CbXF%$`IT>010O6|dUOtW`+BP&=c%)c#41g8$shAbRK)24 z{pa|7#bC8v6yQHLuR6rbx%(D{%g+G zaa#iN7^LT0t(@jbtHz(Z(s=HAbs7mu7qDM6bos7#H~1W_Pkk-(;Iseet@S`ItkDRa z{WH|TyvdLvZ#ww&1}u+ocJz~K?y|T<)U`6&NcPxs@DucXl`*j$By0N{%Q!buu_uHQ z!tj}jy)|J!6YEFGO2vBLQ4Y-2aog-tp)VYEJRNL*A9;ad&xc!|O%s))-Ie;7D>&p! zlN4Nl_g`<7H9@|^jc2w3U6vH=`3ilfV$n^cHMWIR0zdTWx%23yKjtnucFTup&@GoH z{n15Unk_B!JDObR9rd=U<$-@GY!vig)Pyc?fOcK!1?Z`~6gAF@B4^%X^KwQ31w4L1 z{YDWgF^Ye4hyi-EAgiHA`Few--aGD43HrU1SFs_dtkK81{3|1qGbAr3hg}MDQ){$! z$q^smNWBVAL}u}v#Iwa(Rj|)ZX8WaQ4&e1T@3m-s!5)_Q&e6}P6Cp!#y=r;TyOrE{ z?uF+{cYW!zIQ*_w4NV#zpJvIJ;Pjo%PqBB)q%YwQ^d2P>aX(ecXGvmT|Dlp?$m6+w z)JzwAa!z>6rRpdONm+9#Tvv7mc%hx87JR_xRgE`~4^xOQ^ErDv{JyxvaM^ByIby!N z@y*wZbHq+-Pd4jc^qV~WRq4>Lm72vaT{asbw_;EE+B2f=PE}PLlbt3@8J5z_oY-Ts zl-hMsj!Gz#GcFItpaZ?vJdg^$nG|39@ep%2-@78g>dJ0%ZGWNo4i)G=_qX@I%@`uC z3`s+8Oprg{=01Pn*EFf>>K}VB4If*kA$wvy{2yz(Stcn{g!i1>NJ9;9jsqWl^>Pl8 z6(8{@*o;e8N5&8f5|fcH-Kdnh#%GrF6|Ial zXu(Ivs{Ys+dW}}P+@zL9aw4FAhdH4=G$jtuc8qDtt*Y{{H z?wcXi1t0WvaefpzM4o#U;&Xq$d*IP`%)hrY=+<}vhj40FiaAIjD}Ib6?3mkc2p(l} zhmTg7eKFpXb^tt*AXk^-G#Ts|W7(gB{I<;UA76m;|A{dW91Vhg@xnXr#cucq`MX#AoQs22Tt6#Tnn9!mc`;AANFn9KeW!B zh2BHzq}Y+BDdINETk2%{|9)$S@|9lr>39_7JNl6ub;(p~?XG@u*d?awJou8lCv~T~ z^xz+HqH|i{7>1sYPiF-Bg&|U6Z-M@J;G<*BS>Wo&Uiki~m;nC6-%6>1o`pK|?f2sD zDI(|{TO(qMd*ITrf;d4x@xGL+7`j0P*=`+D2z^YUjqt%k6Qpf-hCDCucjLrwoYv5* z-S=Tk-iSZf;p0Exiav~z#d-XrF7T_-u>oW*kq8=Xuca%K#5s@p_1$jx-_GBCzTXY^ zqH2E)^Z7xdS{3m$3*W0HdtyMN_&B-JbSJLoGw|^}zLN9G*l$}MKKAAe>ejx29l6=i ztytLJk7I=&=y01&4n7y%%0Uk=Puvs9Up?sYJ~~kc+^1?SAL~Q^b3( zS{U{>6uefHxZ8;<&||$H;cCAF{ctWH`-gQ#(0%kJpI`@HA?dVfZ8{VBmn&-xp8f{k za$}vQ$hIkx`gr_$@(#=`&lRM9-NL?t#x^PK0O+Wti!BAvKjd3Wu8-pzAP+t$aU}&~ z-^QixlMHy?Gn~tN55+;xxOOw+#TM+%$-HYgnm$1i+Y-#o`@tJZB!(z}XC(1L-?l(U zWSw*%Dasgpk$nE|Gg9bhijtTMaUSzYM!iE}wruK~A|2&y_dG1t2d(uTN1(M37YT zv?`UHyFGqymmh_!Pgf3i^`VgCH-g5pIFQG4e4*J2|9&=E&qn&j97!z|IPo2IkJ4Gm z;R-!k&y{bBkAKb*l|O!}M*F~T7khZoZG#>oe`Vo~*bHHb4*ZY_p1wpxSyn#v_g_oWeMEo$%CyA4J{I_e?c-yv%X2>9rD-w4X@$s)6UjuxkVTSjRkaNUAr!*#lfcHKxYG5I;v_ zdAkwtAc`#iyZfIONXtfBqLw>PdQ!e|X{ux1l48;JK+bNh_V=^f%;4WkihusoaFEC> z{iaQKML(j}omPH|O0M4bz}i~mKWH>Fxbn^s<+F74*|F2)n4>@2>|x|`Ynv7Ij3N)> zh4Hv~*F3p@mM+$?5xT2{0;OV{>%vFMTutimVdjZ!HvSAflVo|Pl09%LA@!TD2e3!A zdva|qc!1WRV!L4EavAuku0-m?Z|HKtMyqs=d|B1`Y-5ESIrrZgW~(#g%|55wbI6Oh z!+vye47vr0&H z?Rzi|_wWH+AMema9 z&=vNv`Mi)%Lk@?0a2WSzw1h;?Cs{KE{JoawG1E%GP7hHK~8>41^Eg(JxBSdJIa^?A-qeP|t*P~53RN_z= zYtyt!A-#`6eFT=UZ^(C-VqDiEnb|PMTzColPD7p3Uw@zy!!Ax|mXEXK1>4@E&yXu; z*D9phpoHA{v;6v+2WH6*lX8nk$n{{cUR>#~r;-hi_r$KbHbeY2_zq5B&K=|NnM#SJ zlKBaJs|Uu=cOI89^|YW8*?k9`Z+oErKK%6hcIO;PP`#a20Ddv0;x(@y+Y%WqSj#c> z1^w=JJ_)hQ*yoXKqZ%Z#M8@7$@Wt0+kMzJmp*{LNj{JKxDd-Ome9N?qj6;5bv?k@+ z1a#}lE_IhUS4fmkqP?Tg3|Ud(mz&6 zy@dxjcQnF%u6J0MiNUUX|5N*MzlrV@?#Z4fep+R8pH3~1=50O`KVM^yF*6kMd zJISrTq@)dBaJP)zIcD^WiSqg{p98n*JL`@E&ayxaWMpQ430v=5|wCa^s>;w^SPv+P<2|ta-sr*Rf;9aZ!V51m>Jy6H2 z^YT{FCvgR}77k(`ds~@h1@3VzzjaPS?7$lhFKp?i%#g{dmyHzgj~uER5+~8eU#q{$ zX^1@keEGm6*k~KkuFPzE|U9Yww5_n;ray1=Nfv@JK_m4KEL(-!LpX@=x$6@U!E= z$@5mo0r6PFM$qS$h;O>E1MgGqv3Gjfz#+b{o*OIzPm)!aAWMsWjL(km!!ff_;(4@O z`P(VXvwvpo1aPlJ?uy>zwH|(lNsZ%E;OoE6^bVJ{%#t_GmBLqhM#zxChs0b#%n6cT zo7p0UNUPXj(JrBBqWn}KeGL7(`l)vUOby7#JtR-Ju$J7wCfE?xM z)UJc8YmvX0{4&bOZj@|qX&hMp1byXzwUq33oWnv*je^<%;?SqvGQ0?1dF9EYBBryX zI6#fufF3T=)ahh0`rDP;?O8?Wo4ovgvWGAs*P!xRVm5T%avlM7lF*--`<_3y{txD? z`wP3n>EI{080e7@1s*z3v0ofM0Pf;!%T+b}cZy;SM|JT3`4@4x1UN}bUDz+(r72QF zWf=J24gb)6?;Xzc*e}L6Qq!{$d21~vpZ>$Yzi(i7DARG6n7m!sM+M(^(La*cK6k+WFy~+B+mlI5}Kew}?AsfE*nd?<^X%_v& z>5-F%4DJmp9d6O+8RT*~Ju8V087Buh?y3L$0G{e#>@OQfQY-oTf4*8c?;Gf( z-d|)$zK?Ube|WlrVjW;@PpbrcFm^XvI{<6-o7^Nckxc<$33V^RM z@srW7M|#i+M2#t}-2ng2i+AQ?OTgC%-y#e2sb8avj@KctTiQgFGq7!xaMbrLr5!_V z}!;y>M<+SI+6TZr8yXXuHy zv8}(A6Ff+C757vRLSI{6R{ZwObNFRxN2JHFuh`DwOQZZf=pxOB4)k3fBW+b}SLcu? z8y-#Pa>54tDax{XCom@@8#@(v~g{ zk@)Dgxy@-dmZKyuK{DhUcx{pDpLcH~ z7h0~_E$SHZ`F%qDJ+->wC*GeX7`_g9Wjt+H??Q*#6#3V@N&vajJ~fA?dcXtI1q^(_ z`)Fzy8u%7<3VN`MkA4r6xNWP7jJYY+h5 zleMDx_9FVZQne3tz*z!TuJ9zi2JTDjElyy5y|uEHZybD9`C8#bUnArXXQffDT!FqJ zP{MubGjei7 zEbUKm@Ck~mT6QI458ivRO>xfX8?66oCb}>IFPU??)c6Sd;~Q>l`gLZAY+^N=4jDmC zSD5*rjver4<7$$5Z-6k5?Ndv0fF3=(#0Vb@@FFSpZxj03HA}9~jl7*lU7Y&vyP=C= zhMaOStbYc4H{rC)-#-NUkL;5S?T)}lE9xuHfEQZ#>aw$wGxTA+G8-;H|NbHS)DEBj z?={)f+{;rFq;?PQeL475Z|GgKYJ;9p^p!#HK{^`cW?>a|&gXL^yn~uIf<0O8YP@T8 zp~Hx%YrlSNYL0mC4Wh9@&N=mL=KB!vyS=^iZ})A+Iqm#BQK5o71C{}a|8ricebX+| zytof9WGCJNo;G0qTIW9A~xD)rt(>;Dh@0Zc1ik%CK zx`|xXh~}Xo)Q@k6b$gz_p^(7j7>%$^6hdLhVsb~HnsA8nw*|O|S;jF3mpI_MJ#n9g zv@r*mT{i1OPJy^Y=fpRmc`_ugk!6E=>(4F_YjSy#Wd5-iH&ey=s1ba85cjEaCEJs) zM=+NhNm4q5I^SU2+E6ra?0 zsVCygL@PVG+zovXpV8-IpI+iQ+>hGiVKIRm+}1NS@Dni~?!5UYdyd4Hmqv35Efa|* z(b&{*_;{2GuRJ?5PvRGq8%>cXu`bEdw-tPpS@D4l#u-b*cKK%71GyE_+vqaTy#f8j z$B4h_z#|@u&b0T3<9*X!GQGKJhETk>_dnT9B{~8%!Us_IU#4t+x9uqSroAa$n&2b* z-u^I(9vvhqE3<)Rdcdvzj6YC8J>2r6APc*l$jnZk-_JGj)@-#p@Uy1 zYM)hEq|7KeeQ3mrUu%hc=}12nxNejLF|2-e)DE{Nc9*&7iDJiV@|55)QlOLgyPkT-@Y5^B`UfI6qFnkvlQ!SH^ zfJ;v%-TKb0kwzYJ+9+DEYN6cxyfU>wck} ze;UN_{Iw^yw08rCV{c>21P`S=ek-5DZ-J0cp8Ixeog;_R%bLFiE)t)C^})OI(Ui=U5lX(ar~2o7>>)NYZdf?SvleeXq>K8um^p)y66De_NF!uajV6!EIv-F$rsdjkSBG|$N_5c+#z49kMR z=Xz%uwSmhza+rnZ_)*DzTF=+(u*dn_=xAYi^c+##*!KDfd>Csa*VCT3H$_B;wpVO9 z3jNdLu9U}3IQIwYbNJfu{zr;+?{gU=T{coRSD{<&3+R73v~G@=m@WnuBvGLI*)V&Y zI!c(Io*Dbr58PL+T~-Quh)B1%;!p$RMwfcG2!7}x@-0S-PCNTZs*AvZT=e6OgY#|* z@uQ@>(Dkex@@|;6TP5E-iahFuCAaUsbMT`?|H_8G^~C{&O_wE>$+b1h!};mh6DUg` z_T$7HIYldYBljQj`NR7n;^1Qx+ElF;z4ZV7*7lE|USS?&D{|_7m`1pQq{R;e%Yh>t)4&gm%WsE&a2VAGB)XD2v`xwz;c72i@54NwOEDzXCLo`a_k^+@X#&jv1g+~h${(v&};u~%)G#R0=(|l-$7kc61p(|DtMS|D(q6doH<4~|Ge-?0Ztt$ zeZfMq0y!B|V-^3FCduBg$EvbxF_%4gSZpEk|J-2uXB9tRGUa4mIL^(Vp5Me3%IK@kJi~j5>bhyv7G^^gqdeIo1J> zJ!Uu|b{zLRR`Q`g zwp<;`(Hg>BSDQm;hkI?u500KYm!RjjKhN$3o|3NmisRvV=y=w6bkrRjA=4F;PTv2J zbG^>o&I&#x!>YaB|Ia_OqH(pyFmENuTq<&dzkTy2%MfkoV)So`Drbg{5EqAVJ*5`p zbQt|`kFf@RoiF*-4E>6=uuXnibw7!?@FC2W4|=8kxzSDeQ$$u+(_=vex~7abW@_yI%5#V9waD>Gf304Rv;O^AlF!Sf);&9`i4b zkg&U>#SXy9xQxWbT0W1Esno{$F$+Au)ZfA!YsLx9`OX|W__&_#GpUk>kE<=}%E)$o z_~>f?}EVLn#Z$7ZJ?W&r9Y@HZGd@uebI{b<5@!Y!!sZ|417Rm%b{`) z@a9~lyzbEJ4$1JuZdRNlVzp^sPNBX;ZSi67d`2O0J?plrg3oV#a>vM1o4ou!0BFA4z+omG-$&1CM;zT>@lg*Xy@mk=O$E~^?zrwE)Y#k@`3ix4P{AvPp zd#{{KQk$@6n^*Bs(6_tbH~S=2Eh~Vt<%w@|`ieT4eskC#^(CzGi6F-_{QZN~D;eQW ztDy^Ym2{Z{U#9NDn+&{P&><+a0dvC$m&?|1=waL)Qp+EJFWwU3d8rKe1l9fC`mIz# zf9S9L|GZ^kwA^TN7IH{`N*5?M!LO~5$yBoq`4iz&#S07AUuXViTb#f=kqc!0<6!~6 z(TIV?wo}O8KbBi?0e#orPmyjR&`%up8yIP=!+x5(!AHU*M~Oh|_Bo?2%*7?8m0cTq zi2bFeS{~f996~$4X`(Mll%Ov#*`uzekA21M;Vrw*?u1UX*x&Y)$1HNOEf`nV zQ%Dq{-F*PKxm#Xk&q?5{0hh0a+8bbwZB9?z57Ohrh$<4DfG^uB&i0f{>*sZ5D?+LkGF5=T@*6!YaR3 zZc`%q=+t|%Y-;l)U)ki3lqUM{HyUGm5|O*S@y2*_%N#N5HPB0<1^>RCf9Ff&rtK>z zVO5%^l6U1|XM9ztL@h$S`zGeyLyxXrbJ#ae0wRBTr2kze#r&V2{jX=0Pb%@Vem9Ri z=ey@K@!Vaf64Zq~;V%~M)UgkpBLX8&Daxk!Uihs)MeEFww(EX-RfHk-$SryCgkbLlept(~TaRH9bN8+NrI2K+r9=zsFx^L3sm8+-fGqaTVi)gS(* zu}GxO#@lK`N4vInsQ;}D^7%fVQrT|~zK~jVUi~n58R`%3_$v$K%yn^P7WX+qr;?Vg zFuX!;T0ggN#5_7u>3i{y);tM!NGh`{nK-DfKt;w956F zYkvQn#(b`{#k_O#0$HctNFKqjQeO4hxC^*Zp1F+UNxXl$d!%L!b>_*|7d-6@1p4Nq z*Dd9LBQJUWUo5jf_ER1_J9u;hg`8GW(o%u$V<3&)xXBOu+haP%F3m5J!w2dMh48#S z8+NoQW-XIThEs?B=S_MtUkX1e0{*e}yhHa!=zUaqKdMJTufW1oyo~o_cOz>uTgEJz zl@+IS^v;tVzodHjy}$>ac(-wd0-m~4mia+KAJK46 z7B*V5h`Q_k@zBeH4^;BytL~iR_jw|1<#h6Y-{OesmAfg^OJwV?+0&|>RQSNyEP|nr znG%lhx^25eHfiQ%4FR`x_1RNx;fX!Zwi5Ok;!BvXUwdzdk4#Y3Sn!MIEP2AtT7lu3@txb)6@6jjoW%Kt% ztREvhvb063z?*t67#-Q81HQ`D=$qLh@-AccJf_9_Ao_)MQL7CZDxouLl=rB}|hhV|y5AG(p3wikT(gB_#3YAnDJnL`XN z!w(=ZYuuDNja>ERu>(}(#+bJ+3*Lk7J>%#}{jbnZt#^By)`ER{GcnmL{R_yqVZJAm zG7Nn9_|Af6;7P@Pp2e5H0QaoD++6!-jK~UIHmyegBmBi=X-6mY#vhBVFT8**G+R=u z=lB@WY-=>oQG_pU_v-w5N8qGWn|~UOjFP_-lB&tea<}aa4EahyM1O?F|UT(N$Npo+z>TY zDKLrtHa)0M?-l%A8QZ-oZVi!7CSGs4(MRxY65&bMI7QCeN!8E0u984?b{Fy(c-%~= z5Fd0X16vm+JC6X*y}iHVs56Cd-|11HLylh%&D;JPCdlJG`|UIT7VHhb${;0yJ&BYX z!Xr7TgYRvh_;TSnp5%$VdQ}VO;JGi$rBL7&E15BycLJw*Hnyu6y0)RY4-#2Az~gSs z)*r&(qvhD@?|YKy`^z2+?LLeA|Mqs{Q@4?SS$j94k`8;e&KF7?>z*N|=GwB$;pmr+ zD7fAM-gVQxG5bg^auXJQ)U6zVer6~_aO&6sNw{5}FAtrNT#eJOE4N3;VK47c59s?X zYq;KPqaTTJEp6UikA6_#vLRC%_Sdi$nJ;cb-Hz^69J&C1f4WvHcL{Kd3pL~N+o2=6 zzT@Q@b?p7}+s-ZN1RtdQV?Jowdp_;el`#^P(KMXO23|LAjWQ1p>c6d5%nRgcv|Trx9ff}9PQYpxV>|Yt znkMZid4YZ{eN5xh1I+*OQX29?z{~r8DJkOqtZ0n8=lKaa+LaG9BrxA+4~cf}v4yA!ndGLY%tYKkMVqz*l$+1iKDMj zsc;s<+-UvdwaI8S_76K<%P+(8+&Q9FUWs#ir+HNMW+`%{w9VJKzeasLIC5u02z=_Y z{^`!xCz7F?EOPzXG&y+2zgFTMa^$j%i@xufA%a)VE}VIR9H=bUwbPt)WMdLLt?FLP z_Y%L=oWD#Fef^e3S;-NixXhTmIEOt0YwB$8aZHfkG&eb;;1}B_Dzd&CJVA`MMD@D` zJO?H|>SP`8r+^dnG$~Z_&pXLp^e~0E)|o6t>W}~H34pRGgC=BAAZ2QClpVW&XP~}%?wIt zkc0SDRACAFDy7j!W|6tj-M=++&D4a?rp~{a;mHs&)B3?}^kt6ZZSrlEc@NxiW<#a# zQ~0gir3V(ZLtIzd!F39%&Z$9|jS_8nJbF}D~uX1%QjZ!(03~Giv*la9U%7}T8iX^Vn0o|w@>tFA9=spEIaUemMA96K3>p- zkCZK6%xdo_ar~knUH=ey$|uw_*uifYTFS+wZ$(}T%>_FO{6@ERp7<<<^5}=Km@)bVa}5q8Ikv1EziLh2!1`HtNr`gW%6#9^{#_S zn5Q&_UEGoeiB9mjPr{~4B&UknzH1Bm+vUI1S7e!_&RY^e=#c8&PBYL<%#%q2rDRvy z73hqN4ps9k0zX;P*_1a=KClg^H6UNrD>G!uEMbY{-ky876DkuEH$RIje2b(c%R*US zc7c5HA7wwKv_xJGTI~8%NTZxjpHj}SGDljpsMYTLbjl@8`ophL-w|H>g6jkPzCrft zaj4hx)!S&bF}Kph<{xvw{Ns{&C05%ApW^_j2)>B-zh5{)9dpbDovz0TZuogVN9g{Y zLLTCALC-rW(A@|;d$D!r91%LUJbL~!ax#3ga{q`A5syQCj6IlJZpgGV)bOv8<1ygG~s?)312;9zeKEf{aq)7C}jG4 z&E0$d??Jz@L9ht*v?ocg{;(m9vR6UL)jOCEpYnfenzNiFUG>%>yE>46Qv9QNBXFwr z=X@@9(a0f>RL#%ZJV+Qe#GSL!hu*56cd-O}#Y%NpxVpb1CqUWB;3x8nTsT=Z^tho% zIx(Ps_$2tHbGPY=k!*v^YVc$%Di_VD@XweYPmZfpM1IY8Vly0Ft91fQPuuW-NK82MrIV9Q=% zOBPiEO~oEe`#w`fB9qb7WybKI3>nb-rT^COp`9Jp71BV$`K z@XG=P2|no8Z&;1nUT21HUu|DRK*kLD?QP2$vk(5^pTWghx&P;8P7B3mgWsQ6v#!Bw zm}Jn=PW-+KJ)&wvfYxsCUXuDPxv0k)+N^uTkAZ)g5ab@D2QI-q_eBDFlOiX(lY&8%G19K+{qv&KELr*^q8p9>&U$y700(p& z4w;N?1)1QtgPz+7--EA>WA4wHUAUjP`PB@-vtT_7i>3hTibUkcpk2_xzlh=3vkULf zx0a8+&@Zsvf3rXTG=*HWu^Sc1nI(*eR}(hHq0c!{v2`(E9D0xXp*VZwEY7g@$>MWa zHg%@iv?15l{4Os$`hnbG5AP}51J<9vMjIg)O6sVwp&$4{c9WSGiWjHIkHV0ibw=E*Zl@Fqek z${B}&<0zRGy|@T{2;a!V1H1{tB=UGxM@c4$& z#{(k3%XKo_UXLKB?|z`xvtLvS@w=8EbqV$FfP(8l-i!XB4)`ge zo=``i4`>&rp6|zVZPl!lqJ`ghy5yQDr4RUUU8m9uDdb$4F$X05o+0zmwdGTm<_0 zzx)zSMLv}H+Gp{=zk_&>Mk|bCPm1umYf<-rgP8p75$PHv)^dWkoIKDsQOp{-G51c~ z5Ba(mb%$TG^|=Lf^*4+{YTs$kk~Q28Pvl;XlRLB*SIsBkH*oa1F^zNM$g?Wp2LHf; z`P%T0r9-5i!LX=!0Qn(@Csa0KU*<#U{Z8rNg#u5cAKig{B6Ju8=}Nd8Lw1Sz7|xvU3# z*~o^%$rlWtZe1Ur%d-_yf9i(nmi^El6xBI+8_khsr?GFbzvju!CcnKTXP!Le-eOMv z&5)p?!l+Q_<&%D=PRHSM@9o~WEeiZcbVkUt;4UiJd|x$0Fbz84=z@R8nkYoTX6N50 zQ`jrI>YV)(x;XCacKdwj-I@(|)#cv>|NW54z>dD|hZKX*(n0KfI_$q?8hI~0pAC#` zcEeA}JrbXDoI*T*Qn%+p?|XRaNR<=n;Zp_+?bu-Gvl?wK?BQD=gOzEPF~YcSg~hZ^ zu%S@FSXLybyzZ%g2rA}Y@h>TCipwEj<^{zK?0+05#S_BKHWwo{0H zEB1YAl)S!k1$qnSx}X64>KVf3ZSQ>E5&oLGYCVnTsI#5Ed4bT$htO~E?<5qmzwLgm z)f|<4Y)(*DMgN>C%4{Qq5JNz_|8 z2mE%a-71vj2JpLKrYi%Vk#FCh9&(-!`K)8n65Gq*H{v_8*8zQmOQEz$UE}|`KBo;# z0%plml@jgv{m{d9x+Z5zBk$&SS%`=Q>QT(&Z~vgH^D|+#R^J5Ns4LlH?lFGOqo;e< zqAnbld>-xW0KLDQYW8;NSyKIb!_;%&b|RyDk0%4CaiJUaC~n8S9s44r6+XeM@z#Eo zHrP-4D!k_oKIg97NavmNmtekthG^S%7LFQr8IL*Yc%%LxG-Lvg)U#GH|U8c z@SDTaQdLd(JfHOSinM??nb+Mrp@lhjjQNFK9q{l4+WPYu5qN(s?umVyoFzvGQU=4W zz@K-W=MNL`z{jIh%bmCvMxGSkvsYXo2h?OtQ&W+%{x^(X^CtL~_jL1hxCadmJKqvM zI!m0^C5D}j1kWj8O}}*lJ{7}~jNmuWr<;9PQwlw%VuZ#H&R@vCD;UXc<3~T?K-)S3 zJhRa<@1yR1)|%DMwrE>g16T!(vG$9N>c z61Y#ClKhP!}+Vy@cn$R&&P_ zITRoCnXmjp9e;gD=j0S{e)I1}>n|oukV7sF!Y7X-KXgZL-+s)4hh!7nTQP4=Z|&X5 z2R)Z=y$RP>SLiKxj17-^VPA=^>#N{nQ$%RB|0x^&1o@FcE$;!o*j%`gxnwW=mb5Hi z3ou8WpbabkYlS{Sr}VNYbQhgdSC^twM#%Bi^D99L&?i>#r-#N*68bxKrMZ~DOtkmT zazf|X_vBM~$(k|j$`ygEmAFnvC?_-c}f8w?8{=7IjF{cYrxaO9zA2c>yY(I@S% zF|IlboXXE5=STTCQQos{@?Xs$ITQPnFN2Caz?BspJ0;A=XRG~gE5Jwnz2)<+518K` z2n0?A;~ou+Uv&=}A$F1vcizCcYs|?C*B3#9XgAOM~Sd?S|U)}4*{_Ylq zOc+1e?t)yN4^LPw@TxBoXYP8}oJWhusR}t@$h|}=#AJo(k*7g(@Mb|O6Lb<~OOF`U zmdLFCW%}!7OTgCR>|&f5~0~UrpbQ&8!WtM=ZVzQeRYdj@blZh zyTm;)Mc7Txbg67cPHgx{SPJl}$XAl<@8ev2Tcp0dpRr1o%<0rq;I~MwF5M)wfd06H zL+9}p@Hy8*)^8VFBClVqF;TlWLTDcf=ULH%KNR?Iup$`mEq6n?PV_v{30VB{bk7Ru zI%=_(5qg(`M_D}e;O~t*9#mbIZYNfDbl0pt&ymfisHTnRyF7=g{YEDbmm zF41)*H->;$^En>O%s|k1Bz_VffM+#owMMF5AIFqvxCy8 zx2qD|ML2iG%@o0TQ|OHA?MjxR6E=zas9V&8y`%4i=tI$WKGulp)`fo5L+u~S5!@^L z%jj-z<%MoSJv&=5AN%kajT2v?F5c3;n)@Bkec%i&lQ?j?9EWY;4e>K%&CPxaJ@g+8 zCuVQfBM(L4hjl#r4D`Vf)=tB?=j~0H{B1cWkS9d`KEU_0cuVkXoj!cd>GoWnxTo4) zRS6sdj-C+oF=BRbn&dIM(Oi_CBipXNZTq|#xxenll)Catbfq=ZVsWpq6fcNqe)@n%G+KtVb#{Mf&YL1 zO25@$9CSEJH8WngzplQ~`~4|knmiQDoNRQ0FK52{!ik_+LNoSkEFL(wxkQ(%75LAc zLwfzIz(-VdYX5v)JB!a>*3!p=ysHG3L*obf$l6^l%XH|AUWR&XiQ9$!JypT;kI`@D zIK_A0{xd|jd2OkyPlYagIy$idyz0L@Vmp{bv1jOgOxy@R@**k?G92M^J^A_)_mAVi zH&ddVR)MS4~oOm_tXT=MLGC@HwouzW&cKxRvYLF z(#7Yac47~lX`1AU$PoIGHGS`R#>lYq^nQQjE-}-d8neqnUSA3QY%uVv&7yO!?!d?6 zQ*~b1r4RnE6Nasyk@KuD+0rxi8+f|imbQq)%Fn@{~o;;WGiQyoSA{ zRoeO#Qr~>~Yoc;DQRz1+U)hd)7MJ?zuw>}z!>-7dWBzV7%`ZCsi9&XKzPytTeL!jw zV_^L>{MK>z>Vs{D;7j1u3mk{OY^w1#FZv9JZn+xnS>!c5{a9u41-g}tO_S`(z}Jc^ znLYsjZleUroBg2@x*KuKK|xfKSKe}C8guy!RsBK}^cW3v9!r)7dr5V-Yikht%kLpt zpa0*VD7{8fT5@%mNU!t$kbSM6q~B54yIEqCD7XFVZUXMsHeI-ZqP;|F>6Kn8z&{(e zht9?qdb&?xdHM8sj(Oy+`ricLezFHLd9DHf)=jUTi^sm8FPe_E?~u=OJbKjvd+x6e zG^`EzFiNDqX1=V4Z_k!bd4*PefixLex=%s3<+yyv@dNap`8f)?JE03PH*EU|0+Bpz z?+KJVi9A!~%0e#qexd|5UHMU?-xlJ5jWX{ZzKYQ-B-h!_F zx|vbyee{1)S_?(l$SDX^Y-1EoOZ zSKFqi*UX#aUVVE{Vheclox+`)?>ml=lxnfq@6e|->=4P-1Mah5BJ{v*2Kdp(@1MDw zPNQ6F8?jV*tdUS}SHBC4L|#Xdi;sf??)AhiQoZ1RnS-Jk{jA0at=1ARBj(sVwmlVF z;rF&JvDA!$e%+{WP5yiME8}HTo|JB1CR=YF__uZrdk{NHZdIH_euQC-!3sE*xvzSHTprrT#~(jM5<9q#Za#~- zD!JOA9DJ-9|L;yFr(u$u>b;ypkGgXq^g{{s*NDIQGlY3d>zWbI8sOT4S?O;LOyM74 z%yp23-ZfS~u+K^gI?RWxC4vm-TSQdWu_Na;e;~===G|#BF5_6HxR*k%7md|D>=`4A zR-9`7!@b1dlS+Xb?Gg#QQf%|goI)HnRH+z2SJEX@oJ|#&C1rOu^cWb;V87BYXQw*c zyS@$kUu=NRc28Px4c@;;xdUr1;k@?6GZblREE74?ZqGGU^F*mJnO^h1-o68@spRb! z#6qzl1Su9m4FMHIT2PY^N&uCb0HKDO&=CnqK&2B(NH2f|#6q!vEJ(2siUL-aqN1+4 z=n7a_6_TL4cX0RrefyPrpXWZ$ckg*9=ggcbXU?3Nci#EEzjyB!_AN-j8|Q~YHjRRPHsw3&KLNWKv&bvYZ*%}Zwi?d+YgPf?f1`n`IsjJ` zJ94br59}L2n|Ev90Q#~D>B1XnJKzr#>QGbW&}Mfj&Ul z)T-U~)khhG!Z|4AguJg}# zHIWHYNN9a#fdpZz4-b78|D^T-shDC;+1J#@2rYv!lh zzX7|@i1+t^pR6`lTbU*3_rJm7>H~qCGkFenOZ@CLvggVl#!oG#kXwT0*dy#WNU00U zRo(d|a^<7<$Dsg!(JQjz&w%kh(_^Gk^(;l-}gW9c?Rs+F6phC`W@J7 zd!fimV*m%AsRhvk^4S~P>aNEd=8^6?N{QcGig&06)iSIO;tK=tp&~TD1ZB++OSZ?%#B$fuEE!SKfmCy?bBB zFHQsd%{SW6-W-4{?Q?|H-UIs2pSP@>fdTwxY+7d{plI01Y{Ah$?@c;a@h+NnR);mWLH28|8?;_$uE8y)YeaSNCmV7{>?!`xWUqiYbc)dO_5}RoCBu{Ndl7zH>zF z3lb8Ts48p%czr@NYEp3l+2L`o%G4g<_6R*eJ;2Ut_~xf651_YPE6MEm&<^;TLi`HL z03Oel9G31x1p8AiXN}N9K;QrV;#2|{pQ_?2XP-HKL3*z4l==hQU4i+$zzmi1<=C{Icz9Q1pa-~)1R+t1Aa=Y&Cdye{g!soQ+KL0 z;Dsiq-Sz_V!_)jTUoOp0BM0+0M@756LVnq~!axt$5qMA!a_2FtL8Eohd0}d z|MV8%6FS|tez*?!jU!((%Yj|MG3->&ix7ZM47k8Q1LWlbqP;;O5^h}3j8B-SBL%sDbSDp@$}WcyTFd^Cu2%O zfzLPOvtYYl9{_(+rCz1!TVK6G_I-G}=}s!Z!&sFJez^wh-;eL{9GC^`*I&2&w&v3m zlKVP`^AYH6=0E-3mJHg-(++nX!k9%eT-oGj{nJP)l)QTu>|^?+#Az6g1N{@3*Gf

qi8}B%K>`2P3|q}*ImCLh0r$rw)=qhdIzak z?Fx{GU^&Fr53|Var{W6ki@-Yk^p0z`R={7pq$}D1=fpLO-2uia{sA4EGP)e8wyxC34)8@zEYlWmxgZ7d@1bj4BVgy6%@v0-!2E+< zf4KbcSLC#a;1)-zxM3mJ!FnI^5pc@;=y4 z4(wjh=o1C8dNE*T0G#u#5v8U89HQ#|Bo|6jB z-C(}FF|Uzo0{CYbbe~>p3t&GR=&gDY^q2G6s_#WR0N-DbbLZ22-;p~#=X9e$f7~dc zLBq{}K5D0j#UOSnhUl{TZxhk`=T^0Z(89dQ^DO0?3`|kM=8r{e_>r+cCR= z{-j}$MEJH9jFWUc=XbELawlNh+Y4YEzE95HNCG$~_M2Vh+BE>56iDAd>H%`t2j{sQ zD8Nk&6t@z}0ngW`7RKiAFG$kV+U#t=m$c!@)^t4;&_D9@cRd1no~oFfj$k98M<}4= zqW%Opdp}3S2_RSeKDtb850K9&A*0WP;CrA1NP6GEz97Gr{82sP0sO@oooM|EcoyOM z^N$=Kd`0@X+zvVC2zWfE)>WV$^t=#9EAsNN?i}^eyK;kh0g;%o!<&JUI6Qw zNl)pk`cuGO?)BQ_)!|^@YTpT2!_!%0mr;52X)v#y$=_fVln-z}3R-aEyg6j2bI79> zU>EqpuVo9R3dqZfYm@sF0Dk!5jO}f`-;tj*1?Pe>D$9^E(Qa9$}5!ZWq=!VbpLtq7l1!q>-Nw)s7XD7FO1bDPFy@Jra zACbtdF~JyBDRMx=t8Um8)X%j!yFvoy!x!6jSfhZS>gz&oEZ~XTM#2ajsV`d>Dgr(Zvfxw;;s8vE(3e?FVwb&=RPAxP%kbY0rpHUNOw9Lx&SYD zWA5;8>fey7OWs6h19=rwd}M-rS&F2tIHt9Q@(KCA4AW^|0QTLjkFkCRJR6CL?F(n` z&m$w=E8j{7`vbo`rIft~^D}NNh`6EQH>9)1ql;I7{;;4SRP9{zuSkQ+%~e@XJ|csP zH=fEI`iRtjhJ5t!CBSv4zjNFT`bVn4ml@3vz~_9)E1^NKh|E87;KeTTJW|Ci9nuWu z@hiU@@6875xW|dw2u}?#?=k zZ+-;!{#u7S6ra37(hQy^*=o-qT4(I}W##04M<$a)!x|DbaaSGsD2c@ZA5wl2V$BUX5 z0WJhlaTZ%~2*^DwNcf&V0RNY1Z%V_aPe{e^D_7fV-yv5YDlOPOIERc4f7j!3>jSWt z7^}K>1NfV&cQ|n99Pq1}`WkM1AIMRX&n11p&g*pVmgBb3z`iM?wQdT`D?M^=>wduB z5MOdPJPi0PF^OLF+ta@H$VYHO<#S75_y0QX^)g^L8Mb!o8d^How+{T+XSn-4GOu-A zoIDxupKcthe+2&>S$o6(0^Q>s()D(I=^>#1NK_u=yXOGE#e&Q;IX8hF)umg)`qh9Z z^s(gl;2yw_eayR6*#WGF>|d;WH1`(iTZvZ50rn2ALvR12W&wVS29@tHI%rRU>f@Vu zzZ15U##{Ye!#gqizF%R z`Pd5dZ#U}Z+nNAAm{_(;@fgrwXZ%iE+kXb&3ZI?(=ok*{Emw#5+|~Vvyu!NC`wWcx z{4eNpjdp%h}%-efIx5oJyEv%3T27t(Ua2e-`j~!fM=|PXc@hw?P`| zJObqTUmrf8wE#S5<VIU`3Mwag<&#a~R1u}Gtegu)EicVcw_k?USApdk_bji<(V#B#)>p;mnxR%S z=0G}@1?sDja<}!Y=*rnBT^6CgnvrXTS~;AfW3NQgUsIoJ)3b6iM~|wMs=szH*8#O^ zHfM8(5>Rq~vzQl%XI^~!l@l(K3r)P6ZbUmcd`(xa@KYe-$r*5825b4RJb zbB#Nei}f`~dHZ`*5V@w(NguQiw#gi?#o z-PW<9Lx1CRUTBXRJ$Hw6MUTF=ay}8Yx-{3ye&wLP4lF;WXLVJsHFf0!eO+um8MUS{ z*QR6TBYizmep1hxu3S6m$`|^Z82M?awZpj%_N%7#H`nK9^sJrCb)>HPq`ze_pN3jD zo4coDl~jN0bpGL^BU%4O`wO%z3ZLh2hg~AF7d)DjbVW`UMp$6E35|lbT z&!t0I8)`@@VD_jZ^4z4#`cNZA0SC3gBhTGl1qL;)FA(%>Amn*cRV<+ho-*LpU}^TMTSIZ#XGA_+=cHJ@m|ngO+f6%F)g>*hyMSF@ozu|-2D9e93B$7(Uu znpAYRM+cD~CtY0w-Nh&xLFszrlkL~kLv8Ad#(Q)L`3clD%~0FHqQ@w``23`fH62j9 z>7r*ndi4Ah>6#v>y>jtO)TYw>H2bxKPzPA?>z++j`RUZP51CES90R&gLKPSa(zk zMNSug@7XHPKPp|PV1QC)D5CXM3v%t(D;uC;j1>}n-GY4T`t=4*ScVE33NI+^Sg&n> zAu-lSpooHE>3V$wX9hzZZQxN*Vy_M}aH(fNBnE_nGOD_zf$Jbc2W=Q%!0b@BH*lL~ zY?c_(3s_QhlmS+`1d28)E#TO1z#6#2N{l5&RRuii25$ooY>64#xUoRcu_4gFlT@-z zV%$|Al5U7F*vBZbLYoX1RN8Bh4EEQT*how!3#zFasRjoIOB~RqvjxXHG^hq%(0LJky~mHt-{r?w6P$ z3eQP3YYhAur9No5M`43Kq}~8mUy75!3588mNV5Tcurvs59$$E&1JYp-FkKodF{c+^ zl0te60+q{%Xp7Rq7JIEhgCJO0jKrdlv&s^GJ0EMVOxjRBZFX4S(0R1SK$?@ z)(e9WMp+tq`*2~W{l;m7(E73r$@a;@ZtBKQ24RC`H1v+y!fPEHr3T^CWrrm@O+}L0iF#20FC04WmfqOopZYff>fsmkT622}QT5I+lj9gXNWI>-eI(9Xj@gant3;CD!z!`%)d0 zAxW88i{4dQG-9udH6+8BXC%9-ibkor-iGm5W&_%$v1q(QH_$MF#JnJ}=_-0C)r~Mr zWH4LMw!=k_?e$28N%hP&iS1<36RKXSVe%le6KywJ^sGaVYM3(3ye6@e7d@BiLtuH!%#;U=;%rd)?wG>L#|~L2Shk+5uktx?_{rFr8F!SK@#uek0vfV|a*B zF@i>T6wlait~bo6uNapg2*q!yo0|Z;lQ`0gKT0?E7*ds4 zFVVY8i|6dO3>wm4tk;s=RmGpFTOJtFv8);Np2p&@9a|n5W|3I$C40Jx7o=NW7-lnA zbLhRp#WMS?(}suZSzjf4CyN)UTaSJ+JTl0Vp^>x2-#fNS4UbN904+!?IPJ&~V0zPJL~od=h(2FB-vECDYe8DqyhH zot!)vDh^PXQDHqB((6QEsL`O7Mn!{c9VbjYV@)U2-l%w*y}1`dXRMP!QAP}94%ErH zl%eimfHf+Cag2MNs~8$I18<{JEXT~rrI7*YGzc^*BXPF%x^yu%$_yfm${8FhC)Z(y zj)Nh|h*{6E>2;lC=+O*QjVcB?4o+^fjLn^fR3p|jXHT!2oUv7Am}A6N=AxajswGed zBZd(N#&zk%>XsPNjMzq8EZ5!19bRJGX(Tq{k+}PN-4P|GGNT$JK7;Gykh0!qvFU{$|aEXJ1>9o=D zdR|8Ffyoj_n&~H_6N5aOlhHbbLd*gG{{NufT^inUG8Opd`Sy1cbUs~$p0LL0PzyxP{ z{i{m-XmD@iMy#O03D;PP>x2gyH<1JvdU0K)0Wx@m@p*=z#R)%L8suP3GQLnRXzRsK zmIl+zQ;jbU3ObzvW=lgm&8fzhrUln}1LURQGV>hcW@VwoDNwbH=wQJxZh;90dINRK zqG%Ru!Y}`r`-t7%Sl*P#`YK(tk2uGX<9%W>QZS}@&^}_L90--E{ zwyoK?eNgz=DLB3?sdHP0@s(-ev)*8OS&D31k8y{x=%rIgX<3@X_Ce!LnCNwHNL5)n zZTkb`F05$ADYUUHqjUQs<8G4ZeQ#)2S*C3J3*)N{(VSD*a2d^E$I)ryYxSb9ywqol$SVI!Au6~#gM*8LU|d@ z%F^WKpjZbJ6<^Nmw6Zt3H7(xU7ey~;$*fQ&gUXdqOmt~E$6+VdWC&Ji+!tL{&ZF)0 zHW|iNnqguZ%LSb~15Iv|D!28;bd`%_J0nc)FeRFnJDm3#W)1XktJN77~1(RQ&- ze#Tb0W5{skna*8elTlLD{ys8-c}}*g#$=39<%5a$U^Y0|)SHagSK<2N3Ct#%O|!|w zU{w$%A)a}m)274Z;dE7KUjm(ZNoLby@(A$oU=mB2Ee^JWCXZp&F@1?u%vPH11CvQ? zH5rrC$ZYGhePr^4RGrk9)Wy6avwdOmlu@0ANgif)I@nE{JgcwH=u4htcGK)Wnfx+X zO~a(jGOu;oNll(lS0C<6kuz_|>=aC2C?Ctkq^ed(9PE`%U&4+R_ND4p^wI3soBoPD zR)R@`R}6I8Ynx7yjxqbv5EZv%_WGu;7{@r6gB}$_4h}HW*Y(E)eFq5@w`mTRroRmy ztHh+oSKRG%us3}(ee8H&I=$k)%mHOOt$e%|bEvdp!~uadoq-)c(|4$!VCoJfS(Jntm8O z-igVat$5byNHzU9ef(Nqro7_0%rVFGlky1(hN{YX>9Ct&ItM#3&_~r}P0@CH%3vp7_hnbHKGXI-FqLCZ z&R`BVvc7iiePp^wI{Ciua2IPqw)f}@({GHEbC@H;ESUpx+Vp$<$*+A!CRvL#j1I{V78#z!X$!6rFQa*@_61GEC8|W<`IFE?bF?S`S<1 zUZdii3umwBLTSU4$Te&Fa}n%Sa+E%7c}b1BbDjrV1%ZaaRy5Q=`tt~EH9Fc7wsNRO z$2mWqy`~Fo4_h@;v$;Q?&R!=+qhQJ^wNU4RQnot62@6v(t2OQ~sA6l-oxEYH?zLvl zg^g@Tms222ja<8}zp#tFQSKB0TU}CX}HvL7DY&|+A6}EP$*1@@W zmc6+PLxruIsom3GEN5?(V{%~YRZgLu8LAv8!kGb6H#_Ch&(P%<(w*6`4eqDholD>x z<1S}0OoM!Ce}4&rV=8y9foYbU@^LQp;Fuv?>S2(EQ@H+80>_;0(hSoYIu+zx7SGw% z< zAHnpht^#yEGNnM(A#W2SK;WiE1+)$U%UopvXq`Q5BZ5gVgIkRRtd%E1D zu&pz7hx=J_4pQ!>V5YBfI@g)4%0(lv%4Sfr(}n$PT`q=>U2kUKe!9e&1LwMQVYST+ z$)}n990b=*j@36aDml$@=6Z155$-TECB7g?(cH9H#40% zeY~GX=X%NAQD!ieGqukAQmzle18ZhxcIHe!zl!Te_wY7@yPs)r7Bq5kT^@mE=HxRM z`UPFw0J%qmnMKK&7H8owHwfWLGTYX0rmbH%$qlA^rkZUZI@9San&pOec~Z@G%$&K_ zFOqY^<(@famMUi@&SF&_5wVY9W@UDEpkJ)Zi=yvio9%QzJLFsm=f!mG6PsC+&))5? zMDXI|`)bT~m7E=MuJYiK5&P@SY#Ppv_g4{k3H1HVX0}6TA3Ima^OCyucbM7DoPE|` zP3NV^_xG6DtDJl3e5{n0hBz>2=3sX2b^oy{UON5212csCxf$oc}L}53UHK4y`oEvDnA$Dtqez-)vp++(dFmUz1PE?-0M|bYT^9CE^lo(hFrg9 zpccU|mV4{NolEM~T~2xMOAtOVxJyGlWZ)EmUq<(_gu4#a>$ud#^O;>f_HehE`ppA% zbUsV&gMwpK8lWzxOZgmxFBa}@)?hqvx{A-E`+CDY+#AeX&NT7`UA}>EPjbVyfiqov zk=!=|zOSUg%H`}ZzY^g`g70r=uo*Zz$*-pSrNR#kH8{AOo8=$x@}t7NW*YVkoRjlU z%KdWS-YSh~mwHt}EyAAx_c3d98K~D4)Y1Lfa9{UEcb5jZ;7pgl816@I+&|EO5S)|y z*TDTt8huI1Ts<7u(1;soBnX=5xMnzhs4>W;DPC})3)cY;m}v|hXrc=)$#FgK zK$Rw<%lT443j#j~4>D_t88}}hXr<#HzzOb6WS0w#g0?RFBX}^mDQVzBm*9#V{{kLT z(v;?Maahoa2$+V4HZ)}nT$~hi(*r)i!-kq@E|+En*SZ3v@bH3+V%r3Ee==nB*}k0PIE4zwVIx8#BP=FuhR zIWCtyghPlRn0ZXYdBMPCg77vy$kIG^=zOJ1YrODoSCGAV+|2po1Fdx7eR&YdoTPH0 z*5#*C;Ru3&H7A>0I5Y55m2i|!@HUTkztG^))+ikBA_STzkS|;qXzLO_loKM%6H6|% zxU>%oA0vWE=1C0~+6LMug-__gspiQ;7dl<8%nF}%1yjvaW-eSCxFQ!mmj~yVr>b0( zxOAwBULrym=4oaZ2L?KHMN{+;w)sK#i$gA*aMA0o5V3hW`QqJyPK4-__&^sy^p+mlY)%=v_}Ha8Ui7{zw8K1e=Hjz~Zo25BJhaE0s&eV2 z%hgiR93pJcoMv|E^}y9C(Pw&?%>#3~`=uF|YmK6>U15*Rv&fg;4_xaKEy%-Om}i$< znsd26ERrF@r_B#HT>3h2eNwbY5C3F-WayI2<;JY&dsn#B{OHW3?*ljFqCe%~3Klsk z&5Eu)s$xaQ2xW_0v*r~ydvwK0SrO|k^4yzMTqSVvitY$)i+pnPnwt`Yc-3NrzC}Sv zv$|`qhgijt2(u_`XolSEC5Y9sh?W*bL(Mv_eevQo-9&qf;+f{nH~Z+~b&Eul1w*9; z>e^o_R(FiVT9lZz7~kx#5^H2ddRvsbx0tyOG>ReJk%1OvvYP!2SEtGxVPoU+pII^@4X1x&5Qe7eq!7@i*o-{(B9Fw z#qyJ1t&h&%S0JD?NJ`8a$gX_KgY^U_Kav`=)@E1n`~!W0GmoUfJcZj;Mj5drxQ>$a zm~|PuSo0$&0#<`;$UH6B#iRV}P4Ms|n={X}?GnxZ96{K}BU>}ij_<0bjHVI}jFKIh z=f3VbIX{|1@YaaOFzX>Ub(AqS!PhU|li6Tnb8ddDhTzYO_hUBVY?>(J%>?{td@!>q z!{*Zbcn={^BO!`;USQKonRq}T_$4GTFSOZQnV)z;2;n89GcS(YbWP$4)%BQc-Z46*H_JX#+d>6ci>Y_YMuHUCIIIGUHpV_wGD-ljaZ42~U5tY)@m z*xsLij0z@cB-Js064;JXCcT5>{gRrPZEdy>=O-hA6M0Fk%=U5HCzL0t!O5dZ-OMXr zZJ*CS$q7!?NbX~HKK z>^{yv>j|c6q)aid3hX{pet8f~_e*)pyw+y7F#pSo;A~#XXXf>ByG6?LPr*kHPNjxajHWqO z-1=(2bzv$egspK9Q!xl}FwA_#4&nM8^sE@NaWGwYRTIMJ9rUXh#yOa0zHSZ?jvfrI zxSip!W8rmAh*%>%s^X5o!8-G|2O(8{=?N8g+Z^l`etQvejF+BXac|tgG4su*kQ1Zn zSrzxcIv^L`D1_E%9LleF06}0fr`Ly`@;g*kF=B&oTbR}lJS-VFndiuaQw#F(yFxWzKqsHu_~WRgAYG0v2W?LeKLuS}P{T5y6>nQ$sI~ zW^`9P{E7%)c$*X2tU>9kcm#2b%6!KTz3fN1UGdn)F>c{qP3TWN%4o$T&M_hLeRF90 zDCJ4TlMKg{h4($79U7Ta6;B0@>6srMgm(F5zO8uH=9szg;YH|GUgqbDU&bA?GCzI_ zy*`?`Sn>R;QJ8tjo zOqpf)Z=>1Otj`&H?=Q$u;nNz2>sVg|dq*?n-r=);hnrYm+x9+OkVk~S;~j2g&5!SW zlDU`~{$ccRH*4YR-scO8IpLo)j`Xpl5ad+mH+J~%en)PzWH!h*3*TzOzwnNXvgA1A z+syCH;q#+Mp0E}(kRKPm_k>F|j!v<@36P&N|9B8C_dEKQ^}P+bu<*x=@Nc}MpILv5 zBNsFO{1pDj=+Q;ipI?!GF8rwwp`e+g#8%KkDNz;FBbNE+sIe7oQLCg1(1_*y91Zp| zJW7qKXce(?EJu&6L_w{SDxxElHFFKw%Y`Tn>N1}QRsURb_KJ4YM(HwQ#A<%7HGAa* zN{_0P7O{3L*O9$y9<^1flpC>LGY`X7)Lwp*5Bl%vPhIcSu)ABD6L0qu8s3Xlv@qkqBM?`~>!zcC?*z<;#do{QPwG+6lBH zb=6$Nma+US_PTjAQo2f!sIOU&&t9+PgrO>{6Akdm)}vrjq-!KZd(Gl0_9h`Fow{~}i106d%ii3M$&{{rN!-mZ{>>C9(na18LyWmI*mNY^oj z9>z!U;_R4r zxgp)C7!{#ep3kw=a_ysPt4BrpmzQy@Y+Y|jwV_eb{Bj;=C*JioRmUnScC5UbV@+|r zFV#Uuku;fgoLxfKQL3&_RJ=d4iDT35`cSG%j7sD)TRFB9u1}}{UYR_`?B>|byFQod zbMi{VQ&B9Bkd*NH^6+9pYDvau9g8x75uoQIxTYCmctL+ehhU zNfcF+HO1L2bo)%*G7?4iXT9a@X?I(YZh0A%&1Ze)?4591q;8#yIx@yujYMhW|$UTF~)J^y3J#^$_#U(*_vDo z7pvuNNHgL@bN#uVTz6Y{Q<+h1G@sA)<9guT&1uFh(ZVrqFxQjfzC&g#i56?}qPY8n z?$$Juk?1OaUIKT2yStst)|GYL1Rwy`8=*K-ouk-W)*XGj9<<5qj-49%+N9Qnu0p6ztF>v z2KR|+^cOU7aqS)fGB`2jJYUet#ZPzy)6COiE{+MhxdHPY;WG2wm}X63A2(3TGm2)x ziMi}Ayv+@=^^B8Q)W-b87mjiXc+Ujdww9RoG2s(#FvT-PwoMY#p(&c;h6p{=Y1>C) zy8K0NxuNZznX>IKW3KW=pSfWZo>{aVb1~P)M2p<;dC#M=9g49%nqnnhgx0=%nx%Sd zufJH0N3`8nEVG2h_VdLWyh!}MGMbfD?9DN;9xsZrk0rB0#|~;%8uFrr`*^gSKC#38 zmFB#d_I)DRPGamGex)@pc4A*O%{ndi-dLq0FK&L{NttzS>;ugz43DI>zmB$x6Z^A& zl_!sEyZ@YQS8ePVzsipnkKf-!vuTN)7^@2AB~bQXlG#XNA8A%c@e+mmTWPiIu z6SsLZTdy~=-L-LF_$NkrbiCJF+MbrU`LPpEcv%#$kFq_IIH~5zDPFeF>oaZdNSxgN z%B^jf|8aCYBczHcyBd2+KRMtyhe|oPw`$SN25u~kXl22fzVrn?&L#K#nqbg z3){Un%AJU$)q+}Ue$j-t9vzcLT036r$StiZ+t|e&-PWkam@jm8smll%N_^Dui8O3LZ+(kmthSWvz%Y{DHbk`A*F0L+t&usUx zle@koZ4%U_^D8EN9O-Uzq%GrhN3-~>c^{!P=pH^~IPOdnU(oIwAon1W zEd*y;`N9d`V7g}-dHeX8ZoX*VH(c(SOSXiZ?cu_K99xYh*W-S!~6#n_jL#{{iM(}njYf*iBr<`Peg zw`K|N&j%qF;}nx>AV1{`A7~LUStRwOQ@EeXgd?^Dw?z^(>9pV{p73Wp!840&m2`Ie zr)uFSh2XVFMkm!n+UkU3LV{mbyiZaiuB}Np-cATuj3*|Y7qqnsCngBNSqW)L7suPW zg%9Tm;fo2mNzIVck)JvehQ`DM~o!IjU#UnYXHvQp-fu8&_? z6h5C1KDwBqnA`*DP!he+3dzq(RZs54b*PD6+J+P_rb3hZ1sxiqU-2PjS!q_uH^)2l zL{pRy)?ykuc@WZRD0(Ff;bk54Ngl>^nu}hyhlmyr5|i%;I;};&O@vfurKcs|8}D=! zy_pX=xtN}t`~cF05lw4_)@2>yB>#--@)XV3hMrqIRGT~|=<*ZI;zOIVGFp-+#=C+= zZz-Xd7BeKtk09MqqIbg3)-1|M@+7W1LG->o^vWXTW%5%&ce?1qL}+(b=3MeG6G^qgr?Rp+DZk^c-xkSi!{01s*QR_CTptz5@!@Z?4!5Mtk6(Wx zTBL-3Ts$mEkwR`viM|QLKW7~oNs;4jycK zWr^1<5Ru=C71Q*!`t!x>H%4Nz8R}^U`2I4nx?QB(HwHA#NZ8L4ZwQF=%r3D?GnweG z7HecidVMQFr@^!a>cpC&NWbh-pENjrph*n55*hHVl$d5A9B375J&X*_E=x<>J~7ZO z-nbAM{;e!G%~I=TpICciR8)33Cv7MG=54W#T~yq+^4hdr!keRF-GHcsY-UTE?ZnL| zV!h0$ly6K)n!VPoDe)#zRC;#BNE!lv>#cb6m8i^b6))3v3vYcEZ+RG%mCc$<+dFY< zQM`2_>gYF?;z5+wpi-s&#_0TPw)#OQ{GeJT)GoUC8ykAiSvaUsX%G-ymd&v`=sGc| zS813T&HBbcAH-@68CDvJqIua|pMxIwA@fS(E778FT;jof!XfKQlZUUWLU;)W_g@^U z-)W;`@sQB{DfHeRN^A}%I{9Br(yZxcXg{s>u_o|17eD(0U-t5Px!MWrPD zhcM-|3}W&j@*Zd6^$?MH1DmMW{WNhidlyl2@a$m)MR%8#P{ev}T$O09yPWhQ4k z6it*j*($(R*x6fJT57Mbw6e6c0(CKY)ccRLe^=`7#E%rU#uQB+NtT%uNR}-nRwgG$ zk)z!)IPH}`&ag`vJQ(;#2LF15zjLTqrZule35XYW$^hO$7xV3+QheKR(p|THwD0|EJPo6H|zXYb@K9})lgCI0AD2V;nb zQVxRmnq`nkjyy;_NL%VbsWjrjgDIIy*->H+rjt{WmqIPKTiI^6Gyrek;P2x95oxs@ zL>nAd&|Z!9_4Nus{56bei`8~49ke(XG#c##ewPkUGDGu$5M#rHsaX-SG(3$^? z&s+)wY5tD)_QCvh4gUVfd z&I6Q4EdEer@_w=x*(oy6FEh?P>F=;aht$X<-^3UbKq0u{$onv8a%3|8P!u*XHX56l`FH-5prq8qAZwq$ z;sfxOK>@y`Xg8Oox@SZOP}5^U{bOhz|6XSD0ZMeBM?6UX-`D9s#%Bfv*dzo69{6XO zR*^}G;F*0Bf7Cn4#ws$<$tKX+*CqYuqZ{h#y|4~VJ(B~XzOYax-wRB>D2Q4Vj z!{$dHPj<2a=d?)cs2_ESPQufob|z9H$xGjdd*;4)m!13K(d4Cm`j2m5Cn3;-P7H9! z_>o7vOU8c8E~2z^~Ka?|(ly$AMqxr9bGTr9W;zzIXej(;wfrt1}o>mM&eK z!N(5*e+&vsW6ZxDV0-~lK}+MzU&oK}295r^4M7;jWoc*vCr(bjKhiH1{8#=MHecZ=6=>J@vv-?u~kNRT& z{+>a#z(av{h+BFNkl&ATeEz+XF0O7%h5TrgrCa}X{J7=E^^c};`)f@4S1cO6XODt5 z7{w2!WyBoX7L}T+|MyU?Z?)ZKyVW+o188qQte3w|2#`Df`J-@7RYAcU?Q8YF0O4>F A`v3p{ literal 0 HcmV?d00001 diff --git a/flepimop/gempyor_pkg/tests/utils/test_utils.py b/flepimop/gempyor_pkg/tests/utils/test_utils.py new file mode 100644 index 000000000..f6e7a5809 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/utils/test_utils.py @@ -0,0 +1,67 @@ +import pytest +import datetime +import os +import pandas as pd +#import dask.dataframe as dd +import pyarrow as pa +import time + +from gempyor import utils + +DATA_DIR = os.path.dirname(__file__) + "/data" +#os.chdir(os.path.dirname(__file__)) + +tmp_path = "/tmp" + +@pytest.mark.parametrize(('fname','extension'),[ + ('mobility','csv'), + ('usa-geoid-params-output','parquet'), +]) +def test_read_df_and_write_success(fname, extension): + os.chdir(tmp_path) + os.makedirs("data",exist_ok=True) + os.chdir("data") + df1 = utils.read_df(fname=f"{DATA_DIR}/"+fname, extension=extension) + if extension == "csv": + df2 = pd.read_csv(f"{DATA_DIR}/"+fname+"."+extension) + assert df2.equals(df1) + utils.write_df(tmp_path+"/data/"+fname,df2, extension=extension) + assert os.path.isfile(tmp_path+"/data/"+fname+"."+extension) + elif extension == "parquet": + df2 = pa.parquet.read_table(f"{DATA_DIR}/"+fname+"."+extension).to_pandas() + assert df2.equals(df1) + utils.write_df(tmp_path+"/data/"+fname,df2, extension=extension) + assert os.path.isfile(tmp_path+"/data/"+fname+"."+extension) + +@pytest.mark.parametrize(('fname','extension'),[ + ('mobility','csv'), + ('usa-geoid-params-output','parquet') +]) +def test_read_df_and_write_fail(fname, extension): + with pytest.raises(NotImplementedError, match=r".*Invalid.*extension.*Must.*"): + os.chdir(tmp_path) + os.makedirs("data",exist_ok=True) + os.chdir("data") + df1 = utils.read_df(fname=f"{DATA_DIR}/"+fname, extension=extension) + if extension == "csv": + df2 = pd.read_csv(f"{DATA_DIR}/"+fname+"."+extension) + assert df2.equals(df1) + utils.write_df(tmp_path+"/data/"+fname,df2, extension='') + elif extension == "parquet": + df2 = pa.parquet.read_table(f"{DATA_DIR}/"+fname+"."+extension).to_pandas() + assert df2.equals(df1) + utils.write_df(tmp_path+"/data/"+fname,df2, extension='') + +@pytest.mark.parametrize(('fname','extension'),[ + ('mobility','') +]) +def test_read_df_fail(fname, extension): + with pytest.raises(NotImplementedError, match=r".*Invalid.*extension.*"): + os.chdir(tmp_path) + utils.read_df(fname=f"{DATA_DIR}/"+fname, extension=extension) +def test_Timer_with_statement_success(): + with utils.Timer(name="test") as t: + time.sleep(1) + +def test_aws_disk_diagnosis_success(): + utils.aws_disk_diagnosis() From 2517e5f0a3b7908802255115065e16c6cda1c8cd Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 31 Aug 2023 11:44:54 -0400 Subject: [PATCH 10/50] separated tests/seir/test_SpatialSetup.py from tests/seir/test_setup.py --- .../tests/seir/test_SpatialSetup.py | 152 ++++++++++++++++++ 1 file changed, 152 insertions(+) create mode 100644 flepimop/gempyor_pkg/tests/seir/test_SpatialSetup.py diff --git a/flepimop/gempyor_pkg/tests/seir/test_SpatialSetup.py b/flepimop/gempyor_pkg/tests/seir/test_SpatialSetup.py new file mode 100644 index 000000000..e2291f20d --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/test_SpatialSetup.py @@ -0,0 +1,152 @@ +import datetime +import numpy as np +import os +import pandas as pd +import pytest +import confuse + +from gempyor import setup + +from gempyor.utils import config + +TEST_SETUP_NAME = "minimal_test" + +DATA_DIR = os.path.dirname(__file__) + "/data" +os.chdir(os.path.dirname(__file__)) + + +class TestSpatialSetup: + def test_SpatialSetup_success(self): + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.txt", # but warning message presented + popnodes_key="population", + nodenames_key="geoid", + ) + def test_SpatialSetup_success2(self): + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + ''' + def test_SpatialSetup_npz_success3(self): + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.npz", + popnodes_key="population", + nodenames_key="geoid", + ) + ''' + def test_SpatialSetup_wihout_mobility_success3(self): + ss = setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility0.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + + def test_bad_popnodes_key_fail(self): + # Bad popnodes_key error + with pytest.raises(ValueError, match=r".*popnodes_key.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_small.txt", + popnodes_key="wrong", + nodenames_key="geoid", + ) + + def test_population_0_nodes_fail(self): + with pytest.raises(ValueError, match=r".*population.*zero.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata0.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + + def test_mobility_fileformat_fail(self): + with pytest.raises(ValueError, match=r".*Mobility.*longform.*matrix.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility", + popnodes_key="population", + nodenames_key="geoid", + ) + + def test_bad_nodenames_key_fail(self): + with pytest.raises(ValueError, match=r".*nodenames_key.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.txt", + popnodes_key="population", + nodenames_key="wrong", + ) + + def test_duplicate_nodenames_key_fail(self): + with pytest.raises(ValueError, match=r".*duplicate.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata_dup.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + + def test_mobility_shape_in_npz_fail(self): + with pytest.raises(ValueError, match=r".*mobility.*Actual.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_2x3.npz", + popnodes_key="population", + nodenames_key="geoid", + ) + + def test_mobility_dimensions_fail(self): + with pytest.raises(ValueError, match=r".*mobility.*dimensions.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_small.txt", + popnodes_key="population", + nodenames_key="geoid", + ) + + def test_mobility_same_ori_dest_fail(self): + with pytest.raises(ValueError, match=r".*Mobility.*same.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_same_ori_dest.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + + def test_mobility_too_big_fail(self): + with pytest.raises(ValueError, match=r".*mobility.*population.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_big.txt", + popnodes_key="population", + nodenames_key="geoid", + ) + def test_mobility_data_exceeded_fail(self): + with pytest.raises(ValueError, match=r".*mobility.*exceed.*"): + setup.SpatialSetup( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility1001.csv", + popnodes_key="population", + nodenames_key="geoid", + ) From 1580008ed85bafdfa5d4ee0d9a989e8fa35251ae Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 31 Aug 2023 11:46:06 -0400 Subject: [PATCH 11/50] added tests/npi/test_ReduceR0.py and its data --- .../tests/npi/data/config_minimal.yaml | 123 ++++++++++++++++++ .../gempyor_pkg/tests/npi/test_ReduceR0.py | 48 +++++++ 2 files changed, 171 insertions(+) create mode 100644 flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml create mode 100644 flepimop/gempyor_pkg/tests/npi/test_ReduceR0.py diff --git a/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml b/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml new file mode 100644 index 000000000..15ab5792b --- /dev/null +++ b/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml @@ -0,0 +1,123 @@ +name: minimal +setup_name: minimal +start_date: 2020-01-31 +end_date: 2020-05-31 +data_path: data +nslots: 15 + + +spatial_setup: + geodata: geodata.csv + mobility: mobility.txt + popnodes: population + nodenames: geoid + +seeding: + method: FolderDraw + seeding_file_type: seed + +initial_conditions: + method: Default + +compartments: + infection_stage: ["S", "E", "I1", "I2", "I3", "R"] + vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy + dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +interventions: + scenarios: + - None + - Scenario1 + - Scenario2 + settings: + None: + template: ReduceR0 + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: fixed + value: 0 + Wuhan: + template: Reduce + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: uniform + low: .14 + high: .33 + KansasCity: + template: MultiTimeReduce + parameter: r0 + groups: + - periods: + - start_date: 2020-04-01 + end_date: 2020-05-15 + affected_geoids: "all" + value: + distribution: uniform + low: .04 + high: .23 + Scenario1: + template: Stacked + scenarios: + - KansasCity + - Wuhan + - None + Scenario2: + template: Stacked + scenarios: + - Wuhan diff --git a/flepimop/gempyor_pkg/tests/npi/test_ReduceR0.py b/flepimop/gempyor_pkg/tests/npi/test_ReduceR0.py new file mode 100644 index 000000000..ca6ec548c --- /dev/null +++ b/flepimop/gempyor_pkg/tests/npi/test_ReduceR0.py @@ -0,0 +1,48 @@ +import pandas as pd +import numpy as np +import os +import pathlib +import confuse + +from gempyor import NPI, setup +from gempyor.utils import config + +DATA_DIR = os.path.dirname(__file__) + "/data" +os.chdir(os.path.dirname(__file__)) + +class Test_ReduceR0: + def test_ReduceR0_success(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_minimal.yaml") + + ss = setup.SpatialSetup( + setup_name="test_seir", + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + + s = setup.Setup( + setup_name="test_seir", + spatial_setup=ss, + nslots=1, + npi_scenario="None", + npi_config_seir=config["interventions"]["settings"]["None"], + parameters_config=config["seir"]["parameters"], + seeding_config=config["seeding"], + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + interactive=True, + write_csv=False, + # first_sim_index=first_sim_index, + # in_run_id=run_id, + # in_prefix=prefix, + # out_run_id=run_id, + # out_prefix=prefix, + dt=0.25, + ) + + test = NPI.ReduceR0(npi_config=s.npi_config_seir, global_config=config,geoids=s.spatset.nodenames) + From 14b05592e8f8122e718dd02d4f4da2e5911e254d Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 31 Aug 2023 11:48:40 -0400 Subject: [PATCH 12/50] added data for test_setup.py --- .../tests/seir/data/config_compartment.yml | 119 +++++++++++++++++ .../tests/seir/data/config_seir.yml | 123 ++++++++++++++++++ .../config_seir_integration_method_rk4_1.yml | 123 ++++++++++++++++++ .../config_seir_integration_method_rk4_2.yml | 123 ++++++++++++++++++ .../tests/seir/data/config_seir_no_dt.yml | 123 ++++++++++++++++++ .../seir/data/config_seir_no_integration.yml | 123 ++++++++++++++++++ .../data/config_seir_unknown_integration.yml | 123 ++++++++++++++++++ .../gempyor_pkg/tests/seir/data/geodata0.csv | 2 + .../tests/seir/data/geodata_dup.csv | 4 + .../gempyor_pkg/tests/seir/data/mobility.npz | Bin 0 -> 976 bytes .../gempyor_pkg/tests/seir/data/mobility0.csv | 3 + .../tests/seir/data/mobility1001.csv | 3 + .../gempyor_pkg/tests/seir/data/mobility_.npz | Bin 0 -> 981 bytes .../tests/seir/data/mobility_2x3.npz | Bin 0 -> 977 bytes .../tests/seir/data/mobility_pd.npz | Bin 0 -> 296 bytes .../seir/data/mobility_same_ori_dest.csv | 3 + 16 files changed, 872 insertions(+) create mode 100644 flepimop/gempyor_pkg/tests/seir/data/config_compartment.yml create mode 100644 flepimop/gempyor_pkg/tests/seir/data/config_seir.yml create mode 100644 flepimop/gempyor_pkg/tests/seir/data/config_seir_integration_method_rk4_1.yml create mode 100644 flepimop/gempyor_pkg/tests/seir/data/config_seir_integration_method_rk4_2.yml create mode 100644 flepimop/gempyor_pkg/tests/seir/data/config_seir_no_dt.yml create mode 100644 flepimop/gempyor_pkg/tests/seir/data/config_seir_no_integration.yml create mode 100644 flepimop/gempyor_pkg/tests/seir/data/config_seir_unknown_integration.yml create mode 100644 flepimop/gempyor_pkg/tests/seir/data/geodata0.csv create mode 100644 flepimop/gempyor_pkg/tests/seir/data/geodata_dup.csv create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility.npz create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility0.csv create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility1001.csv create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility_.npz create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility_2x3.npz create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility_pd.npz create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility_same_ori_dest.csv diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_compartment.yml b/flepimop/gempyor_pkg/tests/seir/data/config_compartment.yml new file mode 100644 index 000000000..6763af77a --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/config_compartment.yml @@ -0,0 +1,119 @@ +#name: minimal +#setup_name: minimal +#start_date: 2020-01-31 +#end_date: 2020-05-31 +#data_path: data +#nslots: 15 + + +#spatial_setup: +# geodata: geodata.csv +# mobility: mobility.txt +# popnodes: population +# nodenames: geoid + +#seeding: +# method: FolderDraw +# seeding_file_type: seed + +#initial_conditions: +# method: Default + +compartments: + infection_stage: ["S", "E", "I1", "I2", "I3", "R"] + vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy + dt: 1/6 +# parameters: +# alpha: +# value: +# distribution: fixed +# value: .9 +# sigma: value: distribution: fixed value: 1 / 5.2 +# value: +# distribution: uniform +# low: 1 / 6 +# high: 1 / 2.6 +# R0s: +# value: +# distribution: uniform +# low: 2 +# high: 3 +# transitions: +# - source: ["S", "unvaccinated"] +# destination: ["E", "unvaccinated"] +# rate: ["R0s * gamma", 1] +# proportional_to: [ +# ["S", "unvaccinated"], +# [[["I1", "I2", "I3"]], "unvaccinated"], +# ] +# proportion_exponent: [["1", "1"], ["alpha", "1"]] +# - source: [["E"], ["unvaccinated"]] +# destination: [["I1"], ["unvaccinated"]] +# rate: ["sigma", 1] +# proportional_to: [[["E"], ["unvaccinated"]]] +# proportion_exponent: [["1", "1"]] +# - source: [["I1"], ["unvaccinated"]] +# destination: [["I2"], ["unvaccinated"]] +# rate: ["3 * gamma", 1] +# proportional_to: [[["I1"], ["unvaccinated"]]] +# proportion_exponent: [["1", "1"]] +# - source: [["I2"], ["unvaccinated"]] +# destination: [["I3"], ["unvaccinated"]] +# rate: ["3 * gamma", 1] +# proportional_to: [[["I2"], ["unvaccinated"]]] +# proportion_exponent: [["1", "1"]] +# - source: [["I3"], ["unvaccinated"]] +# destination: [["R"], ["unvaccinated"]] +# rate: ["3 * gamma", 1] +# proportional_to: [[["I3"], ["unvaccinated"]]] +# proportion_exponent: [["1", "1"]] + +#interventions: +# scenarios: +# - None +# - Scenario1 +# - Scenario2 +# settings: +# None: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: fixed +# value: 0 +# Wuhan: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: uniform +# low: .14 +# high: .33 +# KansasCity: +# template: MultiTimeReduce +# parameter: r0 +# groups: +# - periods: +# - start_date: 2020-04-01 +# end_date: 2020-05-15 +# affected_geoids: "all" +# value: +# distribution: uniform +# low: .04 +# high: .23 +# Scenario1: +# template: Stacked +# scenarios: +# - KansasCity +# - Wuhan +# - None +# Scenario2: +# template: Stacked +# scenarios: +# - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_seir.yml b/flepimop/gempyor_pkg/tests/seir/data/config_seir.yml new file mode 100644 index 000000000..bc6f8e13f --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/config_seir.yml @@ -0,0 +1,123 @@ +#name: minimal +#setup_name: minimal +#start_date: 2020-01-31 +#end_date: 2020-05-31 +#data_path: data +#nslots: 15 + + +#spatial_setup: +# geodata: geodata.csv +# mobility: mobility.txt +# popnodes: population +# nodenames: geoid + +#seeding: +# method: FolderDraw +# seeding_file_type: seed + +#initial_conditions: +# method: Default + +#compartments: +# infection_stage: ["S", "E", "I1", "I2", "I3", "R"] +# vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy + dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +#interventions: +# scenarios: +# - None +# - Scenario1 +# - Scenario2 +# settings: +# None: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: fixed +# value: 0 +# Wuhan: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: uniform +# low: .14 +# high: .33 +# KansasCity: +# template: MultiTimeReduce +# parameter: r0 +# groups: +# - periods: +# - start_date: 2020-04-01 +# end_date: 2020-05-15 +# affected_geoids: "all" +# value: +# distribution: uniform +# low: .04 +# high: .23 +# Scenario1: +# template: Stacked +# scenarios: +# - KansasCity +# - Wuhan +# - None +# Scenario2: +# template: Stacked +# scenarios: +# - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_seir_integration_method_rk4_1.yml b/flepimop/gempyor_pkg/tests/seir/data/config_seir_integration_method_rk4_1.yml new file mode 100644 index 000000000..79624bc4b --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/config_seir_integration_method_rk4_1.yml @@ -0,0 +1,123 @@ +#name: minimal +#setup_name: minimal +#start_date: 2020-01-31 +#end_date: 2020-05-31 +#data_path: data +#nslots: 15 + + +#spatial_setup: +# geodata: geodata.csv +# mobility: mobility.txt +# popnodes: population +# nodenames: geoid + +#seeding: +# method: FolderDraw +# seeding_file_type: seed + +#initial_conditions: +# method: Default + +#compartments: +# infection_stage: ["S", "E", "I1", "I2", "I3", "R"] +# vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: best.current + dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +#interventions: +# scenarios: +# - None +# - Scenario1 +# - Scenario2 +# settings: +# None: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: fixed +# value: 0 +# Wuhan: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: uniform +# low: .14 +# high: .33 +# KansasCity: +# template: MultiTimeReduce +# parameter: r0 +# groups: +# - periods: +# - start_date: 2020-04-01 +# end_date: 2020-05-15 +# affected_geoids: "all" +# value: +# distribution: uniform +# low: .04 +# high: .23 +# Scenario1: +# template: Stacked +# scenarios: +# - KansasCity +# - Wuhan +# - None +# Scenario2: +# template: Stacked +# scenarios: +# - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_seir_integration_method_rk4_2.yml b/flepimop/gempyor_pkg/tests/seir/data/config_seir_integration_method_rk4_2.yml new file mode 100644 index 000000000..2118f30a3 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/config_seir_integration_method_rk4_2.yml @@ -0,0 +1,123 @@ +#name: minimal +#setup_name: minimal +#start_date: 2020-01-31 +#end_date: 2020-05-31 +#data_path: data +#nslots: 15 + + +#spatial_setup: +# geodata: geodata.csv +# mobility: mobility.txt +# popnodes: population +# nodenames: geoid + +#seeding: +# method: FolderDraw +# seeding_file_type: seed + +#initial_conditions: +# method: Default + +#compartments: +# infection_stage: ["S", "E", "I1", "I2", "I3", "R"] +# vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: rk4 + dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +#interventions: +# scenarios: +# - None +# - Scenario1 +# - Scenario2 +# settings: +# None: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: fixed +# value: 0 +# Wuhan: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: uniform +# low: .14 +# high: .33 +# KansasCity: +# template: MultiTimeReduce +# parameter: r0 +# groups: +# - periods: +# - start_date: 2020-04-01 +# end_date: 2020-05-15 +# affected_geoids: "all" +# value: +# distribution: uniform +# low: .04 +# high: .23 +# Scenario1: +# template: Stacked +# scenarios: +# - KansasCity +# - Wuhan +# - None +# Scenario2: +# template: Stacked +# scenarios: +# - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_seir_no_dt.yml b/flepimop/gempyor_pkg/tests/seir/data/config_seir_no_dt.yml new file mode 100644 index 000000000..3a0a2fd90 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/config_seir_no_dt.yml @@ -0,0 +1,123 @@ +#name: minimal +#setup_name: minimal +#start_date: 2020-01-31 +#end_date: 2020-05-31 +#data_path: data +#nslots: 15 + + +#spatial_setup: +# geodata: geodata.csv +# mobility: mobility.txt +# popnodes: population +# nodenames: geoid + +#seeding: +# method: FolderDraw +# seeding_file_type: seed + +#initial_conditions: +# method: Default + +#compartments: +# infection_stage: ["S", "E", "I1", "I2", "I3", "R"] +# vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy +# dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +#interventions: +# scenarios: +# - None +# - Scenario1 +# - Scenario2 +# settings: +# None: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: fixed +# value: 0 +# Wuhan: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: uniform +# low: .14 +# high: .33 +# KansasCity: +# template: MultiTimeReduce +# parameter: r0 +# groups: +# - periods: +# - start_date: 2020-04-01 +# end_date: 2020-05-15 +# affected_geoids: "all" +# value: +# distribution: uniform +# low: .04 +# high: .23 +# Scenario1: +# template: Stacked +# scenarios: +# - KansasCity +# - Wuhan +# - None +# Scenario2: +# template: Stacked +# scenarios: +# - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_seir_no_integration.yml b/flepimop/gempyor_pkg/tests/seir/data/config_seir_no_integration.yml new file mode 100644 index 000000000..226892884 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/config_seir_no_integration.yml @@ -0,0 +1,123 @@ +#name: minimal +#setup_name: minimal +#start_date: 2020-01-31 +#end_date: 2020-05-31 +#data_path: data +#nslots: 15 + + +#spatial_setup: +# geodata: geodata.csv +# mobility: mobility.txt +# popnodes: population +# nodenames: geoid + +#seeding: +# method: FolderDraw +# seeding_file_type: seed + +#initial_conditions: +# method: Default + +#compartments: +# infection_stage: ["S", "E", "I1", "I2", "I3", "R"] +# vaccination_stage: ["unvaccinated"] + +seir: +# integration: +# method: legacy +# dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +#interventions: +# scenarios: +# - None +# - Scenario1 +# - Scenario2 +# settings: +# None: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: fixed +# value: 0 +# Wuhan: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: uniform +# low: .14 +# high: .33 +# KansasCity: +# template: MultiTimeReduce +# parameter: r0 +# groups: +# - periods: +# - start_date: 2020-04-01 +# end_date: 2020-05-15 +# affected_geoids: "all" +# value: +# distribution: uniform +# low: .04 +# high: .23 +# Scenario1: +# template: Stacked +# scenarios: +# - KansasCity +# - Wuhan +# - None +# Scenario2: +# template: Stacked +# scenarios: +# - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_seir_unknown_integration.yml b/flepimop/gempyor_pkg/tests/seir/data/config_seir_unknown_integration.yml new file mode 100644 index 000000000..c76410e9f --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/config_seir_unknown_integration.yml @@ -0,0 +1,123 @@ +#name: minimal +#setup_name: minimal +#start_date: 2020-01-31 +#end_date: 2020-05-31 +#data_path: data +#nslots: 15 + + +#spatial_setup: +# geodata: geodata.csv +# mobility: mobility.txt +# popnodes: population +# nodenames: geoid + +#seeding: +# method: FolderDraw +# seeding_file_type: seed + +#initial_conditions: +# method: Default + +#compartments: +# infection_stage: ["S", "E", "I1", "I2", "I3", "R"] +# vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: unknown + dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +#interventions: +# scenarios: +# - None +# - Scenario1 +# - Scenario2 +# settings: +# None: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: fixed +# value: 0 +# Wuhan: +# template: Reduce +# parameter: r0 +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-15 +# value: +# distribution: uniform +# low: .14 +# high: .33 +# KansasCity: +# template: MultiTimeReduce +# parameter: r0 +# groups: +# - periods: +# - start_date: 2020-04-01 +# end_date: 2020-05-15 +# affected_geoids: "all" +# value: +# distribution: uniform +# low: .04 +# high: .23 +# Scenario1: +# template: Stacked +# scenarios: +# - KansasCity +# - Wuhan +# - None +# Scenario2: +# template: Stacked +# scenarios: +# - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/geodata0.csv b/flepimop/gempyor_pkg/tests/seir/data/geodata0.csv new file mode 100644 index 000000000..3e787eb34 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/geodata0.csv @@ -0,0 +1,2 @@ +geoid,population,include_in_report +10001,0,TRUE diff --git a/flepimop/gempyor_pkg/tests/seir/data/geodata_dup.csv b/flepimop/gempyor_pkg/tests/seir/data/geodata_dup.csv new file mode 100644 index 000000000..f126d7e40 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/geodata_dup.csv @@ -0,0 +1,4 @@ +geoid,population,include_in_report +10001,1000,TRUE +10001,1000,TRUE +20002,2000,FALSE diff --git a/flepimop/gempyor_pkg/tests/seir/data/mobility.npz b/flepimop/gempyor_pkg/tests/seir/data/mobility.npz new file mode 100644 index 0000000000000000000000000000000000000000..91b86992472fa70b40cb2748d1c6e14f34819e5c GIT binary patch literal 976 zcmWIWW@Zs#U|`??Vnqgy-9|P(K-L5x=4KFK$jnR0OinG<%PXj4WDo!g17#RMN-$24avq((;RP6H8$30EvPCNCgOB4UahCoHc~P0}>jH z>z+JPLUX`Bk1Gc}fkuO3gcIn1;*7+CRG9rBK@b2b00FG_1LI>MA^Y9n;h@IG(QpyX z4ao&Ht|36<7XUE_&Gg}K6q53YeNlhWNl(h4Diqo@MdKL$*}^V7|^&SKsg2m0K<{)KL7v# literal 0 HcmV?d00001 diff --git a/flepimop/gempyor_pkg/tests/seir/data/mobility0.csv b/flepimop/gempyor_pkg/tests/seir/data/mobility0.csv new file mode 100644 index 000000000..43ab71907 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/mobility0.csv @@ -0,0 +1,3 @@ +ori,dest,amount +10001,20002,0 +20002,10001,0 diff --git a/flepimop/gempyor_pkg/tests/seir/data/mobility1001.csv b/flepimop/gempyor_pkg/tests/seir/data/mobility1001.csv new file mode 100644 index 000000000..d3429cc4a --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/mobility1001.csv @@ -0,0 +1,3 @@ +ori,dest,amount +10001,20002,1001 +20002,10001,1500 diff --git a/flepimop/gempyor_pkg/tests/seir/data/mobility_.npz b/flepimop/gempyor_pkg/tests/seir/data/mobility_.npz new file mode 100644 index 0000000000000000000000000000000000000000..e6d4a7ca95c4309644fa776b43cfab6f5a63545f GIT binary patch literal 981 zcmWIWW@Zs#U|`??Vnv42F`H-j0a-JEn43X_Au}%}GdZWE9QODy2G-$24avq((;RP6H8$30EvPCNCgOB4UahCoHc~P0}>jH z>z+JPLUTZZM;(tB&}dMMZ~`4roRL_N3bP+12m&AlAb{0=V02B#x(?J{sJK806HQiu_O`Z29OvCfaF1dY&Rg%gsMH8!H+{63t6u!evu910HqB^ zCJ|;_$rNHQh-_d4kw}RaT_b9;0x5=o2F6Yx1E>+2$k6qnCIgr*kcEOkD-nqTT_0-f pA?uq2)CZ4CbZw~NjjTstT- literal 0 HcmV?d00001 diff --git a/flepimop/gempyor_pkg/tests/seir/data/mobility_pd.npz b/flepimop/gempyor_pkg/tests/seir/data/mobility_pd.npz new file mode 100644 index 0000000000000000000000000000000000000000..5dc17b29131ee79bbd595cbfc5c3d0338732a846 GIT binary patch literal 296 zcmWIWW@Zs#fB;2?I_RtO#7&B!FejLUNnH6XG9tPk$h0B=?{kT4? Date: Thu, 31 Aug 2023 11:49:40 -0400 Subject: [PATCH 13/50] added tests/seir/data/mobility to use in the test of no extension --- flepimop/gempyor_pkg/tests/seir/data/mobility | 3 +++ 1 file changed, 3 insertions(+) create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility diff --git a/flepimop/gempyor_pkg/tests/seir/data/mobility b/flepimop/gempyor_pkg/tests/seir/data/mobility new file mode 100644 index 000000000..82b7fe6c3 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/mobility @@ -0,0 +1,3 @@ +ori,dest,amount +10001,20002,500 +20002,10001,1500 From c110f10eaa9ee5a59f9a60172fd2a3758efe0cc7 Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 6 Sep 2023 16:39:34 -0400 Subject: [PATCH 14/50] inserted a NOTE which should be commented out --- flepimop/gempyor_pkg/src/gempyor/parameters.py | 1 + 1 file changed, 1 insertion(+) diff --git a/flepimop/gempyor_pkg/src/gempyor/parameters.py b/flepimop/gempyor_pkg/src/gempyor/parameters.py index 993bcc31f..0e7d25410 100644 --- a/flepimop/gempyor_pkg/src/gempyor/parameters.py +++ b/flepimop/gempyor_pkg/src/gempyor/parameters.py @@ -37,6 +37,7 @@ def __init__( if self.npar != len(set([name.lower() for name in self.pnames])): raise ValueError( "Parameters of the SEIR model have the same name (remember that case is not sufficient!)" + #NOTE: should this lines be eliminated? ) # Attributes of dictionary From e2ec6e4f9c90d99f79fe98f06540d73f1fa45213 Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 6 Sep 2023 16:42:35 -0400 Subject: [PATCH 15/50] added try except on checking config[seir][parameters].existed() in such a case confuse.exception.NotFoundError will be returned --- flepimop/gempyor_pkg/src/gempyor/setup.py | 125 ++++++++++++---------- 1 file changed, 68 insertions(+), 57 deletions(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/setup.py b/flepimop/gempyor_pkg/src/gempyor/setup.py index 664c576a6..25d5ca01f 100644 --- a/flepimop/gempyor_pkg/src/gempyor/setup.py +++ b/flepimop/gempyor_pkg/src/gempyor/setup.py @@ -8,6 +8,7 @@ import scipy.sparse import pyarrow as pa import copy +import confuse from . import compartments from . import parameters from . import seeding_ic @@ -85,72 +86,82 @@ def __init__( # I'm not really sure if we should impose defaut or make setup really explicit and # have users pass #if seir_config is None and config["seir"].exists(): - if not seir_config and config["seir"].exists(): - self.seir_config = config["seir"] + try: + if not seir_config and config["seir"].exists(): + self.seir_config = config["seir"] # added below to cope with the imcompleteness of config["seir"] - if not parameters_config and config["seir"]["parameters"].exists(): - self.parameters_config = config["seir"]["parameters"] + if (not any(parameters_config)) and config["seir"]["parameters"].exists(): + self.parameters_config = config["seir"]["parameters"] + #if (not parameters_config ) and config["seir"]["parameters"].exists(): + #if (not any(parameters_config) ) and self.seir_config["parameters"].keys(): + #if self.seir_config): + #except confuse.exceptions.NotFoundError as e: + # print("catch NotFoundError:",e) # Set-up the integration method and the time step #if config["seir"].exists() and (seir_config or parameters_config): - if (self.seir_config and self.parameters_config): + if (self.seir_config or config["seir"].exists()) and (any(self.parameters_config) or config["seir"]["parameters"].exists()): + #if (self.seir_config and self.parameters_config): #if ((seir_config or self.seir_config) and parameters_config): # modified to handle the case of "T and (F or F)) -> F" - if "integration" in self.seir_config.keys(): - if "method" in self.seir_config["integration"].keys(): - self.integration_method = self.seir_config["integration"]["method"].get() - if self.integration_method == "best.current": - self.integration_method = "rk4.jit" - if self.integration_method == "rk4": - self.integration_method = "rk4.jit" - if self.integration_method not in ["rk4.jit", "legacy"]: - raise ValueError(f"Unknown integration method {self.integration_method}.") - if "dt" in self.seir_config["integration"].keys() and self.dt is None: - self.dt = float( - eval(str(self.seir_config["integration"]["dt"].get())) + if "integration" in self.seir_config.keys(): + if "method" in self.seir_config["integration"].keys(): + self.integration_method = self.seir_config["integration"]["method"].get() + print(self.integration_method) + if self.integration_method == "best.current": + self.integration_method = "rk4.jit" + if self.integration_method == "rk4": + self.integration_method = "rk4.jit" + if self.integration_method not in ["rk4.jit", "legacy"]: + raise ValueError(f"Unknown integration method {self.integration_method}.") + if "dt" in self.seir_config["integration"].keys() and self.dt is None: + self.dt = float( + eval(str(self.seir_config["integration"]["dt"].get())) ) # ugly way to parse string and formulas - elif self.dt is None: - self.dt = 2.0 - else: - self.integration_method = "rk4.jit" - if self.dt is None: - self.dt = 2.0 - logging.info(f"Integration method not provided, assuming type {self.integration_method}") - if self.dt is not None: - self.dt = float(self.dt) - - if config_version is None: - config_version = "v3" - logging.debug(f"Config version not provided, infering type {config_version}") - - if config_version not in ["old", "v2", "v3"]: - raise ValueError( - f"Configuration version unknown: {config_version}. \n" - f"Should be either non-specified (default: 'v3'), or set to 'old' or 'v2'." - ) - elif config_version == "old" or config_version == "v2": + elif self.dt is None: + self.dt = 2.0 + else: + self.integration_method = "rk4.jit" + if self.dt is None: + self.dt = 2.0 + logging.info(f"Integration method not provided, assuming type {self.integration_method}") + except confuse.exceptions.NotFoundError as e: + print("catch NotFoundError:",e) + if self.dt is not None: + self.dt = float(self.dt) + + if config_version is None: + config_version = "v3" + logging.debug(f"Config version not provided, infering type {config_version}") + + if config_version not in ["old", "v2", "v3"]: + raise ValueError( + f"Configuration version unknown: {config_version}. \n" + f"Should be either non-specified (default: 'v3'), or set to 'old' or 'v2'." + ) + elif config_version == "old" or config_version == "v2": # NOTE: even behaved as old, "v2" seems by default in parameter.py - raise ValueError( - f"Configuration version 'old' and 'v2' are no longer supported by flepiMoP\n" - f"Please use a 'v3' instead, or use the COVIDScenarioPipeline package. " - ) - - # Think if we really want to hold this up. - self.parameters = parameters.Parameters( - parameter_config=self.parameters_config, - config_version=config_version, - ti=self.ti, - tf=self.tf, - nodenames=self.spatset.nodenames, + raise ValueError( + f"Configuration version 'old' and 'v2' are no longer supported by flepiMoP\n" + f"Please use a 'v3' instead, or use the COVIDScenarioPipeline package. " ) - self.seedingAndIC = seeding_ic.SeedingAndIC( - seeding_config=self.seeding_config, - initial_conditions_config=self.initial_conditions_config, + + # Think if we really want to hold this up. + self.parameters = parameters.Parameters( + parameter_config=self.parameters_config, + config_version=config_version, + ti=self.ti, + tf=self.tf, + nodenames=self.spatset.nodenames, + ) + self.seedingAndIC = seeding_ic.SeedingAndIC( + seeding_config=self.seeding_config, + initial_conditions_config=self.initial_conditions_config, + ) + # really ugly references to the config globally here. + if config["compartments"].exists() and self.seir_config is not None: + self.compartments = compartments.Compartments( + seir_config=self.seir_config, compartments_config=config["compartments"] ) - # really ugly references to the config globally here. - if config["compartments"].exists() and self.seir_config is not None: - self.compartments = compartments.Compartments( - seir_config=self.seir_config, compartments_config=config["compartments"] - ) # 3. Outcomes self.npi_config_outcomes = None From 72749d9af5300fd406aa62d2bb065359e2784d00 Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 6 Sep 2023 16:45:08 -0400 Subject: [PATCH 16/50] modified to go through the currect test cases --- .../tests/outcomes/test_outcomes0.py | 43 +++++++++++++ .../gempyor_pkg/tests/seir/dev_new_test0.py | 63 +++++++++++++++++++ flepimop/gempyor_pkg/tests/seir/test_setup.py | 8 ++- 3 files changed, 112 insertions(+), 2 deletions(-) create mode 100644 flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py create mode 100644 flepimop/gempyor_pkg/tests/seir/dev_new_test0.py diff --git a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py new file mode 100644 index 000000000..53e93a6ed --- /dev/null +++ b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py @@ -0,0 +1,43 @@ +import gempyor +import numpy as np +import pandas as pd +import datetime +import pytest + +from gempyor.utils import config + +import pandas as pd +import numpy as np +import datetime +import matplotlib.pyplot as plt +import glob, os, sys +from pathlib import Path + +# import seaborn as sns +import pyarrow.parquet as pq +import pyarrow as pa +from gempyor import file_paths, setup, outcomes + +config_path_prefix = "" #'tests/outcomes/' + +### To generate files for this test, see notebook Test Outcomes playbook.ipynb in COVID19_Maryland + +geoid = ["15005", "15007", "15009", "15001", "15003"] +diffI = np.arange(5) * 2 +date_data = datetime.date(2020, 4, 15) +subclasses = ["_A", "_B"] + +os.chdir(os.path.dirname(__file__)) + + +def test_outcome_scenario(): + os.chdir(os.path.dirname(__file__)) ## this is redundant but necessary. Why ? + inference_simulator = gempyor.InferenceSimulator( + config_path=f"{config_path_prefix}config.yml", + run_id=1, + prefix="", + first_sim_index=1, + outcome_scenario="high_death_rate", + stoch_traj_flag=False, + ) + diff --git a/flepimop/gempyor_pkg/tests/seir/dev_new_test0.py b/flepimop/gempyor_pkg/tests/seir/dev_new_test0.py new file mode 100644 index 000000000..ec5ad3108 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/dev_new_test0.py @@ -0,0 +1,63 @@ +import numpy as np +import pandas as pd +import os +import pytest +import warnings +import shutil + +import pathlib +import pyarrow as pa +import pyarrow.parquet as pq +import filecmp + +from gempyor import setup, seir, NPI, file_paths, parameters + +from gempyor.utils import config, write_df, read_df +import gempyor + +DATA_DIR = os.path.dirname(__file__) + "/data" +os.chdir(os.path.dirname(__file__)) + + +def test_parameters_from_timeserie_file(): +# if True: + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_compartmental_model_format_with_covariates.yml") + inference_simulator = gempyor.InferenceSimulator( + config_path=f"{DATA_DIR}/config_compartmental_model_format_with_covariates.yml", + run_id=1, + prefix="", + first_sim_index=1, + outcome_scenario="high_death_rate", + stoch_traj_flag=False, + ) + + p = parameters.Parameters( + parameter_config=config["seir"]["parameters"], + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + nodenames=inference_simulator.s.spatset.nodenames, + config_version="v3") + + #p = inference_simulator.s.parameters + p_draw = p.parameters_quick_draw(n_days=inference_simulator.s.n_days, nnodes=inference_simulator.s.nnodes) + + p_df = p.getParameterDF(p_draw)["parameter"] + + for pn in p.pnames: + if pn == "R0s": + assert pn not in p_df + else: + assert pn in p_df + + initial_df = read_df("data/r0s_ts.csv").set_index("date") + + assert (p_draw[p.pnames2pindex["R0s"]] == initial_df.values).all() + + ### test what happen when the order of geoids is not respected (expected: reput them in order) + + ### test what happens with incomplete data (expected: fail) + + ### test what happens when loading from file + # write_df(fname="test_pwrite.parquet", df=p.getParameterDF(p_draw=p_draw)) diff --git a/flepimop/gempyor_pkg/tests/seir/test_setup.py b/flepimop/gempyor_pkg/tests/seir/test_setup.py index c38941e6f..e7e5d3630 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_setup.py +++ b/flepimop/gempyor_pkg/tests/seir/test_setup.py @@ -111,6 +111,7 @@ def test_w_config_seir_exists_success(self): npi_config_seir={}, seeding_config={}, initial_conditions_config={}, + # parameters_config={"alpha":{"value":{"distribution":"fixed","value":.9}}}, parameters_config={}, seir_config=None, outcomes_config={}, @@ -128,7 +129,9 @@ def test_w_config_seir_exists_success(self): ) assert s.seir_config != None - + #print(s.seir_config["parameters"]) + assert s.parameters_config != None + #print(s.integration_method) assert s.integration_method == 'legacy' def test_w_config_seir_integration_method_rk4_1_success(self): @@ -308,6 +311,7 @@ def test_w_config_seir_integration_but_no_dt_success(self): assert s.dt == 2.0 + ''' not needed any longer def test_w_config_seir_old_integration_method_fail(self): with pytest.raises(ValueError, match=r".*Configuration.*no.*longer.*"): # if old method in seir @@ -329,7 +333,6 @@ def test_w_config_seir_old_integration_method_fail(self): ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), ) - def test_w_config_seir_config_version_not_provided_fail(self): with pytest.raises(ValueError, match=r".*Should.*non-specified.*"): # if not seir_config["integration"]["dt"] @@ -358,6 +361,7 @@ def test_w_config_seir_config_version_not_provided_fail(self): seir_config=None, dt=None, # step size, in days ) + ''' def test_w_config_compartments_and_seir_config_not_None_success(self): # if config["compartments"] and iself.seir_config was set From ccaf151f569513b812f5bdb90390dc496dd7fb9a Mon Sep 17 00:00:00 2001 From: kjsato Date: Fri, 8 Sep 2023 11:24:07 -0400 Subject: [PATCH 17/50] added some testing functions --- .../tests/outcomes/test_outcomes.py | 4 +- .../gempyor_pkg/tests/seir/test_seeding_ic.py | 158 ++++++++++++++++++ flepimop/gempyor_pkg/tests/seir/test_seir.py | 136 +++++++++++++++ 3 files changed, 296 insertions(+), 2 deletions(-) create mode 100644 flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py diff --git a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py index b10e97fa6..9cc7cc090 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py +++ b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py @@ -773,8 +773,8 @@ def test_outcomes_read_write_hnpi2_custom_pname(): first_sim_index=1, outcome_scenario="high_death_rate", stoch_traj_flag=False, - out_run_id=107, - ) +out_run_id=107, +) outcomes.onerun_delayframe_outcomes(sim_id2write=1, s=inference_simulator.s, load_ID=True, sim_id2load=1) diff --git a/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py b/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py new file mode 100644 index 000000000..4755d0186 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py @@ -0,0 +1,158 @@ +import numpy as np +import os +import pytest +import warnings +import shutil + +import pathlib +import pyarrow as pa +import pyarrow.parquet as pq + +from gempyor import setup, seir, NPI, file_paths, seeding_ic + +from gempyor.utils import config + +DATA_DIR = os.path.dirname(__file__) + "/data" +os.chdir(os.path.dirname(__file__)) + + +class TestSeedingAndIC: + def test_SeedingAndIC_success(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config.yml") + + ss = setup.SpatialSetup( + setup_name="test_values", + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + + s = setup.Setup( + setup_name="test_seeding and ic", + spatial_setup=ss, + nslots=1, + npi_scenario="None", + npi_config_seir=config["interventions"]["settings"]["None"], + parameters_config=config["seir"]["parameters"], + seeding_config=config["seeding"], + initial_conditions_config=config["initial_conditions"], + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + interactive=True, + write_csv=False, + dt=0.25, + ) + sic = seeding_ic.SeedingAndIC(seeding_config=s.seeding_config, + initial_conditions_config = s.initial_conditions_config) + assert sic.seeding_config == s.seeding_config + assert sic.initial_conditions_config == s.initial_conditions_config + + def test_SeedingAndIC_allow_missing_node_compartments_success(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config.yml") + + ss = setup.SpatialSetup( + setup_name="test_values", + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name="test_seeding and ic", + spatial_setup=ss, + nslots=1, + npi_scenario="None", + npi_config_seir=config["interventions"]["settings"]["None"], + parameters_config=config["seir"]["parameters"], + seeding_config=config["seeding"], + initial_conditions_config=config["initial_conditions"], + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + interactive=True, + write_csv=False, + dt=0.25, + ) + s.initial_conditions_config["allow_missing_nodes"] = True + s.initial_conditions_config["allow_missing_compartments"] = True + sic = seeding_ic.SeedingAndIC(seeding_config=s.seeding_config, + initial_conditions_config = s.initial_conditions_config) + + initial_conditions = sic.draw_ic(sim_id=100, setup=s) + + # print(initial_conditions) + #integration_method = "legacy" + + def test_SeedingAndIC_IC_notImplemented_fail(self): + with pytest.raises(NotImplementedError, match=r".*unknown.*initial.*conditions.*"): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config.yml") + + ss = setup.SpatialSetup( + setup_name="test_values", + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name="test_seeding and ic", + spatial_setup=ss, + nslots=1, + npi_scenario="None", + npi_config_seir=config["interventions"]["settings"]["None"], + parameters_config=config["seir"]["parameters"], + seeding_config=config["seeding"], + initial_conditions_config=config["initial_conditions"], + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + interactive=True, + write_csv=False, + dt=0.25, + ) + s.initial_conditions_config["method"] = "unknown" + sic = seeding_ic.SeedingAndIC(seeding_config=s.seeding_config, + initial_conditions_config = s.initial_conditions_config) + + sic.draw_ic(sim_id=100, setup=s) + + def test_SeedingAndIC_draw_seeding_success(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config.yml") + + ss = setup.SpatialSetup( + setup_name="test_values", + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + nodenames_key="geoid", + ) + s = setup.Setup( + setup_name="test_seeding and ic", + spatial_setup=ss, + nslots=1, + npi_scenario="None", + npi_config_seir=config["interventions"]["settings"]["None"], + parameters_config=config["seir"]["parameters"], + seeding_config=config["seeding"], + initial_conditions_config=config["initial_conditions"], + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + interactive=True, + write_csv=False, + dt=0.25, + ) + sic = seeding_ic.SeedingAndIC(seeding_config=s.seeding_config, + initial_conditions_config = s.initial_conditions_config) + s.seeding_config["method"] = "NoSeeding" + + seeding = sic.draw_seeding(sim_id=100, setup=s) + print(seeding) + # print(initial_conditions) + diff --git a/flepimop/gempyor_pkg/tests/seir/test_seir.py b/flepimop/gempyor_pkg/tests/seir/test_seir.py index 2127034ed..4402e8051 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_seir.py +++ b/flepimop/gempyor_pkg/tests/seir/test_seir.py @@ -142,6 +142,142 @@ def test_constant_population_legacy_integration(): assert completepop - 1e-3 < totalpop < completepop + 1e-3 +def test_constant_population_rk4jit_integration_fail(): + with pytest.raises(ValueError, match=r".*with.*method.*integration.*"): + config.set_file(f"{DATA_DIR}/config.yml") + + ss = setup.SpatialSetup( + setup_name="test_seir", + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.txt", + popnodes_key="population", + nodenames_key="geoid", + ) + + first_sim_index = 1 + run_id = "test" + prefix = "" + s = setup.Setup( + setup_name="test_seir", + spatial_setup=ss, + nslots=1, + npi_scenario="None", + npi_config_seir=config["interventions"]["settings"]["None"], + parameters_config=config["seir"]["parameters"], + seeding_config=config["seeding"], + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + interactive=True, + write_csv=False, + first_sim_index=first_sim_index, + in_run_id=run_id, + in_prefix=prefix, + out_run_id=run_id, + out_prefix=prefix, + dt=0.25, + stoch_traj_flag=True + ) + s.integration_method = "rk4.jit" + + seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) + initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) + + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + + params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) + params = s.parameters.parameters_reduce(params, npi) + + ( + unique_strings, + transition_array, + proportion_array, + proportion_info, + ) = s.compartments.get_transition_array() + parsed_parameters = s.compartments.parse_parameters(params, s.parameters.pnames, unique_strings) + + states = seir.steps_SEIR( + s, + parsed_parameters, + transition_array, + proportion_array, + proportion_info, + initial_conditions, + seeding_data, + seeding_amounts, + ) + +def test_constant_population_rk4jit_integration(): + #config.set_file(f"{DATA_DIR}/config.yml") + config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_2.yml") + + ss = setup.SpatialSetup( + setup_name="test_seir", + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.txt", + popnodes_key="population", + nodenames_key="geoid", + ) + + first_sim_index = 1 + run_id = "test" + prefix = "" + s = setup.Setup( + setup_name="test_seir", + spatial_setup=ss, + nslots=1, + npi_scenario="None", + npi_config_seir=config["interventions"]["settings"]["None"], + parameters_config=config["seir"]["parameters"], + seeding_config=config["seeding"], + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + interactive=True, + write_csv=False, + first_sim_index=first_sim_index, + in_run_id=run_id, + in_prefix=prefix, + out_run_id=run_id, + out_prefix=prefix, + dt=0.25, + stoch_traj_flag=False + ) + #s.integration_method = "rk4.jit" + assert s.integration_method == "rk4.jit" + + seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) + initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) + + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + + params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) + params = s.parameters.parameters_reduce(params, npi) + + ( + unique_strings, + transition_array, + proportion_array, + proportion_info, + ) = s.compartments.get_transition_array() + parsed_parameters = s.compartments.parse_parameters(params, s.parameters.pnames, unique_strings) + states = seir.steps_SEIR( + s, + parsed_parameters, + transition_array, + proportion_array, + proportion_info, + initial_conditions, + seeding_data, + seeding_amounts, + ) + completepop = s.popnodes.sum() + origpop = s.popnodes + for it in range(s.n_days): + totalpop = 0 + for i in range(s.nnodes): + totalpop += states[0].sum(axis=1)[it, i] + assert states[0].sum(axis=1)[it, i] - 1e-3 < origpop[i] < states[0].sum(axis=1)[it, i] + 1e-3 + assert completepop - 1e-3 < totalpop < completepop + 1e-3 + def test_steps_SEIR_nb_simple_spread_with_txt_matrices(): os.chdir(os.path.dirname(__file__)) config.clear() From 64b22a4712b890fc8b447dab6e3e03a2ecf09cb6 Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 12 Sep 2023 12:05:27 -0400 Subject: [PATCH 18/50] added tests/interface/test_interface.py as a new --- flepimop/gempyor_pkg/tests/interface/test_interface.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/flepimop/gempyor_pkg/tests/interface/test_interface.py b/flepimop/gempyor_pkg/tests/interface/test_interface.py index 38ba7a396..e4e0f348d 100644 --- a/flepimop/gempyor_pkg/tests/interface/test_interface.py +++ b/flepimop/gempyor_pkg/tests/interface/test_interface.py @@ -7,7 +7,7 @@ import time import confuse -from gempyor import utils, interface, setup, parameters +from gempyor import utils, interface, seir, setup, parameters from gempyor.utils import config TEST_SETUP_NAME = "minimal_test" @@ -34,6 +34,7 @@ def test_InferenceSimulator_success(self): i.update_prefix("test_newer_in_prefix", "test_newer_out_prefix") assert i.s.in_prefix == "test_newer_in_prefix" assert i.s.out_prefix == "test_newer_out_prefix" + i.update_prefix("", "") i.update_run_id("test_new_run_id") assert i.s.in_run_id == "test_new_run_id" @@ -43,8 +44,10 @@ def test_InferenceSimulator_success(self): assert i.s.in_run_id == "test_newer_in_run_id" assert i.s.out_run_id == "test_newer_out_run_id" + i.update_run_id("test", "test") + # i.one_simulation_legacy(sim_id2write=0) i.build_structure() assert i.already_built - # i.one_simulation(sim_id2write=0) + i.one_simulation(sim_id2write=0) From cbf49a016a219bb035274b52fa10e6f08e26a69e Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 13 Sep 2023 09:46:34 -0400 Subject: [PATCH 19/50] initial commit by merging unittest with breaking-improvment --- batch/inference_job_launcher.py | 59 +- datasetup/build_US_setup.R | 39 +- datasetup/build_covid_data.R | 12 +- datasetup/build_flu_data.R | 50 +- datasetup/build_nonUS_setup.R | 4 +- datasetup/usdata/geoid-params.csv | 2 +- .../config.writer/R/create_config_data.R | 660 +- .../config.writer/R/process_npi_list.R | 74 +- .../R_packages/config.writer/R/yaml_utils.R | 156 +- .../config.writer/tests/testthat/geodata.csv | 2 +- .../tests/testthat/outcome_adj.csv | 2 +- .../testthat/processed_intervention_data.csv | 2982 +- .../tests/testthat/sample_config.yml | 4314 ++- .../tests/testthat/test-gen_npi.R | 8 +- .../tests/testthat/test-print_config.R | 4 +- .../tests/testthat/vacc_rates.csv | 2 +- flepimop/R_packages/flepicommon/NAMESPACE | 2 +- flepimop/R_packages/flepicommon/R/DataUtils.R | 34 +- .../flepicommon/R/config_test_new.R | 10 +- .../R_packages/inference/R/documentation.Rmd | 28 +- flepimop/R_packages/inference/R/functions.R | 68 +- .../inference/R/inference_slot_runner_funcs.R | 26 +- .../inference/archive/InferenceTest.R | 96 +- .../test-accept_reject_new_seeding_npis.R | 50 +- .../test-aggregate_and_calc_loc_likelihoods.R | 100 +- .../testthat/test-calc_hierarchical_likadj.R | 34 +- .../tests/testthat/test-perturb_npis.R | 12 +- .../tests/testthat/test-perturb_seeding.R | 4 +- flepimop/gempyor_pkg/docs/Rinterface.Rmd | 22 +- flepimop/gempyor_pkg/docs/Rinterface.html | 46 +- .../docs/integration_benchmark.ipynb | 144 +- .../gempyor_pkg/docs/integration_doc.ipynb | 4 +- flepimop/gempyor_pkg/docs/interface.ipynb | 2 +- flepimop/gempyor_pkg/setup.cfg | 1 + ...uceIntervention.py => ModifierModifier.py} | 38 +- ...tiTimeReduce.py => MultiPeriodModifier.py} | 164 +- .../gempyor_pkg/src/gempyor/NPI/ReduceR0.py | 17 - .../{Reduce.py => SinglePeriodModifier.py} | 54 +- .../NPI/{Stacked.py => StackedModifier.py} | 10 +- flepimop/gempyor_pkg/src/gempyor/NPI/base.py | 6 +- .../gempyor_pkg/src/gempyor/NPI/helpers.py | 24 +- .../gempyor_pkg/src/gempyor/compartments.py | 3 +- .../data/usa-geoid-params-output.parquet | Bin 86209 -> 84637 bytes .../gempyor_pkg/src/gempyor/dev/dev_seir.py | 10 +- flepimop/gempyor_pkg/src/gempyor/dev/steps.py | 100 +- flepimop/gempyor_pkg/src/gempyor/interface.py | 59 +- flepimop/gempyor_pkg/src/gempyor/outcomes.py | 94 +- .../gempyor_pkg/src/gempyor/parameters.py | 191 +- .../gempyor_pkg/src/gempyor/seeding_ic.py | 164 +- flepimop/gempyor_pkg/src/gempyor/seir.py | 36 +- flepimop/gempyor_pkg/src/gempyor/setup.py | 155 +- flepimop/gempyor_pkg/src/gempyor/simulate.py | 417 + .../src/gempyor/simulate_outcome.py | 10 +- .../gempyor_pkg/src/gempyor/simulate_seir.py | 30 +- flepimop/gempyor_pkg/src/gempyor/steps_rk4.py | 12 +- .../gempyor_pkg/src/gempyor/steps_source.py | 14 +- .../src/gempyor/subpopulation_structure.py | 103 + flepimop/gempyor_pkg/src/gempyor/utils.py | 3 +- flepimop/gempyor_pkg/tests/npi/config_npi.yml | 22700 ++++++++-------- .../npi/config_test_spatial_group_npi.yml | 34 +- .../gempyor_pkg/tests/npi/data/geodata.csv | 2 +- .../npi/data/geodata_2019_statelevel.csv | 2 +- flepimop/gempyor_pkg/tests/npi/test_npis.py | 38 +- .../gempyor_pkg/tests/outcomes/config.yml | 2 - .../tests/outcomes/config_load.yml | 4 +- .../tests/outcomes/config_load_subclasses.yml | 4 +- .../tests/outcomes/config_mc_selection.yml | 34 +- .../gempyor_pkg/tests/outcomes/config_npi.yml | 34 +- .../outcomes/config_npi_custom_pnames.yml | 34 +- .../tests/outcomes/config_subclasses.yml | 2 - .../tests/outcomes/data/geodata.csv | 2 +- .../data/usa-geoid-params-output.parquet | Bin 86209 -> 84637 bytes .../tests/outcomes/make_seir_test_file.py | 6 +- .../tests/outcomes/test_outcomes.py | 330 +- .../tests/outcomes/test_rel.parquet | Bin 3567 -> 1996 bytes .../outcomes/test_rel_subclasses.parquet | Bin 3682 -> 2111 bytes .../gempyor_pkg/tests/seir/data/config.yml | 14 +- .../config_compartmental_model_format.yml | 2 - ...artmental_model_format_with_covariates.yml | 2 - .../data/config_compartmental_model_full.yml | 14 +- .../seir/data/config_continuation_resume.yml | 12 +- .../seir/data/config_inference_resume.yml | 20 +- .../tests/seir/data/config_parallel.yml | 20 +- .../tests/seir/data/config_resume.yml | 12 +- .../gempyor_pkg/tests/seir/data/geodata.csv | 2 +- .../gempyor_pkg/tests/seir/dev_new_test.py | 6 +- .../gempyor_pkg/tests/seir/interface.ipynb | 2 +- .../model_output/seed/000000100.test.seed.csv | 2 +- .../seed/000000100.test_SeedOneNode.seed.csv | 2 +- .../seed/000000100.test_parallel.seed.csv | 2 +- .../tests/seir/test_compartments.py | 8 +- .../gempyor_pkg/tests/seir/test_new_seir.py | 8 +- .../gempyor_pkg/tests/seir/test_parameters.py | 38 +- flepimop/gempyor_pkg/tests/seir/test_seir.py | 66 +- flepimop/gempyor_pkg/tests/seir/test_setup.py | 644 +- flepimop/main_scripts/create_seeding.R | 22 +- flepimop/main_scripts/create_seeding_added.R | 20 +- flepimop/main_scripts/inference_slot.R | 44 +- .../main_scripts/seir_init_immuneladder.R | 18 +- postprocessing/groundtruth_source.R | 4 +- postprocessing/plot_predictions.R | 4 +- postprocessing/postprocess_auto.py | 20 +- postprocessing/postprocess_snapshot.R | 124 +- postprocessing/processing_diagnostics.R | 26 +- postprocessing/processing_diagnostics_AWS.R | 26 +- postprocessing/processing_diagnostics_SLURM.R | 26 +- .../run_sim_processing_FluSightExample.R | 6 +- postprocessing/run_sim_processing_SLURM.R | 6 +- postprocessing/run_sim_processing_TEMPLATE.R | 6 +- postprocessing/sim_processing_source.R | 172 +- .../seir_init_immuneladder_r17phase3.R | 17 +- .../seir_init_immuneladder_r17phase3_preOm.R | 18 +- ...nit_immuneladder_r17phase3_preOm_noDelta.R | 17 +- utilities/prune_by_llik.py | 150 +- 114 files changed, 18034 insertions(+), 17563 deletions(-) rename flepimop/gempyor_pkg/src/gempyor/NPI/{ReduceIntervention.py => ModifierModifier.py} (91%) rename flepimop/gempyor_pkg/src/gempyor/NPI/{MultiTimeReduce.py => MultiPeriodModifier.py} (67%) delete mode 100644 flepimop/gempyor_pkg/src/gempyor/NPI/ReduceR0.py rename flepimop/gempyor_pkg/src/gempyor/NPI/{Reduce.py => SinglePeriodModifier.py} (87%) rename flepimop/gempyor_pkg/src/gempyor/NPI/{Stacked.py => StackedModifier.py} (94%) create mode 100644 flepimop/gempyor_pkg/src/gempyor/simulate.py create mode 100644 flepimop/gempyor_pkg/src/gempyor/subpopulation_structure.py diff --git a/batch/inference_job_launcher.py b/batch/inference_job_launcher.py index 0b81c4cb6..f2715a7f7 100755 --- a/batch/inference_job_launcher.py +++ b/batch/inference_job_launcher.py @@ -241,7 +241,7 @@ def user_confirmation(question="Continue?", default=False): "slack_channel", envvar="SLACK_CHANNEL", default="cspproduction", - type=click.Choice(['cspproduction', 'debug', 'noslack']), + type=click.Choice(["cspproduction", "debug", "noslack"]), help="Slack channel, either 'csp-production' or 'debug', or 'noslack' to disable slack", ) @click.option( @@ -331,22 +331,26 @@ def launch_batch( print(f"WARNING: no inference section found in {config_file}!") if "s3://" in str(restart_from_location): # ugly hack: str because it might be None - restart_from_run_id = aws_countfiles_autodetect_runid(s3_bucket=s3_bucket, - restart_from_location=restart_from_location, - restart_from_run_id=restart_from_run_id, - num_jobs=num_jobs, - strict=False) + restart_from_run_id = aws_countfiles_autodetect_runid( + s3_bucket=s3_bucket, + restart_from_location=restart_from_location, + restart_from_run_id=restart_from_run_id, + num_jobs=num_jobs, + strict=False, + ) else: if restart_from_run_id is None and restart_from_location is not None: raise Exception( "No auto-detection of run_id from local folder, please specify --restart_from_run_id (or fixme)" ) if "s3://" in str(continuation_location): - continuation_run_id = aws_countfiles_autodetect_runid(s3_bucket=s3_bucket, - restart_from_location=continuation_location, - restart_from_run_id=continuation_run_id, - num_jobs=num_jobs, - strict=True) + continuation_run_id = aws_countfiles_autodetect_runid( + s3_bucket=s3_bucket, + restart_from_location=continuation_location, + restart_from_run_id=continuation_run_id, + num_jobs=num_jobs, + strict=True, + ) else: if continuation_run_id is None and continuation_location is not None: raise Exception( @@ -355,9 +359,9 @@ def launch_batch( if continuation and continuation_location is None: continuation_location = restart_from_location continuation_run_id = restart_from_run_id - print("Continuation enabled but no continuation location provided. Assuming that continuation location is the same as resume location") - - + print( + "Continuation enabled but no continuation location provided. Assuming that continuation location is the same as resume location" + ) handler = BatchJobHandler( batch_system, @@ -421,13 +425,13 @@ def autodetect_params(config, data_path, *, num_jobs=None, sims_per_job=None, nu print(f"Setting number of blocks to {num_blocks} [via num_blocks (-k) argument]") print(f"Setting sims per job to {sims_per_job} [via {iterations_per_slot} iterations_per_slot in config]") else: - geoid_fname = pathlib.Path(data_path, config["data_path"]) / config["spatial_setup"]["geodata"] - with open(geoid_fname) as geoid_fp: - num_geoids = sum(1 for line in geoid_fp) + geodata_fname = pathlib.Path(data_path, config["data_path"]) / config["spatial_setup"]["geodata"] + with open(geodata_fname) as geodata_fp: + num_subpops = sum(1 for line in geodata_fp) if batch_system == "aws": - # formula based on a simple regression of geoids (based on known good performant params) - sims_per_job = max(60 - math.sqrt(num_geoids), 10) + # formula based on a simple regression of subpops (based on known good performant params) + sims_per_job = max(60 - math.sqrt(num_subpops), 10) sims_per_job = 5 * int(math.ceil(sims_per_job / 5)) # multiple of 5 num_blocks = int(math.ceil(iterations_per_slot / sims_per_job)) elif batch_system == "slurm" or batch_system == "local": @@ -439,7 +443,7 @@ def autodetect_params(config, data_path, *, num_jobs=None, sims_per_job=None, nu print( f"Setting sims per job to {sims_per_job} " - f"[estimated based on {num_geoids} geoids and {iterations_per_slot} iterations_per_slot in config]" + f"[estimated based on {num_subpops} subpop(s) and {iterations_per_slot} iterations_per_slot in config]" ) print(f"Setting number of blocks to {num_blocks} [via math]") @@ -484,7 +488,7 @@ def aws_countfiles_autodetect_runid(s3_bucket, restart_from_location, restart_fr final_llik = [f for f in all_files if ("llik" in f) and ("final" in f)] if len(final_llik) == 0: # hacky: there might be a bucket with no llik files, e.g if init. - final_llik = [f for f in all_files if ("init" in f) and ("final" in f)] + final_llik = [f for f in all_files if ("init" in f) and ("final" in f)] if len(final_llik) != num_jobs: if strict: @@ -497,7 +501,7 @@ def aws_countfiles_autodetect_runid(s3_bucket, restart_from_location, restart_fr ) if (num_jobs - len(final_llik)) > 50: user_confirmation(question=f"Difference > 50. Should we continue ?") - + return restart_from_run_id @@ -720,8 +724,13 @@ def launch(self, job_name, config_file, npi_scenarios, outcome_scenarios): cur_env_vars.append({"name": "FLEPI_CONTINUATION", "value": f"TRUE"}) cur_env_vars.append({"name": "FLEPI_CONTINUATION_RUN_ID", "value": f"{self.continuation_run_id}"}) cur_env_vars.append({"name": "FLEPI_CONTINUATION_LOCATION", "value": f"{self.continuation_location}"}) - cur_env_vars.append({"name": "FLEPI_CONTINUATION_FTYPE", "value": f"{config['initial_conditions']['initial_file_type']}"}) - + cur_env_vars.append( + { + "name": "FLEPI_CONTINUATION_FTYPE", + "value": f"{config['initial_conditions']['initial_file_type']}", + } + ) + # First job: if self.batch_system == "aws": cur_env_vars.append({"name": "JOB_NAME", "value": f"{cur_job_name}_block0"}) @@ -816,8 +825,6 @@ def launch(self, job_name, config_file, npi_scenarios, outcome_scenarios): print(f"""export {envar["name"]}="{envar["value"]}" """) print(f"--- end env var to set ---") - - # On aws: create all other jobs + the copy job. slurm script is only one block and copies itself at the end. if self.batch_system == "aws": block_idx = 1 diff --git a/datasetup/build_US_setup.R b/datasetup/build_US_setup.R index 974052c61..d15befb14 100644 --- a/datasetup/build_US_setup.R +++ b/datasetup/build_US_setup.R @@ -12,7 +12,6 @@ # modeled_states: e.g. MD, CA, NY # mobility: optional; default is 'mobility.csv' # geodata: optional; default is 'geodata.csv' -# popnodes: optional; default is 'population' # # importation: # census_api_key: default is environment variable CENSUS_API_KEY. Environment variable is preferred so you don't accidentally commit your key. @@ -84,25 +83,25 @@ census_data <- tidycensus::get_acs(geography="county", state=filterUSPS, variables="B01003_001", year=config$spatial_setup$census_year, keep_geo_vars=TRUE, geometry=FALSE, show_call=TRUE) census_data <- census_data %>% - dplyr::rename(population=estimate, geoid=GEOID) %>% - dplyr::select(geoid, population) %>% - dplyr::mutate(geoid = substr(geoid,1,5)) + dplyr::rename(population=estimate, subpop=GEOID) %>% + dplyr::select(subpop, population) %>% + dplyr::mutate(subpop = substr(subpop,1,5)) # Add USPS column data(fips_codes) -fips_geoid_codes <- dplyr::mutate(fips_codes, geoid=paste0(state_code,county_code)) %>% - dplyr::group_by(geoid) %>% +fips_subpop_codes <- dplyr::mutate(fips_codes, subpop=paste0(state_code,county_code)) %>% + dplyr::group_by(subpop) %>% dplyr::summarize(USPS=unique(state)) -census_data <- dplyr::left_join(census_data, fips_geoid_codes, by="geoid") +census_data <- dplyr::left_join(census_data, fips_subpop_codes, by="subpop") # Make each territory one county. # Puerto Rico is the only one in the 2018 ACS estimates right now. Aggregate it. # Keeping the other territories in the aggregation just in case they're there in the future. name_changer <- setNames( - unique(census_data$geoid), - unique(census_data$geoid) + unique(census_data$subpop), + unique(census_data$subpop) ) name_changer[grepl("^60",name_changer)] <- "60000" # American Samoa name_changer[grepl("^66",name_changer)] <- "66000" # Guam @@ -111,8 +110,8 @@ name_changer[grepl("^72",name_changer)] <- "72000" # Puerto Rico name_changer[grepl("^78",name_changer)] <- "78000" # Virgin Islands census_data <- census_data %>% - dplyr::mutate(geoid = name_changer[geoid]) %>% - dplyr::group_by(geoid) %>% + dplyr::mutate(subpop = name_changer[subpop]) %>% + dplyr::group_by(subpop) %>% dplyr::summarize(USPS = unique(USPS), population = sum(population)) @@ -127,8 +126,8 @@ census_data <- terr_census_data %>% # State-level aggregation if desired if (state_level){ census_data <- census_data %>% - dplyr::mutate(geoid = as.character(paste0(substr(geoid,1,2), "000"))) %>% - dplyr::group_by(USPS, geoid) %>% + dplyr::mutate(subpop = as.character(paste0(substr(subpop,1,2), "000"))) %>% + dplyr::group_by(USPS, subpop) %>% dplyr::summarise(population=sum(population, na.rm=TRUE)) %>% tibble::as_tibble() } @@ -170,7 +169,7 @@ if(state_level & !file.exists(paste0(config$data_path, "/", config$spatial_setup commute_data <- commute_data %>% dplyr::mutate(OFIPS = substr(OFIPS,1,5), DFIPS = substr(DFIPS,1,5)) %>% dplyr::mutate(OFIPS = name_changer[OFIPS], DFIPS = name_changer[DFIPS]) %>% - dplyr::filter(OFIPS %in% census_data$geoid, DFIPS %in% census_data$geoid) %>% + dplyr::filter(OFIPS %in% census_data$subpop, DFIPS %in% census_data$subpop) %>% dplyr::group_by(OFIPS,DFIPS) %>% dplyr::summarize(FLOW = sum(FLOW)) %>% dplyr::filter(OFIPS != DFIPS) @@ -185,19 +184,19 @@ if(state_level & !file.exists(paste0(config$data_path, "/", config$spatial_setup if(endsWith(mobility_file, '.txt')) { - # Pads 0's for every geoid and itself, so that nothing gets dropped on the pivot + # Pads 0's for every subpop and itself, so that nothing gets dropped on the pivot padding_table <- tibble::tibble( - OFIPS = census_data$geoid, - DFIPS = census_data$geoid, + OFIPS = census_data$subpop, + DFIPS = census_data$subpop, FLOW = 0 ) rc <- dplyr::bind_rows(padding_table, commute_data) %>% - dplyr::arrange(match(OFIPS, census_data$geoid), match(DFIPS, census_data$geoid)) %>% + dplyr::arrange(match(OFIPS, census_data$subpop), match(DFIPS, census_data$subpop)) %>% tidyr::pivot_wider(OFIPS,names_from=DFIPS,values_from=FLOW, values_fill=c("FLOW"=0),values_fn = list(FLOW=sum)) - if(!isTRUE(all(rc$OFIPS == census_data$geoid))){ + if(!isTRUE(all(rc$OFIPS == census_data$subpop))){ print(rc$OFIPS) - print(census_data$geoid) + print(census_data$subpop) stop("There was a problem generating the mobility matrix") } write.table(file = file.path(outdir, mobility_file), as.matrix(rc[,-1]), row.names=FALSE, col.names = FALSE, sep = " ") diff --git a/datasetup/build_covid_data.R b/datasetup/build_covid_data.R index 2aa339315..d44d8b1bd 100644 --- a/datasetup/build_covid_data.R +++ b/datasetup/build_covid_data.R @@ -49,12 +49,12 @@ source(file.path(opt$path, "datasetup/data_setup_source.R")) # SET DELPHI API KEY ------------------------------------------------------ if (any(grepl("nchs|hhs", opt$gt_data_source))){ - if (!is.null(opt$delphi_api_key)){ - cat(paste0("Using Environment variable for Delphi API key: ", opt$delphi_api_key)) - options(covidcast.auth = opt$delphi_api_key) - } else if (!is.null(config$inference$gt_api_key)){ + if (!is.null(config$inference$gt_api_key)){ cat(paste0("Using Config variable for Delphi API key: ", config$inference$gt_api_key)) options(covidcast.auth = config$inference$gt_api_key) + } else if (!is.null(opt$delphi_api_key)){ + cat(paste0("Using Environment variable for Delphi API key: ", opt$delphi_api_key)) + options(covidcast.auth = opt$delphi_api_key) } else { newkey <- readline(prompt = "Please enter your Delphi API key before proceeding:") #check @@ -220,7 +220,7 @@ if (any(grepl("fluview", opt$gt_data_source))){ census_data <- read_csv(file = file.path(config$data_path, config$spatial_setup$geodata)) fluview_data <- fluview_data %>% - dplyr::inner_join(census_data %>% dplyr::select(source = USPS, FIPS = geoid)) %>% + dplyr::inner_join(census_data %>% dplyr::select(source = USPS, FIPS = subpop)) %>% dplyr::select(Update, source, FIPS, incidD) @@ -285,7 +285,7 @@ if (any(grepl("fluview", opt$gt_data_source))){ # # census_data <- read_csv(file = file.path(config$data_path, config$spatial_setup$geodata)) # fluview_data <- fluview_data %>% -# left_join(census_data %>% dplyr::select(source = USPS, FIPS = geoid)) %>% +# left_join(census_data %>% dplyr::select(source = USPS, FIPS = subpop)) %>% # dplyr::select(Update, source, FIPS, incidD) # # diff --git a/datasetup/build_flu_data.R b/datasetup/build_flu_data.R index 34fb5d59c..f44ea0568 100644 --- a/datasetup/build_flu_data.R +++ b/datasetup/build_flu_data.R @@ -65,14 +65,14 @@ locs <- read_csv(file.path(config$data_path, config$spatial_setup$geodata)) us_data <- us_data %>% mutate(location = stringr::str_pad(location, width = 2, side = "left", pad = "0")) -us_data <- us_data %>% +us_data <- us_data %>% filter(location != "US") %>% mutate(location = stringr::str_pad(location, width=5, side="right", pad="0")) %>% - left_join(locs, by = c("location"="geoid")) %>% - rename(FIPS = location, + left_join(locs, by = c("location"="subpop")) %>% + rename(FIPS = location, incidH = value, source = USPS) %>% - select(-location_name, -pop2019est) + select(-location_name, -population) # Filter to dates we care about for speed and space end_date_ <- config$end_date_groundtruth @@ -98,24 +98,24 @@ variant_props_file <- config$seeding$variant_filename adjust_for_variant <- !is.null(variant_props_file) # if (adjust_for_variant){ -# +# # # Variant Data (need to automate this data pull still) # #variant_data <- read_csv(file.path(config$data_path, "variant/WHO_NREVSS_Clinical_Labs.csv"), skip = 1) # variant_data <- cdcfluview::who_nrevss(region="state", years = 2022)$clinical_labs -# +# # # location data # loc_data <- read_csv("data-locations/locations.csv") -# -# +# +# # # CLEAN DATA -# +# # variant_data <- variant_data %>% # select(state = region, # week = week, # year = year, # FluA = total_a, # FluB = total_b) %>% -# # select(state = REGION, +# # select(state = REGION, # # week = WEEK, # # year = YEAR, # # FluA = `TOTAL A`, @@ -145,14 +145,14 @@ adjust_for_variant <- !is.null(variant_props_file) # mutate(prop = ifelse(is.na(prop), 0, prop)) %>% # filter(!is.na(week_end)) %>% # filter(week_end <= as_date(end_date_)) -# +# # variant_data <- variant_data %>% # left_join(loc_data %>% select(state = location_name, source = abbreviation)) %>% # mutate(week = epiweek(week_end), year = epiyear(week_end)) -# +# # if(end_date_ != max(variant_data$week_end)){ # # Extend to dates of groundtruth -# var_max_dates <- variant_data %>% +# var_max_dates <- variant_data %>% # group_by(source, state) %>% # filter(week_end == max(week_end)) %>% # ungroup() %>% @@ -164,50 +164,50 @@ adjust_for_variant <- !is.null(variant_props_file) # ungroup() # var_max_dates <- var_max_dates %>% # rename(max_current = week_end) %>% -# mutate(week_end = strsplit(as.character(weeks_missing), ",")) %>% +# mutate(week_end = strsplit(as.character(weeks_missing), ",")) %>% # unnest(week_end) %>% # select(state, week, year, variant, prop, week_end, source) %>% # mutate(week_end = as_date(week_end)) # variant_data <- variant_data %>% # bind_rows(var_max_dates) # } -# +# # variant_data <- variant_data %>% # mutate(week = epiweek(week_end), year = epiyear(week_end)) -# +# # variant_data <- variant_data %>% # expand_grid(day = 1:7) %>% # mutate(date = as_date(MMWRweek::MMWRweek2Date(year, week, day))) %>% # select(c(variant, prop, source, date)) -# -# variant_data <- variant_data %>% +# +# variant_data <- variant_data %>% # filter(date >= as_date(config$start_date) & date <= as_date(config$end_date_groundtruth)) -# +# # write_csv(variant_data, variant_props_file) # } -# +# # APPLY VARIANTS ---------------------------------------------------------- if (adjust_for_variant) { - + us_data <- read_csv(config$inference$gt_data_path) - + tryCatch({ us_data <- flepicommon::do_variant_adjustment(us_data, variant_props_file) - us_data <- us_data %>% + us_data <- us_data %>% filter(date >= as_date(config$start_date) & date <= as_date(config$end_date_groundtruth)) write_csv(us_data, config$inference$gt_data_path) }, error = function(e) { - stop(paste0("Could not use variant file |", variant_props_file, + stop(paste0("Could not use variant file |", variant_props_file, "|, with error message", e$message)) }) } -cat(paste0("Ground truth data saved\n", +cat(paste0("Ground truth data saved\n", " -- file: ", config$inference$gt_data_path,".\n", " -- outcomes: ", paste(grep("incid", colnames(us_data), value = TRUE), collapse = ", "))) diff --git a/datasetup/build_nonUS_setup.R b/datasetup/build_nonUS_setup.R index ef32b9c80..60926450d 100644 --- a/datasetup/build_nonUS_setup.R +++ b/datasetup/build_nonUS_setup.R @@ -12,8 +12,6 @@ # modeled_states: e.g. ZMB, BGD, CAN # mobility: optional; default is 'mobility.csv' # geodata: optional; default is 'geodata.csv' -# popnodes: optional; default is 'pop' -# # # ## Input Data # @@ -107,7 +105,7 @@ if(opt$w){ } # Save population geodata -names(census_data) <- c("geoid","admin2","admin0","pop") +names(census_data) <- c("subpop","admin2","admin0","pop") write.csv(file = file.path(outdir,'geodata.csv'), census_data,row.names=FALSE) print("Census Data Check (up to 6 rows)") diff --git a/datasetup/usdata/geoid-params.csv b/datasetup/usdata/geoid-params.csv index e6593b927..5db66a0b0 100644 --- a/datasetup/usdata/geoid-params.csv +++ b/datasetup/usdata/geoid-params.csv @@ -1,4 +1,4 @@ -geoid,parameter,value +subpop,parameter,value 01001,p_symp_inf,0.48210587170307384 01003,p_symp_inf,0.5085175350771249 01005,p_symp_inf,0.4955007483173164 diff --git a/flepimop/R_packages/config.writer/R/create_config_data.R b/flepimop/R_packages/config.writer/R/create_config_data.R index 7388ce5d6..4c7a796b7 100644 --- a/flepimop/R_packages/config.writer/R/create_config_data.R +++ b/flepimop/R_packages/config.writer/R/create_config_data.R @@ -4,7 +4,7 @@ #' #' @param sim_start_date simulation start date #' @param sim_end_date simulation end date -#' @param incl_geoid +#' @param incl_subpop #' @param v_dist type of distribution for reduction #' @param v_mean reduction mean #' @param v_sd reduction sd @@ -16,7 +16,7 @@ #' @param p_sd perturbation sd #' @param p_a perturbation a #' @param p_b perturbation b -#' @param compartment +#' @param compartment #' #' @return data frame with columns for #' @export @@ -28,7 +28,7 @@ #' set_incidH_params <- function(start_date=Sys.Date()-42, sim_end_date=Sys.Date()+60, - incl_geoid = NULL, + incl_subpop = NULL, inference = TRUE, v_dist="truncnorm", v_mean = 0, v_sd = 0.1, v_a = -1, v_b = 1, # TODO: add check on limits @@ -37,19 +37,19 @@ set_incidH_params <- function(start_date=Sys.Date()-42, ){ start_date <- as.Date(start_date) sim_end_date <- as.Date(sim_end_date) - - template = "Reduce" + + template = "SinglePeriodModifier" param_val <- "incidH::probability" - - if(is.null(incl_geoid)){ - affected_geoids = "all" + + if(is.null(incl_subpop)){ + affected_subpop = "all" } else{ - affected_geoids = paste0(incl_geoid, collapse='", "') + affected_subpop = paste0(incl_subpop, collapse='", "') } - - + + local_var <- dplyr::tibble(USPS = "", - geoid = affected_geoids, + subpop = affected_subpop, name = "incidH_adj", type = "outcome", category = "incidH_adjustment", @@ -71,8 +71,8 @@ set_incidH_params <- function(start_date=Sys.Date()-42, pert_b = p_b) %>% dplyr::mutate(pert_dist = ifelse(inference, as.character(pert_dist), NA_character_), dplyr::across(pert_mean:pert_b, ~ifelse(inference, as.numeric(.x), NA_real_))) %>% - dplyr::select(USPS, geoid, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) - + dplyr::select(USPS, subpop, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) + return(local_var) } @@ -82,7 +82,7 @@ set_incidH_params <- function(start_date=Sys.Date()-42, #' @param sim_start_date simulation start date #' @param sim_end_date simulation end date #' @param npi_cutoff_date only interventions that start before or on npi_cuttof_date are included -#' @param redux_geoids string or vector of characters indicating which geoids will have an intervention with the ReduceIntervention template; it accepts "all". If any values are specified, the intervention in the geoid with the maximum start date will be selected. It defaults to NULL. . +#' @param redux_subpop string or vector of characters indicating which subpop will have an intervention with the ModifierModifier template; it accepts "all". If any values are specified, the intervention in the subpop with the maximum start date will be selected. It defaults to NULL. . #' @param v_dist type of distribution for reduction #' @param v_mean reduction mean #' @param v_sd reduction sd @@ -111,20 +111,20 @@ set_npi_params_old <- function(intervention_file, sim_end_date=Sys.Date()+60, npi_cutoff_date=Sys.Date()-7, inference = TRUE, - redux_geoids = NULL, + redux_subpop = NULL, v_dist = "truncnorm", v_mean=0.6, v_sd=0.05, v_a=0.0, v_b=0.9, p_dist = "truncnorm", p_mean=0, p_sd=0.05, p_a=-1, p_b=1, compartment = TRUE){ - + param_val <- ifelse(compartment, "r0", "R0") sim_start_date <- lubridate::ymd(sim_start_date) sim_end_date <- lubridate::ymd(sim_end_date) npi_cuttoff_date <- lubridate::ymd(npi_cutoff_date) - + npi <- intervention_file %>% dplyr::filter(start_date <= npi_cutoff_date) %>% dplyr::filter(start_date >= sim_start_date | end_date > sim_start_date) %>% # add warning about npi period <7 days? - dplyr::group_by(USPS, geoid) %>% + dplyr::group_by(USPS, subpop) %>% dplyr::mutate(end_date = dplyr::case_when(is.na(end_date) | end_date == max(end_date) | end_date > sim_end_date ~ sim_end_date, TRUE ~ end_date), @@ -141,44 +141,44 @@ set_npi_params_old <- function(intervention_file, type = "transmission", category = "NPI", baseline_scenario = "", - parameter = dplyr::if_else(template=="MultiTimeReduce", param_val, NA_character_) + parameter = dplyr::if_else(template=="MultiPeriodModifier", param_val, NA_character_) ) - + if(any(stringr::str_detect(npi$name, "^\\d$"))) stop("Intervention names must include at least one non-numeric character.") - + npi <- npi %>% dplyr::mutate(dplyr::across(pert_mean:pert_b, ~ifelse(inference, .x, NA_real_)), pert_dist = ifelse(inference, pert_dist, NA_character_)) %>% - dplyr::select(USPS, geoid, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) - - if(!is.null(redux_geoids)){ - if(redux_geoids == 'all'){ - redux_geoids <- unique(npi$geoid) + dplyr::select(USPS, subpop, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) + + if(!is.null(redux_subpop)){ + if(redux_subpop == 'all'){ + redux_subpop <- unique(npi$subpop) } - + npi <- npi %>% - dplyr::filter(geoid %in% redux_geoids) %>% - dplyr::group_by(geoid) %>% + dplyr::filter(subpop %in% redux_subpop) %>% + dplyr::group_by(subpop) %>% dplyr::filter(start_date == max(start_date)) %>% dplyr::mutate(category = "base_npi", name = paste0(name, "_last")) %>% dplyr::bind_rows( npi %>% - dplyr::group_by(geoid) %>% - dplyr::filter(start_date != max(start_date) |! geoid %in% redux_geoids) + dplyr::group_by(subpop) %>% + dplyr::filter(start_date != max(start_date) |! subpop %in% redux_subpop) ) %>% dplyr::ungroup() } - + npi <- npi %>% dplyr::ungroup() %>% dplyr::add_count(name) %>% - dplyr::mutate(template = dplyr::if_else(n==1 & template == "MultiTimeReduce", "Reduce", template), - parameter = dplyr::if_else(n==1 & template == "Reduce", param_val, parameter)) %>% + dplyr::mutate(template = dplyr::if_else(n==1 & template == "MultiPeriodModifier", "SinglePeriodModifier", template), + parameter = dplyr::if_else(n==1 & template == "SinglePeriodModifier", param_val, parameter)) %>% dplyr::select(-n) - + return(npi) - + } @@ -189,7 +189,7 @@ set_npi_params_old <- function(intervention_file, #' @param sim_start_date simulation start date #' @param sim_end_date simulation end date #' @param npi_cutoff_date only interventions that start before or on npi_cuttof_date are included -#' @param redux_geoids string or vector of characters indicating which geoids will have an intervention with the ReduceIntervention template; it accepts "all". If any values are specified, the intervention in the geoid with the maximum start date will be selected. It defaults to NULL. . +#' @param redux_subpop string or vector of characters indicating which subpop will have an intervention with the ModifierModifier template; it accepts "all". If any values are specified, the intervention in the subpop with the maximum start date will be selected. It defaults to NULL. . #' @param v_dist type of distribution for reduction #' @param v_mean reduction mean #' @param v_sd reduction sd @@ -213,47 +213,47 @@ set_npi_params_old <- function(intervention_file, #' #' npi_dat <- set_npi_params(intervention_file = npi_dat, sim_start_date = "2020-01-15", sim_end_date = "2021-07-30") #' -set_npi_params <- function (intervention_file, sim_start_date = as.Date("2020-01-31"), - sim_end_date = Sys.Date() + 60, npi_cutoff_date = Sys.Date() - 7, - inference = TRUE, redux_geoids = NULL, v_dist = "truncnorm", - v_mean = 0.6, v_sd = 0.05, v_a = 0, v_b = 0.9, p_dist = "truncnorm", +set_npi_params <- function (intervention_file, sim_start_date = as.Date("2020-01-31"), + sim_end_date = Sys.Date() + 60, npi_cutoff_date = Sys.Date() - 7, + inference = TRUE, redux_subpop = NULL, v_dist = "truncnorm", + v_mean = 0.6, v_sd = 0.05, v_a = 0, v_b = 0.9, p_dist = "truncnorm", p_mean = 0, p_sd = 0.05, p_a = -1, p_b = 1, compartment = TRUE) { - + param_val <- ifelse(compartment, "r0", "R0") sim_start_date <- lubridate::ymd(sim_start_date) sim_end_date <- lubridate::ymd(sim_end_date) npi_cuttoff_date <- lubridate::ymd(npi_cutoff_date) - npi <- intervention_file %>% - dplyr::filter(start_date <= npi_cutoff_date) %>% - dplyr::filter(start_date >= sim_start_date | end_date > sim_start_date | is.na(end_date)) %>% - dplyr::group_by(USPS, geoid) %>% - dplyr::mutate(end_date = dplyr::case_when(is.na(end_date) | end_date == max(end_date) | end_date > sim_end_date ~ sim_end_date, TRUE ~ end_date), - value_dist = v_dist, - value_mean = v_mean, value_sd = v_sd, value_a = v_a, - value_b = v_b, pert_dist = p_dist, pert_mean = p_mean, - pert_sd = p_sd, pert_a = p_a, pert_b = p_b, type = "transmission", - category = "NPI", baseline_scenario = "", parameter = dplyr::if_else(template == "MultiTimeReduce", param_val, NA_character_)) - if (any(stringr::str_detect(npi$name, "^\\d$"))) + npi <- intervention_file %>% + dplyr::filter(start_date <= npi_cutoff_date) %>% + dplyr::filter(start_date >= sim_start_date | end_date > sim_start_date | is.na(end_date)) %>% + dplyr::group_by(USPS, subpop) %>% + dplyr::mutate(end_date = dplyr::case_when(is.na(end_date) | end_date == max(end_date) | end_date > sim_end_date ~ sim_end_date, TRUE ~ end_date), + value_dist = v_dist, + value_mean = v_mean, value_sd = v_sd, value_a = v_a, + value_b = v_b, pert_dist = p_dist, pert_mean = p_mean, + pert_sd = p_sd, pert_a = p_a, pert_b = p_b, type = "transmission", + category = "NPI", baseline_scenario = "", parameter = dplyr::if_else(template == "MultiPeriodModifier", param_val, NA_character_)) + if (any(stringr::str_detect(npi$name, "^\\d$"))) stop("Intervention names must include at least one non-numeric character.") - npi <- npi %>% dplyr::mutate(dplyr::across(pert_mean:pert_b, ~ifelse(inference, .x, NA_real_)), pert_dist = ifelse(inference, pert_dist, NA_character_)) %>% - dplyr::select(USPS, geoid, - start_date, end_date, name, template, type, category, - parameter, baseline_scenario, tidyselect::starts_with("value_"), + npi <- npi %>% dplyr::mutate(dplyr::across(pert_mean:pert_b, ~ifelse(inference, .x, NA_real_)), pert_dist = ifelse(inference, pert_dist, NA_character_)) %>% + dplyr::select(USPS, subpop, + start_date, end_date, name, template, type, category, + parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) - if (!is.null(redux_geoids)) { - if (redux_geoids == "all") { - redux_geoids <- unique(npi$geoid) + if (!is.null(redux_subpop)) { + if (redux_subpop == "all") { + redux_subpop <- unique(npi$subpop) } - npi <- npi %>% dplyr::filter(geoid %in% redux_geoids) %>% - dplyr::group_by(geoid) %>% dplyr::filter(start_date == max(start_date)) %>% - dplyr::mutate(category = "base_npi", name = paste0(name, "_last")) %>% - dplyr::bind_rows(npi %>% dplyr::group_by(geoid) %>% dplyr::filter(start_date != max(start_date) | !geoid %in% redux_geoids)) %>% + npi <- npi %>% dplyr::filter(subpop %in% redux_subpop) %>% + dplyr::group_by(subpop) %>% dplyr::filter(start_date == max(start_date)) %>% + dplyr::mutate(category = "base_npi", name = paste0(name, "_last")) %>% + dplyr::bind_rows(npi %>% dplyr::group_by(subpop) %>% dplyr::filter(start_date != max(start_date) | !subpop %in% redux_subpop)) %>% dplyr::ungroup() } - npi <- npi %>% dplyr::ungroup() %>% - dplyr::add_count(name) %>% - dplyr::mutate(template = dplyr::if_else(n == 1 & template == "MultiTimeReduce", "Reduce", template), - parameter = dplyr::if_else(n == 1 & template == "Reduce", param_val, parameter)) %>% + npi <- npi %>% dplyr::ungroup() %>% + dplyr::add_count(name) %>% + dplyr::mutate(template = dplyr::if_else(n == 1 & template == "MultiPeriodModifier", "SinglePeriodModifier", template), + parameter = dplyr::if_else(n == 1 & template == "SinglePeriodModifier", param_val, parameter)) %>% dplyr::select(-n) return(npi) } @@ -294,21 +294,21 @@ set_npi_params <- function (intervention_file, sim_start_date = as.Date("2020-01 set_seasonality_params <- function(sim_start_date=as.Date("2020-03-31"), sim_end_date=Sys.Date()+60, inference = TRUE, - template = "MultiTimeReduce", + template = "MultiPeriodModifier", v_dist="truncnorm", v_mean = c(-0.2, -0.133, -0.067, 0, 0.067, 0.133, 0.2, 0.133, 0.067, 0, -0.067, -0.133), # TODO function? v_sd = 0.05, v_a = -1, v_b = 1, p_dist="truncnorm", p_mean = 0, p_sd = 0.05, p_a = -1, p_b = 1, compartment = TRUE){ - + sim_start_date <- as.Date(sim_start_date) sim_end_date <- as.Date(sim_end_date) - + param_val <- ifelse(compartment, "r0", "R0") - + years_ <- unique(lubridate::year(seq(sim_start_date, sim_end_date, 1))) - + seas <- tidyr::expand_grid( tidyr::tibble(month= tolower(month.abb), month_num = 1:12, @@ -333,7 +333,7 @@ set_seasonality_params <- function(sim_start_date=as.Date("2020-03-31"), category = "seasonal", template = template, baseline_scenario = "", - geoid = "all", + subpop = "all", name = paste0("Seas_", month), pert_dist = ifelse(inference, as.character(pert_dist), NA_character_), dplyr::across(pert_sd:pert_a, ~ifelse(inference, as.numeric(.x), NA_real_)) @@ -343,12 +343,12 @@ set_seasonality_params <- function(sim_start_date=as.Date("2020-03-31"), lubridate::ceiling_date(end_date, "months") <= lubridate::ceiling_date(sim_end_date, "months") ) %>% dplyr::add_count(name) %>% - dplyr::mutate(template = dplyr::if_else(n > 1, template, "Reduce"), + dplyr::mutate(template = dplyr::if_else(n > 1, template, "SinglePeriodModifier"), end_date = dplyr::if_else(end_date > sim_end_date, sim_end_date, end_date), start_date = dplyr::if_else(start_date < sim_start_date, sim_start_date, start_date) ) %>% - dplyr::select(USPS, geoid, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) - + dplyr::select(USPS, subpop, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) + return(seas) } @@ -367,7 +367,7 @@ set_seasonality_params <- function(sim_start_date=as.Date("2020-03-31"), #' @param p_sd perturbation sd #' @param p_a perturbation a #' @param p_b perturbation b -#' @param compartment +#' @param compartment #' #' @return data frame with columns for #' @export @@ -383,18 +383,18 @@ set_localvar_params <- function(sim_start_date=as.Date("2020-03-31"), v_dist="truncnorm", v_mean = 0, v_sd = 0.05, v_a = -1, v_b = 1, # TODO: add check on limits p_dist="truncnorm", - p_mean = 0, p_sd = 0.05, p_a = -1, p_b = 1, + p_mean = 0, p_sd = 0.05, p_a = -1, p_b = 1, compartment = TRUE ){ sim_start_date <- as.Date(sim_start_date) sim_end_date <- as.Date(sim_end_date) - - template = "Reduce" + + template = "SinglePeriodModifier" param_val <- ifelse(compartment, "r0", "R0") - affected_geoids = "all" - + affected_subpop = "all" + local_var <- dplyr::tibble(USPS = "", - geoid = "all", + subpop = "all", name = "local_variance", type = "transmission", category = "local_variance", @@ -404,7 +404,7 @@ set_localvar_params <- function(sim_start_date=as.Date("2020-03-31"), end_date = sim_end_date, template = template, param = param_val, - affected_geoids = affected_geoids, + affected_subpop = affected_subpop, value_dist = v_dist, value_mean = v_mean, value_sd = v_sd, @@ -417,15 +417,15 @@ set_localvar_params <- function(sim_start_date=as.Date("2020-03-31"), pert_b = p_b) %>% dplyr::mutate(pert_dist = ifelse(inference, as.character(pert_dist), NA_character_), dplyr::across(pert_mean:pert_b, ~ifelse(inference, as.numeric(.x), NA_real_))) %>% - dplyr::select(USPS, geoid, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) - + dplyr::select(USPS, subpop, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) + return(local_var) } #' Generate NPI reduction interventions #' #' @param npi_file output from set_npi_params -#' @param incl_geoid vector of geoids to include; NULL will generate interventions for all geographies +#' @param incl_subpop vector of subpop to include; NULL will generate interventions for all geographies #' @param projection_start_date first date without data to fit #' @param redux_end_date end date for reduction interventions; default NULL uses sim_end_date in npi_file #' @param redux_level reduction to intervention effectiveness; used to estimate mean value of reduction by month @@ -452,46 +452,46 @@ set_redux_params <- function(npi_file, v_b=1, compartment = TRUE ){ - + projection_start_date <- as.Date(projection_start_date) param_val <- ifelse(compartment, "r0", "R0") - + if(!is.null(redux_end_date)){ redux_end_date <- as.Date(redux_end_date) - + if(redux_end_date > max(npi_file$end_date)) stop("The end date for reduction interventions should be less than or equal to the sim_end_date in the npi_file.") - + } - + og <- npi_file %>% dplyr::filter(category == "base_npi") %>% - dplyr::group_by(USPS, geoid) %>% + dplyr::group_by(USPS, subpop) %>% dplyr::mutate(end_date = dplyr::if_else(is.null(redux_end_date), end_date, redux_end_date)) - + if(any(projection_start_date < unique(og$start_date))){warning("Some interventions start after the projection_start_date")} - + months_start <- seq(lubridate::floor_date(projection_start_date, "month"), max(og$end_date), by="month") months_start[1] <- projection_start_date - + months_end <- lubridate::ceiling_date(months_start, "months")-1 months_end[length(months_end)] <- max(og$end_date) - + month_n <- length(months_start) - + reduction <- rep(redux_level/month_n, month_n) %>% cumsum() - + redux <- dplyr::tibble( start_date = months_start, end_date = months_end, month = lubridate::month(months_start, label=TRUE, abbr=TRUE) %>% tolower(), value_mean = reduction, # TODO: reduction to value_mean type = rep("transmission", month_n), - geoid = og$geoid %>% paste0(collapse = '", "')) %>% + subpop = og$subpop %>% paste0(collapse = '", "')) %>% mutate(USPS = "", category = "NPI_redux", name = paste0(category, '_', month), baseline_scenario = c("base_npi", paste0("NPI_redux_", month[-length(month)])), - template = "ReduceIntervention", + template = "ModifierModifier", parameter = param_val, value_dist = v_dist, value_sd = v_sd, @@ -502,8 +502,8 @@ set_redux_params <- function(npi_file, pert_sd = NA_real_, pert_a = NA_real_, pert_b = NA_real_) %>% - dplyr::select(USPS, geoid, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) - + dplyr::select(USPS, subpop, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) + return(redux) } @@ -514,7 +514,7 @@ set_redux_params <- function(npi_file, #' @param vacc_path path to vaccination rates #' @param vacc_start_date simulation start date #' @param sim_end_date simulation end date -#' @param incl_geoid vector of geoids to include +#' @param incl_subpop vector of subpop to include #' @param scenario_num which baseline scenario will be selected from the vaccination rate file #' @param compartment #' @@ -523,45 +523,45 @@ set_redux_params <- function(npi_file, #' #' @examples #' -set_vacc_rates_params <- function (vacc_path, - vacc_start_date = "2021-01-01", - sim_end_date = Sys.Date() + 60, - incl_geoid = NULL, - scenario_num = 1, +set_vacc_rates_params <- function (vacc_path, + vacc_start_date = "2021-01-01", + sim_end_date = Sys.Date() + 60, + incl_subpop = NULL, + scenario_num = 1, compartment = TRUE) { - + vacc_start_date <- as.Date(vacc_start_date) sim_end_date <- as.Date(sim_end_date) - vacc <- readr::read_csv(vacc_path) %>% dplyr::filter(!is.na(month) & + vacc <- readr::read_csv(vacc_path) %>% dplyr::filter(!is.na(month) & scenario == scenario_num) - if (!is.null(incl_geoid)) { - vacc <- vacc %>% dplyr::filter(geoid %in% incl_geoid) + if (!is.null(incl_subpop)) { + vacc <- vacc %>% dplyr::filter(subpop %in% incl_subpop) } - vacc <- vacc %>% dplyr::filter(start_date <= sim_end_date) %>% + vacc <- vacc %>% dplyr::filter(start_date <= sim_end_date) %>% dplyr::mutate(end_date = lubridate::as_date(ifelse(end_date > sim_end_date, sim_end_date, end_date))) %>% - dplyr::rename(value_mean = vacc_rate) %>% - dplyr::mutate(geoid = as.character(geoid), month = lubridate::month(start_date, label = TRUE), - type = "transmission", category = "vaccination", - name = paste0("Dose1_", tolower(month), lubridate::year(start_date)), - template = "Reduce", baseline_scenario = "", + dplyr::rename(value_mean = vacc_rate) %>% + dplyr::mutate(subpop = as.character(subpop), month = lubridate::month(start_date, label = TRUE), + type = "transmission", category = "vaccination", + name = paste0("Dose1_", tolower(month), lubridate::year(start_date)), + template = "SinglePeriodModifier", baseline_scenario = "", value_mean = round(value_mean, 5), - value_dist = "fixed", value_sd = NA_real_, value_a = NA_real_, - value_b = NA_real_, pert_dist = NA_character_, pert_mean = NA_real_, - pert_sd = NA_real_, pert_a = NA_real_, pert_b = NA_real_) - + value_dist = "fixed", value_sd = NA_real_, value_a = NA_real_, + value_b = NA_real_, pert_dist = NA_character_, pert_mean = NA_real_, + pert_sd = NA_real_, pert_a = NA_real_, pert_b = NA_real_) + if(compartment){ vacc <- vacc %>% mutate(parameter = rate_param) } else { vacc <- vacc %>% mutate(parameter = "transition_rate 0") } - + if("age_group" %in% colnames(vacc)){ vacc <- vacc %>% mutate(name = paste0(name, "_age", age_group)) } vacc <- vacc %>% - dplyr::select(USPS, geoid, start_date, end_date, name, - template, type, category, parameter, baseline_scenario, - tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) %>% + dplyr::select(USPS, subpop, start_date, end_date, name, + template, type, category, parameter, baseline_scenario, + tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) %>% dplyr::filter(start_date >= vacc_start_date & value_mean > 0) return(vacc) } @@ -573,7 +573,7 @@ set_vacc_rates_params <- function (vacc_path, #' @param vacc_path path to vaccination rates #' @param vacc_start_date simulation start date #' @param sim_end_date simulation end date -#' @param incl_geoid vector of geoids to include +#' @param incl_subpop vector of subpop to include #' @param scenario_num which baseline scenario will be selected from the vaccination rate file #' @param compartment #' @param rate_param @@ -583,44 +583,44 @@ set_vacc_rates_params <- function (vacc_path, #' #' @examples #' -set_vacc_rates_params_dose3 <- function (vacc_path, - vacc_start_date = "2021-01-01", sim_end_date = Sys.Date() + 60, - incl_geoid = NULL, +set_vacc_rates_params_dose3 <- function (vacc_path, + vacc_start_date = "2021-01-01", sim_end_date = Sys.Date() + 60, + incl_subpop = NULL, rate_groups = c("nu_3y","nu_3o"), - scenario_num = 1, + scenario_num = 1, compartment = TRUE, rate_param=NA) { - + vacc_start_date <- as.Date(vacc_start_date) sim_end_date <- as.Date(sim_end_date) - vacc <- readr::read_csv(vacc_path) %>% dplyr::filter(!is.na(month) & + vacc <- readr::read_csv(vacc_path) %>% dplyr::filter(!is.na(month) & scenario == scenario_num) - if (!is.null(incl_geoid)) { - vacc <- vacc %>% dplyr::filter(geoid %in% incl_geoid) + if (!is.null(incl_subpop)) { + vacc <- vacc %>% dplyr::filter(subpop %in% incl_subpop) } - + if(compartment){ vacc <- vacc %>% mutate(parameter=rate_param) } else { vacc <- vacc %>% mutate(parameter="transition_rate 0") } - - vacc <- vacc %>% dplyr::filter(start_date <= sim_end_date) %>% - dplyr::mutate(end_date = lubridate::as_date(ifelse(end_date > - sim_end_date, sim_end_date, end_date))) %>% dplyr::rename(value_mean = vacc_rate) %>% - dplyr::mutate(geoid = as.character(geoid), month = lubridate::month(start_date, - label = TRUE), type = "transmission", category = "vaccination", - name = paste0("Dose3_", tolower(month), lubridate::year(start_date), "_",age_group), - template = "Reduce", - baseline_scenario = "", - value_dist = "fixed", value_sd = NA_real_, value_a = NA_real_, - value_b = NA_real_, pert_dist = NA_character_, pert_mean = NA_real_, - pert_sd = NA_real_, pert_a = NA_real_, pert_b = NA_real_) %>% - dplyr::select(USPS, geoid, start_date, end_date, name, - template, type, category, parameter, baseline_scenario, - tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) %>% + + vacc <- vacc %>% dplyr::filter(start_date <= sim_end_date) %>% + dplyr::mutate(end_date = lubridate::as_date(ifelse(end_date > + sim_end_date, sim_end_date, end_date))) %>% dplyr::rename(value_mean = vacc_rate) %>% + dplyr::mutate(subpop = as.character(subpop), month = lubridate::month(start_date, + label = TRUE), type = "transmission", category = "vaccination", + name = paste0("Dose3_", tolower(month), lubridate::year(start_date), "_",age_group), + template = "SinglePeriodModifier", + baseline_scenario = "", + value_dist = "fixed", value_sd = NA_real_, value_a = NA_real_, + value_b = NA_real_, pert_dist = NA_character_, pert_mean = NA_real_, + pert_sd = NA_real_, pert_a = NA_real_, pert_b = NA_real_) %>% + dplyr::select(USPS, subpop, start_date, end_date, name, + template, type, category, parameter, baseline_scenario, + tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) %>% dplyr::filter(start_date >= vacc_start_date & value_mean > 0) - + return(vacc) } @@ -641,7 +641,7 @@ set_vacc_rates_params_dose3 <- function (vacc_path, #' @param variant_lb #' @param varian_effect change in transmission for variant default is 50% from Davies et al 2021 #' @param month_shift -#' @param geodata file with columns for state/county abbreviation (USPS) and admin code (geoid); only required if state_level is TRUE +#' @param geodata file with columns for state/county abbreviation (USPS) and admin code (subpop); only required if state_level is TRUE #' @param state_level whether there is state-level data on the variant; requires a geodata file #' @param transmission_increase transmission increase in B1617 relative to B117 #' @param inference logical indicating whether inference will be performed on intervention (default is TRUE); perturbation values are replaced with NA if set to FALSE. @@ -662,29 +662,29 @@ set_vacc_rates_params_dose3 <- function (vacc_path, #' #' @examples #' -set_variant_params <- function(b117_only = FALSE, variant_path, variant_path_2 = NULL, - sim_start_date, sim_end_date, inference_cutoff_date = Sys.Date() - 7, - variant_lb = 1.4, variant_effect = 1.5, month_shift = NULL, - state_level = TRUE, geodata = NULL, - transmission_increase = c(1, 1.45, (1.6 * 1.6)), - variant_compartments = c("WILD", "ALPHA", "DELTA"), - compartment = TRUE, inference = TRUE, - v_dist = "truncnorm", v_sd = 0.01, v_a = -1.5, v_b = 0, +set_variant_params <- function(b117_only = FALSE, variant_path, variant_path_2 = NULL, + sim_start_date, sim_end_date, inference_cutoff_date = Sys.Date() - 7, + variant_lb = 1.4, variant_effect = 1.5, month_shift = NULL, + state_level = TRUE, geodata = NULL, + transmission_increase = c(1, 1.45, (1.6 * 1.6)), + variant_compartments = c("WILD", "ALPHA", "DELTA"), + compartment = TRUE, inference = TRUE, + v_dist = "truncnorm", v_sd = 0.01, v_a = -1.5, v_b = 0, p_dist = "truncnorm", p_mean = 0, p_sd = 0.01, p_a = -1, p_b = 1){ - + inference_cutoff_date <- as.Date(inference_cutoff_date) if (compartment) { - variant_data <- generate_compartment_variant2(variant_path = variant_path, - variant_compartments = variant_compartments, transmission_increase = transmission_increase, - geodata = geodata, sim_start_date = sim_start_date, + variant_data <- generate_compartment_variant2(variant_path = variant_path, + variant_compartments = variant_compartments, transmission_increase = transmission_increase, + geodata = geodata, sim_start_date = sim_start_date, sim_end_date = sim_end_date) } else { # we can get rid of this B117 part eventually if (b117_only) { - variant_data <- config.writer::generate_variant_b117(variant_path = variant_path, - sim_start_date = sim_start_date, sim_end_date = sim_end_date, - variant_lb = variant_lb, variant_effect = variant_effect, - month_shift = month_shift) %>% dplyr::mutate(geoid = "all", + variant_data <- config.writer::generate_variant_b117(variant_path = variant_path, + sim_start_date = sim_start_date, sim_end_date = sim_end_date, + variant_lb = variant_lb, variant_effect = variant_effect, + month_shift = month_shift) %>% dplyr::mutate(subpop = "all", USPS = "") } else if (state_level) { if (is.null(variant_path_2)) { @@ -693,39 +693,39 @@ set_variant_params <- function(b117_only = FALSE, variant_path, variant_path_2 = if (is.null(geodata)) { stop("You must specify a geodata file") } - variant_data <- generate_multiple_variants_state(variant_path_1 = variant_path, - variant_path_2 = variant_path_2, sim_start_date = sim_start_date, - sim_end_date = sim_end_date, variant_lb = variant_lb, - variant_effect = variant_effect, transmission_increase = transmission_increase, + variant_data <- generate_multiple_variants_state(variant_path_1 = variant_path, + variant_path_2 = variant_path_2, sim_start_date = sim_start_date, + sim_end_date = sim_end_date, variant_lb = variant_lb, + variant_effect = variant_effect, transmission_increase = transmission_increase, geodata = geodata) } else { if (is.null(variant_path_2)) { stop("You must specify a path for the second variant.") } - variant_data <- generate_multiple_variants(variant_path_1 = variant_path, - variant_path_2 = variant_path_2, sim_start_date = sim_start_date, - sim_end_date = sim_end_date, variant_lb = variant_lb, - variant_effect = variant_effect, transmission_increase = transmission_increase) %>% - dplyr::mutate(geoid = "all", USPS = "") + variant_data <- generate_multiple_variants(variant_path_1 = variant_path, + variant_path_2 = variant_path_2, sim_start_date = sim_start_date, + sim_end_date = sim_end_date, variant_lb = variant_lb, + variant_effect = variant_effect, transmission_increase = transmission_increase) %>% + dplyr::mutate(subpop = "all", USPS = "") } } - variant_data <- variant_data %>% dplyr::mutate(type = "transmission", - category = "variant", - name = paste(USPS, "variantR0adj", paste0("Week", lubridate::week(start_date)), sep = "_"), + variant_data <- variant_data %>% dplyr::mutate(type = "transmission", + category = "variant", + name = paste(USPS, "variantR0adj", paste0("Week", lubridate::week(start_date)), sep = "_"), name = stringr::str_remove(name, "^\\_"), - template = "Reduce", - parameter = "R0", - value_dist = v_dist, value_mean = 1 - R_ratio, value_sd = v_sd, value_a = v_a, value_b = v_b, - pert_dist = p_dist, pert_mean = p_mean, pert_sd = p_sd, - pert_a = p_a, pert_b = p_b, baseline_scenario = "") %>% - dplyr::mutate(dplyr::across(pert_mean:pert_b, ~ifelse(inference & start_date < inference_cutoff_date, .x, NA_real_)), - pert_dist = ifelse(inference & start_date < inference_cutoff_date, - pert_dist, NA_character_)) %>% - dplyr::select(USPS, - geoid, start_date, end_date, name, template, type, category, - parameter, baseline_scenario, tidyselect::starts_with("value_"), + template = "SinglePeriodModifier", + parameter = "R0", + value_dist = v_dist, value_mean = 1 - R_ratio, value_sd = v_sd, value_a = v_a, value_b = v_b, + pert_dist = p_dist, pert_mean = p_mean, pert_sd = p_sd, + pert_a = p_a, pert_b = p_b, baseline_scenario = "") %>% + dplyr::mutate(dplyr::across(pert_mean:pert_b, ~ifelse(inference & start_date < inference_cutoff_date, .x, NA_real_)), + pert_dist = ifelse(inference & start_date < inference_cutoff_date, + pert_dist, NA_character_)) %>% + dplyr::select(USPS, + subpop, start_date, end_date, name, template, type, category, + parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) - + return(variant_data) } @@ -736,7 +736,7 @@ set_variant_params <- function(b117_only = FALSE, variant_path, variant_path_2 = #' @param outcome_path path to vaccination adjusted outcome interventions #' @param sim_start_date simulation start date #' @param sim_end_date simulation end date -#' @param incl_geoid vector of geoids to include +#' @param incl_subpop vector of subpop to include #' @param scenario which scenario will be selected from the outcome intervention file #' @param v_dist type of distribution for reduction #' @param v_sd reduction sd @@ -756,85 +756,85 @@ set_variant_params <- function(b117_only = FALSE, variant_path, variant_path_2 = #' #' @examples #' -set_vacc_outcome_params <- function(age_strat = "under65", +set_vacc_outcome_params <- function(age_strat = "under65", variant_compartments = c("WILD","ALPHA","DELTA"), vaccine_compartments = c("unvaccinated"), national_level = TRUE, # whether to do national interventions to reduce number redux_round = 0.1, - outcome_path, - sim_start_date = as.Date("2020-03-31"), - sim_end_date = Sys.Date() + 60, - inference = FALSE, - incl_geoid = NULL, - scenario_num = 1, - v_dist = "truncnorm", v_sd = 0.01, v_a = 0, v_b = 1, - p_dist = "truncnorm", p_mean = 0, p_sd = 0.05, + outcome_path, + sim_start_date = as.Date("2020-03-31"), + sim_end_date = Sys.Date() + 60, + inference = FALSE, + incl_subpop = NULL, + scenario_num = 1, + v_dist = "truncnorm", v_sd = 0.01, v_a = 0, v_b = 1, + p_dist = "truncnorm", p_mean = 0, p_sd = 0.05, p_a = -1, p_b = 1){ - + sim_start_date <- as.Date(sim_start_date) sim_end_date <- as.Date(sim_end_date) - outcome <- readr::read_csv(outcome_path) %>% - dplyr::filter(!is.na(month) & month != "baseline") %>% + outcome <- readr::read_csv(outcome_path) %>% + dplyr::filter(!is.na(month) & month != "baseline") %>% dplyr::filter(scenario == scenario_num) %>% dplyr::filter(prob_redux!=1) - - if (!is.null(incl_geoid)){ - outcome <- outcome %>% dplyr::filter(geoid %in% incl_geoid) + + if (!is.null(incl_subpop)){ + outcome <- outcome %>% dplyr::filter(subpop %in% incl_subpop) } if(!is.null(outcome$age_strata)){ if(!is.null(age_strat)){ outcome <- outcome %>% filter(age_strata %in% age_strat) } } - + if(national_level){ - outcome <- outcome %>% + outcome <- outcome %>% group_by(age_strata, start_date, end_date, month, year, var) %>% summarise(prob_redux = mean(prob_redux, na.rm=TRUE)) %>% - mutate(USPS="US", geoid='all') + mutate(USPS="US", subpop='all') } - - outcome <- outcome %>% + + outcome <- outcome %>% mutate(prob_redux = round(prob_redux / redux_round)*redux_round) %>% filter(prob_redux!=1) - - outcome <- outcome %>% - dplyr::mutate(month = tolower(month)) %>% - dplyr::mutate(prob_redux = 1 - prob_redux) %>% - dplyr::filter(start_date <= sim_end_date) %>% - dplyr::mutate(end_date = lubridate::as_date(ifelse(end_date > sim_end_date, sim_end_date, end_date)), - start_date = lubridate::as_date(ifelse(end_date > start_date & start_date < sim_start_date, sim_start_date, start_date))) %>% - dplyr::filter(start_date >= sim_start_date) %>% - dplyr::rename(value_mean = prob_redux) %>% - dplyr::mutate(geoid = as.character(geoid), - type = "outcome", - category = "vacc_outcome",baseline_scenario = "", - value_dist = v_dist, value_sd = v_sd, value_a = v_a, - value_b = v_b, pert_dist = p_dist, pert_mean = p_mean, - pert_sd = p_sd, pert_a = p_a, pert_b = p_b) - - outcome <- outcome %>% + + outcome <- outcome %>% + dplyr::mutate(month = tolower(month)) %>% + dplyr::mutate(prob_redux = 1 - prob_redux) %>% + dplyr::filter(start_date <= sim_end_date) %>% + dplyr::mutate(end_date = lubridate::as_date(ifelse(end_date > sim_end_date, sim_end_date, end_date)), + start_date = lubridate::as_date(ifelse(end_date > start_date & start_date < sim_start_date, sim_start_date, start_date))) %>% + dplyr::filter(start_date >= sim_start_date) %>% + dplyr::rename(value_mean = prob_redux) %>% + dplyr::mutate(subpop = as.character(subpop), + type = "outcome", + category = "vacc_outcome",baseline_scenario = "", + value_dist = v_dist, value_sd = v_sd, value_a = v_a, + value_b = v_b, pert_dist = p_dist, pert_mean = p_mean, + pert_sd = p_sd, pert_a = p_a, pert_b = p_b) + + outcome <- outcome %>% dplyr::full_join( expand_grid(var = c("rr_death_inf", "rr_hosp_inf"), variant=variant_compartments, vacc=vaccine_compartments, age_strata=unique(outcome$age_strata)) %>% - dplyr::mutate(param = dplyr::case_when(var == "rr_death_inf" ~ "incidD", var == "rr_hosp_inf" ~ "incidH", + dplyr::mutate(param = dplyr::case_when(var == "rr_death_inf" ~ "incidD", var == "rr_hosp_inf" ~ "incidH", TRUE ~ NA_character_), - param = paste(param, vacc, variant, age_strat, sep="_")) %>% + param = paste(param, vacc, variant, age_strat, sep="_")) %>% dplyr::filter(!is.na(param))) %>% dplyr::mutate( - # name = paste(param, "vaccadj", month, sep = "_"), template = "Reduce", - # name = paste(param, "vaccadj", USPS, (1-value_mean), sep = "_"), template = "Reduce", - name = paste(param, "vaccadj", (1-value_mean), sep = "_"), template = "Reduce", - parameter = paste0(param, "::probability")) %>% - dplyr::mutate(dplyr::across(pert_mean:pert_b, - ~ifelse(inference, .x, NA_real_)), - pert_dist = ifelse(inference, - pert_dist, NA_character_)) %>% - dplyr::select(USPS, geoid, - start_date, end_date, name, template, type, category, - parameter, baseline_scenario, tidyselect::starts_with("value_"), + # name = paste(param, "vaccadj", month, sep = "_"), template = "SinglePeriodModifier", + # name = paste(param, "vaccadj", USPS, (1-value_mean), sep = "_"), template = "SinglePeriodModifier", + name = paste(param, "vaccadj", (1-value_mean), sep = "_"), template = "SinglePeriodModifier", + parameter = paste0(param, "::probability")) %>% + dplyr::mutate(dplyr::across(pert_mean:pert_b, + ~ifelse(inference, .x, NA_real_)), + pert_dist = ifelse(inference, + pert_dist, NA_character_)) %>% + dplyr::select(USPS, subpop, + start_date, end_date, name, template, type, category, + parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) return(outcome) } @@ -845,11 +845,11 @@ set_vacc_outcome_params <- function(age_strat = "under65", #' Generate incidC shift interventions #' #' @param periods vector of dates that include a shift in incidC -#' @param geodata df with USPS and geoid column for geoids with a shift in incidC +#' @param geodata df with USPS and subpop column for subpop with a shift in incidC #' @param baseline_ifr assumed true infection fatality rate #' @param cfr_data optional file with estimates of cfr by state #' @param epochs character vector with the selection of epochs from the cfr_data file, any of "NoSplit", "MarJun", "JulOct", "NovJan". Required if cfr_data is specified. -#' @param outcomes_parquet_file path to file with geoid-specific adjustments to IFR; required if cfr_data is specified +#' @param outcomes_parquet_file path to file with subpop-specific adjustments to IFR; required if cfr_data is specified #' @param inference logical indicating whether inference will be performed on intervention (default is TRUE); perturbation values are replaced with NA if set to FALSE. #' @param v_dist type of distribution for reduction #' @param v_mean state-specific initial value. will be taken from empirical CFR estimates if it exists, otherwise this used. If a vector is specified, then each value is added to the corresponding period @@ -878,57 +878,57 @@ set_incidC_shift <- function(periods, p_mean = 0, p_sd = 0.01, p_a = -1, p_b = 1 ){ periods <- as.Date(periods) - + if(is.null(cfr_data)){ epochs <- 1:(length(periods)-1) - + cfr_data <- geodata %>% - dplyr::select(USPS, geoid) %>% + dplyr::select(USPS, subpop) %>% tidyr::expand_grid(value_mean = v_mean, epoch=epochs) } else{ if(is.null(epochs) | length(epochs) != (length(periods)-1)){stop("The number of epochs selected should be equal to the number of periods with a shift in incidC")} if(any(!epochs %in% c("NoSplit", "MarJun", "JulOct", "NovJan"))){stop('Unknown epoch selected, choose from: "NoSplit", "MarJun", "JulOct", "NovJan"')} if(is.null(outcomes_parquet_file)){stop("Must specify a file with the age-adjustments to IFR by state")} - + relative_outcomes <- arrow::read_parquet(outcomes_parquet_file) - + relative_ifr <- relative_outcomes %>% dplyr::filter(source == 'incidI' & outcome == "incidD") %>% - dplyr::filter(geoid %in% geodata$geoid) %>% - dplyr::select(USPS,geoid,value) %>% + dplyr::filter(subpop %in% geodata$subpop) %>% + dplyr::select(USPS,subpop,value) %>% dplyr::rename(rel_ifr=value) %>% dplyr::mutate(ifr=baseline_ifr*rel_ifr) - + cfr_data <- readr::read_csv(cfr_data) %>% dplyr::rename(USPS=state, delay=lag) %>% dplyr::select(USPS, epoch, delay, cfr) %>% dplyr::filter(epoch %in% epochs) %>% dplyr::left_join(relative_ifr) %>% - dplyr::filter(geoid %in% geodata$geoid) %>% + dplyr::filter(subpop %in% geodata$subpop) %>% dplyr::mutate(incidC = pmin(0.99,ifr/cfr), # get effective case detection rate based in assumed IFR. value_mean = pmax(0,1-incidC), value_mean = signif(value_mean, digits = 2)) %>% # get effective reduction in incidC assuming baseline incidC - dplyr::select(USPS,geoid, epoch, value_mean) - - + dplyr::select(USPS,subpop, epoch, value_mean) + + no_cfr_data <- relative_ifr %>% tidyr::expand_grid(value_mean = v_mean, epoch = epochs) %>% - dplyr::filter(!geoid %in% cfr_data$geoid) %>% - dplyr::select(USPS, geoid, epoch, value_mean) - + dplyr::filter(!subpop %in% cfr_data$subpop) %>% + dplyr::select(USPS, subpop, epoch, value_mean) + cfr_data <- dplyr::bind_rows(cfr_data, no_cfr_data) } - + outcome <- list() for(i in 1:(length(periods)-1)){ outcome[[i]] <- cfr_data %>% dplyr::filter(epoch == epochs[i]) %>% dplyr::select(-epoch) %>% dplyr::mutate( - template = "Reduce", + template = "SinglePeriodModifier", name = paste0("incidCshift_", i), type = "outcome", category = "incidCshift", @@ -947,16 +947,16 @@ set_incidC_shift <- function(periods, pert_a = p_a, pert_b = p_b ) - + } - + outcome <- dplyr::bind_rows(outcome) %>% dplyr::mutate(dplyr::across(pert_mean:pert_b, ~ifelse(inference, .x, NA_real_)), pert_dist = ifelse(inference, pert_dist, NA_character_)) %>% - dplyr::select(USPS, geoid, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) - + dplyr::select(USPS, subpop, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) + return(outcome) - + } #' Generate interventions to adjust hospitalizations @@ -964,7 +964,7 @@ set_incidC_shift <- function(periods, #' @param outcome_path path to vaccination adjusted outcome interventions #' @param sim_start_date simulation start date #' @param sim_end_date simulation end date -#' @param geodata df with USPS and geoid column for geoids with an incidH adjustment +#' @param geodata df with USPS and subpop column for subpop with an incidH adjustment #' @param v_dist type of distribution for reduction #' @param v_sd reduction sd #' @param v_a reduction a @@ -995,15 +995,15 @@ set_incidH_adj_params <- function(outcome_path, ) { variant_compartments <- stringr::str_to_upper(variant_compartments) - + sim_start_date <- lubridate::as_date(sim_start_date) sim_end_date <- lubridate::as_date(sim_end_date) outcome <- readr::read_csv(outcome_path) %>% dplyr::filter(!is.na(ratio) & USPS != "US") - + outcome <- outcome %>% - dplyr::left_join(geodata %>% dplyr::select(USPS, geoid)) - + dplyr::left_join(geodata %>% dplyr::select(USPS, subpop)) + outcome <- outcome %>% dplyr::mutate(param = "incidH") %>% # dplyr::mutate(month = tolower(month)) %>% dplyr::mutate(prob_redux = 1 - (1/ratio)) %>% @@ -1011,11 +1011,11 @@ set_incidH_adj_params <- function(outcome_path, dplyr::mutate(end_date = sim_end_date, start_date = sim_start_date) %>% dplyr::rename(value_mean = prob_redux) %>% - dplyr::mutate(geoid = as.character(geoid), + dplyr::mutate(subpop = as.character(subpop), type = "outcome", category = "outcome_adj", name = paste(param, "adj",USPS, sep = "_"), - template = "Reduce", + template = "SinglePeriodModifier", parameter = paste0(param, "::probability"), baseline_scenario = "", value_dist = v_dist, @@ -1029,10 +1029,10 @@ set_incidH_adj_params <- function(outcome_path, pert_b = p_b) %>% dplyr::mutate(dplyr::across(pert_mean:pert_b, ~ifelse(inference, .x, NA_real_)), pert_dist = ifelse(inference, pert_dist, NA_character_)) %>% - dplyr::select(USPS, geoid, start_date, end_date, name, template, type, category, + dplyr::select(USPS, subpop, start_date, end_date, name, template, type, category, parameter, baseline_scenario, tidyselect::starts_with("value_"), tidyselect::starts_with("pert_")) - + if(compartment){ temp <- list() for(i in 1:length(variant_compartments)){ @@ -1040,11 +1040,11 @@ set_incidH_adj_params <- function(outcome_path, dplyr::mutate(parameter = stringr::str_replace(parameter, "::probability", paste0("_", variant_compartments[i],"::probability")), name = paste0(name, "_", variant_compartments[i])) } - + outcome <- dplyr::bind_rows(temp) - + } - + return(outcome) } @@ -1056,7 +1056,7 @@ set_incidH_adj_params <- function(outcome_path, #' @param VE_delta vaccine effectivenes against variant or the first and second doses, respectively #' @param sim_start_date simulation start date #' @param sim_end_date simulation end date -#' @param geodata df with USPS and geoid column for geoids with an incidH adjustment +#' @param geodata df with USPS and subpop column for subpop with an incidH adjustment #' @param v_dist type of distribution for reduction #' @param v_sd reduction sd #' @param v_a reduction a @@ -1083,12 +1083,12 @@ set_ve_shift_params <- function(variant_path, v_dist = "fixed", v_sd = 0.01, v_a = -1, v_b = 2, p_dist = "truncnorm", p_mean = 0, p_sd = 0.01, p_a = -1, p_b = 1, compartment = TRUE){ - + par_val_1 <- ifelse(compartment, "theta_1A", "susceptibility_reduction 1") par_val_2 <- ifelse(compartment, "theta_2A", "susceptibility_reduction 2") sim_start_date <- lubridate::as_date(sim_start_date) sim_end_date <- lubridate::as_date(sim_end_date) - + outcome <- readr::read_csv(variant_path) %>% dplyr::filter(location == "US", date >= "2021-04-01") %>% dplyr::mutate(month = lubridate::month(date, label=TRUE), year = lubridate::year(date), @@ -1109,19 +1109,19 @@ set_ve_shift_params <- function(variant_path, start_date = min(start_date), end_date = max(end_date)) %>% dplyr::filter(value_mean != 0) - - + + outcome <- outcome %>% dplyr::mutate(name = paste0("VEshift_", tolower(month), "_dose", stringr::str_sub(dose, 3, 3))) %>% dplyr::select(-dose) %>% dplyr::filter(start_date <= sim_end_date & end_date > sim_start_date) %>% dplyr::mutate(end_date = lubridate::as_date(ifelse(end_date > sim_end_date, sim_end_date, end_date))) %>% dplyr::mutate(USPS = "", - geoid = "all", + subpop = "all", type = "transmission", parameter = dplyr::if_else(stringr::str_detect(name, "ose1"), par_val_1, par_val_2), category = "ve_shift", - template = "Reduce", + template = "SinglePeriodModifier", baseline_scenario = "", value_dist = v_dist, value_sd = v_sd, @@ -1152,38 +1152,38 @@ set_ve_shift_params <- function(variant_path, #' #' @examples #' -bind_interventions <- function(..., - inference_cutoff_date = Sys.Date() - 7, +bind_interventions <- function(..., + inference_cutoff_date = Sys.Date() - 7, sim_start_date, - sim_end_date, + sim_end_date, save_name, filter_dates=FALSE) { - + inference_cutoff_date <- as.Date(inference_cutoff_date) sim_end_date <- as.Date(sim_end_date) sim_start_date <- as.Date(sim_start_date) dat <- dplyr::bind_rows(...) if (filter_dates){ - dat <- dat %>% + dat <- dat %>% filter(start_date < sim_end) %>% filter(end_date > sim_start) %>% mutate(start_date = as_date(ifelse(start_date sim_end_date) + if (max(dat$end_date) > sim_end_date) stop("At least one intervention has an end date after the sim_end_date.") } check <- dat %>% dplyr::filter(category == "NPI") %>% - dplyr::group_by(USPS, geoid, type, category) %>% dplyr::arrange(USPS, geoid, start_date) %>% - dplyr::mutate(note = dplyr::case_when(end_date >= dplyr::lead(start_date) ~ "Overlap", dplyr::lead(start_date) - end_date > 1 ~ "Gap", TRUE ~ NA_character_)) %>% + dplyr::group_by(USPS, subpop, type, category) %>% dplyr::arrange(USPS, subpop, start_date) %>% + dplyr::mutate(note = dplyr::case_when(end_date >= dplyr::lead(start_date) ~ "Overlap", dplyr::lead(start_date) - end_date > 1 ~ "Gap", TRUE ~ NA_character_)) %>% dplyr::mutate(dplyr::across(pert_mean:pert_b, ~ifelse(start_date < inference_cutoff_date, .x, NA_real_)), pert_dist = ifelse(start_date < inference_cutoff_date, pert_dist, NA_character_)) %>% dplyr::filter(!is.na(note)) if (nrow(check) > 0) { - if (any(check$note == "Overlap")) - warning(paste0("There are ", nrow(check[check$note == "Overlap", ]), " NPIs of the same category/geoid that overlap in time")) - if (any(check$note == "Gap")) - warning(paste0("There are ", nrow(check[check$note == "Gap", ]), " NPIs of the same category/geoid that are discontinuous.")) + if (any(check$note == "Overlap")) + warning(paste0("There are ", nrow(check[check$note == "Overlap", ]), " NPIs of the same category/subpop that overlap in time")) + if (any(check$note == "Gap")) + warning(paste0("There are ", nrow(check[check$note == "Gap", ]), " NPIs of the same category/subpop that are discontinuous.")) } if (!is.null(save_name)) { readr::write_csv(dat, file = save_name) @@ -1192,7 +1192,7 @@ bind_interventions <- function(..., } -#' Estimate average reduction in transmission per day per geoid +#' Estimate average reduction in transmission per day per subpop #' #' @param dat #' @param plot @@ -1205,7 +1205,7 @@ bind_interventions <- function(..., daily_mean_reduction <- function(dat, plot = FALSE){ - + dat <- dat %>% dplyr::filter(type == "transmission") %>% dplyr::mutate(mean = dplyr::case_when(value_dist == "truncnorm" ~ @@ -1215,51 +1215,51 @@ daily_mean_reduction <- function(dat, value_dist == "uniform" ~ (value_a+value_b)/2) ) %>% - dplyr::select(USPS, geoid, start_date, end_date, mean) - + dplyr::select(USPS, subpop, start_date, end_date, mean) + timeline <- tidyr::crossing(time = seq(from=min(dat$start_date), to=max(dat$end_date), by = 1), - geoid = unique(dat$geoid)) - - if(any(stringr::str_detect(dat$geoid, '", "'))){ - mtr_geoid <- dat %>% - dplyr::filter(stringr::str_detect(geoid, '", "')) - + subpop = unique(dat$subpop)) + + if(any(stringr::str_detect(dat$subpop, '", "'))){ + mtr_subpop <- dat %>% + dplyr::filter(stringr::str_detect(subpop, '", "')) + temp <- list() - for(i in 1:nrow(mtr_geoid)){ - temp[[i]] <- tidyr::expand_grid(geoid = mtr_geoid$geoid[i] %>% stringr::str_split('", "') %>% unlist(), - mtr_geoid[i,] %>% dplyr::ungroup() %>% dplyr::select(-geoid)) %>% - dplyr::select(colnames(mtr_geoid)) + for(i in 1:nrow(mtr_subpop)){ + temp[[i]] <- tidyr::expand_grid(subpop = mtr_subpop$subpop[i] %>% stringr::str_split('", "') %>% unlist(), + mtr_subpop[i,] %>% dplyr::ungroup() %>% dplyr::select(-subpop)) %>% + dplyr::select(colnames(mtr_subpop)) } - + dat <- dat %>% - dplyr::filter(stringr::str_detect(geoid, '", "', negate = TRUE)) %>% + dplyr::filter(stringr::str_detect(subpop, '", "', negate = TRUE)) %>% dplyr::bind_rows( dplyr::bind_rows(temp) ) } - + dat <- dat %>% - dplyr::filter(geoid=="all") %>% + dplyr::filter(subpop=="all") %>% dplyr::ungroup() %>% - dplyr::select(-geoid) %>% - tidyr::crossing(geoid=unique(dat$geoid[dat$geoid!="all"])) %>% - dplyr::select(geoid, start_date, end_date, mean) %>% - dplyr::bind_rows(dat %>% dplyr::filter(geoid!="all") %>% dplyr::ungroup() %>% dplyr::select(-USPS)) %>% + dplyr::select(-subpop) %>% + tidyr::crossing(subpop=unique(dat$subpop[dat$subpop!="all"])) %>% + dplyr::select(subpop, start_date, end_date, mean) %>% + dplyr::bind_rows(dat %>% dplyr::filter(subpop!="all") %>% dplyr::ungroup() %>% dplyr::select(-USPS)) %>% dplyr::left_join(timeline) %>% dplyr::filter(time >= start_date & time <= end_date) %>% - dplyr::group_by(geoid, time) %>% + dplyr::group_by(subpop, time) %>% dplyr::summarize(mean = prod(1-mean)) - + if(plot){ dat<- ggplot2::ggplot(data= dat, ggplot2::aes(x=time, y=mean))+ ggplot2::geom_line()+ - ggplot2::facet_wrap(~geoid)+ + ggplot2::facet_wrap(~subpop)+ ggplot2::theme_bw()+ ggplot2::ylab("Average reduction")+ ggplot2::scale_x_date(date_breaks = "3 months", date_labels = "%b\n%y")+ ggplot2::scale_y_continuous(breaks = c(0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2.0)) - + } - + return(dat) } diff --git a/flepimop/R_packages/config.writer/R/process_npi_list.R b/flepimop/R_packages/config.writer/R/process_npi_list.R index 7313d23fe..8de91d446 100644 --- a/flepimop/R_packages/config.writer/R/process_npi_list.R +++ b/flepimop/R_packages/config.writer/R/process_npi_list.R @@ -19,14 +19,14 @@ NULL ##' Convenience function to load the geodata file ##' ##' @param filename filename of geodata file -##' @param geoid_len length of geoid character string -##' @param geoid_pad what to pad the geoid character string with +##' @param subpop_len length of subpop character string +##' @param subpop_pad what to pad the subpop character string with ##' @param state_name whether to add column state with the US state name; defaults to TRUE for forecast or scenario hub runs. ##' ##' @details -##' Currently, the package only supports a geodata object with at least two columns: USPS with the state abbreviation and geoid with the geo IDs of the area. . +##' Currently, the package only supports a geodata object with at least two columns: USPS with the state abbreviation and subpop with the geo IDs of the area. . ##' -##' @return a data frame with columns for state USPS, county geoid and population +##' @return a data frame with columns for state USPS, county subpop and population ##' @examples ##' geodata <- load_geodata_file(filename = system.file("extdata", "geodata_territories_2019_statelevel.csv", package = "config.writer")) ##' geodata @@ -34,20 +34,20 @@ NULL ##' @export load_geodata_file <- function(filename, - geoid_len = 0, - geoid_pad = "0", + subpop_len = 0, + subpop_pad = "0", state_name = TRUE) { if(!file.exists(filename)){stop(paste(filename,"does not exist in",getwd()))} geodata <- readr::read_csv(filename) %>% - dplyr::mutate(geoid = as.character(geoid)) + dplyr::mutate(subpop = as.character(subpop)) - if (!("geoid" %in% names(geodata))) { - stop(paste(filename, "does not have a column named geoid")) + if (!("subpop" %in% names(geodata))) { + stop(paste(filename, "does not have a column named subpop")) } - if (geoid_len > 0) { - geodata$geoid <- stringr::str_pad(geodata$geoid, geoid_len, pad = geoid_pad) + if (subpop_len > 0) { + geodata$subpop <- stringr::str_pad(geodata$subpop, subpop_len, pad = subpop_pad) } if(state_name) { @@ -94,7 +94,7 @@ find_truncnorm_mean_parameter <- function(a, b, mean, sd) { ) } -#' ScenarioHub: Recode scenario hub interventions for "ReduceR0" template +#' ScenarioHub: Recode scenario hub interventions for "SinglePeriodModifier" template #' #' @param data intervention list for the national forecast or the scenariohub #' @@ -118,11 +118,11 @@ npi_recode_scenario <- function(data } -#' ScenarioHub: Recode scenario hub interventions for "MultiTimeReduce" template +#' ScenarioHub: Recode scenario hub interventions for "MultiPeriodModifier" template #' #' @param data intervention list for the national forecast or the scenariohub #' -#' @return recoded npi names for use with MultiTimeReduce +#' @return recoded npi names for use with MultiPeriodModifier #' @export #' @@ -142,17 +142,17 @@ npi_recode_scenario_mult <- function(data){ #' ScenarioHub: Process scenario hub npi list #' #' @param intervention_path path to csv with intervention list -#' @param geodata df with state USPS and geoid from load_geodata_file -#' @param prevent_overlap whether to allow for interventions to overlap in time and geoid +#' @param geodata df with state USPS and subpop from load_geodata_file +#' @param prevent_overlap whether to allow for interventions to overlap in time and subpop #' @param prevent_gaps whether to prevent gaps in interventions (i.e. no interventions) #' #' @return df with six columns: #' - USPS: state abbreviation -#' - geoid: county ID +#' - subpop: county ID #' - start_date: intervention start date #' - end_date: intervention end date #' - name: intervention name -#' - template: intervention template (e.g. ReduceR0, MultiTimeReduce) +#' - template: intervention template (e.g. SinglePeriodModifier, MultiPeriodModifier) #' @export #' #' @examples @@ -174,18 +174,18 @@ process_npi_usa <- function (intervention_path, og <- og %>% dplyr::mutate(dplyr::across(tidyselect::ends_with("_date"), ~lubridate::mdy(.x))) } if ("template" %in% colnames(og)) { - og <- og %>% dplyr::mutate(name = dplyr::if_else(template == "MultiTimeReduce", scenario_mult, scenario)) %>% - dplyr::select(USPS, geoid, start_date, end_date, name, template) + og <- og %>% dplyr::mutate(name = dplyr::if_else(template == "MultiPeriodModifier", scenario_mult, scenario)) %>% + dplyr::select(USPS, subpop, start_date, end_date, name, template) } else { - og <- og %>% dplyr::mutate(template = "MultiTimeReduce") %>% - dplyr::select(USPS, geoid, start_date, end_date, name = scenario_mult, template) + og <- og %>% dplyr::mutate(template = "MultiPeriodModifier") %>% + dplyr::select(USPS, subpop, start_date, end_date, name = scenario_mult, template) } if (prevent_overlap) { - og <- og %>% dplyr::group_by(USPS, geoid) %>% + og <- og %>% dplyr::group_by(USPS, subpop) %>% dplyr::mutate(end_date = dplyr::if_else(end_date >= dplyr::lead(start_date), dplyr::lead(start_date) - 1, end_date)) } if (prevent_gaps) { - og <- og %>% dplyr::group_by(USPS, geoid) %>% + og <- og %>% dplyr::group_by(USPS, subpop) %>% dplyr::mutate(end_date = dplyr::if_else(end_date < dplyr::lead(start_date), dplyr::lead(start_date) - 1, end_date)) } return(og) @@ -196,17 +196,17 @@ process_npi_usa <- function (intervention_path, #' Process California intervention data #' #' @param intervention_path path to csv with intervention list -#' @param geodata df with state USPS and geoid from load_geodata_file -#' @param prevent_overlap whether to allow for interventions to overlap in time and geoid +#' @param geodata df with state USPS and subpop from load_geodata_file +#' @param prevent_overlap whether to allow for interventions to overlap in time and subpop #' @param prevent_gaps whether to prevent gaps in interventions (i.e. no interventions) #' #' @return df with six columns: #' - USPS: state abbreviation -#' - geoid: county ID +#' - subpop: county ID #' - start_date: intervention start date #' - end_date: intervention end date #' - name: intervention name -#' - template: intervention template (e.g. ReduceR0, MultiTimeReduce) +#' - template: intervention template (e.g. SinglePeriodModifier, MultiPeriodModifier) #' @export #' process_npi_ca <- function(intervention_path, @@ -221,25 +221,25 @@ process_npi_ca <- function(intervention_path, readr::col_character(), readr::col_character(), readr::col_date(format = date_format), readr::col_character()) ) %>% - dplyr::mutate(geoid = dplyr::if_else(stringr::str_length(geoid)==4, paste0(0, geoid), geoid)) %>% + dplyr::mutate(subpop = dplyr::if_else(stringr::str_length(subpop)==4, paste0(0, subpop), subpop)) %>% dplyr::left_join(geodata) %>% - dplyr::group_by(county, geoid) %>% + dplyr::group_by(county, subpop) %>% dplyr::arrange(start_date) %>% dplyr::mutate(end_date = dplyr::if_else(is.na(end_date), dplyr::lead(start_date)-1, end_date), end_date = dplyr::if_else(start_date == max(start_date), lubridate::NA_Date_, end_date), - template = "MultiTimeReduce") %>% + template = "MultiPeriodModifier") %>% dplyr::ungroup() %>% - dplyr::select(USPS, geoid, start_date, end_date, name = phase, template) + dplyr::select(USPS, subpop, start_date, end_date, name = phase, template) if(prevent_overlap){ og <- og %>% - dplyr::group_by(USPS, geoid) %>% + dplyr::group_by(USPS, subpop) %>% dplyr::mutate(end_date = dplyr::if_else(end_date >= dplyr::lead(start_date) & !is.na(end_date), dplyr::lead(start_date)-1, end_date)) } if(prevent_gaps){ og <- og %>% - dplyr::group_by(USPS, geoid) %>% + dplyr::group_by(USPS, subpop) %>% dplyr::mutate(end_date = dplyr::if_else(end_date < dplyr::lead(start_date) & !is.na(end_date), dplyr::lead(start_date)-1, end_date)) } @@ -543,8 +543,8 @@ generate_multiple_variants_state <- function(variant_path_1, dplyr::filter(R_ratio>1) %>% dplyr::filter(location != "US") %>% dplyr::rename("USPS" = "location") %>% - dplyr::left_join(geodata %>% dplyr::select(USPS, geoid)) %>% - dplyr::filter(!is.na(geoid)) %>% + dplyr::left_join(geodata %>% dplyr::select(USPS, subpop)) %>% + dplyr::filter(!is.na(subpop)) %>% dplyr::ungroup() } @@ -631,7 +631,7 @@ generate_compartment_variant <- function(variant_path = "../COVID19_USA/data/var variant_data <- variant_data %>% dplyr::filter(R_ratio>1) %>% dplyr::filter(USPS != "US") %>% - dplyr::left_join(geodata %>% dplyr::select(USPS, geoid)) + dplyr::left_join(geodata %>% dplyr::select(USPS, subpop)) return(variant_data) } diff --git a/flepimop/R_packages/config.writer/R/yaml_utils.R b/flepimop/R_packages/config.writer/R/yaml_utils.R index 41445d07d..4dc245308 100644 --- a/flepimop/R_packages/config.writer/R/yaml_utils.R +++ b/flepimop/R_packages/config.writer/R/yaml_utils.R @@ -81,7 +81,7 @@ collapse_intervention<- function(dat){ #TODO: add number to repeated names #TODO add a check that all end_dates are the same mtr <- dat %>% - dplyr::filter(template=="MultiTimeReduce") %>% + dplyr::filter(template=="MultiPeriodModifier") %>% dplyr::mutate(end_date=paste0("end_date: ", end_date), start_date=paste0("- start_date: ", start_date)) %>% tidyr::unite(col="period", sep="\n ", start_date:end_date) %>% @@ -91,21 +91,21 @@ collapse_intervention<- function(dat){ if (!all(is.na(mtr$spatial_groups)) & !all(is.null(mtr$spatial_groups))) { mtr <- mtr %>% - dplyr::group_by(dplyr::across(-geoid)) %>% - dplyr::summarize(geoid = paste0(geoid, collapse='", "'), + dplyr::group_by(dplyr::across(-subpop)) %>% + dplyr::summarize(subpop = paste0(subpop, collapse='", "'), spatial_groups = paste0(spatial_groups, collapse='", "')) %>% dplyr::mutate(period = paste0(" ", period)) } else { mtr <- mtr %>% - dplyr::group_by(dplyr::across(-geoid)) %>% - dplyr::summarize(geoid = paste0(geoid, collapse='", "')) %>% + dplyr::group_by(dplyr::across(-subpop)) %>% + dplyr::summarize(subpop = paste0(subpop, collapse='", "')) %>% dplyr::mutate(period = paste0(" ", period)) } reduce <- dat %>% - dplyr::select(USPS, geoid, contains("spatial_groups"), start_date, end_date, name, template, type, category, parameter, baseline_scenario, starts_with("value_"), starts_with("pert_")) %>% - dplyr::filter(template %in% c("ReduceR0", "Reduce", "ReduceIntervention")) %>% + dplyr::select(USPS, subpop, contains("spatial_groups"), start_date, end_date, name, template, type, category, parameter, baseline_scenario, starts_with("value_"), starts_with("pert_")) %>% + dplyr::filter(template %in% c("SinglePeriodModifier", "ModifierModifier")) %>% dplyr::mutate(end_date=paste0("period_end_date: ", end_date), start_date=paste0("period_start_date: ", start_date)) %>% tidyr::unite(col="period", sep="\n ", start_date:end_date) %>% @@ -113,22 +113,22 @@ collapse_intervention<- function(dat){ dplyr::ungroup() %>% dplyr::add_count(dplyr::across(-USPS)) %>% dplyr::mutate(name = dplyr::case_when(category =="local_variance" | USPS %in% c("all", "") | is.na(USPS) ~ name, - n==1 & template=="Reduce" ~ paste0(USPS, "_", name), - template=="Reduce" ~ paste0(geoid, "_", name), - n==1 & template!="ReduceIntervention" ~ paste0(USPS, name), - template!="ReduceIntervention" ~ paste0(geoid, name), + n==1 & template=="SinglePeriodModifier" ~ paste0(USPS, "_", name), + template=="SinglePeriodModifier" ~ paste0(subpop, "_", name), + n==1 & template!="ModifierModifier" ~ paste0(USPS, name), + template!="ModifierModifier" ~ paste0(subpop, name), TRUE ~ name), name = stringr::str_remove(name, "^_")) dat <- dplyr::bind_rows(mtr, reduce) %>% dplyr::mutate(interv_order = dplyr::recode(category, "universal_npi" = 1, "local_var" = 2, "seasonal" = 3, "NPI" = 4, "incidCshift" = 5)) %>% - dplyr::arrange(interv_order, USPS, category, geoid, parameter) %>% + dplyr::arrange(interv_order, USPS, category, subpop, parameter) %>% dplyr::ungroup() return(dat) } -#' Print intervention text for MultiTimeReduce interventions +#' Print intervention text for MultiPeriodModifier interventions #' #' @param dat df for an intervention with the MTR template with processed name/period; see collapsed_intervention. All rows in the dataframe should have the same intervention name. #' @@ -139,16 +139,16 @@ collapse_intervention<- function(dat){ #' yaml_mtr_template <- function(dat){ template <- unique(dat$template) - geoid_all <- any(unique(dat$geoid)=="all") + subpop_all <- any(unique(dat$subpop)=="all") inference <- !any(is.na(dat$pert_dist)) - if(template=="MultiTimeReduce" & geoid_all){ + if(template=="MultiPeriodModifier" & subpop_all){ cat(paste0( " ", dat$name, ":\n", - " template: MultiTimeReduce\n", + " template: MultiPeriodModifier\n", " parameter: ", dat$parameter, "\n", " groups:\n", - ' - affected_geoids: "all"\n' + ' - subpop: "all"\n' )) if(!all(is.na(dat$spatial_groups)) & !all(is.null(dat$spatial_groups))){ cat(paste0( @@ -162,17 +162,17 @@ yaml_mtr_template <- function(dat){ } } - if(template=="MultiTimeReduce" & !geoid_all){ + if(template=="MultiPeriodModifier" & !subpop_all){ cat(paste0( " ", dat$name[1], ":\n", - " template: MultiTimeReduce\n", + " template: MultiPeriodModifier\n", " parameter: ", dat$parameter[1], "\n", " groups:\n" )) for(j in 1:nrow(dat)){ cat(paste0( - ' - affected_geoids: ["', dat$geoid[j], '"]\n')) + ' - subpop: ["', dat$subpop[j], '"]\n')) if(!all(is.na(dat$spatial_groups)) & !all(is.null(dat$spatial_groups))){ cat(paste0( @@ -354,9 +354,9 @@ print_value1 <- function(value_type, value_dist, value_mean, -#' Print intervention text for Reduce interventions +#' Print intervention text for SinglePeriodModifier interventions #' -#' @param dat df row for an intervention with the Reduce, ReduceR0 or ReduceIntervention template that has been processed name/period; see collapsed_intervention. +#' @param dat df row for an intervention with the SinglePeriodModifier or ModifierModifier template that has been processed name/period; see collapsed_intervention. #' #' @return #' @export @@ -368,13 +368,13 @@ yaml_reduce_template<- function(dat){ cat(paste0( " ", dat$name, ":\n", " template: ", dat$template,"\n", - if(dat$template %in% c("Reduce", "ReduceIntervention")){ + if(dat$template %in% c("SinglePeriodModifier", "ModifierModifier")){ paste0(" parameter: ", dat$parameter, "\n") }, - if(all(dat$geoid == "all")){ - ' affected_geoids: "all"\n' + if(all(dat$subpop == "all")){ + ' subpop: "all"\n' } else { - paste0(' affected_geoids: ["', dat$geoid, '"]\n') + paste0(' subpop: ["', dat$subpop, '"]\n') }, if(!all(is.na(dat$spatial_groups)) & !all(is.null(dat$spatial_groups))){ if(all(dat$spatial_groups == "all")){ @@ -385,7 +385,7 @@ yaml_reduce_template<- function(dat){ } }, dat$period, - if(dat$template == "ReduceIntervention"){ + if(dat$template == "ModifierModifier"){ paste0(" baseline_scenario: ", dat$baseline_scenario, "\n") } )) @@ -426,7 +426,7 @@ yaml_reduce_template<- function(dat){ yaml_stack1 <- function (dat, scenario = "Inference", stack = TRUE){ if (stack) { - dat <- dat %>% dplyr::group_by(category, USPS, geoid) %>% + dat <- dat %>% dplyr::group_by(category, USPS, subpop) %>% dplyr::filter(category == "NPI_redux" & period == max(period)) %>% dplyr::bind_rows(dat %>% dplyr::filter(category != "NPI_redux")) %>% dplyr::distinct(name, category) %>% @@ -441,18 +441,18 @@ yaml_stack1 <- function (dat, scenario = "Inference", stack = TRUE){ next } - cat(paste0(" ", dat$category[i], ":\n", " template: Stacked\n", + cat(paste0(" ", dat$category[i], ":\n", " template: StackedModifier\n", " scenarios: [\"", dat$name[i], "\"]\n")) } dat <- dat %>% dplyr::filter(category != "base_npi") %>% dplyr::mutate(category = dplyr::if_else(category == "NPI_redux", name, category)) - cat(paste0(" ", scenario, ":\n", " template: Stacked\n", + cat(paste0(" ", scenario, ":\n", " template: StackedModifier\n", " scenarios: [\"", paste0(dat$category, collapse = "\", \""), "\"]\n")) } else { - dat <- dat %>% dplyr::group_by(category, USPS, geoid) %>% + dat <- dat %>% dplyr::group_by(category, USPS, subpop) %>% dplyr::filter(category == "NPI_redux" & period == max(period)) %>% dplyr::bind_rows(dat %>% dplyr::filter(category != "NPI_redux")) %>% dplyr::distinct(name, category) %>% @@ -461,7 +461,7 @@ yaml_stack1 <- function (dat, scenario = "Inference", stack = TRUE){ if (duplicate_names > 1) { stop("At least one intervention name is shared by distinct NPIs.") } - cat(paste0(" ", scenario, ":\n", " template: Stacked\n", + cat(paste0(" ", scenario, ":\n", " template: StackedModifier\n", " scenarios: [\"", paste0(dat, collapse = "\", \""), "\"]\n")) } @@ -484,7 +484,7 @@ yaml_stack2 <- function (dat, scenario = "Inference", stack = TRUE){ if (stack) { dat <- dat %>% - dplyr::group_by(category, USPS, geoid) %>% + dplyr::group_by(category, USPS, subpop) %>% dplyr::filter(category == "NPI_redux" & period == max(period)) %>% dplyr::bind_rows(dat %>% dplyr::filter(category != "NPI_redux")) %>% dplyr::distinct(name, category) %>% dplyr::group_by(category) %>% dplyr::summarize(name = paste0(unique(name), collapse = "\", \"")) @@ -497,16 +497,16 @@ yaml_stack2 <- function (dat, scenario = "Inference", stack = TRUE){ if (dat$category[i] %in% c("local_variance", "NPI_redux")) { next } - cat(paste0(" ", dat$category[i], ":\n", " template: Stacked\n", + cat(paste0(" ", dat$category[i], ":\n", " template: StackedModifier\n", " scenarios: [\"", dat$name[i], "\"]\n")) } dat <- dat %>% dplyr::filter(category != "base_npi") %>% dplyr::mutate(category = dplyr::if_else(category == "NPI_redux", name, category)) - cat(paste0(" ", scenario, ":\n", " template: Stacked\n", + cat(paste0(" ", scenario, ":\n", " template: StackedModifier\n", " scenarios: [\"", paste0(dat$category, collapse = "\", \""), "\"]\n")) } else { - dat <- dat %>% dplyr::group_by(category, USPS, geoid) %>% + dat <- dat %>% dplyr::group_by(category, USPS, subpop) %>% dplyr::filter(category == "NPI_redux" & period == max(period)) %>% dplyr::bind_rows(dat %>% dplyr::filter(category != "NPI_redux")) %>% dplyr::distinct(name, category) %>% @@ -515,7 +515,7 @@ yaml_stack2 <- function (dat, scenario = "Inference", stack = TRUE){ if (duplicate_names > 1) { stop("At least one intervention name is shared by distinct NPIs.") } - cat(paste0(" ", scenario, ":\n", " template: Stacked\n", + cat(paste0(" ", scenario, ":\n", " template: StackedModifier\n", " scenarios: [\"", paste0(dat, collapse = "\", \""), "\"]\n")) } @@ -585,11 +585,11 @@ print_header <- function ( #' @description Prints the global options and the spatial setup section of the configuration files. These typically sit at the top of the configuration file. #' #' @param census_year integer(year) -#' @param sim_states vector of locations that will be modeled -#' @param geodata_file path to file relative to data_path Geodata is a .csv with column headers, with at least two columns: nodenames and popnodes -#' @param popnodes is the name of a column in geodata that specifies the population of the nodenames column -#' @param nodenames is the name of a column in geodata that specifies the geo IDs of an area. This column must be unique. -#' @param mobility_file path to file relative to data_path. The mobility file is a .csv file (it has to contains .csv as extension) with long form comma separated values. Columns have to be named ori, dest, amount with amount being the amount of individual going from place ori to place dest. Unassigned relations are assumed to be zero. ori and dest should match exactly the nodenames column in geodata.csv. It is also possible, but NOT RECOMMENDED to specify the mobility file as a .txt with space-separated values in the shape of a matrix. This matrix is symmetric and of size K x K, with K being the number of rows in geodata. +#' @param modeled_states vector of sub-populations (i.e., locations) that will be modeled. This can be different from the subpop IDs. For the US, state abbreviations are often used. This component is only used for filtering the data to the set of populations. +#' @param geodata_file path to file relative to data_path Geodata is a .csv with column headers, with at least two columns: subpop and popnodes +#' @param popnodes is the name of a column in geodata that specifies the population of the subpop column +#' @param subpop is the name of a column in geodata that specifies the geo IDs of an area. This column must be unique. +#' @param mobility_file path to file relative to data_path. The mobility file is a .csv file (it has to contains .csv as extension) with long form comma separated values. Columns have to be named ori, dest, amount with amount being the amount of individual going from place ori to place dest. Unassigned relations are assumed to be zero. ori and dest should match exactly the subpop column in geodata.csv. It is also possible, but NOT RECOMMENDED to specify the mobility file as a .txt with space-separated values in the shape of a matrix. This matrix is symmetric and of size K x K, with K being the number of rows in geodata. #' @param state_level whether this is a state-level run #' #' @return @@ -599,23 +599,20 @@ print_header <- function ( #' print_spatial_setup <- function ( census_year = 2019, - sim_states, + modeled_states = NULL, geodata_file = "geodata.csv", mobility_file = "mobility.csv", - popnodes = "pop2019est", - nodenames = "geoid", state_level = TRUE) { cat( paste0("spatial_setup:\n", - " census_year: ", census_year, "\n", - " modeled_states:\n"), - paste0(" - ", sim_states, "\n"), + " census_year: ", census_year, "\n"), + ifelse(!is.null(modeled_states), + paste0(" modeled_states:\n", + " - ", modeled_states, "\n"),""), paste0("\n", " geodata: ", geodata_file, "\n", " mobility: ", mobility_file, "\n", - " popnodes: ", popnodes, "\n", - " nodenames: ", nodenames, "\n", " state_level: ", state_level, "\n", "\n") ) @@ -684,7 +681,7 @@ print_compartments <- function ( #' @param fix_added_seeding #' #' @details -#' ## The model performns inference on the seeding date and initial number of seeding infections in each geoid with the default settings +#' ## The model performns inference on the seeding date and initial number of seeding infections in each subpop with the default settings #' ## The method for determining the proposal distribution for the seeding amount is hard-coded in the inference package (R/pkgs/inference/R/functions/perturb_seeding.R). It is pertubed with a normal distribution where the mean of the distribution 10 times the number of confirmed cases on a given date and the standard deviation is 1. #' #' @return @@ -1019,7 +1016,7 @@ print_interventions <- function ( for (i in 1:nrow(dat)) { if (i > nrow(dat)) break - if (dat$template[i] == "MultiTimeReduce") { + if (dat$template[i] == "MultiPeriodModifier") { dat %>% dplyr::filter(name == dat$name[i]) %>% yaml_mtr_template(.) dat <- dat %>% dplyr::filter(name != dat$name[i] | dplyr::row_number() == i) } else { @@ -1036,7 +1033,7 @@ print_interventions <- function ( for (i in 1:nrow(outcome_dat)) { if (i > nrow(outcome_dat)) break - if (outcome_dat$template[i] == "MultiTimeReduce") { + if (outcome_dat$template[i] == "MultiPeriodModifier") { outcome_dat %>% dplyr::filter(name == outcome_dat$name[i]) %>% yaml_mtr_template(.) outcome_dat <- outcome_dat %>% @@ -1120,7 +1117,7 @@ print_interventions <- function ( print_outcomes <- function (resume_modifier = NULL, dat = NULL, ifr = NULL, outcomes_base_data = NULL, param_from_file = TRUE, - outcomes_parquet_file = "usa-geoid-params-output_statelevel.parquet", + outcomes_parquet_file = "usa-subpop-params-output_statelevel.parquet", incidH_prob_dist = "fixed", incidH_prob_value = 0.0175, incidH_delay_dist = "fixed", incidH_delay_value = 7, incidH_duration_dist = "fixed", incidH_duration_value = 7, incidD_prob_dist = "fixed", incidD_prob_value = 0.005, @@ -1401,7 +1398,7 @@ print_outcomes <- function (resume_modifier = NULL, cat(paste0(" interventions:\n", " settings:\n", " ", ifr, ":\n", - " template: Stacked\n", + " template: StackedModifier\n", " scenarios: [\"outcome_interventions\"]\n")) } @@ -1451,7 +1448,7 @@ print_outcomes <- function (resume_modifier = NULL, cat(paste0(" interventions:\n", " settings:\n", " ", ifr, ":\n", - " template: Stacked\n", + " template: StackedModifier\n", " scenarios: [\"", outcome_interventions, "\"]\n")) } } @@ -1989,3 +1986,50 @@ seir_chunk <- function(resume_modifier = NULL, return(tmp) } + + + +#' print_init_conditions +#' +#' @description Print initial conditions section of config +#' +#' @param method +#' @param proportional +#' @param perturbation if TRUE, will print perturbation section, requires other values below +#' @param pert_dist distribution of the perturbation +#' @param pert_mean mean of perturbation +#' @param pert_sd standard deviation of perturbation +#' @param pert_a minimum value of perturbation +#' @param pert_b maximum value of perturbation +#' +#' @details +#' Config helper to print initial conditions section +#' @export +#' +#' @examples +#' print_init_conditions() +#' +print_init_conditions <- function(method = "SetInitialConditionsFolderDraw", + proportional = "True", + perturbation = TRUE, + pert_dist = "truncnorm", + pert_mean = 0, + pert_sd = 0.02, + pert_a = -1, + pert_b = 1){ + + cat(paste0("initial_conditions: \n", + " method: ", method, "\n", + " proportional: ", proportional, "\n", + ifelse(perturbation, paste0(" perturbation: \n", + " distribution: ", pert_dist, "\n", + " mean: ", pert_mean, "\n", + " sd: ", pert_sd, "\n", + " a: ", pert_a, "\n", + " b: ", pert_b), + "\n") + )) + +} + + diff --git a/flepimop/R_packages/config.writer/tests/testthat/geodata.csv b/flepimop/R_packages/config.writer/tests/testthat/geodata.csv index 2f457db74..e1b497990 100644 --- a/flepimop/R_packages/config.writer/tests/testthat/geodata.csv +++ b/flepimop/R_packages/config.writer/tests/testthat/geodata.csv @@ -1,3 +1,3 @@ -"USPS","geoid","pop2019est" +"USPS","subpop","population" "DE","10000",957248 "KS","20000",2910652 diff --git a/flepimop/R_packages/config.writer/tests/testthat/outcome_adj.csv b/flepimop/R_packages/config.writer/tests/testthat/outcome_adj.csv index e377f4529..fb60b8264 100644 --- a/flepimop/R_packages/config.writer/tests/testthat/outcome_adj.csv +++ b/flepimop/R_packages/config.writer/tests/testthat/outcome_adj.csv @@ -1,4 +1,4 @@ -USPS,geoid,start_date,end_date,month,year,prob,prob_base,var,prob_redux,month_num,scenario +USPS,subpop,start_date,end_date,month,year,prob,prob_base,var,prob_redux,month_num,scenario DE,10000,2021-01-01,2021-01-31,Jan,2021,0.006144628617372787,0.00682136946726949,rr_death_inf,0.9008,1,2 DE,10000,2021-02-01,2021-02-28,Feb,2021,0.0056954013310463025,0.00682136946726949,rr_death_inf,0.8349,2,2 DE,10000,2021-03-01,2021-03-31,Mar,2021,0.00452485652648077,0.00682136946726949,rr_death_inf,0.6633,3,2 diff --git a/flepimop/R_packages/config.writer/tests/testthat/processed_intervention_data.csv b/flepimop/R_packages/config.writer/tests/testthat/processed_intervention_data.csv index 20fe42eba..9010c40a0 100644 --- a/flepimop/R_packages/config.writer/tests/testthat/processed_intervention_data.csv +++ b/flepimop/R_packages/config.writer/tests/testthat/processed_intervention_data.csv @@ -1,1491 +1,1491 @@ -USPS,geoid,start_date,end_date,name,template,type,category,parameter,baseline_scenario,value_dist,value_mean,value_sd,value_a,value_b,pert_dist,pert_mean,pert_sd,pert_a,pert_b -AL,01000,2020-04-04,2020-04-30,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AL,01000,2020-05-01,2020-05-21,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AL,01000,2020-05-22,2020-07-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AL,01000,2020-07-16,2021-03-03,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AL,01000,2021-03-04,2021-04-08,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AL,01000,2021-04-09,2021-05-30,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AL,01000,2021-05-31,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AK,02000,2020-03-28,2020-04-23,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AK,02000,2020-04-24,2020-05-07,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AK,02000,2020-05-08,2020-05-21,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AK,02000,2020-05-22,2020-11-15,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AK,02000,2020-11-16,2021-02-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AK,02000,2021-02-15,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AZ,04000,2020-03-31,2020-05-15,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AZ,04000,2020-05-16,2020-06-28,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AZ,04000,2020-06-29,2020-10-01,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AZ,04000,2020-10-02,2020-12-02,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AZ,04000,2020-12-03,2021-03-04,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AZ,04000,2021-03-05,2021-03-24,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AZ,04000,2021-03-25,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AR,05000,2020-03-20,2020-05-03,sd,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AR,05000,2020-05-04,2020-06-14,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AR,05000,2020-06-15,2020-07-19,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AR,05000,2020-07-20,2020-11-18,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AR,05000,2020-11-19,2021-01-01,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AR,05000,2021-01-02,2021-02-25,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AR,05000,2021-02-26,2021-03-30,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -AR,05000,2021-03-31,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2020-03-19,2020-05-07,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2020-05-08,2020-06-11,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2020-06-12,2020-07-05,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2020-07-06,2020-11-20,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2020-11-21,2020-12-05,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2020-12-06,2021-01-11,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2021-01-12,2021-01-24,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2021-01-25,2021-02-26,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2021-02-27,2021-04-06,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2021-04-07,2021-06-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CA,06000,2021-06-15,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2020-03-26,2020-04-26,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2020-04-27,2020-06-30,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2020-07-01,2020-09-28,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2020-09-29,2020-11-04,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2020-11-05,2020-11-19,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2020-11-20,2021-01-03,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2021-01-04,2021-02-05,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2021-02-06,2021-03-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2021-03-15,2021-03-23,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2021-03-24,2021-04-15,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2021-04-16,2021-05-13,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2021-05-14,2021-05-31,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CO,08000,2021-06-01,2021-08-07,open_p7,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2020-03-23,2020-05-20,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2020-05-21,2020-06-16,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2020-06-17,2020-10-07,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2020-10-08,2020-11-05,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2020-11-06,2021-01-18,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2021-01-19,2021-03-18,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2021-03-19,2021-04-01,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2021-04-02,2021-04-30,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2021-05-01,2021-05-18,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -CT,09000,2021-05-19,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2020-03-24,2020-05-31,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2020-06-01,2020-06-14,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2020-06-15,2020-11-22,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2020-11-23,2020-12-13,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2020-12-14,2021-01-07,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2021-01-08,2021-02-11,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2021-02-12,2021-02-18,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2021-02-19,2021-03-31,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2021-04-01,2021-05-20,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DE,10000,2021-05-21,2021-08-07,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2020-04-01,2020-05-29,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2020-05-30,2020-06-21,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2020-06-22,2020-11-24,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2020-11-25,2020-12-13,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2020-12-14,2020-12-22,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2020-12-23,2021-01-21,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2021-01-22,2021-03-21,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2021-03-22,2021-04-30,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2021-05-01,2021-05-16,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2021-05-17,2021-05-20,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2021-05-21,2021-06-10,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -DC,11000,2021-06-11,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -FL,12000,2020-04-03,2020-05-04,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -FL,12000,2020-05-05,2020-06-04,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -FL,12000,2020-06-05,2020-06-25,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -FL,12000,2020-06-26,2020-09-13,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -FL,12000,2020-09-14,2020-09-24,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -FL,12000,2020-09-25,2021-05-02,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -FL,12000,2021-05-03,2021-08-07,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GA,13000,2020-04-03,2020-04-27,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GA,13000,2020-04-28,2020-05-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GA,13000,2020-06-01,2020-06-30,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GA,13000,2020-07-01,2020-09-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GA,13000,2020-09-11,2020-12-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GA,13000,2020-12-15,2021-04-07,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GA,13000,2021-04-08,2021-04-30,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GA,13000,2021-05-01,2021-05-30,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GA,13000,2021-05-31,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2020-03-20,2020-05-10,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2020-05-11,2020-07-19,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2020-07-20,2020-08-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2020-08-16,2020-09-24,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2020-09-25,2020-12-14,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2020-12-15,2020-12-25,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2020-12-26,2021-01-17,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2021-01-18,2021-02-21,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2021-02-22,2021-05-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -GU,66000,2021-05-15,2021-08-07,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2020-03-25,2020-05-06,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2020-05-07,2020-05-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2020-06-01,2020-08-07,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2020-08-08,2020-09-23,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2020-09-24,2020-10-26,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2020-10-27,2020-11-10,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2020-11-11,2021-01-18,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2021-01-19,2021-02-24,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2021-02-25,2021-03-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2021-03-11,2021-05-09,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2021-05-10,2021-05-24,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2021-05-25,2021-06-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -HI,15000,2021-06-11,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2020-03-25,2020-04-30,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2020-05-01,2020-05-15,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2020-05-16,2020-05-29,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2020-05-30,2020-06-12,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2020-06-13,2020-10-26,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2020-10-27,2020-11-12,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2020-11-13,2020-12-29,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2020-12-30,2021-02-01,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2021-02-02,2021-05-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ID,16000,2021-05-11,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2020-03-21,2020-05-29,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2020-05-30,2020-06-25,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2020-06-26,2020-07-23,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2020-07-24,2020-09-30,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2020-10-01,2020-10-29,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2020-10-30,2020-11-19,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2020-11-20,2021-01-17,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2021-01-18,2021-01-31,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2021-02-01,2021-05-16,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2021-05-17,2021-06-10,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IL,17000,2021-06-11,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2020-03-24,2020-05-03,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2020-05-04,2020-05-21,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2020-05-22,2020-06-11,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2020-06-12,2020-07-03,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2020-07-04,2020-09-25,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2020-09-26,2020-11-10,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2020-11-11,2021-01-10,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2021-01-11,2021-01-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2021-02-01,2021-02-14,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2021-02-15,2021-03-01,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2021-03-02,2021-04-05,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IN,18000,2021-04-06,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2020-04-02,2020-05-14,sd,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2020-05-15,2020-05-27,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2020-05-28,2020-06-11,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2020-06-12,2020-08-26,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2020-08-27,2020-10-03,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2020-10-04,2020-11-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2020-11-11,2020-12-16,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2020-12-17,2021-01-07,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2021-01-08,2021-02-06,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -IA,19000,2021-02-07,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KS,20000,2020-03-30,2020-05-04,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KS,20000,2020-05-05,2020-05-21,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KS,20000,2020-05-22,2020-06-07,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KS,20000,2020-06-08,2020-07-02,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KS,20000,2020-07-03,2021-03-30,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KS,20000,2021-03-31,2021-04-05,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KS,20000,2021-04-06,2021-05-13,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KS,20000,2021-05-14,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2020-03-26,2020-05-10,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2020-05-11,2020-05-21,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2020-05-22,2020-06-28,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2020-06-29,2020-07-27,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2020-07-28,2020-08-10,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2020-08-11,2020-11-19,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2020-11-20,2020-12-13,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2020-12-14,2021-03-04,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2021-03-05,2021-05-15,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2021-05-16,2021-05-27,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2021-05-28,2021-06-10,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -KY,21000,2021-06-11,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2020-03-23,2020-05-14,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2020-05-15,2020-06-04,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2020-06-05,2020-07-12,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2020-07-13,2020-09-10,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2020-09-11,2020-11-24,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2020-11-25,2021-03-02,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2021-03-03,2021-03-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2021-03-11,2021-03-30,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2021-03-31,2021-04-27,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2021-04-28,2021-05-25,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -LA,22000,2021-05-26,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2020-04-02,2020-04-30,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2020-05-01,2020-05-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2020-06-01,2020-06-30,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2020-07-01,2020-10-12,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2020-10-13,2020-11-19,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2020-11-20,2021-01-31,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2021-02-01,2021-02-11,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2021-02-12,2021-03-25,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2021-03-26,2021-05-23,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ME,23000,2021-05-24,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MD,24000,2020-03-30,2020-05-14,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MD,24000,2020-05-15,2020-06-04,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MD,24000,2020-06-05,2020-09-03,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MD,24000,2020-09-04,2020-11-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MD,24000,2020-11-11,2020-12-16,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MD,24000,2020-12-17,2021-01-31,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MD,24000,2021-02-01,2021-03-11,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MD,24000,2021-03-12,2021-05-14,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MD,24000,2021-05-15,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2020-03-24,2020-05-18,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2020-05-19,2020-06-07,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2020-06-08,2020-07-05,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2020-07-06,2020-10-04,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2020-10-05,2020-10-22,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2020-10-23,2020-12-12,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2020-12-13,2020-12-25,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2020-12-26,2021-01-24,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2021-01-25,2021-02-07,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2021-02-08,2021-02-28,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2021-03-01,2021-03-21,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2021-03-22,2021-04-29,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2021-04-30,2021-05-28,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MA,25000,2021-05-29,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2020-03-24,2020-05-31,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2020-06-01,2020-06-30,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2020-07-01,2020-09-08,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2020-09-09,2020-10-08,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2020-10-09,2020-11-17,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2020-11-18,2020-12-20,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2020-12-21,2021-01-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2021-01-16,2021-01-31,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2021-02-01,2021-03-04,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2021-03-05,2021-03-21,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2021-03-22,2021-05-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2021-05-15,2021-05-31,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2021-06-01,2021-06-21,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MI,26000,2021-06-22,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2020-03-27,2020-05-17,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2020-05-18,2020-05-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2020-06-01,2020-06-09,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2020-06-10,2020-07-24,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2020-07-25,2020-11-12,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2020-11-13,2020-12-17,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2020-12-18,2021-01-10,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2021-01-11,2021-02-12,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2021-02-13,2021-03-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2021-03-15,2021-03-31,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2021-04-01,2021-05-06,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2021-05-07,2021-05-13,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2021-05-14,2021-05-27,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MN,27000,2021-05-28,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2020-04-03,2020-04-27,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2020-04-28,2020-05-06,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2020-05-07,2020-05-31,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2020-06-01,2020-09-13,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2020-09-14,2020-11-24,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2020-11-25,2020-12-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2020-12-11,2021-03-02,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2021-03-03,2021-03-30,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2021-03-31,2021-04-29,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MS,28000,2021-04-30,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MO,29000,2020-04-06,2020-05-03,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MO,29000,2020-05-04,2020-06-15,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MO,29000,2020-06-16,2021-05-16,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MO,29000,2021-05-17,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MT,30000,2020-03-28,2020-04-26,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MT,30000,2020-04-27,2020-05-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MT,30000,2020-06-01,2020-11-19,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MT,30000,2020-11-20,2021-01-14,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MT,30000,2021-01-15,2021-02-11,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MT,30000,2021-02-12,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2020-03-16,2020-05-03,sd,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2020-05-04,2020-05-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2020-06-01,2020-06-21,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2020-06-22,2020-09-13,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2020-09-14,2020-10-20,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2020-10-21,2020-11-10,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2020-11-11,2020-12-11,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2020-12-12,2020-12-23,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2020-12-24,2021-01-29,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2021-01-30,2021-05-23,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NE,31000,2021-05-24,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2020-04-01,2020-05-08,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2020-05-09,2020-05-28,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2020-05-29,2020-07-09,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2020-07-10,2020-09-19,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2020-09-20,2020-11-23,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2020-11-24,2021-02-14,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2021-02-15,2021-03-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2021-03-15,2021-03-29,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2021-03-30,2021-04-30,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2021-05-01,2021-05-02,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2021-05-03,2021-05-31,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NV,32000,2021-06-01,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2020-03-27,2020-05-10,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2020-05-11,2020-06-14,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2020-06-15,2020-06-28,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2020-06-29,2020-10-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2020-10-15,2020-10-29,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2020-10-30,2020-11-19,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2020-11-20,2021-03-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2021-03-11,2021-04-16,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2021-04-17,2021-05-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NH,33000,2021-05-08,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2020-03-21,2020-05-18,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2020-05-19,2020-06-14,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2020-06-15,2020-09-03,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2020-09-04,2020-11-11,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2020-11-12,2020-12-06,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2020-12-07,2021-01-01,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2021-01-02,2021-02-04,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2021-02-05,2021-02-21,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2021-02-22,2021-03-18,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2021-03-19,2021-04-01,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2021-04-02,2021-05-27,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2021-05-28,2021-06-03,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NJ,34000,2021-06-04,2021-08-07,open_p7,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2020-03-24,2020-05-31,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2020-06-01,2020-07-12,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2020-07-13,2020-08-28,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2020-08-29,2020-10-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2020-10-16,2020-11-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2020-11-16,2020-12-01,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2020-12-02,2021-02-09,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2021-02-10,2021-02-23,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2021-02-24,2021-03-09,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2021-03-10,2021-03-23,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2021-03-24,2021-04-06,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2021-04-07,2021-04-20,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2021-04-21,2021-05-04,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2021-05-05,2021-05-13,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2021-05-14,2021-06-01,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NM,35000,2021-06-02,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2020-03-22,2020-06-07,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2020-06-08,2020-06-21,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2020-06-22,2020-07-05,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2020-07-06,2020-07-19,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2020-07-20,2020-09-29,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2020-09-30,2020-10-13,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2020-10-14,2020-11-12,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2020-11-13,2020-12-13,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2020-12-14,2021-01-26,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2021-01-27,2021-02-11,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2021-02-12,2021-03-18,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2021-03-19,2021-03-31,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2021-04-01,2021-05-18,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NY,36000,2021-05-19,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2020-03-30,2020-05-07,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2020-05-08,2020-05-21,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2020-05-22,2020-09-03,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2020-09-04,2020-10-01,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2020-10-02,2020-12-10,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2020-12-11,2021-02-25,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2021-02-26,2021-03-25,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2021-03-26,2021-04-29,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2021-04-30,2021-05-13,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NC,37000,2021-05-14,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ND,38000,2020-03-19,2020-04-30,sd,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ND,38000,2020-05-01,2020-05-28,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ND,38000,2020-05-29,2020-10-15,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ND,38000,2020-10-16,2020-11-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ND,38000,2020-11-16,2020-12-21,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ND,38000,2020-12-22,2021-01-07,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ND,38000,2021-01-08,2021-01-17,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -ND,38000,2021-01-18,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MP,69000,2020-03-30,2020-05-02,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MP,69000,2020-05-03,2020-05-24,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MP,69000,2020-05-25,2020-06-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MP,69000,2020-06-16,2020-08-23,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MP,69000,2020-08-24,2020-09-06,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -MP,69000,2020-09-07,2021-08-07,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2020-03-23,2020-05-03,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2020-05-04,2020-05-20,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2020-05-21,2020-06-18,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2020-06-19,2020-09-20,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2020-09-21,2020-11-18,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2020-11-19,2021-02-10,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2021-02-11,2021-03-01,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2021-03-02,2021-04-04,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2021-04-05,2021-04-26,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2021-04-27,2021-05-16,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2021-05-17,2021-06-01,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2021-06-02,2021-06-18,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OH,39000,2021-06-19,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OK,40000,2020-03-24,2020-04-23,sd,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OK,40000,2020-04-24,2020-05-14,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OK,40000,2020-05-15,2020-05-31,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OK,40000,2020-06-01,2020-11-15,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OK,40000,2020-11-16,2020-12-13,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OK,40000,2020-12-14,2021-01-13,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OK,40000,2021-01-14,2021-03-11,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OK,40000,2021-03-12,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2020-03-23,2020-05-14,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2020-05-15,2020-06-04,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2020-06-05,2020-06-30,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2020-07-01,2020-11-10,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2020-11-11,2020-11-17,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2020-11-18,2020-12-02,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2020-12-03,2021-02-11,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2021-02-12,2021-02-25,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2021-02-26,2021-03-28,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2021-03-29,2021-04-18,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2021-04-19,2021-04-29,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2021-04-30,2021-06-08,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -OR,41000,2021-06-09,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2020-03-28,2020-05-07,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2020-05-08,2020-05-28,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2020-05-29,2020-07-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2020-07-16,2020-09-13,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2020-09-14,2020-10-05,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2020-10-06,2020-12-11,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2020-12-12,2021-01-03,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2021-01-04,2021-02-28,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2021-03-01,2021-04-03,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2021-04-04,2021-05-12,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2021-05-13,2021-05-16,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2021-05-17,2021-05-30,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PA,42000,2021-05-31,2021-08-07,open_p7,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2020-03-30,2020-05-24,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2020-05-25,2020-06-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2020-06-16,2020-06-30,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2020-07-01,2020-07-15,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2020-07-16,2020-09-11,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2020-09-12,2020-10-01,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2020-10-02,2020-11-15,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2020-11-16,2020-12-06,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2020-12-07,2021-01-07,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2021-01-08,2021-02-07,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2021-02-08,2021-03-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2021-03-15,2021-04-08,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2021-04-09,2021-04-16,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2021-04-17,2021-05-23,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2021-05-24,2021-06-06,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -PR,72000,2021-06-07,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2020-03-28,2020-05-08,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2020-05-09,2020-05-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2020-06-01,2020-06-29,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2020-06-30,2020-11-07,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2020-11-08,2020-11-29,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2020-11-30,2020-12-20,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2020-12-21,2021-01-19,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2021-01-20,2021-02-11,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2021-02-12,2021-03-18,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2021-03-19,2021-05-17,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2021-05-18,2021-05-20,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -RI,44000,2021-05-21,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SC,45000,2020-04-07,2020-04-20,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SC,45000,2020-04-21,2020-05-10,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SC,45000,2020-05-11,2020-08-02,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SC,45000,2020-08-03,2020-10-01,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SC,45000,2020-10-02,2021-02-28,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SC,45000,2021-03-01,2021-03-18,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SC,45000,2021-03-19,2021-05-10,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SC,45000,2021-05-11,2021-06-05,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SC,45000,2021-06-06,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SD,46000,2020-03-16,2020-04-27,sd,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -SD,46000,2020-04-28,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TN,47000,2020-04-02,2020-04-30,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TN,47000,2020-05-01,2020-05-24,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TN,47000,2020-05-25,2020-09-28,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TN,47000,2020-09-29,2020-12-19,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TN,47000,2020-12-20,2021-01-19,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TN,47000,2021-01-20,2021-02-27,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TN,47000,2021-02-28,2021-04-27,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TN,47000,2021-04-28,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TX,48000,2020-03-31,2020-04-30,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TX,48000,2020-05-01,2020-05-17,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TX,48000,2020-05-18,2020-06-02,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TX,48000,2020-06-03,2020-06-25,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TX,48000,2020-06-26,2020-09-20,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TX,48000,2020-09-21,2020-10-13,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TX,48000,2020-10-14,2021-03-09,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -TX,48000,2021-03-10,2021-08-07,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2020-03-27,2020-05-01,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2020-05-02,2020-05-15,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2020-05-16,2020-06-18,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2020-06-19,2020-10-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2020-10-15,2020-11-08,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2020-11-09,2020-11-23,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2020-11-24,2021-03-04,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2021-03-05,2021-04-01,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2021-04-02,2021-04-09,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2021-04-10,2021-05-04,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -UT,49000,2021-05-05,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VT,50000,2020-03-25,2020-05-15,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VT,50000,2020-05-16,2020-05-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VT,50000,2020-06-01,2020-06-25,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VT,50000,2020-06-26,2020-07-31,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VT,50000,2020-08-01,2020-11-13,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VT,50000,2020-11-14,2021-02-11,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VT,50000,2021-02-12,2021-03-23,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VT,50000,2021-03-24,2021-05-14,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VT,50000,2021-05-15,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2020-03-25,2020-05-03,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2020-05-04,2020-05-31,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2020-06-01,2020-08-16,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2020-08-17,2020-09-18,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2020-09-19,2020-10-12,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2020-10-13,2020-11-08,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2020-11-09,2020-12-16,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2020-12-17,2021-03-07,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2021-03-08,2021-03-28,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2021-03-29,2021-04-22,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VI,78000,2021-04-23,2021-08-07,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2020-03-30,2020-05-14,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2020-05-15,2020-06-04,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2020-06-05,2020-06-30,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2020-07-01,2020-07-30,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2020-07-31,2020-09-09,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2020-09-10,2020-11-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2020-11-15,2020-12-13,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2020-12-14,2021-02-28,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2021-03-01,2021-03-31,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2021-04-01,2021-05-13,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2021-05-14,2021-05-27,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -VA,51000,2021-05-28,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2020-03-23,2020-05-04,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2020-05-05,2020-05-28,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2020-05-29,2020-07-01,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2020-07-02,2020-10-12,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2020-10-13,2020-11-15,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2020-11-16,2021-01-10,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2021-01-11,2021-01-31,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2021-02-01,2021-02-13,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2021-02-14,2021-03-21,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2021-03-22,2021-05-12,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2021-05-13,2021-05-17,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WA,53000,2021-05-18,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2020-03-24,2020-05-03,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2020-05-04,2020-05-20,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2020-05-21,2020-06-04,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2020-06-05,2020-06-30,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2020-07-01,2020-07-13,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2020-07-14,2020-10-12,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2020-10-13,2020-11-25,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2020-11-26,2021-02-13,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2021-02-14,2021-03-04,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2021-03-05,2021-04-19,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2021-04-20,2021-05-13,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2021-05-14,2021-06-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2021-06-08,2021-06-19,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WV,54000,2021-06-20,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2020-03-25,2020-05-13,lockdown,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2020-05-14,2020-06-12,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2020-06-13,2020-07-31,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2020-08-01,2020-10-28,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2020-10-29,2021-01-12,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2021-01-13,2021-02-08,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2021-02-09,2021-03-18,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2021-03-19,2021-03-30,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2021-03-31,2021-05-31,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WI,55000,2021-06-01,2021-08-07,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2020-03-28,2020-04-30,sd,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2020-05-01,2020-05-14,open_p1,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2020-05-15,2020-06-14,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2020-06-15,2020-08-15,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2020-08-16,2020-11-23,open_p4,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2020-11-24,2020-12-08,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2020-12-09,2021-01-08,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2021-01-09,2021-01-25,open_p2,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2021-01-26,2021-02-14,open_p3,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2021-02-15,2021-02-28,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2021-03-01,2021-03-15,open_p5,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2021-03-16,2021-05-20,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -WY,56000,2021-05-21,2021-08-07,open_p6,MultiTimeReduce,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 -NA,all,2020-01-01,2020-01-31,Seas_jan,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,-0.2,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2021-01-01,2021-01-31,Seas_jan,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,-0.2,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-02-01,2020-02-29,Seas_feb,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,-0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2021-02-01,2021-02-28,Seas_feb,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,-0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-03-01,2020-03-31,Seas_mar,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,-0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2021-03-01,2021-03-31,Seas_mar,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,-0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-05-01,2020-05-31,Seas_may,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2021-05-01,2021-05-31,Seas_may,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-06-01,2020-06-30,Seas_jun,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2021-06-01,2021-06-30,Seas_jun,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-07-01,2020-07-31,Seas_jul,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,0.2,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2021-07-01,2021-07-31,Seas_jul,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,0.2,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-08-01,2020-08-31,Seas_aug,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2021-08-01,2021-08-07,Seas_aug,MultiTimeReduce,transmission,seasonal,R0,NA,truncnorm,0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-09-01,2020-09-30,Seas_sep,Reduce,transmission,seasonal,R0,NA,truncnorm,0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-10-01,2020-10-31,Seas_oct,Reduce,transmission,seasonal,R0,NA,truncnorm,0,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-11-01,2020-11-30,Seas_nov,Reduce,transmission,seasonal,R0,NA,truncnorm,-0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-12-01,2020-12-31,Seas_dec,Reduce,transmission,seasonal,R0,NA,truncnorm,-0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 -NA,all,2020-01-01,2021-08-07,local_variance,Reduce,transmission,local_variance,R0,NA,truncnorm,0,0.025,-1,1,truncnorm,0,0.05,-1,1 -AK,02000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001575,NA,NA,NA,NA,NA,NA,NA,NA -AK,02000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004632,NA,NA,NA,NA,NA,NA,NA,NA -AK,02000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005033,NA,NA,NA,NA,NA,NA,NA,NA -AK,02000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005206,NA,NA,NA,NA,NA,NA,NA,NA -AK,02000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003905,NA,NA,NA,NA,NA,NA,NA,NA -AK,02000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001637,NA,NA,NA,NA,NA,NA,NA,NA -AK,02000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003683,NA,NA,NA,NA,NA,NA,NA,NA -AK,02000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004457,NA,NA,NA,NA,NA,NA,NA,NA -AL,01000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,1.2e-4,NA,NA,NA,NA,NA,NA,NA,NA -AL,01000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00327,NA,NA,NA,NA,NA,NA,NA,NA -AL,01000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003378,NA,NA,NA,NA,NA,NA,NA,NA -AL,01000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005034,NA,NA,NA,NA,NA,NA,NA,NA -AL,01000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002462,NA,NA,NA,NA,NA,NA,NA,NA -AL,01000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001837,NA,NA,NA,NA,NA,NA,NA,NA -AL,01000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003138,NA,NA,NA,NA,NA,NA,NA,NA -AL,01000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003718,NA,NA,NA,NA,NA,NA,NA,NA -AR,05000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,2.5e-5,NA,NA,NA,NA,NA,NA,NA,NA -AR,05000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004047,NA,NA,NA,NA,NA,NA,NA,NA -AR,05000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003534,NA,NA,NA,NA,NA,NA,NA,NA -AR,05000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005765,NA,NA,NA,NA,NA,NA,NA,NA -AR,05000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002497,NA,NA,NA,NA,NA,NA,NA,NA -AR,05000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002908,NA,NA,NA,NA,NA,NA,NA,NA -AR,05000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004238,NA,NA,NA,NA,NA,NA,NA,NA -AR,05000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004355,NA,NA,NA,NA,NA,NA,NA,NA -AZ,04000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,9.1e-4,NA,NA,NA,NA,NA,NA,NA,NA -AZ,04000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003637,NA,NA,NA,NA,NA,NA,NA,NA -AZ,04000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004542,NA,NA,NA,NA,NA,NA,NA,NA -AZ,04000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006755,NA,NA,NA,NA,NA,NA,NA,NA -AZ,04000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004126,NA,NA,NA,NA,NA,NA,NA,NA -AZ,04000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003358,NA,NA,NA,NA,NA,NA,NA,NA -AZ,04000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003208,NA,NA,NA,NA,NA,NA,NA,NA -AZ,04000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003691,NA,NA,NA,NA,NA,NA,NA,NA -CA,06000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004032,NA,NA,NA,NA,NA,NA,NA,NA -CA,06000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004414,NA,NA,NA,NA,NA,NA,NA,NA -CA,06000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009529,NA,NA,NA,NA,NA,NA,NA,NA -CA,06000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007473,NA,NA,NA,NA,NA,NA,NA,NA -CA,06000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005734,NA,NA,NA,NA,NA,NA,NA,NA -CA,06000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005427,NA,NA,NA,NA,NA,NA,NA,NA -CA,06000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005324,NA,NA,NA,NA,NA,NA,NA,NA -CO,08000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001223,NA,NA,NA,NA,NA,NA,NA,NA -CO,08000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00289,NA,NA,NA,NA,NA,NA,NA,NA -CO,08000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00442,NA,NA,NA,NA,NA,NA,NA,NA -CO,08000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009366,NA,NA,NA,NA,NA,NA,NA,NA -CO,08000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006245,NA,NA,NA,NA,NA,NA,NA,NA -CO,08000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005531,NA,NA,NA,NA,NA,NA,NA,NA -CO,08000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005302,NA,NA,NA,NA,NA,NA,NA,NA -CO,08000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005107,NA,NA,NA,NA,NA,NA,NA,NA -CT,09000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001444,NA,NA,NA,NA,NA,NA,NA,NA -CT,09000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003284,NA,NA,NA,NA,NA,NA,NA,NA -CT,09000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006127,NA,NA,NA,NA,NA,NA,NA,NA -CT,09000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.010163,NA,NA,NA,NA,NA,NA,NA,NA -CT,09000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008513,NA,NA,NA,NA,NA,NA,NA,NA -CT,09000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007132,NA,NA,NA,NA,NA,NA,NA,NA -CT,09000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007648,NA,NA,NA,NA,NA,NA,NA,NA -CT,09000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.0073,NA,NA,NA,NA,NA,NA,NA,NA -DC,11000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004432,NA,NA,NA,NA,NA,NA,NA,NA -DC,11000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002789,NA,NA,NA,NA,NA,NA,NA,NA -DC,11000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009738,NA,NA,NA,NA,NA,NA,NA,NA -DC,11000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009489,NA,NA,NA,NA,NA,NA,NA,NA -DC,11000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005403,NA,NA,NA,NA,NA,NA,NA,NA -DC,11000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005846,NA,NA,NA,NA,NA,NA,NA,NA -DC,11000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007962,NA,NA,NA,NA,NA,NA,NA,NA -DE,10000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,4.24e-4,NA,NA,NA,NA,NA,NA,NA,NA -DE,10000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003744,NA,NA,NA,NA,NA,NA,NA,NA -DE,10000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004357,NA,NA,NA,NA,NA,NA,NA,NA -DE,10000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009041,NA,NA,NA,NA,NA,NA,NA,NA -DE,10000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006471,NA,NA,NA,NA,NA,NA,NA,NA -DE,10000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005204,NA,NA,NA,NA,NA,NA,NA,NA -DE,10000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004372,NA,NA,NA,NA,NA,NA,NA,NA -DE,10000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004788,NA,NA,NA,NA,NA,NA,NA,NA -FL,12000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001333,NA,NA,NA,NA,NA,NA,NA,NA -FL,12000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002584,NA,NA,NA,NA,NA,NA,NA,NA -FL,12000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004256,NA,NA,NA,NA,NA,NA,NA,NA -FL,12000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007515,NA,NA,NA,NA,NA,NA,NA,NA -FL,12000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005339,NA,NA,NA,NA,NA,NA,NA,NA -FL,12000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004656,NA,NA,NA,NA,NA,NA,NA,NA -FL,12000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004632,NA,NA,NA,NA,NA,NA,NA,NA -FL,12000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004264,NA,NA,NA,NA,NA,NA,NA,NA -GA,13000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,2.95e-4,NA,NA,NA,NA,NA,NA,NA,NA -GA,13000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003166,NA,NA,NA,NA,NA,NA,NA,NA -GA,13000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002689,NA,NA,NA,NA,NA,NA,NA,NA -GA,13000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006914,NA,NA,NA,NA,NA,NA,NA,NA -GA,13000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003024,NA,NA,NA,NA,NA,NA,NA,NA -GA,13000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002945,NA,NA,NA,NA,NA,NA,NA,NA -GA,13000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002869,NA,NA,NA,NA,NA,NA,NA,NA -GA,13000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003331,NA,NA,NA,NA,NA,NA,NA,NA -GU,66000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001893,NA,NA,NA,NA,NA,NA,NA,NA -GU,66000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004754,NA,NA,NA,NA,NA,NA,NA,NA -GU,66000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002632,NA,NA,NA,NA,NA,NA,NA,NA -GU,66000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009422,NA,NA,NA,NA,NA,NA,NA,NA -HI,15000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,2.05e-4,NA,NA,NA,NA,NA,NA,NA,NA -HI,15000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003911,NA,NA,NA,NA,NA,NA,NA,NA -HI,15000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005352,NA,NA,NA,NA,NA,NA,NA,NA -HI,15000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006736,NA,NA,NA,NA,NA,NA,NA,NA -HI,15000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.015824,NA,NA,NA,NA,NA,NA,NA,NA -HI,15000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007606,NA,NA,NA,NA,NA,NA,NA,NA -HI,15000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005033,NA,NA,NA,NA,NA,NA,NA,NA -HI,15000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005334,NA,NA,NA,NA,NA,NA,NA,NA -IA,19000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001032,NA,NA,NA,NA,NA,NA,NA,NA -IA,19000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002585,NA,NA,NA,NA,NA,NA,NA,NA -IA,19000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005662,NA,NA,NA,NA,NA,NA,NA,NA -IA,19000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007657,NA,NA,NA,NA,NA,NA,NA,NA -IA,19000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003995,NA,NA,NA,NA,NA,NA,NA,NA -IA,19000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003701,NA,NA,NA,NA,NA,NA,NA,NA -IA,19000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,5.72e-4,NA,NA,NA,NA,NA,NA,NA,NA -IA,19000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009231,NA,NA,NA,NA,NA,NA,NA,NA -ID,16000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,7.05e-4,NA,NA,NA,NA,NA,NA,NA,NA -ID,16000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002855,NA,NA,NA,NA,NA,NA,NA,NA -ID,16000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004191,NA,NA,NA,NA,NA,NA,NA,NA -ID,16000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005559,NA,NA,NA,NA,NA,NA,NA,NA -ID,16000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002316,NA,NA,NA,NA,NA,NA,NA,NA -ID,16000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002436,NA,NA,NA,NA,NA,NA,NA,NA -ID,16000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003961,NA,NA,NA,NA,NA,NA,NA,NA -ID,16000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004795,NA,NA,NA,NA,NA,NA,NA,NA -IL,17000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,6.8e-4,NA,NA,NA,NA,NA,NA,NA,NA -IL,17000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003162,NA,NA,NA,NA,NA,NA,NA,NA -IL,17000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004809,NA,NA,NA,NA,NA,NA,NA,NA -IL,17000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008428,NA,NA,NA,NA,NA,NA,NA,NA -IL,17000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006174,NA,NA,NA,NA,NA,NA,NA,NA -IL,17000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005687,NA,NA,NA,NA,NA,NA,NA,NA -IL,17000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00567,NA,NA,NA,NA,NA,NA,NA,NA -IL,17000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005401,NA,NA,NA,NA,NA,NA,NA,NA -IN,18000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001109,NA,NA,NA,NA,NA,NA,NA,NA -IN,18000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003137,NA,NA,NA,NA,NA,NA,NA,NA -IN,18000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003365,NA,NA,NA,NA,NA,NA,NA,NA -IN,18000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005571,NA,NA,NA,NA,NA,NA,NA,NA -IN,18000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003615,NA,NA,NA,NA,NA,NA,NA,NA -IN,18000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003093,NA,NA,NA,NA,NA,NA,NA,NA -IN,18000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003615,NA,NA,NA,NA,NA,NA,NA,NA -IN,18000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003721,NA,NA,NA,NA,NA,NA,NA,NA -KS,20000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,7.55e-4,NA,NA,NA,NA,NA,NA,NA,NA -KS,20000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002627,NA,NA,NA,NA,NA,NA,NA,NA -KS,20000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005016,NA,NA,NA,NA,NA,NA,NA,NA -KS,20000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00819,NA,NA,NA,NA,NA,NA,NA,NA -KS,20000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003088,NA,NA,NA,NA,NA,NA,NA,NA -KS,20000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003067,NA,NA,NA,NA,NA,NA,NA,NA -KS,20000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004307,NA,NA,NA,NA,NA,NA,NA,NA -KS,20000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005069,NA,NA,NA,NA,NA,NA,NA,NA -KY,21000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,4.42e-4,NA,NA,NA,NA,NA,NA,NA,NA -KY,21000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003479,NA,NA,NA,NA,NA,NA,NA,NA -KY,21000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005304,NA,NA,NA,NA,NA,NA,NA,NA -KY,21000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006686,NA,NA,NA,NA,NA,NA,NA,NA -KY,21000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003199,NA,NA,NA,NA,NA,NA,NA,NA -KY,21000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003151,NA,NA,NA,NA,NA,NA,NA,NA -KY,21000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002638,NA,NA,NA,NA,NA,NA,NA,NA -KY,21000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003136,NA,NA,NA,NA,NA,NA,NA,NA -LA,22000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001033,NA,NA,NA,NA,NA,NA,NA,NA -LA,22000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002887,NA,NA,NA,NA,NA,NA,NA,NA -LA,22000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003833,NA,NA,NA,NA,NA,NA,NA,NA -LA,22000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004371,NA,NA,NA,NA,NA,NA,NA,NA -LA,22000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001721,NA,NA,NA,NA,NA,NA,NA,NA -LA,22000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.0018,NA,NA,NA,NA,NA,NA,NA,NA -LA,22000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001898,NA,NA,NA,NA,NA,NA,NA,NA -LA,22000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.0022,NA,NA,NA,NA,NA,NA,NA,NA -MA,25000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,7.7e-4,NA,NA,NA,NA,NA,NA,NA,NA -MA,25000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003447,NA,NA,NA,NA,NA,NA,NA,NA -MA,25000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00593,NA,NA,NA,NA,NA,NA,NA,NA -MA,25000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.010795,NA,NA,NA,NA,NA,NA,NA,NA -MA,25000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.011708,NA,NA,NA,NA,NA,NA,NA,NA -MA,25000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008408,NA,NA,NA,NA,NA,NA,NA,NA -MA,25000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00671,NA,NA,NA,NA,NA,NA,NA,NA -MA,25000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004521,NA,NA,NA,NA,NA,NA,NA,NA -MD,24000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001068,NA,NA,NA,NA,NA,NA,NA,NA -MD,24000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002659,NA,NA,NA,NA,NA,NA,NA,NA -MD,24000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005003,NA,NA,NA,NA,NA,NA,NA,NA -MD,24000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009014,NA,NA,NA,NA,NA,NA,NA,NA -MD,24000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007697,NA,NA,NA,NA,NA,NA,NA,NA -MD,24000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006153,NA,NA,NA,NA,NA,NA,NA,NA -MD,24000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006499,NA,NA,NA,NA,NA,NA,NA,NA -MD,24000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00596,NA,NA,NA,NA,NA,NA,NA,NA -ME,23000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001276,NA,NA,NA,NA,NA,NA,NA,NA -ME,23000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00329,NA,NA,NA,NA,NA,NA,NA,NA -ME,23000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005684,NA,NA,NA,NA,NA,NA,NA,NA -ME,23000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.010999,NA,NA,NA,NA,NA,NA,NA,NA -ME,23000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008499,NA,NA,NA,NA,NA,NA,NA,NA -ME,23000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007334,NA,NA,NA,NA,NA,NA,NA,NA -ME,23000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008344,NA,NA,NA,NA,NA,NA,NA,NA -ME,23000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008117,NA,NA,NA,NA,NA,NA,NA,NA -MI,26000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001021,NA,NA,NA,NA,NA,NA,NA,NA -MI,26000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002897,NA,NA,NA,NA,NA,NA,NA,NA -MI,26000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004235,NA,NA,NA,NA,NA,NA,NA,NA -MI,26000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007429,NA,NA,NA,NA,NA,NA,NA,NA -MI,26000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004843,NA,NA,NA,NA,NA,NA,NA,NA -MI,26000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003954,NA,NA,NA,NA,NA,NA,NA,NA -MI,26000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004991,NA,NA,NA,NA,NA,NA,NA,NA -MI,26000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005088,NA,NA,NA,NA,NA,NA,NA,NA -MN,27000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,8.75e-4,NA,NA,NA,NA,NA,NA,NA,NA -MN,27000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003259,NA,NA,NA,NA,NA,NA,NA,NA -MN,27000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005394,NA,NA,NA,NA,NA,NA,NA,NA -MN,27000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008294,NA,NA,NA,NA,NA,NA,NA,NA -MN,27000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006285,NA,NA,NA,NA,NA,NA,NA,NA -MN,27000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005101,NA,NA,NA,NA,NA,NA,NA,NA -MN,27000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005772,NA,NA,NA,NA,NA,NA,NA,NA -MN,27000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005718,NA,NA,NA,NA,NA,NA,NA,NA -MO,29000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,8.54e-4,NA,NA,NA,NA,NA,NA,NA,NA -MO,29000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002774,NA,NA,NA,NA,NA,NA,NA,NA -MO,29000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003972,NA,NA,NA,NA,NA,NA,NA,NA -MO,29000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005893,NA,NA,NA,NA,NA,NA,NA,NA -MO,29000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003574,NA,NA,NA,NA,NA,NA,NA,NA -MO,29000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002749,NA,NA,NA,NA,NA,NA,NA,NA -MO,29000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003287,NA,NA,NA,NA,NA,NA,NA,NA -MO,29000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003573,NA,NA,NA,NA,NA,NA,NA,NA -MP,69000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00187,NA,NA,NA,NA,NA,NA,NA,NA -MP,69000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004072,NA,NA,NA,NA,NA,NA,NA,NA -MP,69000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003597,NA,NA,NA,NA,NA,NA,NA,NA -MP,69000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005874,NA,NA,NA,NA,NA,NA,NA,NA -MP,69000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004361,NA,NA,NA,NA,NA,NA,NA,NA -MP,69000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004769,NA,NA,NA,NA,NA,NA,NA,NA -MP,69000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00444,NA,NA,NA,NA,NA,NA,NA,NA -MP,69000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004518,NA,NA,NA,NA,NA,NA,NA,NA -MS,28000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,9.69e-4,NA,NA,NA,NA,NA,NA,NA,NA -MS,28000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002764,NA,NA,NA,NA,NA,NA,NA,NA -MS,28000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003859,NA,NA,NA,NA,NA,NA,NA,NA -MS,28000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003698,NA,NA,NA,NA,NA,NA,NA,NA -MS,28000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002123,NA,NA,NA,NA,NA,NA,NA,NA -MS,28000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001683,NA,NA,NA,NA,NA,NA,NA,NA -MS,28000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002325,NA,NA,NA,NA,NA,NA,NA,NA -MS,28000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003066,NA,NA,NA,NA,NA,NA,NA,NA -MT,30000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,5.83e-4,NA,NA,NA,NA,NA,NA,NA,NA -MT,30000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003727,NA,NA,NA,NA,NA,NA,NA,NA -MT,30000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005204,NA,NA,NA,NA,NA,NA,NA,NA -MT,30000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006569,NA,NA,NA,NA,NA,NA,NA,NA -MT,30000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003107,NA,NA,NA,NA,NA,NA,NA,NA -MT,30000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003141,NA,NA,NA,NA,NA,NA,NA,NA -MT,30000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003945,NA,NA,NA,NA,NA,NA,NA,NA -MT,30000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003914,NA,NA,NA,NA,NA,NA,NA,NA -NC,37000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,6.41e-4,NA,NA,NA,NA,NA,NA,NA,NA -NC,37000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003656,NA,NA,NA,NA,NA,NA,NA,NA -NC,37000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004385,NA,NA,NA,NA,NA,NA,NA,NA -NC,37000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006358,NA,NA,NA,NA,NA,NA,NA,NA -NC,37000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003274,NA,NA,NA,NA,NA,NA,NA,NA -NC,37000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002715,NA,NA,NA,NA,NA,NA,NA,NA -NC,37000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004056,NA,NA,NA,NA,NA,NA,NA,NA -NC,37000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005478,NA,NA,NA,NA,NA,NA,NA,NA -ND,38000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001679,NA,NA,NA,NA,NA,NA,NA,NA -ND,38000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002858,NA,NA,NA,NA,NA,NA,NA,NA -ND,38000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005731,NA,NA,NA,NA,NA,NA,NA,NA -ND,38000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005392,NA,NA,NA,NA,NA,NA,NA,NA -ND,38000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001724,NA,NA,NA,NA,NA,NA,NA,NA -ND,38000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002575,NA,NA,NA,NA,NA,NA,NA,NA -ND,38000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003916,NA,NA,NA,NA,NA,NA,NA,NA -ND,38000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003931,NA,NA,NA,NA,NA,NA,NA,NA -NE,31000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00123,NA,NA,NA,NA,NA,NA,NA,NA -NE,31000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002341,NA,NA,NA,NA,NA,NA,NA,NA -NE,31000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00543,NA,NA,NA,NA,NA,NA,NA,NA -NE,31000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007955,NA,NA,NA,NA,NA,NA,NA,NA -NE,31000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003575,NA,NA,NA,NA,NA,NA,NA,NA -NE,31000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00359,NA,NA,NA,NA,NA,NA,NA,NA -NE,31000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004064,NA,NA,NA,NA,NA,NA,NA,NA -NE,31000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003986,NA,NA,NA,NA,NA,NA,NA,NA -NH,33000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,1.96e-4,NA,NA,NA,NA,NA,NA,NA,NA -NH,33000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003713,NA,NA,NA,NA,NA,NA,NA,NA -NH,33000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006088,NA,NA,NA,NA,NA,NA,NA,NA -NH,33000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.016931,NA,NA,NA,NA,NA,NA,NA,NA -NH,33000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00496,NA,NA,NA,NA,NA,NA,NA,NA -NH,33000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004555,NA,NA,NA,NA,NA,NA,NA,NA -NH,33000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006668,NA,NA,NA,NA,NA,NA,NA,NA -NH,33000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00686,NA,NA,NA,NA,NA,NA,NA,NA -NJ,34000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,9.75e-4,NA,NA,NA,NA,NA,NA,NA,NA -NJ,34000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003007,NA,NA,NA,NA,NA,NA,NA,NA -NJ,34000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00573,NA,NA,NA,NA,NA,NA,NA,NA -NJ,34000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009843,NA,NA,NA,NA,NA,NA,NA,NA -NJ,34000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007756,NA,NA,NA,NA,NA,NA,NA,NA -NJ,34000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006326,NA,NA,NA,NA,NA,NA,NA,NA -NJ,34000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005596,NA,NA,NA,NA,NA,NA,NA,NA -NJ,34000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005557,NA,NA,NA,NA,NA,NA,NA,NA -NM,35000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005124,NA,NA,NA,NA,NA,NA,NA,NA -NM,35000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007049,NA,NA,NA,NA,NA,NA,NA,NA -NM,35000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008913,NA,NA,NA,NA,NA,NA,NA,NA -NM,35000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005217,NA,NA,NA,NA,NA,NA,NA,NA -NM,35000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005211,NA,NA,NA,NA,NA,NA,NA,NA -NM,35000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006225,NA,NA,NA,NA,NA,NA,NA,NA -NM,35000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007262,NA,NA,NA,NA,NA,NA,NA,NA -NV,32000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,1.07e-4,NA,NA,NA,NA,NA,NA,NA,NA -NV,32000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00392,NA,NA,NA,NA,NA,NA,NA,NA -NV,32000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004457,NA,NA,NA,NA,NA,NA,NA,NA -NV,32000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006877,NA,NA,NA,NA,NA,NA,NA,NA -NV,32000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004096,NA,NA,NA,NA,NA,NA,NA,NA -NV,32000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003606,NA,NA,NA,NA,NA,NA,NA,NA -NV,32000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003599,NA,NA,NA,NA,NA,NA,NA,NA -NV,32000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00424,NA,NA,NA,NA,NA,NA,NA,NA -NY,36000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,4.63e-4,NA,NA,NA,NA,NA,NA,NA,NA -NY,36000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003562,NA,NA,NA,NA,NA,NA,NA,NA -NY,36000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004922,NA,NA,NA,NA,NA,NA,NA,NA -NY,36000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008693,NA,NA,NA,NA,NA,NA,NA,NA -NY,36000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006354,NA,NA,NA,NA,NA,NA,NA,NA -NY,36000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005819,NA,NA,NA,NA,NA,NA,NA,NA -NY,36000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005997,NA,NA,NA,NA,NA,NA,NA,NA -NY,36000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005131,NA,NA,NA,NA,NA,NA,NA,NA -OH,39000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001169,NA,NA,NA,NA,NA,NA,NA,NA -OH,39000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00267,NA,NA,NA,NA,NA,NA,NA,NA -OH,39000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004276,NA,NA,NA,NA,NA,NA,NA,NA -OH,39000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007267,NA,NA,NA,NA,NA,NA,NA,NA -OH,39000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.0034,NA,NA,NA,NA,NA,NA,NA,NA -OH,39000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003255,NA,NA,NA,NA,NA,NA,NA,NA -OH,39000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003161,NA,NA,NA,NA,NA,NA,NA,NA -OH,39000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003561,NA,NA,NA,NA,NA,NA,NA,NA -OK,40000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001114,NA,NA,NA,NA,NA,NA,NA,NA -OK,40000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003242,NA,NA,NA,NA,NA,NA,NA,NA -OK,40000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005228,NA,NA,NA,NA,NA,NA,NA,NA -OK,40000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005614,NA,NA,NA,NA,NA,NA,NA,NA -OK,40000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002007,NA,NA,NA,NA,NA,NA,NA,NA -OK,40000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002001,NA,NA,NA,NA,NA,NA,NA,NA -OK,40000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002067,NA,NA,NA,NA,NA,NA,NA,NA -OK,40000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002009,NA,NA,NA,NA,NA,NA,NA,NA -OR,41000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001191,NA,NA,NA,NA,NA,NA,NA,NA -OR,41000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002842,NA,NA,NA,NA,NA,NA,NA,NA -OR,41000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004293,NA,NA,NA,NA,NA,NA,NA,NA -OR,41000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007712,NA,NA,NA,NA,NA,NA,NA,NA -OR,41000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007987,NA,NA,NA,NA,NA,NA,NA,NA -OR,41000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006005,NA,NA,NA,NA,NA,NA,NA,NA -OR,41000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004637,NA,NA,NA,NA,NA,NA,NA,NA -OR,41000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003582,NA,NA,NA,NA,NA,NA,NA,NA -PA,42000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,7.98e-4,NA,NA,NA,NA,NA,NA,NA,NA -PA,42000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002889,NA,NA,NA,NA,NA,NA,NA,NA -PA,42000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005107,NA,NA,NA,NA,NA,NA,NA,NA -PA,42000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009101,NA,NA,NA,NA,NA,NA,NA,NA -PA,42000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008397,NA,NA,NA,NA,NA,NA,NA,NA -PA,42000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005664,NA,NA,NA,NA,NA,NA,NA,NA -PA,42000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005252,NA,NA,NA,NA,NA,NA,NA,NA -PA,42000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00518,NA,NA,NA,NA,NA,NA,NA,NA -PR,72000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,1.2e-4,NA,NA,NA,NA,NA,NA,NA,NA -PR,72000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002806,NA,NA,NA,NA,NA,NA,NA,NA -PR,72000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002673,NA,NA,NA,NA,NA,NA,NA,NA -PR,72000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005806,NA,NA,NA,NA,NA,NA,NA,NA -PR,72000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007686,NA,NA,NA,NA,NA,NA,NA,NA -PR,72000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.010066,NA,NA,NA,NA,NA,NA,NA,NA -PR,72000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005251,NA,NA,NA,NA,NA,NA,NA,NA -PR,72000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003103,NA,NA,NA,NA,NA,NA,NA,NA -RI,44000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001005,NA,NA,NA,NA,NA,NA,NA,NA -RI,44000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002291,NA,NA,NA,NA,NA,NA,NA,NA -RI,44000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007043,NA,NA,NA,NA,NA,NA,NA,NA -RI,44000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008476,NA,NA,NA,NA,NA,NA,NA,NA -RI,44000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.009584,NA,NA,NA,NA,NA,NA,NA,NA -RI,44000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00624,NA,NA,NA,NA,NA,NA,NA,NA -RI,44000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005759,NA,NA,NA,NA,NA,NA,NA,NA -RI,44000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004904,NA,NA,NA,NA,NA,NA,NA,NA -SC,45000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,6.52e-4,NA,NA,NA,NA,NA,NA,NA,NA -SC,45000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003076,NA,NA,NA,NA,NA,NA,NA,NA -SC,45000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004293,NA,NA,NA,NA,NA,NA,NA,NA -SC,45000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006142,NA,NA,NA,NA,NA,NA,NA,NA -SC,45000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002733,NA,NA,NA,NA,NA,NA,NA,NA -SC,45000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002738,NA,NA,NA,NA,NA,NA,NA,NA -SC,45000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003436,NA,NA,NA,NA,NA,NA,NA,NA -SC,45000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003906,NA,NA,NA,NA,NA,NA,NA,NA -SD,46000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001286,NA,NA,NA,NA,NA,NA,NA,NA -SD,46000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003045,NA,NA,NA,NA,NA,NA,NA,NA -SD,46000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006832,NA,NA,NA,NA,NA,NA,NA,NA -SD,46000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007449,NA,NA,NA,NA,NA,NA,NA,NA -SD,46000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002513,NA,NA,NA,NA,NA,NA,NA,NA -SD,46000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003085,NA,NA,NA,NA,NA,NA,NA,NA -SD,46000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004862,NA,NA,NA,NA,NA,NA,NA,NA -SD,46000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005295,NA,NA,NA,NA,NA,NA,NA,NA -TN,47000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001256,NA,NA,NA,NA,NA,NA,NA,NA -TN,47000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002297,NA,NA,NA,NA,NA,NA,NA,NA -TN,47000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003566,NA,NA,NA,NA,NA,NA,NA,NA -TN,47000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005577,NA,NA,NA,NA,NA,NA,NA,NA -TN,47000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003139,NA,NA,NA,NA,NA,NA,NA,NA -TN,47000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002314,NA,NA,NA,NA,NA,NA,NA,NA -TN,47000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002869,NA,NA,NA,NA,NA,NA,NA,NA -TN,47000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003197,NA,NA,NA,NA,NA,NA,NA,NA -TX,48000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00104,NA,NA,NA,NA,NA,NA,NA,NA -TX,48000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002662,NA,NA,NA,NA,NA,NA,NA,NA -TX,48000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00386,NA,NA,NA,NA,NA,NA,NA,NA -TX,48000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006748,NA,NA,NA,NA,NA,NA,NA,NA -TX,48000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003813,NA,NA,NA,NA,NA,NA,NA,NA -TX,48000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003763,NA,NA,NA,NA,NA,NA,NA,NA -TX,48000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003366,NA,NA,NA,NA,NA,NA,NA,NA -TX,48000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003568,NA,NA,NA,NA,NA,NA,NA,NA -UT,49000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001195,NA,NA,NA,NA,NA,NA,NA,NA -UT,49000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002924,NA,NA,NA,NA,NA,NA,NA,NA -UT,49000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003472,NA,NA,NA,NA,NA,NA,NA,NA -UT,49000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007139,NA,NA,NA,NA,NA,NA,NA,NA -UT,49000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00447,NA,NA,NA,NA,NA,NA,NA,NA -UT,49000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003338,NA,NA,NA,NA,NA,NA,NA,NA -UT,49000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003455,NA,NA,NA,NA,NA,NA,NA,NA -UT,49000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004197,NA,NA,NA,NA,NA,NA,NA,NA -VA,51000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,9.2e-4,NA,NA,NA,NA,NA,NA,NA,NA -VA,51000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003394,NA,NA,NA,NA,NA,NA,NA,NA -VA,51000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004607,NA,NA,NA,NA,NA,NA,NA,NA -VA,51000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008845,NA,NA,NA,NA,NA,NA,NA,NA -VA,51000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006556,NA,NA,NA,NA,NA,NA,NA,NA -VA,51000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005956,NA,NA,NA,NA,NA,NA,NA,NA -VA,51000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007471,NA,NA,NA,NA,NA,NA,NA,NA -VA,51000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008116,NA,NA,NA,NA,NA,NA,NA,NA -VI,78000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,3.92e-4,NA,NA,NA,NA,NA,NA,NA,NA -VI,78000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002511,NA,NA,NA,NA,NA,NA,NA,NA -VI,78000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003722,NA,NA,NA,NA,NA,NA,NA,NA -VI,78000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.0047,NA,NA,NA,NA,NA,NA,NA,NA -VI,78000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002398,NA,NA,NA,NA,NA,NA,NA,NA -VI,78000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00255,NA,NA,NA,NA,NA,NA,NA,NA -VI,78000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003405,NA,NA,NA,NA,NA,NA,NA,NA -VI,78000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003368,NA,NA,NA,NA,NA,NA,NA,NA -VT,50000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001255,NA,NA,NA,NA,NA,NA,NA,NA -VT,50000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002859,NA,NA,NA,NA,NA,NA,NA,NA -VT,50000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005581,NA,NA,NA,NA,NA,NA,NA,NA -VT,50000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.010141,NA,NA,NA,NA,NA,NA,NA,NA -VT,50000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.014482,NA,NA,NA,NA,NA,NA,NA,NA -VT,50000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008818,NA,NA,NA,NA,NA,NA,NA,NA -VT,50000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003411,NA,NA,NA,NA,NA,NA,NA,NA -VT,50000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003076,NA,NA,NA,NA,NA,NA,NA,NA -WA,53000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,5.61e-4,NA,NA,NA,NA,NA,NA,NA,NA -WA,53000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003633,NA,NA,NA,NA,NA,NA,NA,NA -WA,53000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004755,NA,NA,NA,NA,NA,NA,NA,NA -WA,53000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008176,NA,NA,NA,NA,NA,NA,NA,NA -WA,53000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008216,NA,NA,NA,NA,NA,NA,NA,NA -WA,53000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.007167,NA,NA,NA,NA,NA,NA,NA,NA -WA,53000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.006675,NA,NA,NA,NA,NA,NA,NA,NA -WA,53000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005865,NA,NA,NA,NA,NA,NA,NA,NA -WI,55000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,8.73e-4,NA,NA,NA,NA,NA,NA,NA,NA -WI,55000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003428,NA,NA,NA,NA,NA,NA,NA,NA -WI,55000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004815,NA,NA,NA,NA,NA,NA,NA,NA -WI,55000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.008678,NA,NA,NA,NA,NA,NA,NA,NA -WI,55000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004268,NA,NA,NA,NA,NA,NA,NA,NA -WI,55000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004013,NA,NA,NA,NA,NA,NA,NA,NA -WI,55000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004666,NA,NA,NA,NA,NA,NA,NA,NA -WI,55000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005008,NA,NA,NA,NA,NA,NA,NA,NA -WV,54000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001851,NA,NA,NA,NA,NA,NA,NA,NA -WV,54000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.002902,NA,NA,NA,NA,NA,NA,NA,NA -WV,54000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004229,NA,NA,NA,NA,NA,NA,NA,NA -WV,54000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004682,NA,NA,NA,NA,NA,NA,NA,NA -WV,54000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003996,NA,NA,NA,NA,NA,NA,NA,NA -WV,54000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003008,NA,NA,NA,NA,NA,NA,NA,NA -WV,54000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003992,NA,NA,NA,NA,NA,NA,NA,NA -WV,54000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003925,NA,NA,NA,NA,NA,NA,NA,NA -WY,56000,2021-01-01,2021-01-31,Dose1_jan2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.001042,NA,NA,NA,NA,NA,NA,NA,NA -WY,56000,2021-02-01,2021-02-28,Dose1_feb2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00325,NA,NA,NA,NA,NA,NA,NA,NA -WY,56000,2021-03-01,2021-03-31,Dose1_mar2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.00427,NA,NA,NA,NA,NA,NA,NA,NA -WY,56000,2021-04-01,2021-04-30,Dose1_apr2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004258,NA,NA,NA,NA,NA,NA,NA,NA -WY,56000,2021-05-01,2021-05-31,Dose1_may2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.0017,NA,NA,NA,NA,NA,NA,NA,NA -WY,56000,2021-06-01,2021-06-30,Dose1_jun2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.003188,NA,NA,NA,NA,NA,NA,NA,NA -WY,56000,2021-07-01,2021-07-31,Dose1_jul2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.005629,NA,NA,NA,NA,NA,NA,NA,NA -WY,56000,2021-08-01,2021-08-07,Dose1_aug2021,Reduce,transmission,vaccination,transition_rate 0,NA,fixed,0.004926,NA,NA,NA,NA,NA,NA,NA,NA -NA,all,2021-01-10,2021-01-23,variantR0adj_Week2,Reduce,transmission,variant,R0,NA,truncnorm,-0.01,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-01-24,2021-01-30,variantR0adj_Week4,Reduce,transmission,variant,R0,NA,truncnorm,-0.02000000000000001,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-01-31,2021-02-06,variantR0adj_Week5,Reduce,transmission,variant,R0,NA,truncnorm,-0.03000000000000002,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-02-07,2021-02-13,variantR0adj_Week6,Reduce,transmission,variant,R0,NA,truncnorm,-0.05000000000000004,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-02-14,2021-02-20,variantR0adj_Week7,Reduce,transmission,variant,R0,NA,truncnorm,-0.07000000000000006,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-02-21,2021-02-27,variantR0adj_Week8,Reduce,transmission,variant,R0,NA,truncnorm,-0.1100000000000001,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-02-28,2021-03-06,variantR0adj_Week9,Reduce,transmission,variant,R0,NA,truncnorm,-0.15999999999999992,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-03-07,2021-03-13,variantR0adj_Week10,Reduce,transmission,variant,R0,NA,truncnorm,-0.21999999999999997,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-03-14,2021-03-20,variantR0adj_Week11,Reduce,transmission,variant,R0,NA,truncnorm,-0.29000000000000004,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-03-21,2021-03-27,variantR0adj_Week12,Reduce,transmission,variant,R0,NA,truncnorm,-0.3500000000000001,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-03-28,2021-04-03,variantR0adj_Week13,Reduce,transmission,variant,R0,NA,truncnorm,-0.3999999999999999,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-04-04,2021-04-10,variantR0adj_Week14,Reduce,transmission,variant,R0,NA,truncnorm,-0.43999999999999995,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-04-11,2021-04-17,variantR0adj_Week15,Reduce,transmission,variant,R0,NA,truncnorm,-0.47,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-04-18,2021-04-24,variantR0adj_Week16,Reduce,transmission,variant,R0,NA,truncnorm,-0.48,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-04-25,2021-05-01,variantR0adj_Week17,Reduce,transmission,variant,R0,NA,truncnorm,-0.49,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-05-02,2021-05-29,variantR0adj_Week18,Reduce,transmission,variant,R0,NA,truncnorm,-0.5,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-05-30,2021-06-05,variantR0adj_Week22,Reduce,transmission,variant,R0,NA,truncnorm,-0.55,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-06-06,2021-06-12,variantR0adj_Week23,Reduce,transmission,variant,R0,NA,truncnorm,-0.5900000000000001,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-06-13,2021-06-19,variantR0adj_Week24,Reduce,transmission,variant,R0,NA,truncnorm,-0.6499999999999999,0.01,-1.5,0,truncnorm,0,0.01,-1,1 -NA,all,2021-06-20,2021-06-26,variantR0adj_Week25,Reduce,transmission,variant,R0,NA,truncnorm,-0.74,0.01,-1.5,0,NA,NA,NA,NA,NA -NA,all,2021-06-27,2021-07-03,variantR0adj_Week26,Reduce,transmission,variant,R0,NA,truncnorm,-0.8600000000000001,0.01,-1.5,0,NA,NA,NA,NA,NA -NA,all,2021-07-04,2021-07-10,variantR0adj_Week27,Reduce,transmission,variant,R0,NA,truncnorm,-0.99,0.01,-1.5,0,NA,NA,NA,NA,NA -NA,all,2021-07-11,2021-07-17,variantR0adj_Week28,Reduce,transmission,variant,R0,NA,truncnorm,-1.12,0.01,-1.5,0,NA,NA,NA,NA,NA -NA,all,2021-07-18,2021-07-24,variantR0adj_Week29,Reduce,transmission,variant,R0,NA,truncnorm,-1.2200000000000002,0.01,-1.5,0,NA,NA,NA,NA,NA -NA,all,2021-07-25,2021-07-31,variantR0adj_Week30,Reduce,transmission,variant,R0,NA,truncnorm,-1.2999999999999998,0.01,-1.5,0,NA,NA,NA,NA,NA -NA,all,2021-08-01,2021-08-07,variantR0adj_Week31,Reduce,transmission,variant,R0,NA,truncnorm,-1.34,0.01,-1.5,0,NA,NA,NA,NA,NA -AK,02000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15790000000000004,0.01,0,1,NA,NA,NA,NA,NA -AK,02000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.20089999999999997,0.01,0,1,NA,NA,NA,NA,NA -AK,02000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.29890000000000005,0.01,0,1,NA,NA,NA,NA,NA -AK,02000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3893,0.01,0,1,NA,NA,NA,NA,NA -AK,02000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4679,0.01,0,1,NA,NA,NA,NA,NA -AK,02000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5273,0.01,0,1,NA,NA,NA,NA,NA -AK,02000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5662,0.01,0,1,NA,NA,NA,NA,NA -AK,02000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5748,0.01,0,1,NA,NA,NA,NA,NA -AL,01000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10529999999999996,0.01,0,1,NA,NA,NA,NA,NA -AL,01000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1663,0.01,0,1,NA,NA,NA,NA,NA -AL,01000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3105,0.01,0,1,NA,NA,NA,NA,NA -AL,01000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4433,0.01,0,1,NA,NA,NA,NA,NA -AL,01000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5273,0.01,0,1,NA,NA,NA,NA,NA -AL,01000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5645,0.01,0,1,NA,NA,NA,NA,NA -AL,01000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5707,0.01,0,1,NA,NA,NA,NA,NA -AL,01000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5483,0.01,0,1,NA,NA,NA,NA,NA -AR,05000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16400000000000003,0.01,0,1,NA,NA,NA,NA,NA -AR,05000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2169,0.01,0,1,NA,NA,NA,NA,NA -AR,05000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.33330000000000004,0.01,0,1,NA,NA,NA,NA,NA -AR,05000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4466,0.01,0,1,NA,NA,NA,NA,NA -AR,05000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5433,0.01,0,1,NA,NA,NA,NA,NA -AR,05000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6123000000000001,0.01,0,1,NA,NA,NA,NA,NA -AR,05000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6528,0.01,0,1,NA,NA,NA,NA,NA -AR,05000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6596,0.01,0,1,NA,NA,NA,NA,NA -AZ,04000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.04400000000000004,0.01,0,1,NA,NA,NA,NA,NA -AZ,04000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.0918,0.01,0,1,NA,NA,NA,NA,NA -AZ,04000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2518,0.01,0,1,NA,NA,NA,NA,NA -AZ,04000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4718,0.01,0,1,NA,NA,NA,NA,NA -AZ,04000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6359,0.01,0,1,NA,NA,NA,NA,NA -AZ,04000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7090000000000001,0.01,0,1,NA,NA,NA,NA,NA -AZ,04000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.727,0.01,0,1,NA,NA,NA,NA,NA -AZ,04000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7141,0.01,0,1,NA,NA,NA,NA,NA -CA,06000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12860000000000005,0.01,0,1,NA,NA,NA,NA,NA -CA,06000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1903,0.01,0,1,NA,NA,NA,NA,NA -CA,06000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.34240000000000004,0.01,0,1,NA,NA,NA,NA,NA -CA,06000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5013000000000001,0.01,0,1,NA,NA,NA,NA,NA -CA,06000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6295,0.01,0,1,NA,NA,NA,NA,NA -CA,06000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7123999999999999,0.01,0,1,NA,NA,NA,NA,NA -CA,06000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7548,0.01,0,1,NA,NA,NA,NA,NA -CA,06000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7613,0.01,0,1,NA,NA,NA,NA,NA -CO,08000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12960000000000005,0.01,0,1,NA,NA,NA,NA,NA -CO,08000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1886,0.01,0,1,NA,NA,NA,NA,NA -CO,08000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3368,0.01,0,1,NA,NA,NA,NA,NA -CO,08000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4867,0.01,0,1,NA,NA,NA,NA,NA -CO,08000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.601,0.01,0,1,NA,NA,NA,NA,NA -CO,08000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6754,0.01,0,1,NA,NA,NA,NA,NA -CO,08000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7179,0.01,0,1,NA,NA,NA,NA,NA -CO,08000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7279,0.01,0,1,NA,NA,NA,NA,NA -CT,09000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.20299999999999996,0.01,0,1,NA,NA,NA,NA,NA -CT,09000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2573,0.01,0,1,NA,NA,NA,NA,NA -CT,09000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3803,0.01,0,1,NA,NA,NA,NA,NA -CT,09000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4933999999999999,0.01,0,1,NA,NA,NA,NA,NA -CT,09000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5928,0.01,0,1,NA,NA,NA,NA,NA -CT,09000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6737,0.01,0,1,NA,NA,NA,NA,NA -CT,09000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.739,0.01,0,1,NA,NA,NA,NA,NA -CT,09000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7805,0.01,0,1,NA,NA,NA,NA,NA -DC,11000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11070000000000002,0.01,0,1,NA,NA,NA,NA,NA -DC,11000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15080000000000005,0.01,0,1,NA,NA,NA,NA,NA -DC,11000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.24419999999999997,0.01,0,1,NA,NA,NA,NA,NA -DC,11000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3477,0.01,0,1,NA,NA,NA,NA,NA -DC,11000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4547,0.01,0,1,NA,NA,NA,NA,NA -DC,11000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5264,0.01,0,1,NA,NA,NA,NA,NA -DC,11000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5603,0.01,0,1,NA,NA,NA,NA,NA -DC,11000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5760000000000001,0.01,0,1,NA,NA,NA,NA,NA -DE,10000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09919999999999995,0.01,0,1,NA,NA,NA,NA,NA -DE,10000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16510000000000002,0.01,0,1,NA,NA,NA,NA,NA -DE,10000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3367,0.01,0,1,NA,NA,NA,NA,NA -DE,10000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5131,0.01,0,1,NA,NA,NA,NA,NA -DE,10000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6295,0.01,0,1,NA,NA,NA,NA,NA -DE,10000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6813,0.01,0,1,NA,NA,NA,NA,NA -DE,10000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6925,0.01,0,1,NA,NA,NA,NA,NA -DE,10000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6748000000000001,0.01,0,1,NA,NA,NA,NA,NA -FL,12000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10799999999999998,0.01,0,1,NA,NA,NA,NA,NA -FL,12000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16800000000000004,0.01,0,1,NA,NA,NA,NA,NA -FL,12000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.32530000000000003,0.01,0,1,NA,NA,NA,NA,NA -FL,12000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4935000000000001,0.01,0,1,NA,NA,NA,NA,NA -FL,12000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.613,0.01,0,1,NA,NA,NA,NA,NA -FL,12000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6705,0.01,0,1,NA,NA,NA,NA,NA -FL,12000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6844,0.01,0,1,NA,NA,NA,NA,NA -FL,12000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6687000000000001,0.01,0,1,NA,NA,NA,NA,NA -GA,13000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09850000000000005,0.01,0,1,NA,NA,NA,NA,NA -GA,13000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16549999999999998,0.01,0,1,NA,NA,NA,NA,NA -GA,13000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.34119999999999995,0.01,0,1,NA,NA,NA,NA,NA -GA,13000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5245,0.01,0,1,NA,NA,NA,NA,NA -GA,13000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6466000000000001,0.01,0,1,NA,NA,NA,NA,NA -GA,13000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7026,0.01,0,1,NA,NA,NA,NA,NA -GA,13000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.718,0.01,0,1,NA,NA,NA,NA,NA -GA,13000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7072,0.01,0,1,NA,NA,NA,NA,NA -GU,66000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15390000000000004,0.01,0,1,NA,NA,NA,NA,NA -GU,66000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2108,0.01,0,1,NA,NA,NA,NA,NA -GU,66000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3448,0.01,0,1,NA,NA,NA,NA,NA -GU,66000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4714,0.01,0,1,NA,NA,NA,NA,NA -GU,66000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.563,0.01,0,1,NA,NA,NA,NA,NA -GU,66000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6122000000000001,0.01,0,1,NA,NA,NA,NA,NA -GU,66000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6285000000000001,0.01,0,1,NA,NA,NA,NA,NA -GU,66000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6134,0.01,0,1,NA,NA,NA,NA,NA -HI,15000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09230000000000003,0.01,0,1,NA,NA,NA,NA,NA -HI,15000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15059999999999996,0.01,0,1,NA,NA,NA,NA,NA -HI,15000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.29910000000000003,0.01,0,1,NA,NA,NA,NA,NA -HI,15000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4653000000000001,0.01,0,1,NA,NA,NA,NA,NA -HI,15000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6356999999999999,0.01,0,1,NA,NA,NA,NA,NA -HI,15000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7482,0.01,0,1,NA,NA,NA,NA,NA -HI,15000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7744,0.01,0,1,NA,NA,NA,NA,NA -HI,15000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7635000000000001,0.01,0,1,NA,NA,NA,NA,NA -IA,19000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.089400000000000035,0.01,0,1,NA,NA,NA,NA,NA -IA,19000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12860000000000005,0.01,0,1,NA,NA,NA,NA,NA -IA,19000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2279,0.01,0,1,NA,NA,NA,NA,NA -IA,19000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3468,0.01,0,1,NA,NA,NA,NA,NA -IA,19000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4617,0.01,0,1,NA,NA,NA,NA,NA -IA,19000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5528,0.01,0,1,NA,NA,NA,NA,NA -IA,19000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6133,0.01,0,1,NA,NA,NA,NA,NA -IA,19000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6528,0.01,0,1,NA,NA,NA,NA,NA -ID,16000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11939999999999996,0.01,0,1,NA,NA,NA,NA,NA -ID,16000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16679999999999995,0.01,0,1,NA,NA,NA,NA,NA -ID,16000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2823,0.01,0,1,NA,NA,NA,NA,NA -ID,16000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4031,0.01,0,1,NA,NA,NA,NA,NA -ID,16000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.505,0.01,0,1,NA,NA,NA,NA,NA -ID,16000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.573,0.01,0,1,NA,NA,NA,NA,NA -ID,16000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6081,0.01,0,1,NA,NA,NA,NA,NA -ID,16000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6069,0.01,0,1,NA,NA,NA,NA,NA -IL,17000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09240000000000004,0.01,0,1,NA,NA,NA,NA,NA -IL,17000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13429999999999995,0.01,0,1,NA,NA,NA,NA,NA -IL,17000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.24170000000000005,0.01,0,1,NA,NA,NA,NA,NA -IL,17000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.365,0.01,0,1,NA,NA,NA,NA,NA -IL,17000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.47629999999999995,0.01,0,1,NA,NA,NA,NA,NA -IL,17000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5567,0.01,0,1,NA,NA,NA,NA,NA -IL,17000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6061000000000001,0.01,0,1,NA,NA,NA,NA,NA -IL,17000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.619,0.01,0,1,NA,NA,NA,NA,NA -IN,18000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09919999999999995,0.01,0,1,NA,NA,NA,NA,NA -IN,18000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1612,0.01,0,1,NA,NA,NA,NA,NA -IN,18000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.31899999999999995,0.01,0,1,NA,NA,NA,NA,NA -IN,18000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4754,0.01,0,1,NA,NA,NA,NA,NA -IN,18000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5694,0.01,0,1,NA,NA,NA,NA,NA -IN,18000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5992,0.01,0,1,NA,NA,NA,NA,NA -IN,18000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5912,0.01,0,1,NA,NA,NA,NA,NA -IN,18000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5566,0.01,0,1,NA,NA,NA,NA,NA -KS,20000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1211,0.01,0,1,NA,NA,NA,NA,NA -KS,20000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16549999999999998,0.01,0,1,NA,NA,NA,NA,NA -KS,20000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2751,0.01,0,1,NA,NA,NA,NA,NA -KS,20000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3922,0.01,0,1,NA,NA,NA,NA,NA -KS,20000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.495,0.01,0,1,NA,NA,NA,NA,NA -KS,20000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5687,0.01,0,1,NA,NA,NA,NA,NA -KS,20000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6135999999999999,0.01,0,1,NA,NA,NA,NA,NA -KS,20000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6252,0.01,0,1,NA,NA,NA,NA,NA -KY,21000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.0917,0.01,0,1,NA,NA,NA,NA,NA -KY,21000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.14839999999999998,0.01,0,1,NA,NA,NA,NA,NA -KY,21000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2891,0.01,0,1,NA,NA,NA,NA,NA -KY,21000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4278,0.01,0,1,NA,NA,NA,NA,NA -KY,21000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5147999999999999,0.01,0,1,NA,NA,NA,NA,NA -KY,21000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.546,0.01,0,1,NA,NA,NA,NA,NA -KY,21000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5446,0.01,0,1,NA,NA,NA,NA,NA -KY,21000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5175000000000001,0.01,0,1,NA,NA,NA,NA,NA -LA,22000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10840000000000004,0.01,0,1,NA,NA,NA,NA,NA -LA,22000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1703,0.01,0,1,NA,NA,NA,NA,NA -LA,22000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3206,0.01,0,1,NA,NA,NA,NA,NA -LA,22000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4588,0.01,0,1,NA,NA,NA,NA,NA -LA,22000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5387,0.01,0,1,NA,NA,NA,NA,NA -LA,22000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5668,0.01,0,1,NA,NA,NA,NA,NA -LA,22000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5665,0.01,0,1,NA,NA,NA,NA,NA -LA,22000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5450999999999999,0.01,0,1,NA,NA,NA,NA,NA -MA,25000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10440000000000003,0.01,0,1,NA,NA,NA,NA,NA -MA,25000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15949999999999998,0.01,0,1,NA,NA,NA,NA,NA -MA,25000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.30589999999999995,0.01,0,1,NA,NA,NA,NA,NA -MA,25000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4787,0.01,0,1,NA,NA,NA,NA,NA -MA,25000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6269,0.01,0,1,NA,NA,NA,NA,NA -MA,25000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7229,0.01,0,1,NA,NA,NA,NA,NA -MA,25000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7734,0.01,0,1,NA,NA,NA,NA,NA -MA,25000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7922,0.01,0,1,NA,NA,NA,NA,NA -MD,24000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09760000000000002,0.01,0,1,NA,NA,NA,NA,NA -MD,24000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13939999999999997,0.01,0,1,NA,NA,NA,NA,NA -MD,24000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.25039999999999996,0.01,0,1,NA,NA,NA,NA,NA -MD,24000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3842,0.01,0,1,NA,NA,NA,NA,NA -MD,24000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5105999999999999,0.01,0,1,NA,NA,NA,NA,NA -MD,24000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6079,0.01,0,1,NA,NA,NA,NA,NA -MD,24000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6719999999999999,0.01,0,1,NA,NA,NA,NA,NA -MD,24000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6997,0.01,0,1,NA,NA,NA,NA,NA -ME,23000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11950000000000004,0.01,0,1,NA,NA,NA,NA,NA -ME,23000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.17290000000000005,0.01,0,1,NA,NA,NA,NA,NA -ME,23000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3183,0.01,0,1,NA,NA,NA,NA,NA -ME,23000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4582000000000001,0.01,0,1,NA,NA,NA,NA,NA -ME,23000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5484,0.01,0,1,NA,NA,NA,NA,NA -ME,23000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6,0.01,0,1,NA,NA,NA,NA,NA -ME,23000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6276999999999999,0.01,0,1,NA,NA,NA,NA,NA -ME,23000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6306,0.01,0,1,NA,NA,NA,NA,NA -MI,26000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1231,0.01,0,1,NA,NA,NA,NA,NA -MI,26000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16700000000000004,0.01,0,1,NA,NA,NA,NA,NA -MI,26000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2724,0.01,0,1,NA,NA,NA,NA,NA -MI,26000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3822,0.01,0,1,NA,NA,NA,NA,NA -MI,26000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4778,0.01,0,1,NA,NA,NA,NA,NA -MI,26000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5438000000000001,0.01,0,1,NA,NA,NA,NA,NA -MI,26000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5784,0.01,0,1,NA,NA,NA,NA,NA -MI,26000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.577,0.01,0,1,NA,NA,NA,NA,NA -MN,27000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.08919999999999995,0.01,0,1,NA,NA,NA,NA,NA -MN,27000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13439999999999996,0.01,0,1,NA,NA,NA,NA,NA -MN,27000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2551,0.01,0,1,NA,NA,NA,NA,NA -MN,27000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4036,0.01,0,1,NA,NA,NA,NA,NA -MN,27000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5453,0.01,0,1,NA,NA,NA,NA,NA -MN,27000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6523,0.01,0,1,NA,NA,NA,NA,NA -MN,27000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7185,0.01,0,1,NA,NA,NA,NA,NA -MN,27000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7425999999999999,0.01,0,1,NA,NA,NA,NA,NA -MO,29000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.06320000000000003,0.01,0,1,NA,NA,NA,NA,NA -MO,29000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10609999999999996,0.01,0,1,NA,NA,NA,NA,NA -MO,29000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.23429999999999995,0.01,0,1,NA,NA,NA,NA,NA -MO,29000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3934,0.01,0,1,NA,NA,NA,NA,NA -MO,29000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.509,0.01,0,1,NA,NA,NA,NA,NA -MO,29000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5606,0.01,0,1,NA,NA,NA,NA,NA -MO,29000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5703,0.01,0,1,NA,NA,NA,NA,NA -MO,29000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5483,0.01,0,1,NA,NA,NA,NA,NA -MP,69000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15380000000000005,0.01,0,1,NA,NA,NA,NA,NA -MP,69000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2107,0.01,0,1,NA,NA,NA,NA,NA -MP,69000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3449,0.01,0,1,NA,NA,NA,NA,NA -MP,69000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4714,0.01,0,1,NA,NA,NA,NA,NA -MP,69000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5630999999999999,0.01,0,1,NA,NA,NA,NA,NA -MP,69000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6122000000000001,0.01,0,1,NA,NA,NA,NA,NA -MP,69000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6286,0.01,0,1,NA,NA,NA,NA,NA -MP,69000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6134,0.01,0,1,NA,NA,NA,NA,NA -MS,28000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.08399999999999996,0.01,0,1,NA,NA,NA,NA,NA -MS,28000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13639999999999997,0.01,0,1,NA,NA,NA,NA,NA -MS,28000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.26849999999999996,0.01,0,1,NA,NA,NA,NA,NA -MS,28000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3996,0.01,0,1,NA,NA,NA,NA,NA -MS,28000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4829,0.01,0,1,NA,NA,NA,NA,NA -MS,28000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5163,0.01,0,1,NA,NA,NA,NA,NA -MS,28000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5183,0.01,0,1,NA,NA,NA,NA,NA -MS,28000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4919,0.01,0,1,NA,NA,NA,NA,NA -MT,30000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1382,0.01,0,1,NA,NA,NA,NA,NA -MT,30000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.19599999999999995,0.01,0,1,NA,NA,NA,NA,NA -MT,30000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.32789999999999997,0.01,0,1,NA,NA,NA,NA,NA -MT,30000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4583,0.01,0,1,NA,NA,NA,NA,NA -MT,30000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5552,0.01,0,1,NA,NA,NA,NA,NA -MT,30000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6073999999999999,0.01,0,1,NA,NA,NA,NA,NA -MT,30000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6241,0.01,0,1,NA,NA,NA,NA,NA -MT,30000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6087,0.01,0,1,NA,NA,NA,NA,NA -NC,37000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13890000000000002,0.01,0,1,NA,NA,NA,NA,NA -NC,37000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.17490000000000006,0.01,0,1,NA,NA,NA,NA,NA -NC,37000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.25849999999999995,0.01,0,1,NA,NA,NA,NA,NA -NC,37000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3415,0.01,0,1,NA,NA,NA,NA,NA -NC,37000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4227,0.01,0,1,NA,NA,NA,NA,NA -NC,37000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4932,0.01,0,1,NA,NA,NA,NA,NA -NC,37000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5472,0.01,0,1,NA,NA,NA,NA,NA -NC,37000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5731999999999999,0.01,0,1,NA,NA,NA,NA,NA -ND,38000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16300000000000003,0.01,0,1,NA,NA,NA,NA,NA -ND,38000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2208,0.01,0,1,NA,NA,NA,NA,NA -ND,38000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.35440000000000005,0.01,0,1,NA,NA,NA,NA,NA -ND,38000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.479,0.01,0,1,NA,NA,NA,NA,NA -ND,38000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5704,0.01,0,1,NA,NA,NA,NA,NA -ND,38000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6211,0.01,0,1,NA,NA,NA,NA,NA -ND,38000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6395,0.01,0,1,NA,NA,NA,NA,NA -ND,38000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6273,0.01,0,1,NA,NA,NA,NA,NA -NE,31000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11050000000000004,0.01,0,1,NA,NA,NA,NA,NA -NE,31000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.17159999999999995,0.01,0,1,NA,NA,NA,NA,NA -NE,31000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3278,0.01,0,1,NA,NA,NA,NA,NA -NE,31000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4867,0.01,0,1,NA,NA,NA,NA,NA -NE,31000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5892999999999999,0.01,0,1,NA,NA,NA,NA,NA -NE,31000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6302,0.01,0,1,NA,NA,NA,NA,NA -NE,31000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6328,0.01,0,1,NA,NA,NA,NA,NA -NE,31000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6068,0.01,0,1,NA,NA,NA,NA,NA -NH,33000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13649999999999995,0.01,0,1,NA,NA,NA,NA,NA -NH,33000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.19330000000000003,0.01,0,1,NA,NA,NA,NA,NA -NH,33000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3226,0.01,0,1,NA,NA,NA,NA,NA -NH,33000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4496,0.01,0,1,NA,NA,NA,NA,NA -NH,33000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5432,0.01,0,1,NA,NA,NA,NA,NA -NH,33000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5928,0.01,0,1,NA,NA,NA,NA,NA -NH,33000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6071,0.01,0,1,NA,NA,NA,NA,NA -NH,33000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5892,0.01,0,1,NA,NA,NA,NA,NA -NJ,34000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.20120000000000005,0.01,0,1,NA,NA,NA,NA,NA -NJ,34000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2228,0.01,0,1,NA,NA,NA,NA,NA -NJ,34000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3962,0.01,0,1,NA,NA,NA,NA,NA -NJ,34000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7029000000000001,0.01,0,1,NA,NA,NA,NA,NA -NJ,34000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8492999999999999,0.01,0,1,NA,NA,NA,NA,NA -NJ,34000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8857,0.01,0,1,NA,NA,NA,NA,NA -NJ,34000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8929,0.01,0,1,NA,NA,NA,NA,NA -NJ,34000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8858,0.01,0,1,NA,NA,NA,NA,NA -NM,35000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15800000000000003,0.01,0,1,NA,NA,NA,NA,NA -NM,35000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1926,0.01,0,1,NA,NA,NA,NA,NA -NM,35000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.272,0.01,0,1,NA,NA,NA,NA,NA -NM,35000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3476,0.01,0,1,NA,NA,NA,NA,NA -NM,35000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4248,0.01,0,1,NA,NA,NA,NA,NA -NM,35000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5001,0.01,0,1,NA,NA,NA,NA,NA -NM,35000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5687,0.01,0,1,NA,NA,NA,NA,NA -NM,35000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6122000000000001,0.01,0,1,NA,NA,NA,NA,NA -NV,32000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12990000000000002,0.01,0,1,NA,NA,NA,NA,NA -NV,32000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.18010000000000004,0.01,0,1,NA,NA,NA,NA,NA -NV,32000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.29779999999999995,0.01,0,1,NA,NA,NA,NA,NA -NV,32000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4125,0.01,0,1,NA,NA,NA,NA,NA -NV,32000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5044,0.01,0,1,NA,NA,NA,NA,NA -NV,32000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5623,0.01,0,1,NA,NA,NA,NA,NA -NV,32000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.589,0.01,0,1,NA,NA,NA,NA,NA -NV,32000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5823,0.01,0,1,NA,NA,NA,NA,NA -NY,36000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.04279999999999995,0.01,0,1,NA,NA,NA,NA,NA -NY,36000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.06610000000000005,0.01,0,1,NA,NA,NA,NA,NA -NY,36000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1351,0.01,0,1,NA,NA,NA,NA,NA -NY,36000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.24119999999999997,0.01,0,1,NA,NA,NA,NA,NA -NY,36000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3751,0.01,0,1,NA,NA,NA,NA,NA -NY,36000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5085999999999999,0.01,0,1,NA,NA,NA,NA,NA -NY,36000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6121,0.01,0,1,NA,NA,NA,NA,NA -NY,36000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6639999999999999,0.01,0,1,NA,NA,NA,NA,NA -OH,39000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.08620000000000005,0.01,0,1,NA,NA,NA,NA,NA -OH,39000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.14470000000000005,0.01,0,1,NA,NA,NA,NA,NA -OH,39000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.29869999999999997,0.01,0,1,NA,NA,NA,NA,NA -OH,39000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4586,0.01,0,1,NA,NA,NA,NA,NA -OH,39000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5590999999999999,0.01,0,1,NA,NA,NA,NA,NA -OH,39000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5957,0.01,0,1,NA,NA,NA,NA,NA -OH,39000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5951,0.01,0,1,NA,NA,NA,NA,NA -OH,39000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5671999999999999,0.01,0,1,NA,NA,NA,NA,NA -OK,40000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1402,0.01,0,1,NA,NA,NA,NA,NA -OK,40000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.20230000000000004,0.01,0,1,NA,NA,NA,NA,NA -OK,40000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3415,0.01,0,1,NA,NA,NA,NA,NA -OK,40000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4738,0.01,0,1,NA,NA,NA,NA,NA -OK,40000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5677,0.01,0,1,NA,NA,NA,NA,NA -OK,40000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6189,0.01,0,1,NA,NA,NA,NA,NA -OK,40000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6404000000000001,0.01,0,1,NA,NA,NA,NA,NA -OK,40000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6377999999999999,0.01,0,1,NA,NA,NA,NA,NA -OR,41000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07420000000000004,0.01,0,1,NA,NA,NA,NA,NA -OR,41000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1239,0.01,0,1,NA,NA,NA,NA,NA -OR,41000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.264,0.01,0,1,NA,NA,NA,NA,NA -OR,41000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4300000000000001,0.01,0,1,NA,NA,NA,NA,NA -OR,41000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5528,0.01,0,1,NA,NA,NA,NA,NA -OR,41000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6066,0.01,0,1,NA,NA,NA,NA,NA -OR,41000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.614,0.01,0,1,NA,NA,NA,NA,NA -OR,41000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5958,0.01,0,1,NA,NA,NA,NA,NA -PA,42000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.0504,0.01,0,1,NA,NA,NA,NA,NA -PA,42000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09030000000000005,0.01,0,1,NA,NA,NA,NA,NA -PA,42000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.22009999999999996,0.01,0,1,NA,NA,NA,NA,NA -PA,42000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4051,0.01,0,1,NA,NA,NA,NA,NA -PA,42000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5576,0.01,0,1,NA,NA,NA,NA,NA -PA,42000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6325000000000001,0.01,0,1,NA,NA,NA,NA,NA -PA,42000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6507000000000001,0.01,0,1,NA,NA,NA,NA,NA -PA,42000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6334,0.01,0,1,NA,NA,NA,NA,NA -PR,72000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0,0.01,0,1,NA,NA,NA,NA,NA -PR,72000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0,0.01,0,1,NA,NA,NA,NA,NA -PR,72000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0,0.01,0,1,NA,NA,NA,NA,NA -PR,72000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1734,0.01,0,1,NA,NA,NA,NA,NA -PR,72000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.24370000000000003,0.01,0,1,NA,NA,NA,NA,NA -PR,72000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3246,0.01,0,1,NA,NA,NA,NA,NA -PR,72000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.393,0.01,0,1,NA,NA,NA,NA,NA -PR,72000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4353,0.01,0,1,NA,NA,NA,NA,NA -RI,44000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09350000000000004,0.01,0,1,NA,NA,NA,NA,NA -RI,44000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.14149999999999996,0.01,0,1,NA,NA,NA,NA,NA -RI,44000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.27270000000000005,0.01,0,1,NA,NA,NA,NA,NA -RI,44000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4267,0.01,0,1,NA,NA,NA,NA,NA -RI,44000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5452,0.01,0,1,NA,NA,NA,NA,NA -RI,44000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6038,0.01,0,1,NA,NA,NA,NA,NA -RI,44000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6202,0.01,0,1,NA,NA,NA,NA,NA -RI,44000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6084,0.01,0,1,NA,NA,NA,NA,NA -SC,45000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1007,0.01,0,1,NA,NA,NA,NA,NA -SC,45000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1643,0.01,0,1,NA,NA,NA,NA,NA -SC,45000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3248,0.01,0,1,NA,NA,NA,NA,NA -SC,45000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4812,0.01,0,1,NA,NA,NA,NA,NA -SC,45000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5772999999999999,0.01,0,1,NA,NA,NA,NA,NA -SC,45000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6152,0.01,0,1,NA,NA,NA,NA,NA -SC,45000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6187,0.01,0,1,NA,NA,NA,NA,NA -SC,45000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.596,0.01,0,1,NA,NA,NA,NA,NA -SD,46000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13839999999999997,0.01,0,1,NA,NA,NA,NA,NA -SD,46000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.18889999999999996,0.01,0,1,NA,NA,NA,NA,NA -SD,46000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.30700000000000005,0.01,0,1,NA,NA,NA,NA,NA -SD,46000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4234,0.01,0,1,NA,NA,NA,NA,NA -SD,46000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5195000000000001,0.01,0,1,NA,NA,NA,NA,NA -SD,46000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5808,0.01,0,1,NA,NA,NA,NA,NA -SD,46000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6069,0.01,0,1,NA,NA,NA,NA,NA -SD,46000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5998,0.01,0,1,NA,NA,NA,NA,NA -TN,47000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07989999999999997,0.01,0,1,NA,NA,NA,NA,NA -TN,47000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.136,0.01,0,1,NA,NA,NA,NA,NA -TN,47000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2845,0.01,0,1,NA,NA,NA,NA,NA -TN,47000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4399,0.01,0,1,NA,NA,NA,NA,NA -TN,47000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5391,0.01,0,1,NA,NA,NA,NA,NA -TN,47000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5763,0.01,0,1,NA,NA,NA,NA,NA -TN,47000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5761000000000001,0.01,0,1,NA,NA,NA,NA,NA -TN,47000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5488999999999999,0.01,0,1,NA,NA,NA,NA,NA -TX,48000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07069999999999999,0.01,0,1,NA,NA,NA,NA,NA -TX,48000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11929999999999996,0.01,0,1,NA,NA,NA,NA,NA -TX,48000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2563,0.01,0,1,NA,NA,NA,NA,NA -TX,48000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4184,0.01,0,1,NA,NA,NA,NA,NA -TX,48000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5373,0.01,0,1,NA,NA,NA,NA,NA -TX,48000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5903,0.01,0,1,NA,NA,NA,NA,NA -TX,48000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5983,0.01,0,1,NA,NA,NA,NA,NA -TX,48000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5737,0.01,0,1,NA,NA,NA,NA,NA -UT,49000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1603,0.01,0,1,NA,NA,NA,NA,NA -UT,49000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.23409999999999995,0.01,0,1,NA,NA,NA,NA,NA -UT,49000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4054,0.01,0,1,NA,NA,NA,NA,NA -UT,49000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5633,0.01,0,1,NA,NA,NA,NA,NA -UT,49000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6803,0.01,0,1,NA,NA,NA,NA,NA -UT,49000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7534,0.01,0,1,NA,NA,NA,NA,NA -UT,49000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7885,0.01,0,1,NA,NA,NA,NA,NA -UT,49000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7911,0.01,0,1,NA,NA,NA,NA,NA -VA,51000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12139999999999997,0.01,0,1,NA,NA,NA,NA,NA -VA,51000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16169999999999995,0.01,0,1,NA,NA,NA,NA,NA -VA,51000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.26070000000000004,0.01,0,1,NA,NA,NA,NA,NA -VA,51000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3712,0.01,0,1,NA,NA,NA,NA,NA -VA,51000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.482,0.01,0,1,NA,NA,NA,NA,NA -VA,51000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5764,0.01,0,1,NA,NA,NA,NA,NA -VA,51000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6455,0.01,0,1,NA,NA,NA,NA,NA -VA,51000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6806,0.01,0,1,NA,NA,NA,NA,NA -VI,78000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15380000000000005,0.01,0,1,NA,NA,NA,NA,NA -VI,78000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2108,0.01,0,1,NA,NA,NA,NA,NA -VI,78000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3447,0.01,0,1,NA,NA,NA,NA,NA -VI,78000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4716,0.01,0,1,NA,NA,NA,NA,NA -VI,78000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5629,0.01,0,1,NA,NA,NA,NA,NA -VI,78000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6121,0.01,0,1,NA,NA,NA,NA,NA -VI,78000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6285000000000001,0.01,0,1,NA,NA,NA,NA,NA -VI,78000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6135999999999999,0.01,0,1,NA,NA,NA,NA,NA -VT,50000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1623,0.01,0,1,NA,NA,NA,NA,NA -VT,50000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.235,0.01,0,1,NA,NA,NA,NA,NA -VT,50000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4272,0.01,0,1,NA,NA,NA,NA,NA -VT,50000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6154,0.01,0,1,NA,NA,NA,NA,NA -VT,50000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7498,0.01,0,1,NA,NA,NA,NA,NA -VT,50000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8316,0.01,0,1,NA,NA,NA,NA,NA -VT,50000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8601,0.01,0,1,NA,NA,NA,NA,NA -VT,50000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8618,0.01,0,1,NA,NA,NA,NA,NA -WA,53000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11240000000000006,0.01,0,1,NA,NA,NA,NA,NA -WA,53000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.17110000000000003,0.01,0,1,NA,NA,NA,NA,NA -WA,53000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3206,0.01,0,1,NA,NA,NA,NA,NA -WA,53000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4817,0.01,0,1,NA,NA,NA,NA,NA -WA,53000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6066,0.01,0,1,NA,NA,NA,NA,NA -WA,53000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6784,0.01,0,1,NA,NA,NA,NA,NA -WA,53000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7088,0.01,0,1,NA,NA,NA,NA,NA -WA,53000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7070000000000001,0.01,0,1,NA,NA,NA,NA,NA -WI,55000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07730000000000004,0.01,0,1,NA,NA,NA,NA,NA -WI,55000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.133,0.01,0,1,NA,NA,NA,NA,NA -WI,55000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.28759999999999997,0.01,0,1,NA,NA,NA,NA,NA -WI,55000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.46419999999999995,0.01,0,1,NA,NA,NA,NA,NA -WI,55000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5921000000000001,0.01,0,1,NA,NA,NA,NA,NA -WI,55000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6541,0.01,0,1,NA,NA,NA,NA,NA -WI,55000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6707000000000001,0.01,0,1,NA,NA,NA,NA,NA -WI,55000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6529,0.01,0,1,NA,NA,NA,NA,NA -WV,54000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.18610000000000004,0.01,0,1,NA,NA,NA,NA,NA -WV,54000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.21809999999999996,0.01,0,1,NA,NA,NA,NA,NA -WV,54000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.28690000000000004,0.01,0,1,NA,NA,NA,NA,NA -WV,54000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3379,0.01,0,1,NA,NA,NA,NA,NA -WV,54000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3786000000000001,0.01,0,1,NA,NA,NA,NA,NA -WV,54000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4086,0.01,0,1,NA,NA,NA,NA,NA -WV,54000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4332,0.01,0,1,NA,NA,NA,NA,NA -WV,54000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4416,0.01,0,1,NA,NA,NA,NA,NA -WY,56000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.00860000000000005,0.01,0,1,NA,NA,NA,NA,NA -WY,56000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.01429999999999998,0.01,0,1,NA,NA,NA,NA,NA -WY,56000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.03420000000000001,0.01,0,1,NA,NA,NA,NA,NA -WY,56000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07509999999999994,0.01,0,1,NA,NA,NA,NA,NA -WY,56000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.14790000000000003,0.01,0,1,NA,NA,NA,NA,NA -WY,56000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.25229999999999997,0.01,0,1,NA,NA,NA,NA,NA -WY,56000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3671,0.01,0,1,NA,NA,NA,NA,NA -WY,56000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,Reduce,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4439999999999999,0.01,0,1,NA,NA,NA,NA,NA +USPS,subpop,start_date,end_date,name,template,type,category,parameter,baseline_scenario,value_dist,value_mean,value_sd,value_a,value_b,pert_dist,pert_mean,pert_sd,pert_a,pert_b +AL,01000,2020-04-04,2020-04-30,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AL,01000,2020-05-01,2020-05-21,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AL,01000,2020-05-22,2020-07-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AL,01000,2020-07-16,2021-03-03,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AL,01000,2021-03-04,2021-04-08,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AL,01000,2021-04-09,2021-05-30,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AL,01000,2021-05-31,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AK,02000,2020-03-28,2020-04-23,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AK,02000,2020-04-24,2020-05-07,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AK,02000,2020-05-08,2020-05-21,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AK,02000,2020-05-22,2020-11-15,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AK,02000,2020-11-16,2021-02-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AK,02000,2021-02-15,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AZ,04000,2020-03-31,2020-05-15,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AZ,04000,2020-05-16,2020-06-28,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AZ,04000,2020-06-29,2020-10-01,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AZ,04000,2020-10-02,2020-12-02,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AZ,04000,2020-12-03,2021-03-04,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AZ,04000,2021-03-05,2021-03-24,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AZ,04000,2021-03-25,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AR,05000,2020-03-20,2020-05-03,sd,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AR,05000,2020-05-04,2020-06-14,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AR,05000,2020-06-15,2020-07-19,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AR,05000,2020-07-20,2020-11-18,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AR,05000,2020-11-19,2021-01-01,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AR,05000,2021-01-02,2021-02-25,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AR,05000,2021-02-26,2021-03-30,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +AR,05000,2021-03-31,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2020-03-19,2020-05-07,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2020-05-08,2020-06-11,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2020-06-12,2020-07-05,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2020-07-06,2020-11-20,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2020-11-21,2020-12-05,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2020-12-06,2021-01-11,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2021-01-12,2021-01-24,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2021-01-25,2021-02-26,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2021-02-27,2021-04-06,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2021-04-07,2021-06-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CA,06000,2021-06-15,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2020-03-26,2020-04-26,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2020-04-27,2020-06-30,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2020-07-01,2020-09-28,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2020-09-29,2020-11-04,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2020-11-05,2020-11-19,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2020-11-20,2021-01-03,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2021-01-04,2021-02-05,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2021-02-06,2021-03-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2021-03-15,2021-03-23,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2021-03-24,2021-04-15,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2021-04-16,2021-05-13,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2021-05-14,2021-05-31,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CO,08000,2021-06-01,2021-08-07,open_p7,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2020-03-23,2020-05-20,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2020-05-21,2020-06-16,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2020-06-17,2020-10-07,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2020-10-08,2020-11-05,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2020-11-06,2021-01-18,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2021-01-19,2021-03-18,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2021-03-19,2021-04-01,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2021-04-02,2021-04-30,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2021-05-01,2021-05-18,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +CT,09000,2021-05-19,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2020-03-24,2020-05-31,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2020-06-01,2020-06-14,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2020-06-15,2020-11-22,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2020-11-23,2020-12-13,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2020-12-14,2021-01-07,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2021-01-08,2021-02-11,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2021-02-12,2021-02-18,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2021-02-19,2021-03-31,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2021-04-01,2021-05-20,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DE,10000,2021-05-21,2021-08-07,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2020-04-01,2020-05-29,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2020-05-30,2020-06-21,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2020-06-22,2020-11-24,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2020-11-25,2020-12-13,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2020-12-14,2020-12-22,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2020-12-23,2021-01-21,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2021-01-22,2021-03-21,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2021-03-22,2021-04-30,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2021-05-01,2021-05-16,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2021-05-17,2021-05-20,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2021-05-21,2021-06-10,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +DC,11000,2021-06-11,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +FL,12000,2020-04-03,2020-05-04,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +FL,12000,2020-05-05,2020-06-04,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +FL,12000,2020-06-05,2020-06-25,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +FL,12000,2020-06-26,2020-09-13,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +FL,12000,2020-09-14,2020-09-24,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +FL,12000,2020-09-25,2021-05-02,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +FL,12000,2021-05-03,2021-08-07,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GA,13000,2020-04-03,2020-04-27,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GA,13000,2020-04-28,2020-05-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GA,13000,2020-06-01,2020-06-30,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GA,13000,2020-07-01,2020-09-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GA,13000,2020-09-11,2020-12-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GA,13000,2020-12-15,2021-04-07,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GA,13000,2021-04-08,2021-04-30,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GA,13000,2021-05-01,2021-05-30,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GA,13000,2021-05-31,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2020-03-20,2020-05-10,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2020-05-11,2020-07-19,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2020-07-20,2020-08-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2020-08-16,2020-09-24,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2020-09-25,2020-12-14,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2020-12-15,2020-12-25,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2020-12-26,2021-01-17,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2021-01-18,2021-02-21,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2021-02-22,2021-05-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +GU,66000,2021-05-15,2021-08-07,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2020-03-25,2020-05-06,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2020-05-07,2020-05-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2020-06-01,2020-08-07,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2020-08-08,2020-09-23,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2020-09-24,2020-10-26,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2020-10-27,2020-11-10,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2020-11-11,2021-01-18,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2021-01-19,2021-02-24,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2021-02-25,2021-03-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2021-03-11,2021-05-09,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2021-05-10,2021-05-24,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2021-05-25,2021-06-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +HI,15000,2021-06-11,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2020-03-25,2020-04-30,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2020-05-01,2020-05-15,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2020-05-16,2020-05-29,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2020-05-30,2020-06-12,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2020-06-13,2020-10-26,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2020-10-27,2020-11-12,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2020-11-13,2020-12-29,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2020-12-30,2021-02-01,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2021-02-02,2021-05-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ID,16000,2021-05-11,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2020-03-21,2020-05-29,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2020-05-30,2020-06-25,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2020-06-26,2020-07-23,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2020-07-24,2020-09-30,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2020-10-01,2020-10-29,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2020-10-30,2020-11-19,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2020-11-20,2021-01-17,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2021-01-18,2021-01-31,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2021-02-01,2021-05-16,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2021-05-17,2021-06-10,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IL,17000,2021-06-11,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2020-03-24,2020-05-03,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2020-05-04,2020-05-21,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2020-05-22,2020-06-11,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2020-06-12,2020-07-03,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2020-07-04,2020-09-25,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2020-09-26,2020-11-10,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2020-11-11,2021-01-10,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2021-01-11,2021-01-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2021-02-01,2021-02-14,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2021-02-15,2021-03-01,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2021-03-02,2021-04-05,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IN,18000,2021-04-06,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2020-04-02,2020-05-14,sd,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2020-05-15,2020-05-27,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2020-05-28,2020-06-11,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2020-06-12,2020-08-26,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2020-08-27,2020-10-03,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2020-10-04,2020-11-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2020-11-11,2020-12-16,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2020-12-17,2021-01-07,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2021-01-08,2021-02-06,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +IA,19000,2021-02-07,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KS,20000,2020-03-30,2020-05-04,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KS,20000,2020-05-05,2020-05-21,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KS,20000,2020-05-22,2020-06-07,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KS,20000,2020-06-08,2020-07-02,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KS,20000,2020-07-03,2021-03-30,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KS,20000,2021-03-31,2021-04-05,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KS,20000,2021-04-06,2021-05-13,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KS,20000,2021-05-14,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2020-03-26,2020-05-10,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2020-05-11,2020-05-21,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2020-05-22,2020-06-28,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2020-06-29,2020-07-27,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2020-07-28,2020-08-10,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2020-08-11,2020-11-19,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2020-11-20,2020-12-13,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2020-12-14,2021-03-04,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2021-03-05,2021-05-15,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2021-05-16,2021-05-27,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2021-05-28,2021-06-10,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +KY,21000,2021-06-11,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2020-03-23,2020-05-14,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2020-05-15,2020-06-04,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2020-06-05,2020-07-12,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2020-07-13,2020-09-10,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2020-09-11,2020-11-24,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2020-11-25,2021-03-02,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2021-03-03,2021-03-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2021-03-11,2021-03-30,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2021-03-31,2021-04-27,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2021-04-28,2021-05-25,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +LA,22000,2021-05-26,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2020-04-02,2020-04-30,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2020-05-01,2020-05-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2020-06-01,2020-06-30,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2020-07-01,2020-10-12,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2020-10-13,2020-11-19,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2020-11-20,2021-01-31,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2021-02-01,2021-02-11,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2021-02-12,2021-03-25,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2021-03-26,2021-05-23,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ME,23000,2021-05-24,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MD,24000,2020-03-30,2020-05-14,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MD,24000,2020-05-15,2020-06-04,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MD,24000,2020-06-05,2020-09-03,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MD,24000,2020-09-04,2020-11-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MD,24000,2020-11-11,2020-12-16,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MD,24000,2020-12-17,2021-01-31,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MD,24000,2021-02-01,2021-03-11,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MD,24000,2021-03-12,2021-05-14,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MD,24000,2021-05-15,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2020-03-24,2020-05-18,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2020-05-19,2020-06-07,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2020-06-08,2020-07-05,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2020-07-06,2020-10-04,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2020-10-05,2020-10-22,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2020-10-23,2020-12-12,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2020-12-13,2020-12-25,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2020-12-26,2021-01-24,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2021-01-25,2021-02-07,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2021-02-08,2021-02-28,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2021-03-01,2021-03-21,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2021-03-22,2021-04-29,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2021-04-30,2021-05-28,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MA,25000,2021-05-29,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2020-03-24,2020-05-31,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2020-06-01,2020-06-30,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2020-07-01,2020-09-08,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2020-09-09,2020-10-08,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2020-10-09,2020-11-17,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2020-11-18,2020-12-20,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2020-12-21,2021-01-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2021-01-16,2021-01-31,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2021-02-01,2021-03-04,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2021-03-05,2021-03-21,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2021-03-22,2021-05-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2021-05-15,2021-05-31,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2021-06-01,2021-06-21,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MI,26000,2021-06-22,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2020-03-27,2020-05-17,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2020-05-18,2020-05-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2020-06-01,2020-06-09,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2020-06-10,2020-07-24,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2020-07-25,2020-11-12,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2020-11-13,2020-12-17,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2020-12-18,2021-01-10,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2021-01-11,2021-02-12,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2021-02-13,2021-03-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2021-03-15,2021-03-31,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2021-04-01,2021-05-06,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2021-05-07,2021-05-13,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2021-05-14,2021-05-27,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MN,27000,2021-05-28,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2020-04-03,2020-04-27,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2020-04-28,2020-05-06,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2020-05-07,2020-05-31,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2020-06-01,2020-09-13,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2020-09-14,2020-11-24,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2020-11-25,2020-12-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2020-12-11,2021-03-02,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2021-03-03,2021-03-30,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2021-03-31,2021-04-29,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MS,28000,2021-04-30,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MO,29000,2020-04-06,2020-05-03,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MO,29000,2020-05-04,2020-06-15,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MO,29000,2020-06-16,2021-05-16,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MO,29000,2021-05-17,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MT,30000,2020-03-28,2020-04-26,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MT,30000,2020-04-27,2020-05-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MT,30000,2020-06-01,2020-11-19,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MT,30000,2020-11-20,2021-01-14,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MT,30000,2021-01-15,2021-02-11,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MT,30000,2021-02-12,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2020-03-16,2020-05-03,sd,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2020-05-04,2020-05-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2020-06-01,2020-06-21,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2020-06-22,2020-09-13,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2020-09-14,2020-10-20,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2020-10-21,2020-11-10,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2020-11-11,2020-12-11,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2020-12-12,2020-12-23,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2020-12-24,2021-01-29,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2021-01-30,2021-05-23,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NE,31000,2021-05-24,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2020-04-01,2020-05-08,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2020-05-09,2020-05-28,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2020-05-29,2020-07-09,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2020-07-10,2020-09-19,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2020-09-20,2020-11-23,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2020-11-24,2021-02-14,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2021-02-15,2021-03-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2021-03-15,2021-03-29,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2021-03-30,2021-04-30,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2021-05-01,2021-05-02,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2021-05-03,2021-05-31,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NV,32000,2021-06-01,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2020-03-27,2020-05-10,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2020-05-11,2020-06-14,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2020-06-15,2020-06-28,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2020-06-29,2020-10-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2020-10-15,2020-10-29,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2020-10-30,2020-11-19,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2020-11-20,2021-03-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2021-03-11,2021-04-16,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2021-04-17,2021-05-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NH,33000,2021-05-08,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2020-03-21,2020-05-18,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2020-05-19,2020-06-14,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2020-06-15,2020-09-03,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2020-09-04,2020-11-11,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2020-11-12,2020-12-06,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2020-12-07,2021-01-01,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2021-01-02,2021-02-04,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2021-02-05,2021-02-21,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2021-02-22,2021-03-18,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2021-03-19,2021-04-01,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2021-04-02,2021-05-27,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2021-05-28,2021-06-03,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NJ,34000,2021-06-04,2021-08-07,open_p7,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2020-03-24,2020-05-31,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2020-06-01,2020-07-12,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2020-07-13,2020-08-28,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2020-08-29,2020-10-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2020-10-16,2020-11-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2020-11-16,2020-12-01,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2020-12-02,2021-02-09,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2021-02-10,2021-02-23,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2021-02-24,2021-03-09,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2021-03-10,2021-03-23,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2021-03-24,2021-04-06,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2021-04-07,2021-04-20,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2021-04-21,2021-05-04,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2021-05-05,2021-05-13,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2021-05-14,2021-06-01,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NM,35000,2021-06-02,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2020-03-22,2020-06-07,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2020-06-08,2020-06-21,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2020-06-22,2020-07-05,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2020-07-06,2020-07-19,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2020-07-20,2020-09-29,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2020-09-30,2020-10-13,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2020-10-14,2020-11-12,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2020-11-13,2020-12-13,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2020-12-14,2021-01-26,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2021-01-27,2021-02-11,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2021-02-12,2021-03-18,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2021-03-19,2021-03-31,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2021-04-01,2021-05-18,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NY,36000,2021-05-19,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2020-03-30,2020-05-07,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2020-05-08,2020-05-21,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2020-05-22,2020-09-03,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2020-09-04,2020-10-01,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2020-10-02,2020-12-10,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2020-12-11,2021-02-25,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2021-02-26,2021-03-25,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2021-03-26,2021-04-29,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2021-04-30,2021-05-13,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NC,37000,2021-05-14,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ND,38000,2020-03-19,2020-04-30,sd,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ND,38000,2020-05-01,2020-05-28,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ND,38000,2020-05-29,2020-10-15,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ND,38000,2020-10-16,2020-11-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ND,38000,2020-11-16,2020-12-21,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ND,38000,2020-12-22,2021-01-07,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ND,38000,2021-01-08,2021-01-17,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +ND,38000,2021-01-18,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MP,69000,2020-03-30,2020-05-02,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MP,69000,2020-05-03,2020-05-24,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MP,69000,2020-05-25,2020-06-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MP,69000,2020-06-16,2020-08-23,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MP,69000,2020-08-24,2020-09-06,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +MP,69000,2020-09-07,2021-08-07,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2020-03-23,2020-05-03,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2020-05-04,2020-05-20,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2020-05-21,2020-06-18,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2020-06-19,2020-09-20,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2020-09-21,2020-11-18,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2020-11-19,2021-02-10,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2021-02-11,2021-03-01,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2021-03-02,2021-04-04,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2021-04-05,2021-04-26,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2021-04-27,2021-05-16,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2021-05-17,2021-06-01,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2021-06-02,2021-06-18,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OH,39000,2021-06-19,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OK,40000,2020-03-24,2020-04-23,sd,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OK,40000,2020-04-24,2020-05-14,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OK,40000,2020-05-15,2020-05-31,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OK,40000,2020-06-01,2020-11-15,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OK,40000,2020-11-16,2020-12-13,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OK,40000,2020-12-14,2021-01-13,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OK,40000,2021-01-14,2021-03-11,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OK,40000,2021-03-12,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2020-03-23,2020-05-14,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2020-05-15,2020-06-04,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2020-06-05,2020-06-30,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2020-07-01,2020-11-10,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2020-11-11,2020-11-17,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2020-11-18,2020-12-02,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2020-12-03,2021-02-11,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2021-02-12,2021-02-25,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2021-02-26,2021-03-28,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2021-03-29,2021-04-18,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2021-04-19,2021-04-29,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2021-04-30,2021-06-08,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +OR,41000,2021-06-09,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2020-03-28,2020-05-07,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2020-05-08,2020-05-28,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2020-05-29,2020-07-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2020-07-16,2020-09-13,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2020-09-14,2020-10-05,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2020-10-06,2020-12-11,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2020-12-12,2021-01-03,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2021-01-04,2021-02-28,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2021-03-01,2021-04-03,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2021-04-04,2021-05-12,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2021-05-13,2021-05-16,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2021-05-17,2021-05-30,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PA,42000,2021-05-31,2021-08-07,open_p7,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2020-03-30,2020-05-24,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2020-05-25,2020-06-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2020-06-16,2020-06-30,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2020-07-01,2020-07-15,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2020-07-16,2020-09-11,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2020-09-12,2020-10-01,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2020-10-02,2020-11-15,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2020-11-16,2020-12-06,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2020-12-07,2021-01-07,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2021-01-08,2021-02-07,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2021-02-08,2021-03-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2021-03-15,2021-04-08,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2021-04-09,2021-04-16,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2021-04-17,2021-05-23,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2021-05-24,2021-06-06,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +PR,72000,2021-06-07,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2020-03-28,2020-05-08,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2020-05-09,2020-05-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2020-06-01,2020-06-29,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2020-06-30,2020-11-07,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2020-11-08,2020-11-29,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2020-11-30,2020-12-20,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2020-12-21,2021-01-19,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2021-01-20,2021-02-11,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2021-02-12,2021-03-18,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2021-03-19,2021-05-17,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2021-05-18,2021-05-20,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +RI,44000,2021-05-21,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SC,45000,2020-04-07,2020-04-20,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SC,45000,2020-04-21,2020-05-10,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SC,45000,2020-05-11,2020-08-02,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SC,45000,2020-08-03,2020-10-01,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SC,45000,2020-10-02,2021-02-28,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SC,45000,2021-03-01,2021-03-18,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SC,45000,2021-03-19,2021-05-10,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SC,45000,2021-05-11,2021-06-05,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SC,45000,2021-06-06,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SD,46000,2020-03-16,2020-04-27,sd,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +SD,46000,2020-04-28,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TN,47000,2020-04-02,2020-04-30,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TN,47000,2020-05-01,2020-05-24,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TN,47000,2020-05-25,2020-09-28,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TN,47000,2020-09-29,2020-12-19,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TN,47000,2020-12-20,2021-01-19,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TN,47000,2021-01-20,2021-02-27,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TN,47000,2021-02-28,2021-04-27,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TN,47000,2021-04-28,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TX,48000,2020-03-31,2020-04-30,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TX,48000,2020-05-01,2020-05-17,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TX,48000,2020-05-18,2020-06-02,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TX,48000,2020-06-03,2020-06-25,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TX,48000,2020-06-26,2020-09-20,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TX,48000,2020-09-21,2020-10-13,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TX,48000,2020-10-14,2021-03-09,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +TX,48000,2021-03-10,2021-08-07,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2020-03-27,2020-05-01,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2020-05-02,2020-05-15,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2020-05-16,2020-06-18,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2020-06-19,2020-10-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2020-10-15,2020-11-08,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2020-11-09,2020-11-23,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2020-11-24,2021-03-04,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2021-03-05,2021-04-01,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2021-04-02,2021-04-09,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2021-04-10,2021-05-04,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +UT,49000,2021-05-05,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VT,50000,2020-03-25,2020-05-15,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VT,50000,2020-05-16,2020-05-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VT,50000,2020-06-01,2020-06-25,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VT,50000,2020-06-26,2020-07-31,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VT,50000,2020-08-01,2020-11-13,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VT,50000,2020-11-14,2021-02-11,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VT,50000,2021-02-12,2021-03-23,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VT,50000,2021-03-24,2021-05-14,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VT,50000,2021-05-15,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2020-03-25,2020-05-03,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2020-05-04,2020-05-31,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2020-06-01,2020-08-16,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2020-08-17,2020-09-18,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2020-09-19,2020-10-12,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2020-10-13,2020-11-08,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2020-11-09,2020-12-16,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2020-12-17,2021-03-07,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2021-03-08,2021-03-28,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2021-03-29,2021-04-22,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VI,78000,2021-04-23,2021-08-07,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2020-03-30,2020-05-14,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2020-05-15,2020-06-04,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2020-06-05,2020-06-30,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2020-07-01,2020-07-30,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2020-07-31,2020-09-09,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2020-09-10,2020-11-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2020-11-15,2020-12-13,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2020-12-14,2021-02-28,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2021-03-01,2021-03-31,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2021-04-01,2021-05-13,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2021-05-14,2021-05-27,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +VA,51000,2021-05-28,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2020-03-23,2020-05-04,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2020-05-05,2020-05-28,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2020-05-29,2020-07-01,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2020-07-02,2020-10-12,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2020-10-13,2020-11-15,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2020-11-16,2021-01-10,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2021-01-11,2021-01-31,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2021-02-01,2021-02-13,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2021-02-14,2021-03-21,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2021-03-22,2021-05-12,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2021-05-13,2021-05-17,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WA,53000,2021-05-18,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2020-03-24,2020-05-03,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2020-05-04,2020-05-20,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2020-05-21,2020-06-04,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2020-06-05,2020-06-30,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2020-07-01,2020-07-13,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2020-07-14,2020-10-12,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2020-10-13,2020-11-25,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2020-11-26,2021-02-13,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2021-02-14,2021-03-04,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2021-03-05,2021-04-19,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2021-04-20,2021-05-13,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2021-05-14,2021-06-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2021-06-08,2021-06-19,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WV,54000,2021-06-20,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2020-03-25,2020-05-13,lockdown,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2020-05-14,2020-06-12,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2020-06-13,2020-07-31,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2020-08-01,2020-10-28,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2020-10-29,2021-01-12,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2021-01-13,2021-02-08,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2021-02-09,2021-03-18,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2021-03-19,2021-03-30,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2021-03-31,2021-05-31,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WI,55000,2021-06-01,2021-08-07,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2020-03-28,2020-04-30,sd,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2020-05-01,2020-05-14,open_p1,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2020-05-15,2020-06-14,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2020-06-15,2020-08-15,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2020-08-16,2020-11-23,open_p4,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2020-11-24,2020-12-08,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2020-12-09,2021-01-08,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2021-01-09,2021-01-25,open_p2,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2021-01-26,2021-02-14,open_p3,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2021-02-15,2021-02-28,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2021-03-01,2021-03-15,open_p5,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2021-03-16,2021-05-20,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +WY,56000,2021-05-21,2021-08-07,open_p6,MultiPeriodModifier,transmission,NPI,R0,NA,truncnorm,0.6,0.05,0,0.9,truncnorm,0,0.05,-1,1 +NA,all,2020-01-01,2020-01-31,Seas_jan,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,-0.2,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2021-01-01,2021-01-31,Seas_jan,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,-0.2,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-02-01,2020-02-29,Seas_feb,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,-0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2021-02-01,2021-02-28,Seas_feb,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,-0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-03-01,2020-03-31,Seas_mar,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,-0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2021-03-01,2021-03-31,Seas_mar,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,-0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-05-01,2020-05-31,Seas_may,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2021-05-01,2021-05-31,Seas_may,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-06-01,2020-06-30,Seas_jun,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2021-06-01,2021-06-30,Seas_jun,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-07-01,2020-07-31,Seas_jul,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,0.2,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2021-07-01,2021-07-31,Seas_jul,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,0.2,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-08-01,2020-08-31,Seas_aug,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2021-08-01,2021-08-07,Seas_aug,MultiPeriodModifier,transmission,seasonal,R0,NA,truncnorm,0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-09-01,2020-09-30,Seas_sep,SinglePeriodModifier,transmission,seasonal,R0,NA,truncnorm,0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-10-01,2020-10-31,Seas_oct,SinglePeriodModifier,transmission,seasonal,R0,NA,truncnorm,0,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-11-01,2020-11-30,Seas_nov,SinglePeriodModifier,transmission,seasonal,R0,NA,truncnorm,-0.067,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-12-01,2020-12-31,Seas_dec,SinglePeriodModifier,transmission,seasonal,R0,NA,truncnorm,-0.133,0.05,-1,1,truncnorm,0,0.05,-1,1 +NA,all,2020-01-01,2021-08-07,local_variance,SinglePeriodModifier,transmission,local_variance,R0,NA,truncnorm,0,0.025,-1,1,truncnorm,0,0.05,-1,1 +AK,02000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001575,NA,NA,NA,NA,NA,NA,NA,NA +AK,02000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004632,NA,NA,NA,NA,NA,NA,NA,NA +AK,02000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005033,NA,NA,NA,NA,NA,NA,NA,NA +AK,02000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005206,NA,NA,NA,NA,NA,NA,NA,NA +AK,02000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003905,NA,NA,NA,NA,NA,NA,NA,NA +AK,02000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001637,NA,NA,NA,NA,NA,NA,NA,NA +AK,02000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003683,NA,NA,NA,NA,NA,NA,NA,NA +AK,02000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004457,NA,NA,NA,NA,NA,NA,NA,NA +AL,01000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,1.2e-4,NA,NA,NA,NA,NA,NA,NA,NA +AL,01000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00327,NA,NA,NA,NA,NA,NA,NA,NA +AL,01000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003378,NA,NA,NA,NA,NA,NA,NA,NA +AL,01000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005034,NA,NA,NA,NA,NA,NA,NA,NA +AL,01000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002462,NA,NA,NA,NA,NA,NA,NA,NA +AL,01000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001837,NA,NA,NA,NA,NA,NA,NA,NA +AL,01000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003138,NA,NA,NA,NA,NA,NA,NA,NA +AL,01000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003718,NA,NA,NA,NA,NA,NA,NA,NA +AR,05000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,2.5e-5,NA,NA,NA,NA,NA,NA,NA,NA +AR,05000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004047,NA,NA,NA,NA,NA,NA,NA,NA +AR,05000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003534,NA,NA,NA,NA,NA,NA,NA,NA +AR,05000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005765,NA,NA,NA,NA,NA,NA,NA,NA +AR,05000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002497,NA,NA,NA,NA,NA,NA,NA,NA +AR,05000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002908,NA,NA,NA,NA,NA,NA,NA,NA +AR,05000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004238,NA,NA,NA,NA,NA,NA,NA,NA +AR,05000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004355,NA,NA,NA,NA,NA,NA,NA,NA +AZ,04000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,9.1e-4,NA,NA,NA,NA,NA,NA,NA,NA +AZ,04000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003637,NA,NA,NA,NA,NA,NA,NA,NA +AZ,04000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004542,NA,NA,NA,NA,NA,NA,NA,NA +AZ,04000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006755,NA,NA,NA,NA,NA,NA,NA,NA +AZ,04000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004126,NA,NA,NA,NA,NA,NA,NA,NA +AZ,04000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003358,NA,NA,NA,NA,NA,NA,NA,NA +AZ,04000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003208,NA,NA,NA,NA,NA,NA,NA,NA +AZ,04000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003691,NA,NA,NA,NA,NA,NA,NA,NA +CA,06000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004032,NA,NA,NA,NA,NA,NA,NA,NA +CA,06000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004414,NA,NA,NA,NA,NA,NA,NA,NA +CA,06000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009529,NA,NA,NA,NA,NA,NA,NA,NA +CA,06000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007473,NA,NA,NA,NA,NA,NA,NA,NA +CA,06000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005734,NA,NA,NA,NA,NA,NA,NA,NA +CA,06000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005427,NA,NA,NA,NA,NA,NA,NA,NA +CA,06000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005324,NA,NA,NA,NA,NA,NA,NA,NA +CO,08000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001223,NA,NA,NA,NA,NA,NA,NA,NA +CO,08000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00289,NA,NA,NA,NA,NA,NA,NA,NA +CO,08000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00442,NA,NA,NA,NA,NA,NA,NA,NA +CO,08000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009366,NA,NA,NA,NA,NA,NA,NA,NA +CO,08000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006245,NA,NA,NA,NA,NA,NA,NA,NA +CO,08000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005531,NA,NA,NA,NA,NA,NA,NA,NA +CO,08000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005302,NA,NA,NA,NA,NA,NA,NA,NA +CO,08000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005107,NA,NA,NA,NA,NA,NA,NA,NA +CT,09000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001444,NA,NA,NA,NA,NA,NA,NA,NA +CT,09000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003284,NA,NA,NA,NA,NA,NA,NA,NA +CT,09000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006127,NA,NA,NA,NA,NA,NA,NA,NA +CT,09000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.010163,NA,NA,NA,NA,NA,NA,NA,NA +CT,09000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008513,NA,NA,NA,NA,NA,NA,NA,NA +CT,09000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007132,NA,NA,NA,NA,NA,NA,NA,NA +CT,09000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007648,NA,NA,NA,NA,NA,NA,NA,NA +CT,09000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.0073,NA,NA,NA,NA,NA,NA,NA,NA +DC,11000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004432,NA,NA,NA,NA,NA,NA,NA,NA +DC,11000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002789,NA,NA,NA,NA,NA,NA,NA,NA +DC,11000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009738,NA,NA,NA,NA,NA,NA,NA,NA +DC,11000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009489,NA,NA,NA,NA,NA,NA,NA,NA +DC,11000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005403,NA,NA,NA,NA,NA,NA,NA,NA +DC,11000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005846,NA,NA,NA,NA,NA,NA,NA,NA +DC,11000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007962,NA,NA,NA,NA,NA,NA,NA,NA +DE,10000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,4.24e-4,NA,NA,NA,NA,NA,NA,NA,NA +DE,10000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003744,NA,NA,NA,NA,NA,NA,NA,NA +DE,10000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004357,NA,NA,NA,NA,NA,NA,NA,NA +DE,10000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009041,NA,NA,NA,NA,NA,NA,NA,NA +DE,10000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006471,NA,NA,NA,NA,NA,NA,NA,NA +DE,10000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005204,NA,NA,NA,NA,NA,NA,NA,NA +DE,10000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004372,NA,NA,NA,NA,NA,NA,NA,NA +DE,10000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004788,NA,NA,NA,NA,NA,NA,NA,NA +FL,12000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001333,NA,NA,NA,NA,NA,NA,NA,NA +FL,12000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002584,NA,NA,NA,NA,NA,NA,NA,NA +FL,12000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004256,NA,NA,NA,NA,NA,NA,NA,NA +FL,12000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007515,NA,NA,NA,NA,NA,NA,NA,NA +FL,12000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005339,NA,NA,NA,NA,NA,NA,NA,NA +FL,12000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004656,NA,NA,NA,NA,NA,NA,NA,NA +FL,12000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004632,NA,NA,NA,NA,NA,NA,NA,NA +FL,12000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004264,NA,NA,NA,NA,NA,NA,NA,NA +GA,13000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,2.95e-4,NA,NA,NA,NA,NA,NA,NA,NA +GA,13000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003166,NA,NA,NA,NA,NA,NA,NA,NA +GA,13000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002689,NA,NA,NA,NA,NA,NA,NA,NA +GA,13000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006914,NA,NA,NA,NA,NA,NA,NA,NA +GA,13000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003024,NA,NA,NA,NA,NA,NA,NA,NA +GA,13000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002945,NA,NA,NA,NA,NA,NA,NA,NA +GA,13000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002869,NA,NA,NA,NA,NA,NA,NA,NA +GA,13000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003331,NA,NA,NA,NA,NA,NA,NA,NA +GU,66000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001893,NA,NA,NA,NA,NA,NA,NA,NA +GU,66000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004754,NA,NA,NA,NA,NA,NA,NA,NA +GU,66000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002632,NA,NA,NA,NA,NA,NA,NA,NA +GU,66000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009422,NA,NA,NA,NA,NA,NA,NA,NA +HI,15000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,2.05e-4,NA,NA,NA,NA,NA,NA,NA,NA +HI,15000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003911,NA,NA,NA,NA,NA,NA,NA,NA +HI,15000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005352,NA,NA,NA,NA,NA,NA,NA,NA +HI,15000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006736,NA,NA,NA,NA,NA,NA,NA,NA +HI,15000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.015824,NA,NA,NA,NA,NA,NA,NA,NA +HI,15000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007606,NA,NA,NA,NA,NA,NA,NA,NA +HI,15000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005033,NA,NA,NA,NA,NA,NA,NA,NA +HI,15000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005334,NA,NA,NA,NA,NA,NA,NA,NA +IA,19000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001032,NA,NA,NA,NA,NA,NA,NA,NA +IA,19000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002585,NA,NA,NA,NA,NA,NA,NA,NA +IA,19000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005662,NA,NA,NA,NA,NA,NA,NA,NA +IA,19000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007657,NA,NA,NA,NA,NA,NA,NA,NA +IA,19000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003995,NA,NA,NA,NA,NA,NA,NA,NA +IA,19000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003701,NA,NA,NA,NA,NA,NA,NA,NA +IA,19000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,5.72e-4,NA,NA,NA,NA,NA,NA,NA,NA +IA,19000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009231,NA,NA,NA,NA,NA,NA,NA,NA +ID,16000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,7.05e-4,NA,NA,NA,NA,NA,NA,NA,NA +ID,16000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002855,NA,NA,NA,NA,NA,NA,NA,NA +ID,16000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004191,NA,NA,NA,NA,NA,NA,NA,NA +ID,16000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005559,NA,NA,NA,NA,NA,NA,NA,NA +ID,16000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002316,NA,NA,NA,NA,NA,NA,NA,NA +ID,16000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002436,NA,NA,NA,NA,NA,NA,NA,NA +ID,16000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003961,NA,NA,NA,NA,NA,NA,NA,NA +ID,16000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004795,NA,NA,NA,NA,NA,NA,NA,NA +IL,17000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,6.8e-4,NA,NA,NA,NA,NA,NA,NA,NA +IL,17000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003162,NA,NA,NA,NA,NA,NA,NA,NA +IL,17000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004809,NA,NA,NA,NA,NA,NA,NA,NA +IL,17000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008428,NA,NA,NA,NA,NA,NA,NA,NA +IL,17000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006174,NA,NA,NA,NA,NA,NA,NA,NA +IL,17000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005687,NA,NA,NA,NA,NA,NA,NA,NA +IL,17000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00567,NA,NA,NA,NA,NA,NA,NA,NA +IL,17000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005401,NA,NA,NA,NA,NA,NA,NA,NA +IN,18000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001109,NA,NA,NA,NA,NA,NA,NA,NA +IN,18000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003137,NA,NA,NA,NA,NA,NA,NA,NA +IN,18000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003365,NA,NA,NA,NA,NA,NA,NA,NA +IN,18000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005571,NA,NA,NA,NA,NA,NA,NA,NA +IN,18000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003615,NA,NA,NA,NA,NA,NA,NA,NA +IN,18000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003093,NA,NA,NA,NA,NA,NA,NA,NA +IN,18000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003615,NA,NA,NA,NA,NA,NA,NA,NA +IN,18000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003721,NA,NA,NA,NA,NA,NA,NA,NA +KS,20000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,7.55e-4,NA,NA,NA,NA,NA,NA,NA,NA +KS,20000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002627,NA,NA,NA,NA,NA,NA,NA,NA +KS,20000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005016,NA,NA,NA,NA,NA,NA,NA,NA +KS,20000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00819,NA,NA,NA,NA,NA,NA,NA,NA +KS,20000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003088,NA,NA,NA,NA,NA,NA,NA,NA +KS,20000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003067,NA,NA,NA,NA,NA,NA,NA,NA +KS,20000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004307,NA,NA,NA,NA,NA,NA,NA,NA +KS,20000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005069,NA,NA,NA,NA,NA,NA,NA,NA +KY,21000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,4.42e-4,NA,NA,NA,NA,NA,NA,NA,NA +KY,21000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003479,NA,NA,NA,NA,NA,NA,NA,NA +KY,21000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005304,NA,NA,NA,NA,NA,NA,NA,NA +KY,21000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006686,NA,NA,NA,NA,NA,NA,NA,NA +KY,21000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003199,NA,NA,NA,NA,NA,NA,NA,NA +KY,21000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003151,NA,NA,NA,NA,NA,NA,NA,NA +KY,21000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002638,NA,NA,NA,NA,NA,NA,NA,NA +KY,21000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003136,NA,NA,NA,NA,NA,NA,NA,NA +LA,22000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001033,NA,NA,NA,NA,NA,NA,NA,NA +LA,22000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002887,NA,NA,NA,NA,NA,NA,NA,NA +LA,22000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003833,NA,NA,NA,NA,NA,NA,NA,NA +LA,22000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004371,NA,NA,NA,NA,NA,NA,NA,NA +LA,22000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001721,NA,NA,NA,NA,NA,NA,NA,NA +LA,22000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.0018,NA,NA,NA,NA,NA,NA,NA,NA +LA,22000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001898,NA,NA,NA,NA,NA,NA,NA,NA +LA,22000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.0022,NA,NA,NA,NA,NA,NA,NA,NA +MA,25000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,7.7e-4,NA,NA,NA,NA,NA,NA,NA,NA +MA,25000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003447,NA,NA,NA,NA,NA,NA,NA,NA +MA,25000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00593,NA,NA,NA,NA,NA,NA,NA,NA +MA,25000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.010795,NA,NA,NA,NA,NA,NA,NA,NA +MA,25000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.011708,NA,NA,NA,NA,NA,NA,NA,NA +MA,25000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008408,NA,NA,NA,NA,NA,NA,NA,NA +MA,25000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00671,NA,NA,NA,NA,NA,NA,NA,NA +MA,25000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004521,NA,NA,NA,NA,NA,NA,NA,NA +MD,24000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001068,NA,NA,NA,NA,NA,NA,NA,NA +MD,24000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002659,NA,NA,NA,NA,NA,NA,NA,NA +MD,24000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005003,NA,NA,NA,NA,NA,NA,NA,NA +MD,24000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009014,NA,NA,NA,NA,NA,NA,NA,NA +MD,24000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007697,NA,NA,NA,NA,NA,NA,NA,NA +MD,24000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006153,NA,NA,NA,NA,NA,NA,NA,NA +MD,24000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006499,NA,NA,NA,NA,NA,NA,NA,NA +MD,24000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00596,NA,NA,NA,NA,NA,NA,NA,NA +ME,23000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001276,NA,NA,NA,NA,NA,NA,NA,NA +ME,23000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00329,NA,NA,NA,NA,NA,NA,NA,NA +ME,23000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005684,NA,NA,NA,NA,NA,NA,NA,NA +ME,23000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.010999,NA,NA,NA,NA,NA,NA,NA,NA +ME,23000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008499,NA,NA,NA,NA,NA,NA,NA,NA +ME,23000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007334,NA,NA,NA,NA,NA,NA,NA,NA +ME,23000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008344,NA,NA,NA,NA,NA,NA,NA,NA +ME,23000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008117,NA,NA,NA,NA,NA,NA,NA,NA +MI,26000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001021,NA,NA,NA,NA,NA,NA,NA,NA +MI,26000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002897,NA,NA,NA,NA,NA,NA,NA,NA +MI,26000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004235,NA,NA,NA,NA,NA,NA,NA,NA +MI,26000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007429,NA,NA,NA,NA,NA,NA,NA,NA +MI,26000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004843,NA,NA,NA,NA,NA,NA,NA,NA +MI,26000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003954,NA,NA,NA,NA,NA,NA,NA,NA +MI,26000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004991,NA,NA,NA,NA,NA,NA,NA,NA +MI,26000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005088,NA,NA,NA,NA,NA,NA,NA,NA +MN,27000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,8.75e-4,NA,NA,NA,NA,NA,NA,NA,NA +MN,27000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003259,NA,NA,NA,NA,NA,NA,NA,NA +MN,27000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005394,NA,NA,NA,NA,NA,NA,NA,NA +MN,27000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008294,NA,NA,NA,NA,NA,NA,NA,NA +MN,27000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006285,NA,NA,NA,NA,NA,NA,NA,NA +MN,27000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005101,NA,NA,NA,NA,NA,NA,NA,NA +MN,27000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005772,NA,NA,NA,NA,NA,NA,NA,NA +MN,27000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005718,NA,NA,NA,NA,NA,NA,NA,NA +MO,29000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,8.54e-4,NA,NA,NA,NA,NA,NA,NA,NA +MO,29000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002774,NA,NA,NA,NA,NA,NA,NA,NA +MO,29000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003972,NA,NA,NA,NA,NA,NA,NA,NA +MO,29000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005893,NA,NA,NA,NA,NA,NA,NA,NA +MO,29000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003574,NA,NA,NA,NA,NA,NA,NA,NA +MO,29000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002749,NA,NA,NA,NA,NA,NA,NA,NA +MO,29000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003287,NA,NA,NA,NA,NA,NA,NA,NA +MO,29000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003573,NA,NA,NA,NA,NA,NA,NA,NA +MP,69000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00187,NA,NA,NA,NA,NA,NA,NA,NA +MP,69000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004072,NA,NA,NA,NA,NA,NA,NA,NA +MP,69000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003597,NA,NA,NA,NA,NA,NA,NA,NA +MP,69000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005874,NA,NA,NA,NA,NA,NA,NA,NA +MP,69000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004361,NA,NA,NA,NA,NA,NA,NA,NA +MP,69000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004769,NA,NA,NA,NA,NA,NA,NA,NA +MP,69000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00444,NA,NA,NA,NA,NA,NA,NA,NA +MP,69000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004518,NA,NA,NA,NA,NA,NA,NA,NA +MS,28000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,9.69e-4,NA,NA,NA,NA,NA,NA,NA,NA +MS,28000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002764,NA,NA,NA,NA,NA,NA,NA,NA +MS,28000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003859,NA,NA,NA,NA,NA,NA,NA,NA +MS,28000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003698,NA,NA,NA,NA,NA,NA,NA,NA +MS,28000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002123,NA,NA,NA,NA,NA,NA,NA,NA +MS,28000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001683,NA,NA,NA,NA,NA,NA,NA,NA +MS,28000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002325,NA,NA,NA,NA,NA,NA,NA,NA +MS,28000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003066,NA,NA,NA,NA,NA,NA,NA,NA +MT,30000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,5.83e-4,NA,NA,NA,NA,NA,NA,NA,NA +MT,30000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003727,NA,NA,NA,NA,NA,NA,NA,NA +MT,30000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005204,NA,NA,NA,NA,NA,NA,NA,NA +MT,30000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006569,NA,NA,NA,NA,NA,NA,NA,NA +MT,30000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003107,NA,NA,NA,NA,NA,NA,NA,NA +MT,30000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003141,NA,NA,NA,NA,NA,NA,NA,NA +MT,30000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003945,NA,NA,NA,NA,NA,NA,NA,NA +MT,30000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003914,NA,NA,NA,NA,NA,NA,NA,NA +NC,37000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,6.41e-4,NA,NA,NA,NA,NA,NA,NA,NA +NC,37000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003656,NA,NA,NA,NA,NA,NA,NA,NA +NC,37000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004385,NA,NA,NA,NA,NA,NA,NA,NA +NC,37000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006358,NA,NA,NA,NA,NA,NA,NA,NA +NC,37000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003274,NA,NA,NA,NA,NA,NA,NA,NA +NC,37000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002715,NA,NA,NA,NA,NA,NA,NA,NA +NC,37000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004056,NA,NA,NA,NA,NA,NA,NA,NA +NC,37000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005478,NA,NA,NA,NA,NA,NA,NA,NA +ND,38000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001679,NA,NA,NA,NA,NA,NA,NA,NA +ND,38000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002858,NA,NA,NA,NA,NA,NA,NA,NA +ND,38000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005731,NA,NA,NA,NA,NA,NA,NA,NA +ND,38000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005392,NA,NA,NA,NA,NA,NA,NA,NA +ND,38000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001724,NA,NA,NA,NA,NA,NA,NA,NA +ND,38000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002575,NA,NA,NA,NA,NA,NA,NA,NA +ND,38000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003916,NA,NA,NA,NA,NA,NA,NA,NA +ND,38000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003931,NA,NA,NA,NA,NA,NA,NA,NA +NE,31000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00123,NA,NA,NA,NA,NA,NA,NA,NA +NE,31000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002341,NA,NA,NA,NA,NA,NA,NA,NA +NE,31000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00543,NA,NA,NA,NA,NA,NA,NA,NA +NE,31000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007955,NA,NA,NA,NA,NA,NA,NA,NA +NE,31000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003575,NA,NA,NA,NA,NA,NA,NA,NA +NE,31000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00359,NA,NA,NA,NA,NA,NA,NA,NA +NE,31000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004064,NA,NA,NA,NA,NA,NA,NA,NA +NE,31000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003986,NA,NA,NA,NA,NA,NA,NA,NA +NH,33000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,1.96e-4,NA,NA,NA,NA,NA,NA,NA,NA +NH,33000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003713,NA,NA,NA,NA,NA,NA,NA,NA +NH,33000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006088,NA,NA,NA,NA,NA,NA,NA,NA +NH,33000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.016931,NA,NA,NA,NA,NA,NA,NA,NA +NH,33000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00496,NA,NA,NA,NA,NA,NA,NA,NA +NH,33000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004555,NA,NA,NA,NA,NA,NA,NA,NA +NH,33000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006668,NA,NA,NA,NA,NA,NA,NA,NA +NH,33000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00686,NA,NA,NA,NA,NA,NA,NA,NA +NJ,34000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,9.75e-4,NA,NA,NA,NA,NA,NA,NA,NA +NJ,34000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003007,NA,NA,NA,NA,NA,NA,NA,NA +NJ,34000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00573,NA,NA,NA,NA,NA,NA,NA,NA +NJ,34000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009843,NA,NA,NA,NA,NA,NA,NA,NA +NJ,34000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007756,NA,NA,NA,NA,NA,NA,NA,NA +NJ,34000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006326,NA,NA,NA,NA,NA,NA,NA,NA +NJ,34000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005596,NA,NA,NA,NA,NA,NA,NA,NA +NJ,34000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005557,NA,NA,NA,NA,NA,NA,NA,NA +NM,35000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005124,NA,NA,NA,NA,NA,NA,NA,NA +NM,35000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007049,NA,NA,NA,NA,NA,NA,NA,NA +NM,35000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008913,NA,NA,NA,NA,NA,NA,NA,NA +NM,35000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005217,NA,NA,NA,NA,NA,NA,NA,NA +NM,35000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005211,NA,NA,NA,NA,NA,NA,NA,NA +NM,35000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006225,NA,NA,NA,NA,NA,NA,NA,NA +NM,35000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007262,NA,NA,NA,NA,NA,NA,NA,NA +NV,32000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,1.07e-4,NA,NA,NA,NA,NA,NA,NA,NA +NV,32000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00392,NA,NA,NA,NA,NA,NA,NA,NA +NV,32000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004457,NA,NA,NA,NA,NA,NA,NA,NA +NV,32000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006877,NA,NA,NA,NA,NA,NA,NA,NA +NV,32000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004096,NA,NA,NA,NA,NA,NA,NA,NA +NV,32000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003606,NA,NA,NA,NA,NA,NA,NA,NA +NV,32000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003599,NA,NA,NA,NA,NA,NA,NA,NA +NV,32000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00424,NA,NA,NA,NA,NA,NA,NA,NA +NY,36000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,4.63e-4,NA,NA,NA,NA,NA,NA,NA,NA +NY,36000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003562,NA,NA,NA,NA,NA,NA,NA,NA +NY,36000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004922,NA,NA,NA,NA,NA,NA,NA,NA +NY,36000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008693,NA,NA,NA,NA,NA,NA,NA,NA +NY,36000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006354,NA,NA,NA,NA,NA,NA,NA,NA +NY,36000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005819,NA,NA,NA,NA,NA,NA,NA,NA +NY,36000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005997,NA,NA,NA,NA,NA,NA,NA,NA +NY,36000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005131,NA,NA,NA,NA,NA,NA,NA,NA +OH,39000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001169,NA,NA,NA,NA,NA,NA,NA,NA +OH,39000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00267,NA,NA,NA,NA,NA,NA,NA,NA +OH,39000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004276,NA,NA,NA,NA,NA,NA,NA,NA +OH,39000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007267,NA,NA,NA,NA,NA,NA,NA,NA +OH,39000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.0034,NA,NA,NA,NA,NA,NA,NA,NA +OH,39000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003255,NA,NA,NA,NA,NA,NA,NA,NA +OH,39000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003161,NA,NA,NA,NA,NA,NA,NA,NA +OH,39000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003561,NA,NA,NA,NA,NA,NA,NA,NA +OK,40000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001114,NA,NA,NA,NA,NA,NA,NA,NA +OK,40000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003242,NA,NA,NA,NA,NA,NA,NA,NA +OK,40000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005228,NA,NA,NA,NA,NA,NA,NA,NA +OK,40000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005614,NA,NA,NA,NA,NA,NA,NA,NA +OK,40000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002007,NA,NA,NA,NA,NA,NA,NA,NA +OK,40000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002001,NA,NA,NA,NA,NA,NA,NA,NA +OK,40000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002067,NA,NA,NA,NA,NA,NA,NA,NA +OK,40000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002009,NA,NA,NA,NA,NA,NA,NA,NA +OR,41000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001191,NA,NA,NA,NA,NA,NA,NA,NA +OR,41000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002842,NA,NA,NA,NA,NA,NA,NA,NA +OR,41000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004293,NA,NA,NA,NA,NA,NA,NA,NA +OR,41000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007712,NA,NA,NA,NA,NA,NA,NA,NA +OR,41000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007987,NA,NA,NA,NA,NA,NA,NA,NA +OR,41000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006005,NA,NA,NA,NA,NA,NA,NA,NA +OR,41000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004637,NA,NA,NA,NA,NA,NA,NA,NA +OR,41000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003582,NA,NA,NA,NA,NA,NA,NA,NA +PA,42000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,7.98e-4,NA,NA,NA,NA,NA,NA,NA,NA +PA,42000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002889,NA,NA,NA,NA,NA,NA,NA,NA +PA,42000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005107,NA,NA,NA,NA,NA,NA,NA,NA +PA,42000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009101,NA,NA,NA,NA,NA,NA,NA,NA +PA,42000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008397,NA,NA,NA,NA,NA,NA,NA,NA +PA,42000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005664,NA,NA,NA,NA,NA,NA,NA,NA +PA,42000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005252,NA,NA,NA,NA,NA,NA,NA,NA +PA,42000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00518,NA,NA,NA,NA,NA,NA,NA,NA +PR,72000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,1.2e-4,NA,NA,NA,NA,NA,NA,NA,NA +PR,72000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002806,NA,NA,NA,NA,NA,NA,NA,NA +PR,72000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002673,NA,NA,NA,NA,NA,NA,NA,NA +PR,72000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005806,NA,NA,NA,NA,NA,NA,NA,NA +PR,72000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007686,NA,NA,NA,NA,NA,NA,NA,NA +PR,72000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.010066,NA,NA,NA,NA,NA,NA,NA,NA +PR,72000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005251,NA,NA,NA,NA,NA,NA,NA,NA +PR,72000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003103,NA,NA,NA,NA,NA,NA,NA,NA +RI,44000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001005,NA,NA,NA,NA,NA,NA,NA,NA +RI,44000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002291,NA,NA,NA,NA,NA,NA,NA,NA +RI,44000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007043,NA,NA,NA,NA,NA,NA,NA,NA +RI,44000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008476,NA,NA,NA,NA,NA,NA,NA,NA +RI,44000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.009584,NA,NA,NA,NA,NA,NA,NA,NA +RI,44000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00624,NA,NA,NA,NA,NA,NA,NA,NA +RI,44000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005759,NA,NA,NA,NA,NA,NA,NA,NA +RI,44000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004904,NA,NA,NA,NA,NA,NA,NA,NA +SC,45000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,6.52e-4,NA,NA,NA,NA,NA,NA,NA,NA +SC,45000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003076,NA,NA,NA,NA,NA,NA,NA,NA +SC,45000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004293,NA,NA,NA,NA,NA,NA,NA,NA +SC,45000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006142,NA,NA,NA,NA,NA,NA,NA,NA +SC,45000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002733,NA,NA,NA,NA,NA,NA,NA,NA +SC,45000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002738,NA,NA,NA,NA,NA,NA,NA,NA +SC,45000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003436,NA,NA,NA,NA,NA,NA,NA,NA +SC,45000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003906,NA,NA,NA,NA,NA,NA,NA,NA +SD,46000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001286,NA,NA,NA,NA,NA,NA,NA,NA +SD,46000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003045,NA,NA,NA,NA,NA,NA,NA,NA +SD,46000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006832,NA,NA,NA,NA,NA,NA,NA,NA +SD,46000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007449,NA,NA,NA,NA,NA,NA,NA,NA +SD,46000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002513,NA,NA,NA,NA,NA,NA,NA,NA +SD,46000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003085,NA,NA,NA,NA,NA,NA,NA,NA +SD,46000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004862,NA,NA,NA,NA,NA,NA,NA,NA +SD,46000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005295,NA,NA,NA,NA,NA,NA,NA,NA +TN,47000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001256,NA,NA,NA,NA,NA,NA,NA,NA +TN,47000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002297,NA,NA,NA,NA,NA,NA,NA,NA +TN,47000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003566,NA,NA,NA,NA,NA,NA,NA,NA +TN,47000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005577,NA,NA,NA,NA,NA,NA,NA,NA +TN,47000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003139,NA,NA,NA,NA,NA,NA,NA,NA +TN,47000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002314,NA,NA,NA,NA,NA,NA,NA,NA +TN,47000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002869,NA,NA,NA,NA,NA,NA,NA,NA +TN,47000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003197,NA,NA,NA,NA,NA,NA,NA,NA +TX,48000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00104,NA,NA,NA,NA,NA,NA,NA,NA +TX,48000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002662,NA,NA,NA,NA,NA,NA,NA,NA +TX,48000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00386,NA,NA,NA,NA,NA,NA,NA,NA +TX,48000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006748,NA,NA,NA,NA,NA,NA,NA,NA +TX,48000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003813,NA,NA,NA,NA,NA,NA,NA,NA +TX,48000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003763,NA,NA,NA,NA,NA,NA,NA,NA +TX,48000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003366,NA,NA,NA,NA,NA,NA,NA,NA +TX,48000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003568,NA,NA,NA,NA,NA,NA,NA,NA +UT,49000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001195,NA,NA,NA,NA,NA,NA,NA,NA +UT,49000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002924,NA,NA,NA,NA,NA,NA,NA,NA +UT,49000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003472,NA,NA,NA,NA,NA,NA,NA,NA +UT,49000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007139,NA,NA,NA,NA,NA,NA,NA,NA +UT,49000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00447,NA,NA,NA,NA,NA,NA,NA,NA +UT,49000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003338,NA,NA,NA,NA,NA,NA,NA,NA +UT,49000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003455,NA,NA,NA,NA,NA,NA,NA,NA +UT,49000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004197,NA,NA,NA,NA,NA,NA,NA,NA +VA,51000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,9.2e-4,NA,NA,NA,NA,NA,NA,NA,NA +VA,51000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003394,NA,NA,NA,NA,NA,NA,NA,NA +VA,51000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004607,NA,NA,NA,NA,NA,NA,NA,NA +VA,51000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008845,NA,NA,NA,NA,NA,NA,NA,NA +VA,51000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006556,NA,NA,NA,NA,NA,NA,NA,NA +VA,51000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005956,NA,NA,NA,NA,NA,NA,NA,NA +VA,51000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007471,NA,NA,NA,NA,NA,NA,NA,NA +VA,51000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008116,NA,NA,NA,NA,NA,NA,NA,NA +VI,78000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,3.92e-4,NA,NA,NA,NA,NA,NA,NA,NA +VI,78000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002511,NA,NA,NA,NA,NA,NA,NA,NA +VI,78000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003722,NA,NA,NA,NA,NA,NA,NA,NA +VI,78000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.0047,NA,NA,NA,NA,NA,NA,NA,NA +VI,78000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002398,NA,NA,NA,NA,NA,NA,NA,NA +VI,78000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00255,NA,NA,NA,NA,NA,NA,NA,NA +VI,78000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003405,NA,NA,NA,NA,NA,NA,NA,NA +VI,78000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003368,NA,NA,NA,NA,NA,NA,NA,NA +VT,50000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001255,NA,NA,NA,NA,NA,NA,NA,NA +VT,50000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002859,NA,NA,NA,NA,NA,NA,NA,NA +VT,50000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005581,NA,NA,NA,NA,NA,NA,NA,NA +VT,50000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.010141,NA,NA,NA,NA,NA,NA,NA,NA +VT,50000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.014482,NA,NA,NA,NA,NA,NA,NA,NA +VT,50000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008818,NA,NA,NA,NA,NA,NA,NA,NA +VT,50000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003411,NA,NA,NA,NA,NA,NA,NA,NA +VT,50000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003076,NA,NA,NA,NA,NA,NA,NA,NA +WA,53000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,5.61e-4,NA,NA,NA,NA,NA,NA,NA,NA +WA,53000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003633,NA,NA,NA,NA,NA,NA,NA,NA +WA,53000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004755,NA,NA,NA,NA,NA,NA,NA,NA +WA,53000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008176,NA,NA,NA,NA,NA,NA,NA,NA +WA,53000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008216,NA,NA,NA,NA,NA,NA,NA,NA +WA,53000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.007167,NA,NA,NA,NA,NA,NA,NA,NA +WA,53000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.006675,NA,NA,NA,NA,NA,NA,NA,NA +WA,53000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005865,NA,NA,NA,NA,NA,NA,NA,NA +WI,55000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,8.73e-4,NA,NA,NA,NA,NA,NA,NA,NA +WI,55000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003428,NA,NA,NA,NA,NA,NA,NA,NA +WI,55000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004815,NA,NA,NA,NA,NA,NA,NA,NA +WI,55000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.008678,NA,NA,NA,NA,NA,NA,NA,NA +WI,55000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004268,NA,NA,NA,NA,NA,NA,NA,NA +WI,55000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004013,NA,NA,NA,NA,NA,NA,NA,NA +WI,55000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004666,NA,NA,NA,NA,NA,NA,NA,NA +WI,55000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005008,NA,NA,NA,NA,NA,NA,NA,NA +WV,54000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001851,NA,NA,NA,NA,NA,NA,NA,NA +WV,54000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.002902,NA,NA,NA,NA,NA,NA,NA,NA +WV,54000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004229,NA,NA,NA,NA,NA,NA,NA,NA +WV,54000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004682,NA,NA,NA,NA,NA,NA,NA,NA +WV,54000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003996,NA,NA,NA,NA,NA,NA,NA,NA +WV,54000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003008,NA,NA,NA,NA,NA,NA,NA,NA +WV,54000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003992,NA,NA,NA,NA,NA,NA,NA,NA +WV,54000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003925,NA,NA,NA,NA,NA,NA,NA,NA +WY,56000,2021-01-01,2021-01-31,Dose1_jan2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.001042,NA,NA,NA,NA,NA,NA,NA,NA +WY,56000,2021-02-01,2021-02-28,Dose1_feb2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00325,NA,NA,NA,NA,NA,NA,NA,NA +WY,56000,2021-03-01,2021-03-31,Dose1_mar2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.00427,NA,NA,NA,NA,NA,NA,NA,NA +WY,56000,2021-04-01,2021-04-30,Dose1_apr2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004258,NA,NA,NA,NA,NA,NA,NA,NA +WY,56000,2021-05-01,2021-05-31,Dose1_may2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.0017,NA,NA,NA,NA,NA,NA,NA,NA +WY,56000,2021-06-01,2021-06-30,Dose1_jun2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.003188,NA,NA,NA,NA,NA,NA,NA,NA +WY,56000,2021-07-01,2021-07-31,Dose1_jul2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.005629,NA,NA,NA,NA,NA,NA,NA,NA +WY,56000,2021-08-01,2021-08-07,Dose1_aug2021,SinglePeriodModifier,transmission,vaccination,transition_rate 0,NA,fixed,0.004926,NA,NA,NA,NA,NA,NA,NA,NA +NA,all,2021-01-10,2021-01-23,variantR0adj_Week2,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.01,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-01-24,2021-01-30,variantR0adj_Week4,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.02000000000000001,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-01-31,2021-02-06,variantR0adj_Week5,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.03000000000000002,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-02-07,2021-02-13,variantR0adj_Week6,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.05000000000000004,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-02-14,2021-02-20,variantR0adj_Week7,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.07000000000000006,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-02-21,2021-02-27,variantR0adj_Week8,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.1100000000000001,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-02-28,2021-03-06,variantR0adj_Week9,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.15999999999999992,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-03-07,2021-03-13,variantR0adj_Week10,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.21999999999999997,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-03-14,2021-03-20,variantR0adj_Week11,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.29000000000000004,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-03-21,2021-03-27,variantR0adj_Week12,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.3500000000000001,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-03-28,2021-04-03,variantR0adj_Week13,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.3999999999999999,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-04-04,2021-04-10,variantR0adj_Week14,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.43999999999999995,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-04-11,2021-04-17,variantR0adj_Week15,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.47,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-04-18,2021-04-24,variantR0adj_Week16,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.48,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-04-25,2021-05-01,variantR0adj_Week17,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.49,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-05-02,2021-05-29,variantR0adj_Week18,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.5,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-05-30,2021-06-05,variantR0adj_Week22,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.55,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-06-06,2021-06-12,variantR0adj_Week23,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.5900000000000001,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-06-13,2021-06-19,variantR0adj_Week24,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.6499999999999999,0.01,-1.5,0,truncnorm,0,0.01,-1,1 +NA,all,2021-06-20,2021-06-26,variantR0adj_Week25,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.74,0.01,-1.5,0,NA,NA,NA,NA,NA +NA,all,2021-06-27,2021-07-03,variantR0adj_Week26,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.8600000000000001,0.01,-1.5,0,NA,NA,NA,NA,NA +NA,all,2021-07-04,2021-07-10,variantR0adj_Week27,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-0.99,0.01,-1.5,0,NA,NA,NA,NA,NA +NA,all,2021-07-11,2021-07-17,variantR0adj_Week28,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-1.12,0.01,-1.5,0,NA,NA,NA,NA,NA +NA,all,2021-07-18,2021-07-24,variantR0adj_Week29,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-1.2200000000000002,0.01,-1.5,0,NA,NA,NA,NA,NA +NA,all,2021-07-25,2021-07-31,variantR0adj_Week30,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-1.2999999999999998,0.01,-1.5,0,NA,NA,NA,NA,NA +NA,all,2021-08-01,2021-08-07,variantR0adj_Week31,SinglePeriodModifier,transmission,variant,R0,NA,truncnorm,-1.34,0.01,-1.5,0,NA,NA,NA,NA,NA +AK,02000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15790000000000004,0.01,0,1,NA,NA,NA,NA,NA +AK,02000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.20089999999999997,0.01,0,1,NA,NA,NA,NA,NA +AK,02000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.29890000000000005,0.01,0,1,NA,NA,NA,NA,NA +AK,02000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3893,0.01,0,1,NA,NA,NA,NA,NA +AK,02000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4679,0.01,0,1,NA,NA,NA,NA,NA +AK,02000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5273,0.01,0,1,NA,NA,NA,NA,NA +AK,02000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5662,0.01,0,1,NA,NA,NA,NA,NA +AK,02000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5748,0.01,0,1,NA,NA,NA,NA,NA +AL,01000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10529999999999996,0.01,0,1,NA,NA,NA,NA,NA +AL,01000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1663,0.01,0,1,NA,NA,NA,NA,NA +AL,01000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3105,0.01,0,1,NA,NA,NA,NA,NA +AL,01000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4433,0.01,0,1,NA,NA,NA,NA,NA +AL,01000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5273,0.01,0,1,NA,NA,NA,NA,NA +AL,01000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5645,0.01,0,1,NA,NA,NA,NA,NA +AL,01000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5707,0.01,0,1,NA,NA,NA,NA,NA +AL,01000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5483,0.01,0,1,NA,NA,NA,NA,NA +AR,05000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16400000000000003,0.01,0,1,NA,NA,NA,NA,NA +AR,05000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2169,0.01,0,1,NA,NA,NA,NA,NA +AR,05000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.33330000000000004,0.01,0,1,NA,NA,NA,NA,NA +AR,05000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4466,0.01,0,1,NA,NA,NA,NA,NA +AR,05000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5433,0.01,0,1,NA,NA,NA,NA,NA +AR,05000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6123000000000001,0.01,0,1,NA,NA,NA,NA,NA +AR,05000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6528,0.01,0,1,NA,NA,NA,NA,NA +AR,05000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6596,0.01,0,1,NA,NA,NA,NA,NA +AZ,04000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.04400000000000004,0.01,0,1,NA,NA,NA,NA,NA +AZ,04000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.0918,0.01,0,1,NA,NA,NA,NA,NA +AZ,04000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2518,0.01,0,1,NA,NA,NA,NA,NA +AZ,04000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4718,0.01,0,1,NA,NA,NA,NA,NA +AZ,04000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6359,0.01,0,1,NA,NA,NA,NA,NA +AZ,04000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7090000000000001,0.01,0,1,NA,NA,NA,NA,NA +AZ,04000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.727,0.01,0,1,NA,NA,NA,NA,NA +AZ,04000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7141,0.01,0,1,NA,NA,NA,NA,NA +CA,06000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12860000000000005,0.01,0,1,NA,NA,NA,NA,NA +CA,06000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1903,0.01,0,1,NA,NA,NA,NA,NA +CA,06000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.34240000000000004,0.01,0,1,NA,NA,NA,NA,NA +CA,06000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5013000000000001,0.01,0,1,NA,NA,NA,NA,NA +CA,06000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6295,0.01,0,1,NA,NA,NA,NA,NA +CA,06000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7123999999999999,0.01,0,1,NA,NA,NA,NA,NA +CA,06000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7548,0.01,0,1,NA,NA,NA,NA,NA +CA,06000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7613,0.01,0,1,NA,NA,NA,NA,NA +CO,08000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12960000000000005,0.01,0,1,NA,NA,NA,NA,NA +CO,08000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1886,0.01,0,1,NA,NA,NA,NA,NA +CO,08000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3368,0.01,0,1,NA,NA,NA,NA,NA +CO,08000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4867,0.01,0,1,NA,NA,NA,NA,NA +CO,08000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.601,0.01,0,1,NA,NA,NA,NA,NA +CO,08000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6754,0.01,0,1,NA,NA,NA,NA,NA +CO,08000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7179,0.01,0,1,NA,NA,NA,NA,NA +CO,08000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7279,0.01,0,1,NA,NA,NA,NA,NA +CT,09000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.20299999999999996,0.01,0,1,NA,NA,NA,NA,NA +CT,09000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2573,0.01,0,1,NA,NA,NA,NA,NA +CT,09000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3803,0.01,0,1,NA,NA,NA,NA,NA +CT,09000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4933999999999999,0.01,0,1,NA,NA,NA,NA,NA +CT,09000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5928,0.01,0,1,NA,NA,NA,NA,NA +CT,09000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6737,0.01,0,1,NA,NA,NA,NA,NA +CT,09000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.739,0.01,0,1,NA,NA,NA,NA,NA +CT,09000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7805,0.01,0,1,NA,NA,NA,NA,NA +DC,11000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11070000000000002,0.01,0,1,NA,NA,NA,NA,NA +DC,11000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15080000000000005,0.01,0,1,NA,NA,NA,NA,NA +DC,11000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.24419999999999997,0.01,0,1,NA,NA,NA,NA,NA +DC,11000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3477,0.01,0,1,NA,NA,NA,NA,NA +DC,11000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4547,0.01,0,1,NA,NA,NA,NA,NA +DC,11000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5264,0.01,0,1,NA,NA,NA,NA,NA +DC,11000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5603,0.01,0,1,NA,NA,NA,NA,NA +DC,11000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5760000000000001,0.01,0,1,NA,NA,NA,NA,NA +DE,10000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09919999999999995,0.01,0,1,NA,NA,NA,NA,NA +DE,10000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16510000000000002,0.01,0,1,NA,NA,NA,NA,NA +DE,10000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3367,0.01,0,1,NA,NA,NA,NA,NA +DE,10000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5131,0.01,0,1,NA,NA,NA,NA,NA +DE,10000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6295,0.01,0,1,NA,NA,NA,NA,NA +DE,10000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6813,0.01,0,1,NA,NA,NA,NA,NA +DE,10000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6925,0.01,0,1,NA,NA,NA,NA,NA +DE,10000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6748000000000001,0.01,0,1,NA,NA,NA,NA,NA +FL,12000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10799999999999998,0.01,0,1,NA,NA,NA,NA,NA +FL,12000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16800000000000004,0.01,0,1,NA,NA,NA,NA,NA +FL,12000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.32530000000000003,0.01,0,1,NA,NA,NA,NA,NA +FL,12000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4935000000000001,0.01,0,1,NA,NA,NA,NA,NA +FL,12000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.613,0.01,0,1,NA,NA,NA,NA,NA +FL,12000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6705,0.01,0,1,NA,NA,NA,NA,NA +FL,12000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6844,0.01,0,1,NA,NA,NA,NA,NA +FL,12000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6687000000000001,0.01,0,1,NA,NA,NA,NA,NA +GA,13000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09850000000000005,0.01,0,1,NA,NA,NA,NA,NA +GA,13000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16549999999999998,0.01,0,1,NA,NA,NA,NA,NA +GA,13000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.34119999999999995,0.01,0,1,NA,NA,NA,NA,NA +GA,13000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5245,0.01,0,1,NA,NA,NA,NA,NA +GA,13000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6466000000000001,0.01,0,1,NA,NA,NA,NA,NA +GA,13000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7026,0.01,0,1,NA,NA,NA,NA,NA +GA,13000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.718,0.01,0,1,NA,NA,NA,NA,NA +GA,13000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7072,0.01,0,1,NA,NA,NA,NA,NA +GU,66000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15390000000000004,0.01,0,1,NA,NA,NA,NA,NA +GU,66000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2108,0.01,0,1,NA,NA,NA,NA,NA +GU,66000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3448,0.01,0,1,NA,NA,NA,NA,NA +GU,66000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4714,0.01,0,1,NA,NA,NA,NA,NA +GU,66000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.563,0.01,0,1,NA,NA,NA,NA,NA +GU,66000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6122000000000001,0.01,0,1,NA,NA,NA,NA,NA +GU,66000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6285000000000001,0.01,0,1,NA,NA,NA,NA,NA +GU,66000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6134,0.01,0,1,NA,NA,NA,NA,NA +HI,15000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09230000000000003,0.01,0,1,NA,NA,NA,NA,NA +HI,15000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15059999999999996,0.01,0,1,NA,NA,NA,NA,NA +HI,15000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.29910000000000003,0.01,0,1,NA,NA,NA,NA,NA +HI,15000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4653000000000001,0.01,0,1,NA,NA,NA,NA,NA +HI,15000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6356999999999999,0.01,0,1,NA,NA,NA,NA,NA +HI,15000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7482,0.01,0,1,NA,NA,NA,NA,NA +HI,15000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7744,0.01,0,1,NA,NA,NA,NA,NA +HI,15000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7635000000000001,0.01,0,1,NA,NA,NA,NA,NA +IA,19000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.089400000000000035,0.01,0,1,NA,NA,NA,NA,NA +IA,19000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12860000000000005,0.01,0,1,NA,NA,NA,NA,NA +IA,19000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2279,0.01,0,1,NA,NA,NA,NA,NA +IA,19000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3468,0.01,0,1,NA,NA,NA,NA,NA +IA,19000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4617,0.01,0,1,NA,NA,NA,NA,NA +IA,19000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5528,0.01,0,1,NA,NA,NA,NA,NA +IA,19000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6133,0.01,0,1,NA,NA,NA,NA,NA +IA,19000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6528,0.01,0,1,NA,NA,NA,NA,NA +ID,16000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11939999999999996,0.01,0,1,NA,NA,NA,NA,NA +ID,16000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16679999999999995,0.01,0,1,NA,NA,NA,NA,NA +ID,16000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2823,0.01,0,1,NA,NA,NA,NA,NA +ID,16000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4031,0.01,0,1,NA,NA,NA,NA,NA +ID,16000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.505,0.01,0,1,NA,NA,NA,NA,NA +ID,16000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.573,0.01,0,1,NA,NA,NA,NA,NA +ID,16000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6081,0.01,0,1,NA,NA,NA,NA,NA +ID,16000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6069,0.01,0,1,NA,NA,NA,NA,NA +IL,17000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09240000000000004,0.01,0,1,NA,NA,NA,NA,NA +IL,17000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13429999999999995,0.01,0,1,NA,NA,NA,NA,NA +IL,17000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.24170000000000005,0.01,0,1,NA,NA,NA,NA,NA +IL,17000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.365,0.01,0,1,NA,NA,NA,NA,NA +IL,17000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.47629999999999995,0.01,0,1,NA,NA,NA,NA,NA +IL,17000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5567,0.01,0,1,NA,NA,NA,NA,NA +IL,17000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6061000000000001,0.01,0,1,NA,NA,NA,NA,NA +IL,17000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.619,0.01,0,1,NA,NA,NA,NA,NA +IN,18000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09919999999999995,0.01,0,1,NA,NA,NA,NA,NA +IN,18000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1612,0.01,0,1,NA,NA,NA,NA,NA +IN,18000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.31899999999999995,0.01,0,1,NA,NA,NA,NA,NA +IN,18000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4754,0.01,0,1,NA,NA,NA,NA,NA +IN,18000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5694,0.01,0,1,NA,NA,NA,NA,NA +IN,18000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5992,0.01,0,1,NA,NA,NA,NA,NA +IN,18000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5912,0.01,0,1,NA,NA,NA,NA,NA +IN,18000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5566,0.01,0,1,NA,NA,NA,NA,NA +KS,20000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1211,0.01,0,1,NA,NA,NA,NA,NA +KS,20000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16549999999999998,0.01,0,1,NA,NA,NA,NA,NA +KS,20000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2751,0.01,0,1,NA,NA,NA,NA,NA +KS,20000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3922,0.01,0,1,NA,NA,NA,NA,NA +KS,20000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.495,0.01,0,1,NA,NA,NA,NA,NA +KS,20000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5687,0.01,0,1,NA,NA,NA,NA,NA +KS,20000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6135999999999999,0.01,0,1,NA,NA,NA,NA,NA +KS,20000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6252,0.01,0,1,NA,NA,NA,NA,NA +KY,21000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.0917,0.01,0,1,NA,NA,NA,NA,NA +KY,21000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.14839999999999998,0.01,0,1,NA,NA,NA,NA,NA +KY,21000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2891,0.01,0,1,NA,NA,NA,NA,NA +KY,21000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4278,0.01,0,1,NA,NA,NA,NA,NA +KY,21000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5147999999999999,0.01,0,1,NA,NA,NA,NA,NA +KY,21000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.546,0.01,0,1,NA,NA,NA,NA,NA +KY,21000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5446,0.01,0,1,NA,NA,NA,NA,NA +KY,21000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5175000000000001,0.01,0,1,NA,NA,NA,NA,NA +LA,22000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10840000000000004,0.01,0,1,NA,NA,NA,NA,NA +LA,22000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1703,0.01,0,1,NA,NA,NA,NA,NA +LA,22000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3206,0.01,0,1,NA,NA,NA,NA,NA +LA,22000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4588,0.01,0,1,NA,NA,NA,NA,NA +LA,22000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5387,0.01,0,1,NA,NA,NA,NA,NA +LA,22000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5668,0.01,0,1,NA,NA,NA,NA,NA +LA,22000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5665,0.01,0,1,NA,NA,NA,NA,NA +LA,22000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5450999999999999,0.01,0,1,NA,NA,NA,NA,NA +MA,25000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10440000000000003,0.01,0,1,NA,NA,NA,NA,NA +MA,25000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15949999999999998,0.01,0,1,NA,NA,NA,NA,NA +MA,25000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.30589999999999995,0.01,0,1,NA,NA,NA,NA,NA +MA,25000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4787,0.01,0,1,NA,NA,NA,NA,NA +MA,25000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6269,0.01,0,1,NA,NA,NA,NA,NA +MA,25000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7229,0.01,0,1,NA,NA,NA,NA,NA +MA,25000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7734,0.01,0,1,NA,NA,NA,NA,NA +MA,25000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7922,0.01,0,1,NA,NA,NA,NA,NA +MD,24000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09760000000000002,0.01,0,1,NA,NA,NA,NA,NA +MD,24000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13939999999999997,0.01,0,1,NA,NA,NA,NA,NA +MD,24000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.25039999999999996,0.01,0,1,NA,NA,NA,NA,NA +MD,24000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3842,0.01,0,1,NA,NA,NA,NA,NA +MD,24000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5105999999999999,0.01,0,1,NA,NA,NA,NA,NA +MD,24000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6079,0.01,0,1,NA,NA,NA,NA,NA +MD,24000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6719999999999999,0.01,0,1,NA,NA,NA,NA,NA +MD,24000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6997,0.01,0,1,NA,NA,NA,NA,NA +ME,23000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11950000000000004,0.01,0,1,NA,NA,NA,NA,NA +ME,23000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.17290000000000005,0.01,0,1,NA,NA,NA,NA,NA +ME,23000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3183,0.01,0,1,NA,NA,NA,NA,NA +ME,23000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4582000000000001,0.01,0,1,NA,NA,NA,NA,NA +ME,23000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5484,0.01,0,1,NA,NA,NA,NA,NA +ME,23000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6,0.01,0,1,NA,NA,NA,NA,NA +ME,23000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6276999999999999,0.01,0,1,NA,NA,NA,NA,NA +ME,23000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6306,0.01,0,1,NA,NA,NA,NA,NA +MI,26000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1231,0.01,0,1,NA,NA,NA,NA,NA +MI,26000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16700000000000004,0.01,0,1,NA,NA,NA,NA,NA +MI,26000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2724,0.01,0,1,NA,NA,NA,NA,NA +MI,26000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3822,0.01,0,1,NA,NA,NA,NA,NA +MI,26000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4778,0.01,0,1,NA,NA,NA,NA,NA +MI,26000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5438000000000001,0.01,0,1,NA,NA,NA,NA,NA +MI,26000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5784,0.01,0,1,NA,NA,NA,NA,NA +MI,26000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.577,0.01,0,1,NA,NA,NA,NA,NA +MN,27000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.08919999999999995,0.01,0,1,NA,NA,NA,NA,NA +MN,27000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13439999999999996,0.01,0,1,NA,NA,NA,NA,NA +MN,27000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2551,0.01,0,1,NA,NA,NA,NA,NA +MN,27000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4036,0.01,0,1,NA,NA,NA,NA,NA +MN,27000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5453,0.01,0,1,NA,NA,NA,NA,NA +MN,27000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6523,0.01,0,1,NA,NA,NA,NA,NA +MN,27000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7185,0.01,0,1,NA,NA,NA,NA,NA +MN,27000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7425999999999999,0.01,0,1,NA,NA,NA,NA,NA +MO,29000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.06320000000000003,0.01,0,1,NA,NA,NA,NA,NA +MO,29000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.10609999999999996,0.01,0,1,NA,NA,NA,NA,NA +MO,29000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.23429999999999995,0.01,0,1,NA,NA,NA,NA,NA +MO,29000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3934,0.01,0,1,NA,NA,NA,NA,NA +MO,29000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.509,0.01,0,1,NA,NA,NA,NA,NA +MO,29000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5606,0.01,0,1,NA,NA,NA,NA,NA +MO,29000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5703,0.01,0,1,NA,NA,NA,NA,NA +MO,29000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5483,0.01,0,1,NA,NA,NA,NA,NA +MP,69000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15380000000000005,0.01,0,1,NA,NA,NA,NA,NA +MP,69000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2107,0.01,0,1,NA,NA,NA,NA,NA +MP,69000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3449,0.01,0,1,NA,NA,NA,NA,NA +MP,69000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4714,0.01,0,1,NA,NA,NA,NA,NA +MP,69000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5630999999999999,0.01,0,1,NA,NA,NA,NA,NA +MP,69000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6122000000000001,0.01,0,1,NA,NA,NA,NA,NA +MP,69000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6286,0.01,0,1,NA,NA,NA,NA,NA +MP,69000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6134,0.01,0,1,NA,NA,NA,NA,NA +MS,28000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.08399999999999996,0.01,0,1,NA,NA,NA,NA,NA +MS,28000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13639999999999997,0.01,0,1,NA,NA,NA,NA,NA +MS,28000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.26849999999999996,0.01,0,1,NA,NA,NA,NA,NA +MS,28000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3996,0.01,0,1,NA,NA,NA,NA,NA +MS,28000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4829,0.01,0,1,NA,NA,NA,NA,NA +MS,28000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5163,0.01,0,1,NA,NA,NA,NA,NA +MS,28000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5183,0.01,0,1,NA,NA,NA,NA,NA +MS,28000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4919,0.01,0,1,NA,NA,NA,NA,NA +MT,30000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1382,0.01,0,1,NA,NA,NA,NA,NA +MT,30000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.19599999999999995,0.01,0,1,NA,NA,NA,NA,NA +MT,30000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.32789999999999997,0.01,0,1,NA,NA,NA,NA,NA +MT,30000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4583,0.01,0,1,NA,NA,NA,NA,NA +MT,30000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5552,0.01,0,1,NA,NA,NA,NA,NA +MT,30000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6073999999999999,0.01,0,1,NA,NA,NA,NA,NA +MT,30000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6241,0.01,0,1,NA,NA,NA,NA,NA +MT,30000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6087,0.01,0,1,NA,NA,NA,NA,NA +NC,37000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13890000000000002,0.01,0,1,NA,NA,NA,NA,NA +NC,37000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.17490000000000006,0.01,0,1,NA,NA,NA,NA,NA +NC,37000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.25849999999999995,0.01,0,1,NA,NA,NA,NA,NA +NC,37000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3415,0.01,0,1,NA,NA,NA,NA,NA +NC,37000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4227,0.01,0,1,NA,NA,NA,NA,NA +NC,37000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4932,0.01,0,1,NA,NA,NA,NA,NA +NC,37000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5472,0.01,0,1,NA,NA,NA,NA,NA +NC,37000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5731999999999999,0.01,0,1,NA,NA,NA,NA,NA +ND,38000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16300000000000003,0.01,0,1,NA,NA,NA,NA,NA +ND,38000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2208,0.01,0,1,NA,NA,NA,NA,NA +ND,38000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.35440000000000005,0.01,0,1,NA,NA,NA,NA,NA +ND,38000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.479,0.01,0,1,NA,NA,NA,NA,NA +ND,38000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5704,0.01,0,1,NA,NA,NA,NA,NA +ND,38000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6211,0.01,0,1,NA,NA,NA,NA,NA +ND,38000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6395,0.01,0,1,NA,NA,NA,NA,NA +ND,38000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6273,0.01,0,1,NA,NA,NA,NA,NA +NE,31000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11050000000000004,0.01,0,1,NA,NA,NA,NA,NA +NE,31000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.17159999999999995,0.01,0,1,NA,NA,NA,NA,NA +NE,31000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3278,0.01,0,1,NA,NA,NA,NA,NA +NE,31000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4867,0.01,0,1,NA,NA,NA,NA,NA +NE,31000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5892999999999999,0.01,0,1,NA,NA,NA,NA,NA +NE,31000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6302,0.01,0,1,NA,NA,NA,NA,NA +NE,31000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6328,0.01,0,1,NA,NA,NA,NA,NA +NE,31000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6068,0.01,0,1,NA,NA,NA,NA,NA +NH,33000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13649999999999995,0.01,0,1,NA,NA,NA,NA,NA +NH,33000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.19330000000000003,0.01,0,1,NA,NA,NA,NA,NA +NH,33000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3226,0.01,0,1,NA,NA,NA,NA,NA +NH,33000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4496,0.01,0,1,NA,NA,NA,NA,NA +NH,33000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5432,0.01,0,1,NA,NA,NA,NA,NA +NH,33000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5928,0.01,0,1,NA,NA,NA,NA,NA +NH,33000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6071,0.01,0,1,NA,NA,NA,NA,NA +NH,33000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5892,0.01,0,1,NA,NA,NA,NA,NA +NJ,34000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.20120000000000005,0.01,0,1,NA,NA,NA,NA,NA +NJ,34000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2228,0.01,0,1,NA,NA,NA,NA,NA +NJ,34000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3962,0.01,0,1,NA,NA,NA,NA,NA +NJ,34000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7029000000000001,0.01,0,1,NA,NA,NA,NA,NA +NJ,34000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8492999999999999,0.01,0,1,NA,NA,NA,NA,NA +NJ,34000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8857,0.01,0,1,NA,NA,NA,NA,NA +NJ,34000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8929,0.01,0,1,NA,NA,NA,NA,NA +NJ,34000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8858,0.01,0,1,NA,NA,NA,NA,NA +NM,35000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15800000000000003,0.01,0,1,NA,NA,NA,NA,NA +NM,35000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1926,0.01,0,1,NA,NA,NA,NA,NA +NM,35000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.272,0.01,0,1,NA,NA,NA,NA,NA +NM,35000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3476,0.01,0,1,NA,NA,NA,NA,NA +NM,35000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4248,0.01,0,1,NA,NA,NA,NA,NA +NM,35000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5001,0.01,0,1,NA,NA,NA,NA,NA +NM,35000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5687,0.01,0,1,NA,NA,NA,NA,NA +NM,35000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6122000000000001,0.01,0,1,NA,NA,NA,NA,NA +NV,32000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12990000000000002,0.01,0,1,NA,NA,NA,NA,NA +NV,32000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.18010000000000004,0.01,0,1,NA,NA,NA,NA,NA +NV,32000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.29779999999999995,0.01,0,1,NA,NA,NA,NA,NA +NV,32000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4125,0.01,0,1,NA,NA,NA,NA,NA +NV,32000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5044,0.01,0,1,NA,NA,NA,NA,NA +NV,32000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5623,0.01,0,1,NA,NA,NA,NA,NA +NV,32000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.589,0.01,0,1,NA,NA,NA,NA,NA +NV,32000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5823,0.01,0,1,NA,NA,NA,NA,NA +NY,36000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.04279999999999995,0.01,0,1,NA,NA,NA,NA,NA +NY,36000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.06610000000000005,0.01,0,1,NA,NA,NA,NA,NA +NY,36000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1351,0.01,0,1,NA,NA,NA,NA,NA +NY,36000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.24119999999999997,0.01,0,1,NA,NA,NA,NA,NA +NY,36000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3751,0.01,0,1,NA,NA,NA,NA,NA +NY,36000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5085999999999999,0.01,0,1,NA,NA,NA,NA,NA +NY,36000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6121,0.01,0,1,NA,NA,NA,NA,NA +NY,36000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6639999999999999,0.01,0,1,NA,NA,NA,NA,NA +OH,39000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.08620000000000005,0.01,0,1,NA,NA,NA,NA,NA +OH,39000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.14470000000000005,0.01,0,1,NA,NA,NA,NA,NA +OH,39000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.29869999999999997,0.01,0,1,NA,NA,NA,NA,NA +OH,39000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4586,0.01,0,1,NA,NA,NA,NA,NA +OH,39000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5590999999999999,0.01,0,1,NA,NA,NA,NA,NA +OH,39000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5957,0.01,0,1,NA,NA,NA,NA,NA +OH,39000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5951,0.01,0,1,NA,NA,NA,NA,NA +OH,39000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5671999999999999,0.01,0,1,NA,NA,NA,NA,NA +OK,40000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1402,0.01,0,1,NA,NA,NA,NA,NA +OK,40000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.20230000000000004,0.01,0,1,NA,NA,NA,NA,NA +OK,40000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3415,0.01,0,1,NA,NA,NA,NA,NA +OK,40000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4738,0.01,0,1,NA,NA,NA,NA,NA +OK,40000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5677,0.01,0,1,NA,NA,NA,NA,NA +OK,40000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6189,0.01,0,1,NA,NA,NA,NA,NA +OK,40000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6404000000000001,0.01,0,1,NA,NA,NA,NA,NA +OK,40000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6377999999999999,0.01,0,1,NA,NA,NA,NA,NA +OR,41000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07420000000000004,0.01,0,1,NA,NA,NA,NA,NA +OR,41000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1239,0.01,0,1,NA,NA,NA,NA,NA +OR,41000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.264,0.01,0,1,NA,NA,NA,NA,NA +OR,41000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4300000000000001,0.01,0,1,NA,NA,NA,NA,NA +OR,41000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5528,0.01,0,1,NA,NA,NA,NA,NA +OR,41000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6066,0.01,0,1,NA,NA,NA,NA,NA +OR,41000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.614,0.01,0,1,NA,NA,NA,NA,NA +OR,41000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5958,0.01,0,1,NA,NA,NA,NA,NA +PA,42000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.0504,0.01,0,1,NA,NA,NA,NA,NA +PA,42000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09030000000000005,0.01,0,1,NA,NA,NA,NA,NA +PA,42000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.22009999999999996,0.01,0,1,NA,NA,NA,NA,NA +PA,42000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4051,0.01,0,1,NA,NA,NA,NA,NA +PA,42000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5576,0.01,0,1,NA,NA,NA,NA,NA +PA,42000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6325000000000001,0.01,0,1,NA,NA,NA,NA,NA +PA,42000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6507000000000001,0.01,0,1,NA,NA,NA,NA,NA +PA,42000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6334,0.01,0,1,NA,NA,NA,NA,NA +PR,72000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0,0.01,0,1,NA,NA,NA,NA,NA +PR,72000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0,0.01,0,1,NA,NA,NA,NA,NA +PR,72000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0,0.01,0,1,NA,NA,NA,NA,NA +PR,72000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1734,0.01,0,1,NA,NA,NA,NA,NA +PR,72000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.24370000000000003,0.01,0,1,NA,NA,NA,NA,NA +PR,72000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3246,0.01,0,1,NA,NA,NA,NA,NA +PR,72000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.393,0.01,0,1,NA,NA,NA,NA,NA +PR,72000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4353,0.01,0,1,NA,NA,NA,NA,NA +RI,44000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.09350000000000004,0.01,0,1,NA,NA,NA,NA,NA +RI,44000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.14149999999999996,0.01,0,1,NA,NA,NA,NA,NA +RI,44000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.27270000000000005,0.01,0,1,NA,NA,NA,NA,NA +RI,44000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4267,0.01,0,1,NA,NA,NA,NA,NA +RI,44000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5452,0.01,0,1,NA,NA,NA,NA,NA +RI,44000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6038,0.01,0,1,NA,NA,NA,NA,NA +RI,44000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6202,0.01,0,1,NA,NA,NA,NA,NA +RI,44000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6084,0.01,0,1,NA,NA,NA,NA,NA +SC,45000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1007,0.01,0,1,NA,NA,NA,NA,NA +SC,45000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1643,0.01,0,1,NA,NA,NA,NA,NA +SC,45000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3248,0.01,0,1,NA,NA,NA,NA,NA +SC,45000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4812,0.01,0,1,NA,NA,NA,NA,NA +SC,45000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5772999999999999,0.01,0,1,NA,NA,NA,NA,NA +SC,45000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6152,0.01,0,1,NA,NA,NA,NA,NA +SC,45000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6187,0.01,0,1,NA,NA,NA,NA,NA +SC,45000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.596,0.01,0,1,NA,NA,NA,NA,NA +SD,46000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.13839999999999997,0.01,0,1,NA,NA,NA,NA,NA +SD,46000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.18889999999999996,0.01,0,1,NA,NA,NA,NA,NA +SD,46000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.30700000000000005,0.01,0,1,NA,NA,NA,NA,NA +SD,46000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4234,0.01,0,1,NA,NA,NA,NA,NA +SD,46000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5195000000000001,0.01,0,1,NA,NA,NA,NA,NA +SD,46000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5808,0.01,0,1,NA,NA,NA,NA,NA +SD,46000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6069,0.01,0,1,NA,NA,NA,NA,NA +SD,46000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5998,0.01,0,1,NA,NA,NA,NA,NA +TN,47000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07989999999999997,0.01,0,1,NA,NA,NA,NA,NA +TN,47000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.136,0.01,0,1,NA,NA,NA,NA,NA +TN,47000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2845,0.01,0,1,NA,NA,NA,NA,NA +TN,47000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4399,0.01,0,1,NA,NA,NA,NA,NA +TN,47000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5391,0.01,0,1,NA,NA,NA,NA,NA +TN,47000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5763,0.01,0,1,NA,NA,NA,NA,NA +TN,47000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5761000000000001,0.01,0,1,NA,NA,NA,NA,NA +TN,47000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5488999999999999,0.01,0,1,NA,NA,NA,NA,NA +TX,48000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07069999999999999,0.01,0,1,NA,NA,NA,NA,NA +TX,48000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11929999999999996,0.01,0,1,NA,NA,NA,NA,NA +TX,48000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2563,0.01,0,1,NA,NA,NA,NA,NA +TX,48000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4184,0.01,0,1,NA,NA,NA,NA,NA +TX,48000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5373,0.01,0,1,NA,NA,NA,NA,NA +TX,48000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5903,0.01,0,1,NA,NA,NA,NA,NA +TX,48000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5983,0.01,0,1,NA,NA,NA,NA,NA +TX,48000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5737,0.01,0,1,NA,NA,NA,NA,NA +UT,49000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1603,0.01,0,1,NA,NA,NA,NA,NA +UT,49000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.23409999999999995,0.01,0,1,NA,NA,NA,NA,NA +UT,49000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4054,0.01,0,1,NA,NA,NA,NA,NA +UT,49000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5633,0.01,0,1,NA,NA,NA,NA,NA +UT,49000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6803,0.01,0,1,NA,NA,NA,NA,NA +UT,49000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7534,0.01,0,1,NA,NA,NA,NA,NA +UT,49000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7885,0.01,0,1,NA,NA,NA,NA,NA +UT,49000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7911,0.01,0,1,NA,NA,NA,NA,NA +VA,51000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.12139999999999997,0.01,0,1,NA,NA,NA,NA,NA +VA,51000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.16169999999999995,0.01,0,1,NA,NA,NA,NA,NA +VA,51000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.26070000000000004,0.01,0,1,NA,NA,NA,NA,NA +VA,51000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3712,0.01,0,1,NA,NA,NA,NA,NA +VA,51000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.482,0.01,0,1,NA,NA,NA,NA,NA +VA,51000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5764,0.01,0,1,NA,NA,NA,NA,NA +VA,51000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6455,0.01,0,1,NA,NA,NA,NA,NA +VA,51000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6806,0.01,0,1,NA,NA,NA,NA,NA +VI,78000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.15380000000000005,0.01,0,1,NA,NA,NA,NA,NA +VI,78000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.2108,0.01,0,1,NA,NA,NA,NA,NA +VI,78000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3447,0.01,0,1,NA,NA,NA,NA,NA +VI,78000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4716,0.01,0,1,NA,NA,NA,NA,NA +VI,78000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5629,0.01,0,1,NA,NA,NA,NA,NA +VI,78000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6121,0.01,0,1,NA,NA,NA,NA,NA +VI,78000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6285000000000001,0.01,0,1,NA,NA,NA,NA,NA +VI,78000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6135999999999999,0.01,0,1,NA,NA,NA,NA,NA +VT,50000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.1623,0.01,0,1,NA,NA,NA,NA,NA +VT,50000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.235,0.01,0,1,NA,NA,NA,NA,NA +VT,50000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4272,0.01,0,1,NA,NA,NA,NA,NA +VT,50000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6154,0.01,0,1,NA,NA,NA,NA,NA +VT,50000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7498,0.01,0,1,NA,NA,NA,NA,NA +VT,50000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8316,0.01,0,1,NA,NA,NA,NA,NA +VT,50000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8601,0.01,0,1,NA,NA,NA,NA,NA +VT,50000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.8618,0.01,0,1,NA,NA,NA,NA,NA +WA,53000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.11240000000000006,0.01,0,1,NA,NA,NA,NA,NA +WA,53000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.17110000000000003,0.01,0,1,NA,NA,NA,NA,NA +WA,53000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3206,0.01,0,1,NA,NA,NA,NA,NA +WA,53000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4817,0.01,0,1,NA,NA,NA,NA,NA +WA,53000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6066,0.01,0,1,NA,NA,NA,NA,NA +WA,53000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6784,0.01,0,1,NA,NA,NA,NA,NA +WA,53000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7088,0.01,0,1,NA,NA,NA,NA,NA +WA,53000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.7070000000000001,0.01,0,1,NA,NA,NA,NA,NA +WI,55000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07730000000000004,0.01,0,1,NA,NA,NA,NA,NA +WI,55000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.133,0.01,0,1,NA,NA,NA,NA,NA +WI,55000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.28759999999999997,0.01,0,1,NA,NA,NA,NA,NA +WI,55000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.46419999999999995,0.01,0,1,NA,NA,NA,NA,NA +WI,55000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.5921000000000001,0.01,0,1,NA,NA,NA,NA,NA +WI,55000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6541,0.01,0,1,NA,NA,NA,NA,NA +WI,55000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6707000000000001,0.01,0,1,NA,NA,NA,NA,NA +WI,55000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.6529,0.01,0,1,NA,NA,NA,NA,NA +WV,54000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.18610000000000004,0.01,0,1,NA,NA,NA,NA,NA +WV,54000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.21809999999999996,0.01,0,1,NA,NA,NA,NA,NA +WV,54000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.28690000000000004,0.01,0,1,NA,NA,NA,NA,NA +WV,54000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3379,0.01,0,1,NA,NA,NA,NA,NA +WV,54000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3786000000000001,0.01,0,1,NA,NA,NA,NA,NA +WV,54000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4086,0.01,0,1,NA,NA,NA,NA,NA +WV,54000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4332,0.01,0,1,NA,NA,NA,NA,NA +WV,54000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4416,0.01,0,1,NA,NA,NA,NA,NA +WY,56000,2021-01-01,2021-01-31,incidD_vaccadj_jan2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.00860000000000005,0.01,0,1,NA,NA,NA,NA,NA +WY,56000,2021-02-01,2021-02-28,incidD_vaccadj_feb2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.01429999999999998,0.01,0,1,NA,NA,NA,NA,NA +WY,56000,2021-03-01,2021-03-31,incidD_vaccadj_mar2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.03420000000000001,0.01,0,1,NA,NA,NA,NA,NA +WY,56000,2021-04-01,2021-04-30,incidD_vaccadj_apr2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.07509999999999994,0.01,0,1,NA,NA,NA,NA,NA +WY,56000,2021-05-01,2021-05-31,incidD_vaccadj_may2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.14790000000000003,0.01,0,1,NA,NA,NA,NA,NA +WY,56000,2021-06-01,2021-06-30,incidD_vaccadj_jun2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.25229999999999997,0.01,0,1,NA,NA,NA,NA,NA +WY,56000,2021-07-01,2021-07-31,incidD_vaccadj_jul2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.3671,0.01,0,1,NA,NA,NA,NA,NA +WY,56000,2021-08-01,2021-08-07,incidD_vaccadj_aug2021,SinglePeriodModifier,outcome,vacc_outcome,incidD::probability,NA,truncnorm,0.4439999999999999,0.01,0,1,NA,NA,NA,NA,NA diff --git a/flepimop/R_packages/config.writer/tests/testthat/sample_config.yml b/flepimop/R_packages/config.writer/tests/testthat/sample_config.yml index 59233c1db..5cc7782d3 100644 --- a/flepimop/R_packages/config.writer/tests/testthat/sample_config.yml +++ b/flepimop/R_packages/config.writer/tests/testthat/sample_config.yml @@ -67,8 +67,6 @@ spatial_setup: geodata: geodata_territories_2019_statelevel.csv mobility: mobility_territories_2011-2015_statelevel.csv - popnodes: pop2019est - nodenames: geoid include_in_report: include_in_report state_level: TRUE @@ -131,9 +129,9 @@ interventions: - inference settings: local_variance: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2020-01-01 period_end_date: 2021-08-07 value: @@ -149,22 +147,22 @@ interventions: a: -1 b: 1 lockdown: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: ["01000"] + - subpop: ["01000"] periods: - start_date: 2020-04-04 end_date: 2020-04-30 - - affected_geoids: ["02000"] + - subpop: ["02000"] periods: - start_date: 2020-03-28 end_date: 2020-04-23 - - affected_geoids: ["04000"] + - subpop: ["04000"] periods: - start_date: 2020-03-31 end_date: 2020-05-15 - - affected_geoids: ["06000"] + - subpop: ["06000"] periods: - start_date: 2020-03-19 end_date: 2020-05-07 @@ -172,185 +170,185 @@ interventions: end_date: 2021-01-11 - start_date: 2021-01-12 end_date: 2021-01-24 - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2020-03-26 end_date: 2020-04-26 - start_date: 2020-11-20 end_date: 2021-01-03 - - affected_geoids: ["09000"] + - subpop: ["09000"] periods: - start_date: 2020-03-23 end_date: 2020-05-20 - - affected_geoids: ["10000"] + - subpop: ["10000"] periods: - start_date: 2020-03-24 end_date: 2020-05-31 - - affected_geoids: ["11000"] + - subpop: ["11000"] periods: - start_date: 2020-04-01 end_date: 2020-05-29 - - affected_geoids: ["12000"] + - subpop: ["12000"] periods: - start_date: 2020-04-03 end_date: 2020-05-04 - - affected_geoids: ["13000"] + - subpop: ["13000"] periods: - start_date: 2020-04-03 end_date: 2020-04-27 - - affected_geoids: ["15000"] + - subpop: ["15000"] periods: - start_date: 2020-03-25 end_date: 2020-05-06 - - affected_geoids: ["16000"] + - subpop: ["16000"] periods: - start_date: 2020-03-25 end_date: 2020-04-30 - - affected_geoids: ["17000"] + - subpop: ["17000"] periods: - start_date: 2020-03-21 end_date: 2020-05-29 - - affected_geoids: ["18000"] + - subpop: ["18000"] periods: - start_date: 2020-03-24 end_date: 2020-05-03 - - affected_geoids: ["20000"] + - subpop: ["20000"] periods: - start_date: 2020-03-30 end_date: 2020-05-04 - - affected_geoids: ["21000"] + - subpop: ["21000"] periods: - start_date: 2020-03-26 end_date: 2020-05-10 - - affected_geoids: ["22000"] + - subpop: ["22000"] periods: - start_date: 2020-03-23 end_date: 2020-05-14 - - affected_geoids: ["23000"] + - subpop: ["23000"] periods: - start_date: 2020-04-02 end_date: 2020-04-30 - - affected_geoids: ["24000"] + - subpop: ["24000"] periods: - start_date: 2020-03-30 end_date: 2020-05-14 - - affected_geoids: ["25000"] + - subpop: ["25000"] periods: - start_date: 2020-03-24 end_date: 2020-05-18 - - affected_geoids: ["26000"] + - subpop: ["26000"] periods: - start_date: 2020-03-24 end_date: 2020-05-31 - - affected_geoids: ["27000"] + - subpop: ["27000"] periods: - start_date: 2020-03-27 end_date: 2020-05-17 - - affected_geoids: ["28000"] + - subpop: ["28000"] periods: - start_date: 2020-04-03 end_date: 2020-04-27 - - affected_geoids: ["29000"] + - subpop: ["29000"] periods: - start_date: 2020-04-06 end_date: 2020-05-03 - - affected_geoids: ["30000"] + - subpop: ["30000"] periods: - start_date: 2020-03-28 end_date: 2020-04-26 - - affected_geoids: ["32000"] + - subpop: ["32000"] periods: - start_date: 2020-04-01 end_date: 2020-05-08 - - affected_geoids: ["33000"] + - subpop: ["33000"] periods: - start_date: 2020-03-27 end_date: 2020-05-10 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2020-03-21 end_date: 2020-05-18 - - affected_geoids: ["35000"] + - subpop: ["35000"] periods: - start_date: 2020-03-24 end_date: 2020-05-31 - start_date: 2020-11-16 end_date: 2020-12-01 - - affected_geoids: ["36000"] + - subpop: ["36000"] periods: - start_date: 2020-03-22 end_date: 2020-06-07 - - affected_geoids: ["37000"] + - subpop: ["37000"] periods: - start_date: 2020-03-30 end_date: 2020-05-07 - - affected_geoids: ["39000"] + - subpop: ["39000"] periods: - start_date: 2020-03-23 end_date: 2020-05-03 - - affected_geoids: ["41000"] + - subpop: ["41000"] periods: - start_date: 2020-03-23 end_date: 2020-05-14 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2020-03-28 end_date: 2020-05-07 - - affected_geoids: ["44000"] + - subpop: ["44000"] periods: - start_date: 2020-03-28 end_date: 2020-05-08 - - affected_geoids: ["45000"] + - subpop: ["45000"] periods: - start_date: 2020-04-07 end_date: 2020-04-20 - - affected_geoids: ["47000"] + - subpop: ["47000"] periods: - start_date: 2020-04-02 end_date: 2020-04-30 - - affected_geoids: ["48000"] + - subpop: ["48000"] periods: - start_date: 2020-03-31 end_date: 2020-04-30 - - affected_geoids: ["49000"] + - subpop: ["49000"] periods: - start_date: 2020-03-27 end_date: 2020-05-01 - - affected_geoids: ["50000"] + - subpop: ["50000"] periods: - start_date: 2020-03-25 end_date: 2020-05-15 - - affected_geoids: ["51000"] + - subpop: ["51000"] periods: - start_date: 2020-03-30 end_date: 2020-05-14 - - affected_geoids: ["53000"] + - subpop: ["53000"] periods: - start_date: 2020-03-23 end_date: 2020-05-04 - - affected_geoids: ["54000"] + - subpop: ["54000"] periods: - start_date: 2020-03-24 end_date: 2020-05-03 - - affected_geoids: ["55000"] + - subpop: ["55000"] periods: - start_date: 2020-03-25 end_date: 2020-05-13 - - affected_geoids: ["66000"] + - subpop: ["66000"] periods: - start_date: 2020-03-20 end_date: 2020-05-10 - start_date: 2020-08-16 end_date: 2020-09-24 - - affected_geoids: ["69000"] + - subpop: ["69000"] periods: - start_date: 2020-03-30 end_date: 2020-05-02 - - affected_geoids: ["72000"] + - subpop: ["72000"] periods: - start_date: 2020-03-30 end_date: 2020-05-24 - - affected_geoids: ["78000"] + - subpop: ["78000"] periods: - start_date: 2020-03-25 end_date: 2020-05-03 @@ -369,26 +367,26 @@ interventions: a: -1 b: 1 open_p1: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: ["01000"] + - subpop: ["01000"] periods: - start_date: 2020-05-01 end_date: 2020-05-21 - - affected_geoids: ["02000"] + - subpop: ["02000"] periods: - start_date: 2020-04-24 end_date: 2020-05-07 - - affected_geoids: ["04000"] + - subpop: ["04000"] periods: - start_date: 2020-06-29 end_date: 2020-10-01 - - affected_geoids: ["05000"] + - subpop: ["05000"] periods: - start_date: 2020-05-04 end_date: 2020-06-14 - - affected_geoids: ["06000"] + - subpop: ["06000"] periods: - start_date: 2020-07-06 end_date: 2020-11-20 @@ -396,7 +394,7 @@ interventions: end_date: 2020-12-05 - start_date: 2021-01-25 end_date: 2021-02-26 - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2020-07-01 end_date: 2020-09-28 @@ -404,11 +402,11 @@ interventions: end_date: 2020-11-19 - start_date: 2021-01-04 end_date: 2021-02-05 - - affected_geoids: ["09000"] + - subpop: ["09000"] periods: - start_date: 2020-05-21 end_date: 2020-06-16 - - affected_geoids: ["10000"] + - subpop: ["10000"] periods: - start_date: 2020-06-01 end_date: 2020-06-14 @@ -418,23 +416,23 @@ interventions: end_date: 2021-01-07 - start_date: 2021-01-08 end_date: 2021-02-11 - - affected_geoids: ["11000"] + - subpop: ["11000"] periods: - start_date: 2020-05-30 end_date: 2020-06-21 - start_date: 2020-12-23 end_date: 2021-01-21 - - affected_geoids: ["12000"] + - subpop: ["12000"] periods: - start_date: 2020-05-05 end_date: 2020-06-04 - start_date: 2020-06-26 end_date: 2020-09-13 - - affected_geoids: ["13000"] + - subpop: ["13000"] periods: - start_date: 2020-04-28 end_date: 2020-05-31 - - affected_geoids: ["15000"] + - subpop: ["15000"] periods: - start_date: 2020-05-07 end_date: 2020-05-31 @@ -442,109 +440,109 @@ interventions: end_date: 2020-09-23 - start_date: 2020-10-27 end_date: 2020-11-10 - - affected_geoids: ["16000"] + - subpop: ["16000"] periods: - start_date: 2020-05-01 end_date: 2020-05-15 - - affected_geoids: ["18000"] + - subpop: ["18000"] periods: - start_date: 2020-05-04 end_date: 2020-05-21 - start_date: 2021-01-11 end_date: 2021-01-31 - - affected_geoids: ["19000"] + - subpop: ["19000"] periods: - start_date: 2020-05-15 end_date: 2020-05-27 - - affected_geoids: ["20000"] + - subpop: ["20000"] periods: - start_date: 2020-05-05 end_date: 2020-05-21 - - affected_geoids: ["21000"] + - subpop: ["21000"] periods: - start_date: 2020-05-11 end_date: 2020-05-21 - - affected_geoids: ["22000"] + - subpop: ["22000"] periods: - start_date: 2020-05-15 end_date: 2020-06-04 - - affected_geoids: ["23000"] + - subpop: ["23000"] periods: - start_date: 2020-05-01 end_date: 2020-05-31 - - affected_geoids: ["24000"] + - subpop: ["24000"] periods: - start_date: 2020-05-15 end_date: 2020-06-04 - - affected_geoids: ["25000"] + - subpop: ["25000"] periods: - start_date: 2020-05-19 end_date: 2020-06-07 - - affected_geoids: ["26000"] + - subpop: ["26000"] periods: - start_date: 2020-07-01 end_date: 2020-09-08 - start_date: 2020-11-18 end_date: 2020-12-20 - - affected_geoids: ["27000"] + - subpop: ["27000"] periods: - start_date: 2020-05-18 end_date: 2020-05-31 - start_date: 2020-11-13 end_date: 2020-12-17 - - affected_geoids: ["28000"] + - subpop: ["28000"] periods: - start_date: 2020-04-28 end_date: 2020-05-06 - - affected_geoids: ["30000"] + - subpop: ["30000"] periods: - start_date: 2020-04-27 end_date: 2020-05-31 - - affected_geoids: ["31000"] + - subpop: ["31000"] periods: - start_date: 2020-05-04 end_date: 2020-05-31 - - affected_geoids: ["32000"] + - subpop: ["32000"] periods: - start_date: 2020-05-09 end_date: 2020-05-28 - - affected_geoids: ["33000"] + - subpop: ["33000"] periods: - start_date: 2020-05-11 end_date: 2020-06-14 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2020-05-19 end_date: 2020-06-14 - - affected_geoids: ["35000"] + - subpop: ["35000"] periods: - start_date: 2020-07-13 end_date: 2020-08-28 - start_date: 2020-12-02 end_date: 2021-02-09 - - affected_geoids: ["36000"] + - subpop: ["36000"] periods: - start_date: 2020-06-08 end_date: 2020-06-21 - start_date: 2020-06-22 end_date: 2020-07-05 - - affected_geoids: ["37000"] + - subpop: ["37000"] periods: - start_date: 2020-05-08 end_date: 2020-05-21 - - affected_geoids: ["38000"] + - subpop: ["38000"] periods: - start_date: 2020-05-01 end_date: 2020-05-28 - - affected_geoids: ["39000"] + - subpop: ["39000"] periods: - start_date: 2020-05-04 end_date: 2020-05-20 - - affected_geoids: ["40000"] + - subpop: ["40000"] periods: - start_date: 2020-04-24 end_date: 2020-05-14 - - affected_geoids: ["41000"] + - subpop: ["41000"] periods: - start_date: 2020-05-15 end_date: 2020-06-04 @@ -552,65 +550,65 @@ interventions: end_date: 2020-12-02 - start_date: 2020-12-03 end_date: 2021-02-11 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2020-05-08 end_date: 2020-05-28 - start_date: 2020-12-12 end_date: 2021-01-03 - - affected_geoids: ["44000"] + - subpop: ["44000"] periods: - start_date: 2020-05-09 end_date: 2020-05-31 - start_date: 2020-11-30 end_date: 2020-12-20 - - affected_geoids: ["45000"] + - subpop: ["45000"] periods: - start_date: 2020-04-21 end_date: 2020-05-10 - - affected_geoids: ["47000"] + - subpop: ["47000"] periods: - start_date: 2020-05-01 end_date: 2020-05-24 - - affected_geoids: ["48000"] + - subpop: ["48000"] periods: - start_date: 2020-05-01 end_date: 2020-05-17 - start_date: 2020-06-26 end_date: 2020-09-20 - - affected_geoids: ["49000"] + - subpop: ["49000"] periods: - start_date: 2020-05-02 end_date: 2020-05-15 - - affected_geoids: ["50000"] + - subpop: ["50000"] periods: - start_date: 2020-05-16 end_date: 2020-05-31 - - affected_geoids: ["51000"] + - subpop: ["51000"] periods: - start_date: 2020-05-15 end_date: 2020-06-04 - - affected_geoids: ["53000"] + - subpop: ["53000"] periods: - start_date: 2020-05-05 end_date: 2020-05-28 - start_date: 2020-11-16 end_date: 2021-01-10 - - affected_geoids: ["54000"] + - subpop: ["54000"] periods: - start_date: 2020-05-04 end_date: 2020-05-20 - - affected_geoids: ["55000"] + - subpop: ["55000"] periods: - start_date: 2020-05-14 end_date: 2020-06-12 - start_date: 2020-10-29 end_date: 2021-01-12 - - affected_geoids: ["56000"] + - subpop: ["56000"] periods: - start_date: 2020-05-01 end_date: 2020-05-14 - - affected_geoids: ["66000"] + - subpop: ["66000"] periods: - start_date: 2020-05-11 end_date: 2020-07-19 @@ -620,17 +618,17 @@ interventions: end_date: 2020-12-25 - start_date: 2020-12-26 end_date: 2021-01-17 - - affected_geoids: ["69000"] + - subpop: ["69000"] periods: - start_date: 2020-05-03 end_date: 2020-05-24 - - affected_geoids: ["72000"] + - subpop: ["72000"] periods: - start_date: 2020-07-16 end_date: 2020-09-11 - start_date: 2020-12-07 end_date: 2021-01-07 - - affected_geoids: ["78000"] + - subpop: ["78000"] periods: - start_date: 2020-05-04 end_date: 2020-05-31 @@ -647,20 +645,20 @@ interventions: a: -1 b: 1 open_p2: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: ["01000"] + - subpop: ["01000"] periods: - start_date: 2020-05-22 end_date: 2020-07-15 - start_date: 2020-07-16 end_date: 2021-03-03 - - affected_geoids: ["02000"] + - subpop: ["02000"] periods: - start_date: 2020-05-08 end_date: 2020-05-21 - - affected_geoids: ["04000"] + - subpop: ["04000"] periods: - start_date: 2020-05-16 end_date: 2020-06-28 @@ -668,7 +666,7 @@ interventions: end_date: 2020-12-02 - start_date: 2020-12-03 end_date: 2021-03-04 - - affected_geoids: ["05000"] + - subpop: ["05000"] periods: - start_date: 2020-06-15 end_date: 2020-07-19 @@ -678,7 +676,7 @@ interventions: end_date: 2021-01-01 - start_date: 2021-01-02 end_date: 2021-02-25 - - affected_geoids: ["06000"] + - subpop: ["06000"] periods: - start_date: 2020-05-08 end_date: 2020-06-11 @@ -686,13 +684,13 @@ interventions: end_date: 2020-07-05 - start_date: 2021-02-27 end_date: 2021-04-06 - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2020-04-27 end_date: 2020-06-30 - start_date: 2020-09-29 end_date: 2020-11-04 - - affected_geoids: ["09000"] + - subpop: ["09000"] periods: - start_date: 2020-06-17 end_date: 2020-10-07 @@ -700,7 +698,7 @@ interventions: end_date: 2021-01-18 - start_date: 2021-01-19 end_date: 2021-03-18 - - affected_geoids: ["10000"] + - subpop: ["10000"] periods: - start_date: 2020-06-15 end_date: 2020-11-22 @@ -710,7 +708,7 @@ interventions: end_date: 2021-03-31 - start_date: 2021-04-01 end_date: 2021-05-20 - - affected_geoids: ["11000"] + - subpop: ["11000"] periods: - start_date: 2020-06-22 end_date: 2020-11-24 @@ -722,17 +720,17 @@ interventions: end_date: 2021-03-21 - start_date: 2021-03-22 end_date: 2021-04-30 - - affected_geoids: ["12000"] + - subpop: ["12000"] periods: - start_date: 2020-06-05 end_date: 2020-06-25 - start_date: 2020-09-14 end_date: 2020-09-24 - - affected_geoids: ["13000"] + - subpop: ["13000"] periods: - start_date: 2020-06-01 end_date: 2020-06-30 - - affected_geoids: ["15000"] + - subpop: ["15000"] periods: - start_date: 2020-06-01 end_date: 2020-08-07 @@ -742,7 +740,7 @@ interventions: end_date: 2021-01-18 - start_date: 2021-01-19 end_date: 2021-02-24 - - affected_geoids: ["16000"] + - subpop: ["16000"] periods: - start_date: 2020-05-16 end_date: 2020-05-29 @@ -750,13 +748,13 @@ interventions: end_date: 2020-12-29 - start_date: 2020-12-30 end_date: 2021-02-01 - - affected_geoids: ["17000"] + - subpop: ["17000"] periods: - start_date: 2020-10-30 end_date: 2020-11-19 - start_date: 2020-11-20 end_date: 2021-01-17 - - affected_geoids: ["18000"] + - subpop: ["18000"] periods: - start_date: 2020-05-22 end_date: 2020-06-11 @@ -764,17 +762,17 @@ interventions: end_date: 2021-01-10 - start_date: 2021-02-01 end_date: 2021-02-14 - - affected_geoids: ["19000"] + - subpop: ["19000"] periods: - start_date: 2020-05-28 end_date: 2020-06-11 - start_date: 2020-08-27 end_date: 2020-10-03 - - affected_geoids: ["20000"] + - subpop: ["20000"] periods: - start_date: 2020-05-22 end_date: 2020-06-07 - - affected_geoids: ["21000"] + - subpop: ["21000"] periods: - start_date: 2020-05-22 end_date: 2020-06-28 @@ -782,7 +780,7 @@ interventions: end_date: 2020-08-10 - start_date: 2020-11-20 end_date: 2020-12-13 - - affected_geoids: ["22000"] + - subpop: ["22000"] periods: - start_date: 2020-06-05 end_date: 2020-07-12 @@ -790,11 +788,11 @@ interventions: end_date: 2020-09-10 - start_date: 2020-11-25 end_date: 2021-03-02 - - affected_geoids: ["23000"] + - subpop: ["23000"] periods: - start_date: 2020-06-01 end_date: 2020-06-30 - - affected_geoids: ["24000"] + - subpop: ["24000"] periods: - start_date: 2020-06-05 end_date: 2020-09-03 @@ -804,7 +802,7 @@ interventions: end_date: 2021-01-31 - start_date: 2021-02-01 end_date: 2021-03-11 - - affected_geoids: ["25000"] + - subpop: ["25000"] periods: - start_date: 2020-06-08 end_date: 2020-07-05 @@ -812,7 +810,7 @@ interventions: end_date: 2021-01-24 - start_date: 2021-01-25 end_date: 2021-02-07 - - affected_geoids: ["26000"] + - subpop: ["26000"] periods: - start_date: 2020-06-01 end_date: 2020-06-30 @@ -826,23 +824,23 @@ interventions: end_date: 2021-01-31 - start_date: 2021-02-01 end_date: 2021-03-04 - - affected_geoids: ["27000"] + - subpop: ["27000"] periods: - start_date: 2020-06-01 end_date: 2020-06-09 - start_date: 2020-12-18 end_date: 2021-01-10 - - affected_geoids: ["28000"] + - subpop: ["28000"] periods: - start_date: 2020-05-07 end_date: 2020-05-31 - - affected_geoids: ["30000"] + - subpop: ["30000"] periods: - start_date: 2020-06-01 end_date: 2020-11-19 - start_date: 2020-11-20 end_date: 2021-01-14 - - affected_geoids: ["31000"] + - subpop: ["31000"] periods: - start_date: 2020-06-01 end_date: 2020-06-21 @@ -852,17 +850,17 @@ interventions: end_date: 2020-12-11 - start_date: 2020-12-12 end_date: 2020-12-23 - - affected_geoids: ["32000"] + - subpop: ["32000"] periods: - start_date: 2020-07-10 end_date: 2020-09-19 - start_date: 2020-11-24 end_date: 2021-02-14 - - affected_geoids: ["33000"] + - subpop: ["33000"] periods: - start_date: 2020-06-15 end_date: 2020-06-28 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2020-06-15 end_date: 2020-09-03 @@ -872,7 +870,7 @@ interventions: end_date: 2021-01-01 - start_date: 2021-01-02 end_date: 2021-02-04 - - affected_geoids: ["35000"] + - subpop: ["35000"] periods: - start_date: 2020-06-01 end_date: 2020-07-12 @@ -882,7 +880,7 @@ interventions: end_date: 2020-11-15 - start_date: 2021-02-10 end_date: 2021-02-23 - - affected_geoids: ["36000"] + - subpop: ["36000"] periods: - start_date: 2020-07-06 end_date: 2020-07-19 @@ -892,7 +890,7 @@ interventions: end_date: 2020-12-13 - start_date: 2020-12-14 end_date: 2021-01-26 - - affected_geoids: ["37000"] + - subpop: ["37000"] periods: - start_date: 2020-05-22 end_date: 2020-09-03 @@ -900,7 +898,7 @@ interventions: end_date: 2020-10-01 - start_date: 2020-12-11 end_date: 2021-02-25 - - affected_geoids: ["38000"] + - subpop: ["38000"] periods: - start_date: 2020-10-16 end_date: 2020-11-15 @@ -910,13 +908,13 @@ interventions: end_date: 2021-01-07 - start_date: 2021-01-08 end_date: 2021-01-17 - - affected_geoids: ["39000"] + - subpop: ["39000"] periods: - start_date: 2020-05-21 end_date: 2020-06-18 - start_date: 2020-11-19 end_date: 2021-02-10 - - affected_geoids: ["40000"] + - subpop: ["40000"] periods: - start_date: 2020-05-15 end_date: 2020-05-31 @@ -924,7 +922,7 @@ interventions: end_date: 2021-01-13 - start_date: 2021-01-14 end_date: 2021-03-11 - - affected_geoids: ["41000"] + - subpop: ["41000"] periods: - start_date: 2020-06-05 end_date: 2020-06-30 @@ -936,13 +934,13 @@ interventions: end_date: 2021-02-25 - start_date: 2021-04-30 end_date: 2021-06-08 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2020-05-29 end_date: 2020-07-15 - start_date: 2020-07-16 end_date: 2020-09-13 - - affected_geoids: ["44000"] + - subpop: ["44000"] periods: - start_date: 2020-06-01 end_date: 2020-06-29 @@ -952,11 +950,11 @@ interventions: end_date: 2021-01-19 - start_date: 2021-01-20 end_date: 2021-02-11 - - affected_geoids: ["45000"] + - subpop: ["45000"] periods: - start_date: 2020-05-11 end_date: 2020-08-02 - - affected_geoids: ["47000"] + - subpop: ["47000"] periods: - start_date: 2020-05-25 end_date: 2020-09-28 @@ -964,7 +962,7 @@ interventions: end_date: 2020-12-19 - start_date: 2020-12-20 end_date: 2021-01-19 - - affected_geoids: ["48000"] + - subpop: ["48000"] periods: - start_date: 2020-05-18 end_date: 2020-06-02 @@ -972,13 +970,13 @@ interventions: end_date: 2020-06-25 - start_date: 2020-09-21 end_date: 2020-10-13 - - affected_geoids: ["49000"] + - subpop: ["49000"] periods: - start_date: 2020-05-16 end_date: 2020-06-18 - start_date: 2020-11-09 end_date: 2020-11-23 - - affected_geoids: ["50000"] + - subpop: ["50000"] periods: - start_date: 2020-06-01 end_date: 2020-06-25 @@ -986,7 +984,7 @@ interventions: end_date: 2021-02-11 - start_date: 2021-02-12 end_date: 2021-03-23 - - affected_geoids: ["51000"] + - subpop: ["51000"] periods: - start_date: 2020-06-05 end_date: 2020-06-30 @@ -994,7 +992,7 @@ interventions: end_date: 2020-09-09 - start_date: 2020-12-14 end_date: 2021-02-28 - - affected_geoids: ["53000"] + - subpop: ["53000"] periods: - start_date: 2020-05-29 end_date: 2020-07-01 @@ -1004,19 +1002,19 @@ interventions: end_date: 2020-11-15 - start_date: 2021-01-11 end_date: 2021-01-31 - - affected_geoids: ["54000"] + - subpop: ["54000"] periods: - start_date: 2020-05-21 end_date: 2020-06-04 - start_date: 2020-07-14 end_date: 2020-10-12 - - affected_geoids: ["55000"] + - subpop: ["55000"] periods: - start_date: 2020-06-13 end_date: 2020-07-31 - start_date: 2020-08-01 end_date: 2020-10-28 - - affected_geoids: ["56000"] + - subpop: ["56000"] periods: - start_date: 2020-05-15 end_date: 2020-06-14 @@ -1024,19 +1022,19 @@ interventions: end_date: 2021-01-08 - start_date: 2021-01-09 end_date: 2021-01-25 - - affected_geoids: ["66000"] + - subpop: ["66000"] periods: - start_date: 2020-07-20 end_date: 2020-08-15 - start_date: 2021-01-18 end_date: 2021-02-21 - - affected_geoids: ["69000"] + - subpop: ["69000"] periods: - start_date: 2020-05-25 end_date: 2020-06-15 - start_date: 2020-08-24 end_date: 2020-09-06 - - affected_geoids: ["72000"] + - subpop: ["72000"] periods: - start_date: 2020-05-25 end_date: 2020-06-15 @@ -1044,7 +1042,7 @@ interventions: end_date: 2020-12-06 - start_date: 2021-04-17 end_date: 2021-05-23 - - affected_geoids: ["78000"] + - subpop: ["78000"] periods: - start_date: 2020-06-01 end_date: 2020-08-16 @@ -1067,54 +1065,54 @@ interventions: a: -1 b: 1 open_p3: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: ["01000"] + - subpop: ["01000"] periods: - start_date: 2021-03-04 end_date: 2021-04-08 - - affected_geoids: ["02000"] + - subpop: ["02000"] periods: - start_date: 2020-11-16 end_date: 2021-02-14 - - affected_geoids: ["04000"] + - subpop: ["04000"] periods: - start_date: 2021-03-05 end_date: 2021-03-24 - - affected_geoids: ["05000"] + - subpop: ["05000"] periods: - start_date: 2021-02-26 end_date: 2021-03-30 - - affected_geoids: ["06000"] + - subpop: ["06000"] periods: - start_date: 2021-04-07 end_date: 2021-06-14 - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2021-02-06 end_date: 2021-03-14 - start_date: 2021-03-15 end_date: 2021-03-23 - - affected_geoids: ["09000"] + - subpop: ["09000"] periods: - start_date: 2020-10-08 end_date: 2020-11-05 - - affected_geoids: ["10000"] + - subpop: ["10000"] periods: - start_date: 2021-05-21 end_date: 2021-08-07 - - affected_geoids: ["11000"] + - subpop: ["11000"] periods: - start_date: 2021-05-01 end_date: 2021-05-16 - - affected_geoids: ["12000"] + - subpop: ["12000"] periods: - start_date: 2020-09-25 end_date: 2021-05-02 - start_date: 2021-05-03 end_date: 2021-08-07 - - affected_geoids: ["13000"] + - subpop: ["13000"] periods: - start_date: 2020-07-01 end_date: 2020-09-10 @@ -1122,7 +1120,7 @@ interventions: end_date: 2020-12-14 - start_date: 2020-12-15 end_date: 2021-04-07 - - affected_geoids: ["15000"] + - subpop: ["15000"] periods: - start_date: 2021-02-25 end_date: 2021-03-10 @@ -1132,7 +1130,7 @@ interventions: end_date: 2021-05-24 - start_date: 2021-05-25 end_date: 2021-06-10 - - affected_geoids: ["16000"] + - subpop: ["16000"] periods: - start_date: 2020-05-30 end_date: 2020-06-12 @@ -1140,7 +1138,7 @@ interventions: end_date: 2020-11-12 - start_date: 2021-02-02 end_date: 2021-05-10 - - affected_geoids: ["17000"] + - subpop: ["17000"] periods: - start_date: 2020-05-30 end_date: 2020-06-25 @@ -1150,13 +1148,13 @@ interventions: end_date: 2020-10-29 - start_date: 2021-01-18 end_date: 2021-01-31 - - affected_geoids: ["18000"] + - subpop: ["18000"] periods: - start_date: 2020-06-12 end_date: 2020-07-03 - start_date: 2021-02-15 end_date: 2021-03-01 - - affected_geoids: ["19000"] + - subpop: ["19000"] periods: - start_date: 2020-06-12 end_date: 2020-08-26 @@ -1168,13 +1166,13 @@ interventions: end_date: 2021-01-07 - start_date: 2021-01-08 end_date: 2021-02-06 - - affected_geoids: ["20000"] + - subpop: ["20000"] periods: - start_date: 2020-06-08 end_date: 2020-07-02 - start_date: 2020-07-03 end_date: 2021-03-30 - - affected_geoids: ["21000"] + - subpop: ["21000"] periods: - start_date: 2020-06-29 end_date: 2020-07-27 @@ -1184,7 +1182,7 @@ interventions: end_date: 2021-03-04 - start_date: 2021-03-05 end_date: 2021-05-15 - - affected_geoids: ["22000"] + - subpop: ["22000"] periods: - start_date: 2020-09-11 end_date: 2020-11-24 @@ -1192,17 +1190,17 @@ interventions: end_date: 2021-03-10 - start_date: 2021-03-11 end_date: 2021-03-30 - - affected_geoids: ["23000"] + - subpop: ["23000"] periods: - start_date: 2020-07-01 end_date: 2020-10-12 - start_date: 2020-11-20 end_date: 2021-01-31 - - affected_geoids: ["24000"] + - subpop: ["24000"] periods: - start_date: 2020-09-04 end_date: 2020-11-10 - - affected_geoids: ["25000"] + - subpop: ["25000"] periods: - start_date: 2020-07-06 end_date: 2020-10-04 @@ -1214,13 +1212,13 @@ interventions: end_date: 2020-12-25 - start_date: 2021-02-08 end_date: 2021-02-28 - - affected_geoids: ["26000"] + - subpop: ["26000"] periods: - start_date: 2021-03-05 end_date: 2021-03-21 - start_date: 2021-03-22 end_date: 2021-05-14 - - affected_geoids: ["27000"] + - subpop: ["27000"] periods: - start_date: 2020-06-10 end_date: 2020-07-24 @@ -1230,7 +1228,7 @@ interventions: end_date: 2021-02-12 - start_date: 2021-02-13 end_date: 2021-03-14 - - affected_geoids: ["28000"] + - subpop: ["28000"] periods: - start_date: 2020-06-01 end_date: 2020-09-13 @@ -1238,21 +1236,21 @@ interventions: end_date: 2020-12-10 - start_date: 2020-12-11 end_date: 2021-03-02 - - affected_geoids: ["29000"] + - subpop: ["29000"] periods: - start_date: 2020-05-04 end_date: 2020-06-15 - - affected_geoids: ["30000"] + - subpop: ["30000"] periods: - start_date: 2021-01-15 end_date: 2021-02-11 - - affected_geoids: ["31000"] + - subpop: ["31000"] periods: - start_date: 2020-06-22 end_date: 2020-09-13 - start_date: 2020-12-24 end_date: 2021-01-29 - - affected_geoids: ["32000"] + - subpop: ["32000"] periods: - start_date: 2020-05-29 end_date: 2020-07-09 @@ -1260,7 +1258,7 @@ interventions: end_date: 2020-11-23 - start_date: 2021-02-15 end_date: 2021-03-14 - - affected_geoids: ["33000"] + - subpop: ["33000"] periods: - start_date: 2020-06-29 end_date: 2020-10-14 @@ -1272,7 +1270,7 @@ interventions: end_date: 2021-03-10 - start_date: 2021-03-11 end_date: 2021-04-16 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2020-09-04 end_date: 2020-11-11 @@ -1280,13 +1278,13 @@ interventions: end_date: 2021-02-21 - start_date: 2021-02-22 end_date: 2021-03-18 - - affected_geoids: ["35000"] + - subpop: ["35000"] periods: - start_date: 2021-02-24 end_date: 2021-03-09 - start_date: 2021-03-10 end_date: 2021-03-23 - - affected_geoids: ["36000"] + - subpop: ["36000"] periods: - start_date: 2020-07-20 end_date: 2020-09-29 @@ -1296,15 +1294,15 @@ interventions: end_date: 2021-02-11 - start_date: 2021-02-12 end_date: 2021-03-18 - - affected_geoids: ["37000"] + - subpop: ["37000"] periods: - start_date: 2020-10-02 end_date: 2020-12-10 - - affected_geoids: ["38000"] + - subpop: ["38000"] periods: - start_date: 2020-05-29 end_date: 2020-10-15 - - affected_geoids: ["39000"] + - subpop: ["39000"] periods: - start_date: 2020-06-19 end_date: 2020-09-20 @@ -1312,17 +1310,17 @@ interventions: end_date: 2020-11-18 - start_date: 2021-02-11 end_date: 2021-03-01 - - affected_geoids: ["40000"] + - subpop: ["40000"] periods: - start_date: 2020-06-01 end_date: 2020-11-15 - start_date: 2020-11-16 end_date: 2020-12-13 - - affected_geoids: ["41000"] + - subpop: ["41000"] periods: - start_date: 2021-02-26 end_date: 2021-03-28 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2020-09-14 end_date: 2020-10-05 @@ -1330,29 +1328,29 @@ interventions: end_date: 2020-12-11 - start_date: 2021-01-04 end_date: 2021-02-28 - - affected_geoids: ["44000"] + - subpop: ["44000"] periods: - start_date: 2020-06-30 end_date: 2020-11-07 - start_date: 2021-02-12 end_date: 2021-03-18 - - affected_geoids: ["45000"] + - subpop: ["45000"] periods: - start_date: 2020-08-03 end_date: 2020-10-01 - start_date: 2020-10-02 end_date: 2021-02-28 - - affected_geoids: ["47000"] + - subpop: ["47000"] periods: - start_date: 2021-01-20 end_date: 2021-02-27 - start_date: 2021-02-28 end_date: 2021-04-27 - - affected_geoids: ["48000"] + - subpop: ["48000"] periods: - start_date: 2020-10-14 end_date: 2021-03-09 - - affected_geoids: ["49000"] + - subpop: ["49000"] periods: - start_date: 2020-06-19 end_date: 2020-10-14 @@ -1360,13 +1358,13 @@ interventions: end_date: 2020-11-08 - start_date: 2020-11-24 end_date: 2021-03-04 - - affected_geoids: ["50000"] + - subpop: ["50000"] periods: - start_date: 2020-06-26 end_date: 2020-07-31 - start_date: 2020-08-01 end_date: 2020-11-13 - - affected_geoids: ["51000"] + - subpop: ["51000"] periods: - start_date: 2020-07-01 end_date: 2020-07-30 @@ -1374,11 +1372,11 @@ interventions: end_date: 2020-11-14 - start_date: 2020-11-15 end_date: 2020-12-13 - - affected_geoids: ["53000"] + - subpop: ["53000"] periods: - start_date: 2021-02-01 end_date: 2021-02-13 - - affected_geoids: ["54000"] + - subpop: ["54000"] periods: - start_date: 2020-06-05 end_date: 2020-06-30 @@ -1388,13 +1386,13 @@ interventions: end_date: 2021-02-13 - start_date: 2021-02-14 end_date: 2021-03-04 - - affected_geoids: ["55000"] + - subpop: ["55000"] periods: - start_date: 2021-01-13 end_date: 2021-02-08 - start_date: 2021-02-09 end_date: 2021-03-18 - - affected_geoids: ["56000"] + - subpop: ["56000"] periods: - start_date: 2020-06-15 end_date: 2020-08-15 @@ -1402,19 +1400,19 @@ interventions: end_date: 2020-12-08 - start_date: 2021-01-26 end_date: 2021-02-14 - - affected_geoids: ["66000"] + - subpop: ["66000"] periods: - start_date: 2021-02-22 end_date: 2021-05-14 - start_date: 2021-05-15 end_date: 2021-08-07 - - affected_geoids: ["69000"] + - subpop: ["69000"] periods: - start_date: 2020-06-16 end_date: 2020-08-23 - start_date: 2020-09-07 end_date: 2021-08-07 - - affected_geoids: ["72000"] + - subpop: ["72000"] periods: - start_date: 2020-06-16 end_date: 2020-06-30 @@ -1432,7 +1430,7 @@ interventions: end_date: 2021-04-16 - start_date: 2021-05-24 end_date: 2021-06-06 - - affected_geoids: ["78000"] + - subpop: ["78000"] periods: - start_date: 2020-11-09 end_date: 2020-12-16 @@ -1455,74 +1453,74 @@ interventions: a: -1 b: 1 open_p4: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: ["01000"] + - subpop: ["01000"] periods: - start_date: 2021-04-09 end_date: 2021-05-30 - - affected_geoids: ["02000"] + - subpop: ["02000"] periods: - start_date: 2020-05-22 end_date: 2020-11-15 - start_date: 2021-02-15 end_date: 2021-08-07 - - affected_geoids: ["04000"] + - subpop: ["04000"] periods: - start_date: 2021-03-25 end_date: 2021-08-07 - - affected_geoids: ["05000"] + - subpop: ["05000"] periods: - start_date: 2021-03-31 end_date: 2021-08-07 - - affected_geoids: ["06000"] + - subpop: ["06000"] periods: - start_date: 2021-06-15 end_date: 2021-08-07 - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2021-03-24 end_date: 2021-04-15 - - affected_geoids: ["09000"] + - subpop: ["09000"] periods: - start_date: 2021-03-19 end_date: 2021-04-01 - - affected_geoids: ["11000"] + - subpop: ["11000"] periods: - start_date: 2021-05-17 end_date: 2021-05-20 - - affected_geoids: ["13000"] + - subpop: ["13000"] periods: - start_date: 2021-04-08 end_date: 2021-04-30 - - affected_geoids: ["15000"] + - subpop: ["15000"] periods: - start_date: 2021-06-11 end_date: 2021-08-07 - - affected_geoids: ["16000"] + - subpop: ["16000"] periods: - start_date: 2020-06-13 end_date: 2020-10-26 - start_date: 2021-05-11 end_date: 2021-08-07 - - affected_geoids: ["17000"] + - subpop: ["17000"] periods: - start_date: 2020-06-26 end_date: 2020-07-23 - start_date: 2021-02-01 end_date: 2021-05-16 - - affected_geoids: ["18000"] + - subpop: ["18000"] periods: - start_date: 2020-07-04 end_date: 2020-09-25 - start_date: 2021-03-02 end_date: 2021-04-05 - - affected_geoids: ["19000"] + - subpop: ["19000"] periods: - start_date: 2021-02-07 end_date: 2021-08-07 - - affected_geoids: ["20000"] + - subpop: ["20000"] periods: - start_date: 2021-03-31 end_date: 2021-04-05 @@ -1530,17 +1528,17 @@ interventions: end_date: 2021-05-13 - start_date: 2021-05-14 end_date: 2021-08-07 - - affected_geoids: ["21000"] + - subpop: ["21000"] periods: - start_date: 2021-05-16 end_date: 2021-05-27 - start_date: 2021-05-28 end_date: 2021-06-10 - - affected_geoids: ["22000"] + - subpop: ["22000"] periods: - start_date: 2021-03-31 end_date: 2021-04-27 - - affected_geoids: ["23000"] + - subpop: ["23000"] periods: - start_date: 2020-10-13 end_date: 2020-11-19 @@ -1548,19 +1546,19 @@ interventions: end_date: 2021-02-11 - start_date: 2021-02-12 end_date: 2021-03-25 - - affected_geoids: ["24000"] + - subpop: ["24000"] periods: - start_date: 2021-03-12 end_date: 2021-05-14 - - affected_geoids: ["25000"] + - subpop: ["25000"] periods: - start_date: 2021-03-01 end_date: 2021-03-21 - - affected_geoids: ["26000"] + - subpop: ["26000"] periods: - start_date: 2021-05-15 end_date: 2021-05-31 - - affected_geoids: ["27000"] + - subpop: ["27000"] periods: - start_date: 2021-03-15 end_date: 2021-03-31 @@ -1568,19 +1566,19 @@ interventions: end_date: 2021-05-06 - start_date: 2021-05-07 end_date: 2021-05-13 - - affected_geoids: ["28000"] + - subpop: ["28000"] periods: - start_date: 2020-09-14 end_date: 2020-11-24 - - affected_geoids: ["29000"] + - subpop: ["29000"] periods: - start_date: 2020-06-16 end_date: 2021-05-16 - - affected_geoids: ["30000"] + - subpop: ["30000"] periods: - start_date: 2021-02-12 end_date: 2021-08-07 - - affected_geoids: ["31000"] + - subpop: ["31000"] periods: - start_date: 2020-09-14 end_date: 2020-10-20 @@ -1588,117 +1586,117 @@ interventions: end_date: 2021-05-23 - start_date: 2021-05-24 end_date: 2021-08-07 - - affected_geoids: ["32000"] + - subpop: ["32000"] periods: - start_date: 2021-03-15 end_date: 2021-03-29 - start_date: 2021-03-30 end_date: 2021-04-30 - - affected_geoids: ["33000"] + - subpop: ["33000"] periods: - start_date: 2021-04-17 end_date: 2021-05-07 - start_date: 2021-05-08 end_date: 2021-08-07 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2021-03-19 end_date: 2021-04-01 - - affected_geoids: ["35000"] + - subpop: ["35000"] periods: - start_date: 2021-03-24 end_date: 2021-04-06 - start_date: 2021-04-21 end_date: 2021-05-04 - - affected_geoids: ["36000"] + - subpop: ["36000"] periods: - start_date: 2021-03-19 end_date: 2021-03-31 - - affected_geoids: ["37000"] + - subpop: ["37000"] periods: - start_date: 2021-02-26 end_date: 2021-03-25 - - affected_geoids: ["38000"] + - subpop: ["38000"] periods: - start_date: 2021-01-18 end_date: 2021-08-07 - - affected_geoids: ["39000"] + - subpop: ["39000"] periods: - start_date: 2021-03-02 end_date: 2021-04-04 - start_date: 2021-04-05 end_date: 2021-04-26 - - affected_geoids: ["40000"] + - subpop: ["40000"] periods: - start_date: 2021-03-12 end_date: 2021-08-07 - - affected_geoids: ["41000"] + - subpop: ["41000"] periods: - start_date: 2021-03-29 end_date: 2021-04-18 - start_date: 2021-04-19 end_date: 2021-04-29 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2021-03-01 end_date: 2021-04-03 - - affected_geoids: ["44000"] + - subpop: ["44000"] periods: - start_date: 2021-03-19 end_date: 2021-05-17 - - affected_geoids: ["45000"] + - subpop: ["45000"] periods: - start_date: 2021-03-01 end_date: 2021-03-18 - start_date: 2021-03-19 end_date: 2021-05-10 - - affected_geoids: ["46000"] + - subpop: ["46000"] periods: - start_date: 2020-04-28 end_date: 2021-08-07 - - affected_geoids: ["47000"] + - subpop: ["47000"] periods: - start_date: 2021-04-28 end_date: 2021-08-07 - - affected_geoids: ["48000"] + - subpop: ["48000"] periods: - start_date: 2021-03-10 end_date: 2021-08-07 - - affected_geoids: ["49000"] + - subpop: ["49000"] periods: - start_date: 2021-03-05 end_date: 2021-04-01 - start_date: 2021-04-02 end_date: 2021-04-09 - - affected_geoids: ["50000"] + - subpop: ["50000"] periods: - start_date: 2021-03-24 end_date: 2021-05-14 - - affected_geoids: ["51000"] + - subpop: ["51000"] periods: - start_date: 2021-03-01 end_date: 2021-03-31 - start_date: 2021-04-01 end_date: 2021-05-13 - - affected_geoids: ["53000"] + - subpop: ["53000"] periods: - start_date: 2021-02-14 end_date: 2021-03-21 - - affected_geoids: ["54000"] + - subpop: ["54000"] periods: - start_date: 2020-07-01 end_date: 2020-07-13 - start_date: 2021-03-05 end_date: 2021-04-19 - - affected_geoids: ["55000"] + - subpop: ["55000"] periods: - start_date: 2021-03-19 end_date: 2021-03-30 - - affected_geoids: ["56000"] + - subpop: ["56000"] periods: - start_date: 2020-08-16 end_date: 2020-11-23 - - affected_geoids: ["72000"] + - subpop: ["72000"] periods: - start_date: 2020-07-01 end_date: 2020-07-15 @@ -1717,78 +1715,78 @@ interventions: a: -1 b: 1 open_p5: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: ["01000"] + - subpop: ["01000"] periods: - start_date: 2021-05-31 end_date: 2021-08-07 - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2021-04-16 end_date: 2021-05-13 - - affected_geoids: ["09000"] + - subpop: ["09000"] periods: - start_date: 2021-04-02 end_date: 2021-04-30 - start_date: 2021-05-01 end_date: 2021-05-18 - - affected_geoids: ["11000"] + - subpop: ["11000"] periods: - start_date: 2021-05-21 end_date: 2021-06-10 - - affected_geoids: ["13000"] + - subpop: ["13000"] periods: - start_date: 2021-05-01 end_date: 2021-05-30 - start_date: 2021-05-31 end_date: 2021-08-07 - - affected_geoids: ["17000"] + - subpop: ["17000"] periods: - start_date: 2021-05-17 end_date: 2021-06-10 - - affected_geoids: ["18000"] + - subpop: ["18000"] periods: - start_date: 2020-09-26 end_date: 2020-11-10 - start_date: 2021-04-06 end_date: 2021-08-07 - - affected_geoids: ["21000"] + - subpop: ["21000"] periods: - start_date: 2021-06-11 end_date: 2021-08-07 - - affected_geoids: ["22000"] + - subpop: ["22000"] periods: - start_date: 2021-04-28 end_date: 2021-05-25 - start_date: 2021-05-26 end_date: 2021-08-07 - - affected_geoids: ["23000"] + - subpop: ["23000"] periods: - start_date: 2021-03-26 end_date: 2021-05-23 - - affected_geoids: ["24000"] + - subpop: ["24000"] periods: - start_date: 2021-05-15 end_date: 2021-08-07 - - affected_geoids: ["25000"] + - subpop: ["25000"] periods: - start_date: 2021-03-22 end_date: 2021-04-29 - start_date: 2021-04-30 end_date: 2021-05-28 - - affected_geoids: ["26000"] + - subpop: ["26000"] periods: - start_date: 2021-06-01 end_date: 2021-06-21 - - affected_geoids: ["27000"] + - subpop: ["27000"] periods: - start_date: 2021-05-14 end_date: 2021-05-27 - start_date: 2021-05-28 end_date: 2021-08-07 - - affected_geoids: ["28000"] + - subpop: ["28000"] periods: - start_date: 2021-03-03 end_date: 2021-03-30 @@ -1796,89 +1794,89 @@ interventions: end_date: 2021-04-29 - start_date: 2021-04-30 end_date: 2021-08-07 - - affected_geoids: ["29000"] + - subpop: ["29000"] periods: - start_date: 2021-05-17 end_date: 2021-08-07 - - affected_geoids: ["32000"] + - subpop: ["32000"] periods: - start_date: 2021-05-01 end_date: 2021-05-02 - start_date: 2021-05-03 end_date: 2021-05-31 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2021-04-02 end_date: 2021-05-27 - - affected_geoids: ["35000"] + - subpop: ["35000"] periods: - start_date: 2021-04-07 end_date: 2021-04-20 - - affected_geoids: ["36000"] + - subpop: ["36000"] periods: - start_date: 2021-04-01 end_date: 2021-05-18 - - affected_geoids: ["37000"] + - subpop: ["37000"] periods: - start_date: 2021-03-26 end_date: 2021-04-29 - start_date: 2021-04-30 end_date: 2021-05-13 - - affected_geoids: ["39000"] + - subpop: ["39000"] periods: - start_date: 2021-04-27 end_date: 2021-05-16 - start_date: 2021-05-17 end_date: 2021-06-01 - - affected_geoids: ["41000"] + - subpop: ["41000"] periods: - start_date: 2021-06-09 end_date: 2021-08-07 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2021-04-04 end_date: 2021-05-12 - - affected_geoids: ["44000"] + - subpop: ["44000"] periods: - start_date: 2021-05-18 end_date: 2021-05-20 - - affected_geoids: ["45000"] + - subpop: ["45000"] periods: - start_date: 2021-05-11 end_date: 2021-06-05 - start_date: 2021-06-06 end_date: 2021-08-07 - - affected_geoids: ["49000"] + - subpop: ["49000"] periods: - start_date: 2021-04-10 end_date: 2021-05-04 - start_date: 2021-05-05 end_date: 2021-08-07 - - affected_geoids: ["50000"] + - subpop: ["50000"] periods: - start_date: 2021-05-15 end_date: 2021-08-07 - - affected_geoids: ["51000"] + - subpop: ["51000"] periods: - start_date: 2021-05-14 end_date: 2021-05-27 - start_date: 2021-05-28 end_date: 2021-08-07 - - affected_geoids: ["53000"] + - subpop: ["53000"] periods: - start_date: 2021-03-22 end_date: 2021-05-12 - - affected_geoids: ["54000"] + - subpop: ["54000"] periods: - start_date: 2021-04-20 end_date: 2021-05-13 - - affected_geoids: ["55000"] + - subpop: ["55000"] periods: - start_date: 2021-03-31 end_date: 2021-05-31 - start_date: 2021-06-01 end_date: 2021-08-07 - - affected_geoids: ["56000"] + - subpop: ["56000"] periods: - start_date: 2021-02-15 end_date: 2021-02-28 @@ -1897,34 +1895,34 @@ interventions: a: -1 b: 1 sd: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: ["05000"] + - subpop: ["05000"] periods: - start_date: 2020-03-20 end_date: 2020-05-03 - - affected_geoids: ["19000"] + - subpop: ["19000"] periods: - start_date: 2020-04-02 end_date: 2020-05-14 - - affected_geoids: ["31000"] + - subpop: ["31000"] periods: - start_date: 2020-03-16 end_date: 2020-05-03 - - affected_geoids: ["38000"] + - subpop: ["38000"] periods: - start_date: 2020-03-19 end_date: 2020-04-30 - - affected_geoids: ["40000"] + - subpop: ["40000"] periods: - start_date: 2020-03-24 end_date: 2020-04-23 - - affected_geoids: ["46000"] + - subpop: ["46000"] periods: - start_date: 2020-03-16 end_date: 2020-04-27 - - affected_geoids: ["56000"] + - subpop: ["56000"] periods: - start_date: 2020-03-28 end_date: 2020-04-30 @@ -1941,46 +1939,46 @@ interventions: a: -1 b: 1 open_p6: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2021-05-14 end_date: 2021-05-31 - - affected_geoids: ["09000"] + - subpop: ["09000"] periods: - start_date: 2021-05-19 end_date: 2021-08-07 - - affected_geoids: ["11000"] + - subpop: ["11000"] periods: - start_date: 2021-06-11 end_date: 2021-08-07 - - affected_geoids: ["17000"] + - subpop: ["17000"] periods: - start_date: 2021-06-11 end_date: 2021-08-07 - - affected_geoids: ["23000"] + - subpop: ["23000"] periods: - start_date: 2021-05-24 end_date: 2021-08-07 - - affected_geoids: ["25000"] + - subpop: ["25000"] periods: - start_date: 2021-05-29 end_date: 2021-08-07 - - affected_geoids: ["26000"] + - subpop: ["26000"] periods: - start_date: 2021-06-22 end_date: 2021-08-07 - - affected_geoids: ["32000"] + - subpop: ["32000"] periods: - start_date: 2021-06-01 end_date: 2021-08-07 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2021-05-28 end_date: 2021-06-03 - - affected_geoids: ["35000"] + - subpop: ["35000"] periods: - start_date: 2021-05-05 end_date: 2021-05-13 @@ -1988,37 +1986,37 @@ interventions: end_date: 2021-06-01 - start_date: 2021-06-02 end_date: 2021-08-07 - - affected_geoids: ["36000"] + - subpop: ["36000"] periods: - start_date: 2021-05-19 end_date: 2021-08-07 - - affected_geoids: ["37000"] + - subpop: ["37000"] periods: - start_date: 2021-05-14 end_date: 2021-08-07 - - affected_geoids: ["39000"] + - subpop: ["39000"] periods: - start_date: 2021-06-02 end_date: 2021-06-18 - start_date: 2021-06-19 end_date: 2021-08-07 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2021-05-13 end_date: 2021-05-16 - start_date: 2021-05-17 end_date: 2021-05-30 - - affected_geoids: ["44000"] + - subpop: ["44000"] periods: - start_date: 2021-05-21 end_date: 2021-08-07 - - affected_geoids: ["53000"] + - subpop: ["53000"] periods: - start_date: 2021-05-13 end_date: 2021-05-17 - start_date: 2021-05-18 end_date: 2021-08-07 - - affected_geoids: ["54000"] + - subpop: ["54000"] periods: - start_date: 2021-05-14 end_date: 2021-06-07 @@ -2026,7 +2024,7 @@ interventions: end_date: 2021-06-19 - start_date: 2021-06-20 end_date: 2021-08-07 - - affected_geoids: ["56000"] + - subpop: ["56000"] periods: - start_date: 2021-03-16 end_date: 2021-05-20 @@ -2045,18 +2043,18 @@ interventions: a: -1 b: 1 open_p7: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2021-06-01 end_date: 2021-08-07 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2021-06-04 end_date: 2021-08-07 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2021-05-31 end_date: 2021-08-07 @@ -2073,10 +2071,10 @@ interventions: a: -1 b: 1 Seas_jan: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-01-01 end_date: 2020-01-31 @@ -2095,10 +2093,10 @@ interventions: a: -1 b: 1 Seas_feb: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-02-01 end_date: 2020-02-29 @@ -2117,10 +2115,10 @@ interventions: a: -1 b: 1 Seas_mar: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-03-01 end_date: 2020-03-31 @@ -2139,10 +2137,10 @@ interventions: a: -1 b: 1 Seas_may: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-05-01 end_date: 2020-05-31 @@ -2161,10 +2159,10 @@ interventions: a: -1 b: 1 Seas_jun: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-06-01 end_date: 2020-06-30 @@ -2183,10 +2181,10 @@ interventions: a: -1 b: 1 Seas_jul: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-07-01 end_date: 2020-07-31 @@ -2205,10 +2203,10 @@ interventions: a: -1 b: 1 Seas_aug: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: R0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-08-01 end_date: 2020-08-31 @@ -2227,9 +2225,9 @@ interventions: a: -1 b: 1 Seas_sep: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2020-09-01 period_end_date: 2020-09-30 value: @@ -2245,9 +2243,9 @@ interventions: a: -1 b: 1 Seas_oct: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2020-10-01 period_end_date: 2020-10-31 value: @@ -2263,9 +2261,9 @@ interventions: a: -1 b: 1 Seas_nov: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2020-11-01 period_end_date: 2020-11-30 value: @@ -2281,9 +2279,9 @@ interventions: a: -1 b: 1 Seas_dec: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2020-12-01 period_end_date: 2020-12-31 value: @@ -2299,3906 +2297,3906 @@ interventions: a: -1 b: 1 AL_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00012 AL_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00327 AL_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003378 AL_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005034 AL_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.002462 AL_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.001837 AL_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003138 AL_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003718 AK_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001575 AK_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.004632 AK_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005033 AK_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005206 AK_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003905 AK_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.001637 AK_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003683 AK_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004457 AZ_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00091 AZ_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003637 AZ_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004542 AZ_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.006755 AZ_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.004126 AZ_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003358 AZ_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003208 AZ_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003691 AR_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 2.5e-05 AR_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.004047 AR_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003534 AR_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005765 AR_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.002497 AR_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002908 AR_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004238 AR_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004355 CA_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.004032 CA_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004414 CA_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.009529 CA_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.007473 CA_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005734 CA_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005427 CA_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005324 CO_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001223 CO_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00289 CO_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00442 CO_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.009366 CO_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.006245 CO_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005531 CO_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005302 CO_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005107 CT_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001444 CT_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003284 CT_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.006127 CT_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.010163 CT_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.008513 CT_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.007132 CT_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.007648 CT_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.0073 DE_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000424 DE_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003744 DE_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004357 DE_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.009041 DE_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.006471 DE_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005204 DE_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004372 DE_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004788 DC_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.004432 DC_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.002789 DC_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.009738 DC_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.009489 DC_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005403 DC_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005846 DC_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.007962 FL_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001333 FL_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002584 FL_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004256 FL_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.007515 FL_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.005339 FL_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.004656 FL_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004632 FL_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004264 GA_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000295 GA_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003166 GA_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.002689 GA_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.006914 GA_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003024 GA_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002945 GA_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.002869 GA_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003331 HI_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000205 HI_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003911 HI_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005352 HI_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.006736 HI_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.015824 HI_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.007606 HI_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005033 HI_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005334 ID_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000705 ID_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002855 ID_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004191 ID_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005559 ID_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.002316 ID_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002436 ID_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003961 ID_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004795 IL_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00068 IL_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003162 IL_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004809 IL_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.008428 IL_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.006174 IL_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005687 IL_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00567 IL_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005401 IN_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001109 IN_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003137 IN_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003365 IN_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005571 IN_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003615 IN_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003093 IN_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003615 IN_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003721 IA_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001032 IA_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002585 IA_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005662 IA_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.007657 IA_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003995 IA_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003701 IA_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.000572 IA_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.009231 KS_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000755 KS_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002627 KS_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005016 KS_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00819 KS_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003088 KS_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003067 KS_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004307 KS_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005069 KY_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000442 KY_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003479 KY_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005304 KY_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.006686 KY_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003199 KY_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003151 KY_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.002638 KY_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003136 LA_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001033 LA_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002887 LA_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003833 LA_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.004371 LA_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.001721 LA_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0018 LA_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.001898 LA_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.0022 ME_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001276 ME_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00329 ME_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005684 ME_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.010999 ME_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.008499 ME_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.007334 ME_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.008344 ME_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.008117 MD_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001068 MD_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002659 MD_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005003 MD_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.009014 MD_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.007697 MD_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.006153 MD_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.006499 MD_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.00596 MA_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00077 MA_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003447 MA_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00593 MA_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.010795 MA_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.011708 MA_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.008408 MA_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00671 MA_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004521 MI_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001021 MI_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002897 MI_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004235 MI_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.007429 MI_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.004843 MI_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003954 MI_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004991 MI_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005088 MN_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000875 MN_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003259 MN_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005394 MN_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.008294 MN_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.006285 MN_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005101 MN_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005772 MN_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005718 MS_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000969 MS_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002764 MS_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003859 MS_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.003698 MS_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.002123 MS_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.001683 MS_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.002325 MS_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003066 MO_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000854 MO_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002774 MO_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003972 MO_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005893 MO_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003574 MO_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002749 MO_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003287 MO_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003573 MT_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000583 MT_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003727 MT_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005204 MT_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.006569 MT_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003107 MT_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003141 MT_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003945 MT_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003914 NE_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00123 NE_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002341 NE_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00543 NE_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.007955 NE_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003575 NE_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00359 NE_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004064 NE_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003986 NV_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000107 NV_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00392 NV_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004457 NV_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.006877 NV_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.004096 NV_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003606 NV_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003599 NV_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.00424 NH_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000196 NH_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003713 NH_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.006088 NH_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.016931 NH_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00496 NH_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.004555 NH_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.006668 NH_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.00686 NJ_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000975 NJ_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003007 NJ_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00573 NJ_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.009843 NJ_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.007756 NJ_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.006326 NJ_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005596 NJ_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005557 NM_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.005124 NM_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.007049 NM_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.008913 NM_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.005217 NM_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005211 NM_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.006225 NM_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.007262 NY_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000463 NY_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003562 NY_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004922 NY_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.008693 NY_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.006354 NY_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005819 NY_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005997 NY_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005131 NC_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000641 NC_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003656 NC_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004385 NC_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.006358 NC_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003274 NC_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002715 NC_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004056 NC_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005478 ND_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001679 ND_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002858 ND_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005731 ND_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005392 ND_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.001724 ND_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002575 ND_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003916 ND_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003931 OH_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001169 OH_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00267 OH_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004276 OH_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.007267 OH_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0034 OH_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003255 OH_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003161 OH_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003561 OK_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001114 OK_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003242 OK_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005228 OK_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005614 OK_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.002007 OK_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002001 OK_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.002067 OK_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.002009 OR_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001191 OR_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002842 OR_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004293 OR_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.007712 OR_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.007987 OR_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.006005 OR_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004637 OR_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003582 PA_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000798 PA_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002889 PA_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005107 PA_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.009101 PA_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.008397 PA_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005664 PA_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005252 PA_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.00518 RI_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001005 RI_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002291 RI_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.007043 RI_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.008476 RI_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.009584 RI_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00624 RI_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005759 RI_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004904 SC_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000652 SC_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003076 SC_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004293 SC_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.006142 SC_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.002733 SC_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002738 SC_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003436 SC_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003906 SD_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001286 SD_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003045 SD_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.006832 SD_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.007449 SD_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.002513 SD_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003085 SD_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004862 SD_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005295 TN_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001256 TN_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002297 TN_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003566 TN_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005577 TN_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003139 TN_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002314 TN_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.002869 TN_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003197 TX_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00104 TX_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002662 TX_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00386 TX_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.006748 TX_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003813 TX_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003763 TX_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003366 TX_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003568 UT_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001195 UT_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002924 UT_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003472 UT_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.007139 UT_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00447 UT_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003338 UT_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003455 UT_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004197 VT_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001255 VT_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002859 VT_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.005581 VT_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.010141 VT_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.014482 VT_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.008818 VT_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003411 VT_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003076 VA_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00092 VA_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003394 VA_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004607 VA_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.008845 VA_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.006556 VA_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.005956 VA_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.007471 VA_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.008116 WA_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000561 WA_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003633 WA_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004755 WA_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.008176 WA_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.008216 WA_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.007167 WA_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.006675 WA_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005865 WV_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001851 WV_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002902 WV_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004229 WV_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.004682 WV_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.003996 WV_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003008 WV_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003992 WV_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003925 WI_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000873 WI_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.003428 WI_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.004815 WI_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.008678 WI_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.004268 WI_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.004013 WI_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004666 WI_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.005008 WY_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001042 WY_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00325 WY_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00427 WY_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.004258 WY_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0017 WY_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.003188 WY_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005629 WY_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004926 GU_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001893 GU_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.004754 GU_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.002632 GU_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.009422 MP_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00187 MP_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.004072 MP_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003597 MP_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005874 MP_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.004361 MP_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.004769 MP_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00444 MP_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.004518 PR_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00012 PR_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002806 PR_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.002673 PR_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.005806 PR_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.007686 PR_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.010066 PR_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.005251 PR_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003103 VI_Dose1_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.000392 VI_Dose1_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.002511 VI_Dose1_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.003722 VI_Dose1_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0047 VI_Dose1_may2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.002398 VI_Dose1_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00255 VI_Dose1_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.003405 VI_Dose1_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: transition_rate 0 - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: distribution: fixed value: 0.003368 variantR0adj_Week2: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-01-10 period_end_date: 2021-01-23 value: @@ -6214,9 +6212,9 @@ interventions: a: -1 b: 1 variantR0adj_Week4: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-01-24 period_end_date: 2021-01-30 value: @@ -6232,9 +6230,9 @@ interventions: a: -1 b: 1 variantR0adj_Week5: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-01-31 period_end_date: 2021-02-06 value: @@ -6250,9 +6248,9 @@ interventions: a: -1 b: 1 variantR0adj_Week6: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-02-07 period_end_date: 2021-02-13 value: @@ -6268,9 +6266,9 @@ interventions: a: -1 b: 1 variantR0adj_Week7: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-02-14 period_end_date: 2021-02-20 value: @@ -6286,9 +6284,9 @@ interventions: a: -1 b: 1 variantR0adj_Week8: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-02-21 period_end_date: 2021-02-27 value: @@ -6304,9 +6302,9 @@ interventions: a: -1 b: 1 variantR0adj_Week9: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-02-28 period_end_date: 2021-03-06 value: @@ -6322,9 +6320,9 @@ interventions: a: -1 b: 1 variantR0adj_Week10: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-03-07 period_end_date: 2021-03-13 value: @@ -6340,9 +6338,9 @@ interventions: a: -1 b: 1 variantR0adj_Week11: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-03-14 period_end_date: 2021-03-20 value: @@ -6358,9 +6356,9 @@ interventions: a: -1 b: 1 variantR0adj_Week12: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-03-21 period_end_date: 2021-03-27 value: @@ -6376,9 +6374,9 @@ interventions: a: -1 b: 1 variantR0adj_Week13: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-03-28 period_end_date: 2021-04-03 value: @@ -6394,9 +6392,9 @@ interventions: a: -1 b: 1 variantR0adj_Week14: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-04-04 period_end_date: 2021-04-10 value: @@ -6412,9 +6410,9 @@ interventions: a: -1 b: 1 variantR0adj_Week15: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-04-11 period_end_date: 2021-04-17 value: @@ -6430,9 +6428,9 @@ interventions: a: -1 b: 1 variantR0adj_Week16: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-04-18 period_end_date: 2021-04-24 value: @@ -6448,9 +6446,9 @@ interventions: a: -1 b: 1 variantR0adj_Week17: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-04-25 period_end_date: 2021-05-01 value: @@ -6466,9 +6464,9 @@ interventions: a: -1 b: 1 variantR0adj_Week18: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-05-02 period_end_date: 2021-05-29 value: @@ -6484,9 +6482,9 @@ interventions: a: -1 b: 1 variantR0adj_Week22: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-05-30 period_end_date: 2021-06-05 value: @@ -6502,9 +6500,9 @@ interventions: a: -1 b: 1 variantR0adj_Week23: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-06-06 period_end_date: 2021-06-12 value: @@ -6520,9 +6518,9 @@ interventions: a: -1 b: 1 variantR0adj_Week24: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-06-13 period_end_date: 2021-06-19 value: @@ -6538,9 +6536,9 @@ interventions: a: -1 b: 1 variantR0adj_Week25: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-06-20 period_end_date: 2021-06-26 value: @@ -6550,9 +6548,9 @@ interventions: a: -1.5 b: 0 variantR0adj_Week26: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-06-27 period_end_date: 2021-07-03 value: @@ -6562,9 +6560,9 @@ interventions: a: -1.5 b: 0 variantR0adj_Week27: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-07-04 period_end_date: 2021-07-10 value: @@ -6574,9 +6572,9 @@ interventions: a: -1.5 b: 0 variantR0adj_Week28: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-07-11 period_end_date: 2021-07-17 value: @@ -6586,9 +6584,9 @@ interventions: a: -1.5 b: 0 variantR0adj_Week29: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-07-18 period_end_date: 2021-07-24 value: @@ -6598,9 +6596,9 @@ interventions: a: -1.5 b: 0 variantR0adj_Week30: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-07-25 period_end_date: 2021-07-31 value: @@ -6610,9 +6608,9 @@ interventions: a: -1.5 b: 0 variantR0adj_Week31: - template: Reduce + template: SinglePeriodModifier parameter: R0 - affected_geoids: "all" + subpop: "all" period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -6622,25 +6620,25 @@ interventions: a: -1.5 b: 0 NPI: - template: Stacked + template: StackedModifier scenarios: ["lockdown", "open_p1", "open_p2", "open_p3", "open_p4", "open_p5", "sd", "open_p6", "open_p7"] seasonal: - template: Stacked + template: StackedModifier scenarios: ["Seas_jan", "Seas_feb", "Seas_mar", "Seas_may", "Seas_jun", "Seas_jul", "Seas_aug", "Seas_sep", "Seas_oct", "Seas_nov", "Seas_dec"] vaccination: - template: Stacked + template: StackedModifier scenarios: ["AL_Dose1_jan2021", "AL_Dose1_feb2021", "AL_Dose1_mar2021", "AL_Dose1_apr2021", "AL_Dose1_may2021", "AL_Dose1_jun2021", "AL_Dose1_jul2021", "AL_Dose1_aug2021", "AK_Dose1_jan2021", "AK_Dose1_feb2021", "AK_Dose1_mar2021", "AK_Dose1_apr2021", "AK_Dose1_may2021", "AK_Dose1_jun2021", "AK_Dose1_jul2021", "AK_Dose1_aug2021", "AZ_Dose1_jan2021", "AZ_Dose1_feb2021", "AZ_Dose1_mar2021", "AZ_Dose1_apr2021", "AZ_Dose1_may2021", "AZ_Dose1_jun2021", "AZ_Dose1_jul2021", "AZ_Dose1_aug2021", "AR_Dose1_jan2021", "AR_Dose1_feb2021", "AR_Dose1_mar2021", "AR_Dose1_apr2021", "AR_Dose1_may2021", "AR_Dose1_jun2021", "AR_Dose1_jul2021", "AR_Dose1_aug2021", "CA_Dose1_feb2021", "CA_Dose1_mar2021", "CA_Dose1_apr2021", "CA_Dose1_may2021", "CA_Dose1_jun2021", "CA_Dose1_jul2021", "CA_Dose1_aug2021", "CO_Dose1_jan2021", "CO_Dose1_feb2021", "CO_Dose1_mar2021", "CO_Dose1_apr2021", "CO_Dose1_may2021", "CO_Dose1_jun2021", "CO_Dose1_jul2021", "CO_Dose1_aug2021", "CT_Dose1_jan2021", "CT_Dose1_feb2021", "CT_Dose1_mar2021", "CT_Dose1_apr2021", "CT_Dose1_may2021", "CT_Dose1_jun2021", "CT_Dose1_jul2021", "CT_Dose1_aug2021", "DE_Dose1_jan2021", "DE_Dose1_feb2021", "DE_Dose1_mar2021", "DE_Dose1_apr2021", "DE_Dose1_may2021", "DE_Dose1_jun2021", "DE_Dose1_jul2021", "DE_Dose1_aug2021", "DC_Dose1_feb2021", "DC_Dose1_mar2021", "DC_Dose1_apr2021", "DC_Dose1_may2021", "DC_Dose1_jun2021", "DC_Dose1_jul2021", "DC_Dose1_aug2021", "FL_Dose1_jan2021", "FL_Dose1_feb2021", "FL_Dose1_mar2021", "FL_Dose1_apr2021", "FL_Dose1_may2021", "FL_Dose1_jun2021", "FL_Dose1_jul2021", "FL_Dose1_aug2021", "GA_Dose1_jan2021", "GA_Dose1_feb2021", "GA_Dose1_mar2021", "GA_Dose1_apr2021", "GA_Dose1_may2021", "GA_Dose1_jun2021", "GA_Dose1_jul2021", "GA_Dose1_aug2021", "HI_Dose1_jan2021", "HI_Dose1_feb2021", "HI_Dose1_mar2021", "HI_Dose1_apr2021", "HI_Dose1_may2021", "HI_Dose1_jun2021", "HI_Dose1_jul2021", "HI_Dose1_aug2021", "ID_Dose1_jan2021", "ID_Dose1_feb2021", "ID_Dose1_mar2021", "ID_Dose1_apr2021", "ID_Dose1_may2021", "ID_Dose1_jun2021", "ID_Dose1_jul2021", "ID_Dose1_aug2021", "IL_Dose1_jan2021", "IL_Dose1_feb2021", "IL_Dose1_mar2021", "IL_Dose1_apr2021", "IL_Dose1_may2021", "IL_Dose1_jun2021", "IL_Dose1_jul2021", "IL_Dose1_aug2021", "IN_Dose1_jan2021", "IN_Dose1_feb2021", "IN_Dose1_mar2021", "IN_Dose1_apr2021", "IN_Dose1_may2021", "IN_Dose1_jun2021", "IN_Dose1_jul2021", "IN_Dose1_aug2021", "IA_Dose1_jan2021", "IA_Dose1_feb2021", "IA_Dose1_mar2021", "IA_Dose1_apr2021", "IA_Dose1_may2021", "IA_Dose1_jun2021", "IA_Dose1_jul2021", "IA_Dose1_aug2021", "KS_Dose1_jan2021", "KS_Dose1_feb2021", "KS_Dose1_mar2021", "KS_Dose1_apr2021", "KS_Dose1_may2021", "KS_Dose1_jun2021", "KS_Dose1_jul2021", "KS_Dose1_aug2021", "KY_Dose1_jan2021", "KY_Dose1_feb2021", "KY_Dose1_mar2021", "KY_Dose1_apr2021", "KY_Dose1_may2021", "KY_Dose1_jun2021", "KY_Dose1_jul2021", "KY_Dose1_aug2021", "LA_Dose1_jan2021", "LA_Dose1_feb2021", "LA_Dose1_mar2021", "LA_Dose1_apr2021", "LA_Dose1_may2021", "LA_Dose1_jun2021", "LA_Dose1_jul2021", "LA_Dose1_aug2021", "ME_Dose1_jan2021", "ME_Dose1_feb2021", "ME_Dose1_mar2021", "ME_Dose1_apr2021", "ME_Dose1_may2021", "ME_Dose1_jun2021", "ME_Dose1_jul2021", "ME_Dose1_aug2021", "MD_Dose1_jan2021", "MD_Dose1_feb2021", "MD_Dose1_mar2021", "MD_Dose1_apr2021", "MD_Dose1_may2021", "MD_Dose1_jun2021", "MD_Dose1_jul2021", "MD_Dose1_aug2021", "MA_Dose1_jan2021", "MA_Dose1_feb2021", "MA_Dose1_mar2021", "MA_Dose1_apr2021", "MA_Dose1_may2021", "MA_Dose1_jun2021", "MA_Dose1_jul2021", "MA_Dose1_aug2021", "MI_Dose1_jan2021", "MI_Dose1_feb2021", "MI_Dose1_mar2021", "MI_Dose1_apr2021", "MI_Dose1_may2021", "MI_Dose1_jun2021", "MI_Dose1_jul2021", "MI_Dose1_aug2021", "MN_Dose1_jan2021", "MN_Dose1_feb2021", "MN_Dose1_mar2021", "MN_Dose1_apr2021", "MN_Dose1_may2021", "MN_Dose1_jun2021", "MN_Dose1_jul2021", "MN_Dose1_aug2021", "MS_Dose1_jan2021", "MS_Dose1_feb2021", "MS_Dose1_mar2021", "MS_Dose1_apr2021", "MS_Dose1_may2021", "MS_Dose1_jun2021", "MS_Dose1_jul2021", "MS_Dose1_aug2021", "MO_Dose1_jan2021", "MO_Dose1_feb2021", "MO_Dose1_mar2021", "MO_Dose1_apr2021", "MO_Dose1_may2021", "MO_Dose1_jun2021", "MO_Dose1_jul2021", "MO_Dose1_aug2021", "MT_Dose1_jan2021", "MT_Dose1_feb2021", "MT_Dose1_mar2021", "MT_Dose1_apr2021", "MT_Dose1_may2021", "MT_Dose1_jun2021", "MT_Dose1_jul2021", "MT_Dose1_aug2021", "NE_Dose1_jan2021", "NE_Dose1_feb2021", "NE_Dose1_mar2021", "NE_Dose1_apr2021", "NE_Dose1_may2021", "NE_Dose1_jun2021", "NE_Dose1_jul2021", "NE_Dose1_aug2021", "NV_Dose1_jan2021", "NV_Dose1_feb2021", "NV_Dose1_mar2021", "NV_Dose1_apr2021", "NV_Dose1_may2021", "NV_Dose1_jun2021", "NV_Dose1_jul2021", "NV_Dose1_aug2021", "NH_Dose1_jan2021", "NH_Dose1_feb2021", "NH_Dose1_mar2021", "NH_Dose1_apr2021", "NH_Dose1_may2021", "NH_Dose1_jun2021", "NH_Dose1_jul2021", "NH_Dose1_aug2021", "NJ_Dose1_jan2021", "NJ_Dose1_feb2021", "NJ_Dose1_mar2021", "NJ_Dose1_apr2021", "NJ_Dose1_may2021", "NJ_Dose1_jun2021", "NJ_Dose1_jul2021", "NJ_Dose1_aug2021", "NM_Dose1_feb2021", "NM_Dose1_mar2021", "NM_Dose1_apr2021", "NM_Dose1_may2021", "NM_Dose1_jun2021", "NM_Dose1_jul2021", "NM_Dose1_aug2021", "NY_Dose1_jan2021", "NY_Dose1_feb2021", "NY_Dose1_mar2021", "NY_Dose1_apr2021", "NY_Dose1_may2021", "NY_Dose1_jun2021", "NY_Dose1_jul2021", "NY_Dose1_aug2021", "NC_Dose1_jan2021", "NC_Dose1_feb2021", "NC_Dose1_mar2021", "NC_Dose1_apr2021", "NC_Dose1_may2021", "NC_Dose1_jun2021", "NC_Dose1_jul2021", "NC_Dose1_aug2021", "ND_Dose1_jan2021", "ND_Dose1_feb2021", "ND_Dose1_mar2021", "ND_Dose1_apr2021", "ND_Dose1_may2021", "ND_Dose1_jun2021", "ND_Dose1_jul2021", "ND_Dose1_aug2021", "OH_Dose1_jan2021", "OH_Dose1_feb2021", "OH_Dose1_mar2021", "OH_Dose1_apr2021", "OH_Dose1_may2021", "OH_Dose1_jun2021", "OH_Dose1_jul2021", "OH_Dose1_aug2021", "OK_Dose1_jan2021", "OK_Dose1_feb2021", "OK_Dose1_mar2021", "OK_Dose1_apr2021", "OK_Dose1_may2021", "OK_Dose1_jun2021", "OK_Dose1_jul2021", "OK_Dose1_aug2021", "OR_Dose1_jan2021", "OR_Dose1_feb2021", "OR_Dose1_mar2021", "OR_Dose1_apr2021", "OR_Dose1_may2021", "OR_Dose1_jun2021", "OR_Dose1_jul2021", "OR_Dose1_aug2021", "PA_Dose1_jan2021", "PA_Dose1_feb2021", "PA_Dose1_mar2021", "PA_Dose1_apr2021", "PA_Dose1_may2021", "PA_Dose1_jun2021", "PA_Dose1_jul2021", "PA_Dose1_aug2021", "RI_Dose1_jan2021", "RI_Dose1_feb2021", "RI_Dose1_mar2021", "RI_Dose1_apr2021", "RI_Dose1_may2021", "RI_Dose1_jun2021", "RI_Dose1_jul2021", "RI_Dose1_aug2021", "SC_Dose1_jan2021", "SC_Dose1_feb2021", "SC_Dose1_mar2021", "SC_Dose1_apr2021", "SC_Dose1_may2021", "SC_Dose1_jun2021", "SC_Dose1_jul2021", "SC_Dose1_aug2021", "SD_Dose1_jan2021", "SD_Dose1_feb2021", "SD_Dose1_mar2021", "SD_Dose1_apr2021", "SD_Dose1_may2021", "SD_Dose1_jun2021", "SD_Dose1_jul2021", "SD_Dose1_aug2021", "TN_Dose1_jan2021", "TN_Dose1_feb2021", "TN_Dose1_mar2021", "TN_Dose1_apr2021", "TN_Dose1_may2021", "TN_Dose1_jun2021", "TN_Dose1_jul2021", "TN_Dose1_aug2021", "TX_Dose1_jan2021", "TX_Dose1_feb2021", "TX_Dose1_mar2021", "TX_Dose1_apr2021", "TX_Dose1_may2021", "TX_Dose1_jun2021", "TX_Dose1_jul2021", "TX_Dose1_aug2021", "UT_Dose1_jan2021", "UT_Dose1_feb2021", "UT_Dose1_mar2021", "UT_Dose1_apr2021", "UT_Dose1_may2021", "UT_Dose1_jun2021", "UT_Dose1_jul2021", "UT_Dose1_aug2021", "VT_Dose1_jan2021", "VT_Dose1_feb2021", "VT_Dose1_mar2021", "VT_Dose1_apr2021", "VT_Dose1_may2021", "VT_Dose1_jun2021", "VT_Dose1_jul2021", "VT_Dose1_aug2021", "VA_Dose1_jan2021", "VA_Dose1_feb2021", "VA_Dose1_mar2021", "VA_Dose1_apr2021", "VA_Dose1_may2021", "VA_Dose1_jun2021", "VA_Dose1_jul2021", "VA_Dose1_aug2021", "WA_Dose1_jan2021", "WA_Dose1_feb2021", "WA_Dose1_mar2021", "WA_Dose1_apr2021", "WA_Dose1_may2021", "WA_Dose1_jun2021", "WA_Dose1_jul2021", "WA_Dose1_aug2021", "WV_Dose1_jan2021", "WV_Dose1_feb2021", "WV_Dose1_mar2021", "WV_Dose1_apr2021", "WV_Dose1_may2021", "WV_Dose1_jun2021", "WV_Dose1_jul2021", "WV_Dose1_aug2021", "WI_Dose1_jan2021", "WI_Dose1_feb2021", "WI_Dose1_mar2021", "WI_Dose1_apr2021", "WI_Dose1_may2021", "WI_Dose1_jun2021", "WI_Dose1_jul2021", "WI_Dose1_aug2021", "WY_Dose1_jan2021", "WY_Dose1_feb2021", "WY_Dose1_mar2021", "WY_Dose1_apr2021", "WY_Dose1_may2021", "WY_Dose1_jun2021", "WY_Dose1_jul2021", "WY_Dose1_aug2021", "GU_Dose1_jan2021", "GU_Dose1_feb2021", "GU_Dose1_mar2021", "GU_Dose1_apr2021", "MP_Dose1_jan2021", "MP_Dose1_feb2021", "MP_Dose1_mar2021", "MP_Dose1_apr2021", "MP_Dose1_may2021", "MP_Dose1_jun2021", "MP_Dose1_jul2021", "MP_Dose1_aug2021", "PR_Dose1_jan2021", "PR_Dose1_feb2021", "PR_Dose1_mar2021", "PR_Dose1_apr2021", "PR_Dose1_may2021", "PR_Dose1_jun2021", "PR_Dose1_jul2021", "PR_Dose1_aug2021", "VI_Dose1_jan2021", "VI_Dose1_feb2021", "VI_Dose1_mar2021", "VI_Dose1_apr2021", "VI_Dose1_may2021", "VI_Dose1_jun2021", "VI_Dose1_jul2021", "VI_Dose1_aug2021"] variant: - template: Stacked + template: StackedModifier scenarios: ["variantR0adj_Week2", "variantR0adj_Week4", "variantR0adj_Week5", "variantR0adj_Week6", "variantR0adj_Week7", "variantR0adj_Week8", "variantR0adj_Week9", "variantR0adj_Week10", "variantR0adj_Week11", "variantR0adj_Week12", "variantR0adj_Week13", "variantR0adj_Week14", "variantR0adj_Week15", "variantR0adj_Week16", "variantR0adj_Week17", "variantR0adj_Week18", "variantR0adj_Week22", "variantR0adj_Week23", "variantR0adj_Week24", "variantR0adj_Week25", "variantR0adj_Week26", "variantR0adj_Week27", "variantR0adj_Week28", "variantR0adj_Week29", "variantR0adj_Week30", "variantR0adj_Week31"] inference: - template: Stacked + template: StackedModifier scenarios: ["local_variance", "NPI", "seasonal", "vaccination", "variant"] AL_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -6650,9 +6648,9 @@ interventions: a: 0 b: 1 AL_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -6662,9 +6660,9 @@ interventions: a: 0 b: 1 AL_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -6674,9 +6672,9 @@ interventions: a: 0 b: 1 AL_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -6686,9 +6684,9 @@ interventions: a: 0 b: 1 AL_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -6698,9 +6696,9 @@ interventions: a: 0 b: 1 AL_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -6710,9 +6708,9 @@ interventions: a: 0 b: 1 AL_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -6722,9 +6720,9 @@ interventions: a: 0 b: 1 AL_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -6734,9 +6732,9 @@ interventions: a: 0 b: 1 AK_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -6746,9 +6744,9 @@ interventions: a: 0 b: 1 AK_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -6758,9 +6756,9 @@ interventions: a: 0 b: 1 AK_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -6770,9 +6768,9 @@ interventions: a: 0 b: 1 AK_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -6782,9 +6780,9 @@ interventions: a: 0 b: 1 AK_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -6794,9 +6792,9 @@ interventions: a: 0 b: 1 AK_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -6806,9 +6804,9 @@ interventions: a: 0 b: 1 AK_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -6818,9 +6816,9 @@ interventions: a: 0 b: 1 AK_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -6830,9 +6828,9 @@ interventions: a: 0 b: 1 AZ_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -6842,9 +6840,9 @@ interventions: a: 0 b: 1 AZ_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -6854,9 +6852,9 @@ interventions: a: 0 b: 1 AZ_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -6866,9 +6864,9 @@ interventions: a: 0 b: 1 AZ_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -6878,9 +6876,9 @@ interventions: a: 0 b: 1 AZ_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -6890,9 +6888,9 @@ interventions: a: 0 b: 1 AZ_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -6902,9 +6900,9 @@ interventions: a: 0 b: 1 AZ_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -6914,9 +6912,9 @@ interventions: a: 0 b: 1 AZ_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -6926,9 +6924,9 @@ interventions: a: 0 b: 1 AR_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -6938,9 +6936,9 @@ interventions: a: 0 b: 1 AR_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -6950,9 +6948,9 @@ interventions: a: 0 b: 1 AR_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -6962,9 +6960,9 @@ interventions: a: 0 b: 1 AR_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -6974,9 +6972,9 @@ interventions: a: 0 b: 1 AR_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -6986,9 +6984,9 @@ interventions: a: 0 b: 1 AR_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -6998,9 +6996,9 @@ interventions: a: 0 b: 1 AR_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7010,9 +7008,9 @@ interventions: a: 0 b: 1 AR_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7022,9 +7020,9 @@ interventions: a: 0 b: 1 CA_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7034,9 +7032,9 @@ interventions: a: 0 b: 1 CA_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7046,9 +7044,9 @@ interventions: a: 0 b: 1 CA_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7058,9 +7056,9 @@ interventions: a: 0 b: 1 CA_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7070,9 +7068,9 @@ interventions: a: 0 b: 1 CA_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7082,9 +7080,9 @@ interventions: a: 0 b: 1 CA_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7094,9 +7092,9 @@ interventions: a: 0 b: 1 CA_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7106,9 +7104,9 @@ interventions: a: 0 b: 1 CA_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7118,9 +7116,9 @@ interventions: a: 0 b: 1 CO_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7130,9 +7128,9 @@ interventions: a: 0 b: 1 CO_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7142,9 +7140,9 @@ interventions: a: 0 b: 1 CO_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7154,9 +7152,9 @@ interventions: a: 0 b: 1 CO_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7166,9 +7164,9 @@ interventions: a: 0 b: 1 CO_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7178,9 +7176,9 @@ interventions: a: 0 b: 1 CO_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7190,9 +7188,9 @@ interventions: a: 0 b: 1 CO_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7202,9 +7200,9 @@ interventions: a: 0 b: 1 CO_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7214,9 +7212,9 @@ interventions: a: 0 b: 1 CT_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7226,9 +7224,9 @@ interventions: a: 0 b: 1 CT_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7238,9 +7236,9 @@ interventions: a: 0 b: 1 CT_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7250,9 +7248,9 @@ interventions: a: 0 b: 1 CT_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7262,9 +7260,9 @@ interventions: a: 0 b: 1 CT_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7274,9 +7272,9 @@ interventions: a: 0 b: 1 CT_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7286,9 +7284,9 @@ interventions: a: 0 b: 1 CT_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7298,9 +7296,9 @@ interventions: a: 0 b: 1 CT_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7310,9 +7308,9 @@ interventions: a: 0 b: 1 DE_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7322,9 +7320,9 @@ interventions: a: 0 b: 1 DE_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7334,9 +7332,9 @@ interventions: a: 0 b: 1 DE_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7346,9 +7344,9 @@ interventions: a: 0 b: 1 DE_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7358,9 +7356,9 @@ interventions: a: 0 b: 1 DE_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7370,9 +7368,9 @@ interventions: a: 0 b: 1 DE_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7382,9 +7380,9 @@ interventions: a: 0 b: 1 DE_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7394,9 +7392,9 @@ interventions: a: 0 b: 1 DE_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7406,9 +7404,9 @@ interventions: a: 0 b: 1 DC_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7418,9 +7416,9 @@ interventions: a: 0 b: 1 DC_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7430,9 +7428,9 @@ interventions: a: 0 b: 1 DC_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7442,9 +7440,9 @@ interventions: a: 0 b: 1 DC_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7454,9 +7452,9 @@ interventions: a: 0 b: 1 DC_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7466,9 +7464,9 @@ interventions: a: 0 b: 1 DC_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7478,9 +7476,9 @@ interventions: a: 0 b: 1 DC_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7490,9 +7488,9 @@ interventions: a: 0 b: 1 DC_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7502,9 +7500,9 @@ interventions: a: 0 b: 1 FL_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7514,9 +7512,9 @@ interventions: a: 0 b: 1 FL_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7526,9 +7524,9 @@ interventions: a: 0 b: 1 FL_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7538,9 +7536,9 @@ interventions: a: 0 b: 1 FL_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7550,9 +7548,9 @@ interventions: a: 0 b: 1 FL_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7562,9 +7560,9 @@ interventions: a: 0 b: 1 FL_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7574,9 +7572,9 @@ interventions: a: 0 b: 1 FL_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7586,9 +7584,9 @@ interventions: a: 0 b: 1 FL_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7598,9 +7596,9 @@ interventions: a: 0 b: 1 GA_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7610,9 +7608,9 @@ interventions: a: 0 b: 1 GA_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7622,9 +7620,9 @@ interventions: a: 0 b: 1 GA_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7634,9 +7632,9 @@ interventions: a: 0 b: 1 GA_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7646,9 +7644,9 @@ interventions: a: 0 b: 1 GA_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7658,9 +7656,9 @@ interventions: a: 0 b: 1 GA_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7670,9 +7668,9 @@ interventions: a: 0 b: 1 GA_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7682,9 +7680,9 @@ interventions: a: 0 b: 1 GA_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7694,9 +7692,9 @@ interventions: a: 0 b: 1 HI_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7706,9 +7704,9 @@ interventions: a: 0 b: 1 HI_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7718,9 +7716,9 @@ interventions: a: 0 b: 1 HI_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7730,9 +7728,9 @@ interventions: a: 0 b: 1 HI_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7742,9 +7740,9 @@ interventions: a: 0 b: 1 HI_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7754,9 +7752,9 @@ interventions: a: 0 b: 1 HI_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7766,9 +7764,9 @@ interventions: a: 0 b: 1 HI_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7778,9 +7776,9 @@ interventions: a: 0 b: 1 HI_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7790,9 +7788,9 @@ interventions: a: 0 b: 1 ID_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7802,9 +7800,9 @@ interventions: a: 0 b: 1 ID_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7814,9 +7812,9 @@ interventions: a: 0 b: 1 ID_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7826,9 +7824,9 @@ interventions: a: 0 b: 1 ID_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7838,9 +7836,9 @@ interventions: a: 0 b: 1 ID_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7850,9 +7848,9 @@ interventions: a: 0 b: 1 ID_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7862,9 +7860,9 @@ interventions: a: 0 b: 1 ID_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7874,9 +7872,9 @@ interventions: a: 0 b: 1 ID_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7886,9 +7884,9 @@ interventions: a: 0 b: 1 IL_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7898,9 +7896,9 @@ interventions: a: 0 b: 1 IL_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -7910,9 +7908,9 @@ interventions: a: 0 b: 1 IL_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -7922,9 +7920,9 @@ interventions: a: 0 b: 1 IL_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -7934,9 +7932,9 @@ interventions: a: 0 b: 1 IL_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -7946,9 +7944,9 @@ interventions: a: 0 b: 1 IL_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -7958,9 +7956,9 @@ interventions: a: 0 b: 1 IL_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -7970,9 +7968,9 @@ interventions: a: 0 b: 1 IL_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -7982,9 +7980,9 @@ interventions: a: 0 b: 1 IN_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -7994,9 +7992,9 @@ interventions: a: 0 b: 1 IN_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8006,9 +8004,9 @@ interventions: a: 0 b: 1 IN_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8018,9 +8016,9 @@ interventions: a: 0 b: 1 IN_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8030,9 +8028,9 @@ interventions: a: 0 b: 1 IN_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8042,9 +8040,9 @@ interventions: a: 0 b: 1 IN_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8054,9 +8052,9 @@ interventions: a: 0 b: 1 IN_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8066,9 +8064,9 @@ interventions: a: 0 b: 1 IN_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8078,9 +8076,9 @@ interventions: a: 0 b: 1 IA_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8090,9 +8088,9 @@ interventions: a: 0 b: 1 IA_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8102,9 +8100,9 @@ interventions: a: 0 b: 1 IA_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8114,9 +8112,9 @@ interventions: a: 0 b: 1 IA_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8126,9 +8124,9 @@ interventions: a: 0 b: 1 IA_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8138,9 +8136,9 @@ interventions: a: 0 b: 1 IA_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8150,9 +8148,9 @@ interventions: a: 0 b: 1 IA_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8162,9 +8160,9 @@ interventions: a: 0 b: 1 IA_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8174,9 +8172,9 @@ interventions: a: 0 b: 1 KS_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8186,9 +8184,9 @@ interventions: a: 0 b: 1 KS_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8198,9 +8196,9 @@ interventions: a: 0 b: 1 KS_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8210,9 +8208,9 @@ interventions: a: 0 b: 1 KS_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8222,9 +8220,9 @@ interventions: a: 0 b: 1 KS_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8234,9 +8232,9 @@ interventions: a: 0 b: 1 KS_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8246,9 +8244,9 @@ interventions: a: 0 b: 1 KS_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8258,9 +8256,9 @@ interventions: a: 0 b: 1 KS_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8270,9 +8268,9 @@ interventions: a: 0 b: 1 KY_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8282,9 +8280,9 @@ interventions: a: 0 b: 1 KY_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8294,9 +8292,9 @@ interventions: a: 0 b: 1 KY_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8306,9 +8304,9 @@ interventions: a: 0 b: 1 KY_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8318,9 +8316,9 @@ interventions: a: 0 b: 1 KY_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8330,9 +8328,9 @@ interventions: a: 0 b: 1 KY_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8342,9 +8340,9 @@ interventions: a: 0 b: 1 KY_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8354,9 +8352,9 @@ interventions: a: 0 b: 1 KY_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8366,9 +8364,9 @@ interventions: a: 0 b: 1 LA_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8378,9 +8376,9 @@ interventions: a: 0 b: 1 LA_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8390,9 +8388,9 @@ interventions: a: 0 b: 1 LA_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8402,9 +8400,9 @@ interventions: a: 0 b: 1 LA_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8414,9 +8412,9 @@ interventions: a: 0 b: 1 LA_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8426,9 +8424,9 @@ interventions: a: 0 b: 1 LA_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8438,9 +8436,9 @@ interventions: a: 0 b: 1 LA_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8450,9 +8448,9 @@ interventions: a: 0 b: 1 LA_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8462,9 +8460,9 @@ interventions: a: 0 b: 1 ME_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8474,9 +8472,9 @@ interventions: a: 0 b: 1 ME_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8486,9 +8484,9 @@ interventions: a: 0 b: 1 ME_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8498,9 +8496,9 @@ interventions: a: 0 b: 1 ME_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8510,9 +8508,9 @@ interventions: a: 0 b: 1 ME_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8522,9 +8520,9 @@ interventions: a: 0 b: 1 ME_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8534,9 +8532,9 @@ interventions: a: 0 b: 1 ME_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8546,9 +8544,9 @@ interventions: a: 0 b: 1 ME_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8558,9 +8556,9 @@ interventions: a: 0 b: 1 MD_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8570,9 +8568,9 @@ interventions: a: 0 b: 1 MD_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8582,9 +8580,9 @@ interventions: a: 0 b: 1 MD_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8594,9 +8592,9 @@ interventions: a: 0 b: 1 MD_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8606,9 +8604,9 @@ interventions: a: 0 b: 1 MD_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8618,9 +8616,9 @@ interventions: a: 0 b: 1 MD_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8630,9 +8628,9 @@ interventions: a: 0 b: 1 MD_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8642,9 +8640,9 @@ interventions: a: 0 b: 1 MD_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8654,9 +8652,9 @@ interventions: a: 0 b: 1 MA_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8666,9 +8664,9 @@ interventions: a: 0 b: 1 MA_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8678,9 +8676,9 @@ interventions: a: 0 b: 1 MA_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8690,9 +8688,9 @@ interventions: a: 0 b: 1 MA_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8702,9 +8700,9 @@ interventions: a: 0 b: 1 MA_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8714,9 +8712,9 @@ interventions: a: 0 b: 1 MA_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8726,9 +8724,9 @@ interventions: a: 0 b: 1 MA_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8738,9 +8736,9 @@ interventions: a: 0 b: 1 MA_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8750,9 +8748,9 @@ interventions: a: 0 b: 1 MI_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8762,9 +8760,9 @@ interventions: a: 0 b: 1 MI_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8774,9 +8772,9 @@ interventions: a: 0 b: 1 MI_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8786,9 +8784,9 @@ interventions: a: 0 b: 1 MI_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8798,9 +8796,9 @@ interventions: a: 0 b: 1 MI_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8810,9 +8808,9 @@ interventions: a: 0 b: 1 MI_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8822,9 +8820,9 @@ interventions: a: 0 b: 1 MI_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8834,9 +8832,9 @@ interventions: a: 0 b: 1 MI_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8846,9 +8844,9 @@ interventions: a: 0 b: 1 MN_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8858,9 +8856,9 @@ interventions: a: 0 b: 1 MN_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8870,9 +8868,9 @@ interventions: a: 0 b: 1 MN_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8882,9 +8880,9 @@ interventions: a: 0 b: 1 MN_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8894,9 +8892,9 @@ interventions: a: 0 b: 1 MN_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -8906,9 +8904,9 @@ interventions: a: 0 b: 1 MN_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -8918,9 +8916,9 @@ interventions: a: 0 b: 1 MN_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -8930,9 +8928,9 @@ interventions: a: 0 b: 1 MN_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -8942,9 +8940,9 @@ interventions: a: 0 b: 1 MS_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -8954,9 +8952,9 @@ interventions: a: 0 b: 1 MS_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -8966,9 +8964,9 @@ interventions: a: 0 b: 1 MS_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -8978,9 +8976,9 @@ interventions: a: 0 b: 1 MS_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -8990,9 +8988,9 @@ interventions: a: 0 b: 1 MS_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9002,9 +9000,9 @@ interventions: a: 0 b: 1 MS_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9014,9 +9012,9 @@ interventions: a: 0 b: 1 MS_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9026,9 +9024,9 @@ interventions: a: 0 b: 1 MS_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9038,9 +9036,9 @@ interventions: a: 0 b: 1 MO_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9050,9 +9048,9 @@ interventions: a: 0 b: 1 MO_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9062,9 +9060,9 @@ interventions: a: 0 b: 1 MO_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9074,9 +9072,9 @@ interventions: a: 0 b: 1 MO_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9086,9 +9084,9 @@ interventions: a: 0 b: 1 MO_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9098,9 +9096,9 @@ interventions: a: 0 b: 1 MO_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9110,9 +9108,9 @@ interventions: a: 0 b: 1 MO_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9122,9 +9120,9 @@ interventions: a: 0 b: 1 MO_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9134,9 +9132,9 @@ interventions: a: 0 b: 1 MT_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9146,9 +9144,9 @@ interventions: a: 0 b: 1 MT_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9158,9 +9156,9 @@ interventions: a: 0 b: 1 MT_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9170,9 +9168,9 @@ interventions: a: 0 b: 1 MT_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9182,9 +9180,9 @@ interventions: a: 0 b: 1 MT_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9194,9 +9192,9 @@ interventions: a: 0 b: 1 MT_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9206,9 +9204,9 @@ interventions: a: 0 b: 1 MT_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9218,9 +9216,9 @@ interventions: a: 0 b: 1 MT_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9230,9 +9228,9 @@ interventions: a: 0 b: 1 NE_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9242,9 +9240,9 @@ interventions: a: 0 b: 1 NE_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9254,9 +9252,9 @@ interventions: a: 0 b: 1 NE_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9266,9 +9264,9 @@ interventions: a: 0 b: 1 NE_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9278,9 +9276,9 @@ interventions: a: 0 b: 1 NE_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9290,9 +9288,9 @@ interventions: a: 0 b: 1 NE_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9302,9 +9300,9 @@ interventions: a: 0 b: 1 NE_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9314,9 +9312,9 @@ interventions: a: 0 b: 1 NE_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9326,9 +9324,9 @@ interventions: a: 0 b: 1 NV_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9338,9 +9336,9 @@ interventions: a: 0 b: 1 NV_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9350,9 +9348,9 @@ interventions: a: 0 b: 1 NV_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9362,9 +9360,9 @@ interventions: a: 0 b: 1 NV_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9374,9 +9372,9 @@ interventions: a: 0 b: 1 NV_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9386,9 +9384,9 @@ interventions: a: 0 b: 1 NV_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9398,9 +9396,9 @@ interventions: a: 0 b: 1 NV_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9410,9 +9408,9 @@ interventions: a: 0 b: 1 NV_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9422,9 +9420,9 @@ interventions: a: 0 b: 1 NH_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9434,9 +9432,9 @@ interventions: a: 0 b: 1 NH_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9446,9 +9444,9 @@ interventions: a: 0 b: 1 NH_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9458,9 +9456,9 @@ interventions: a: 0 b: 1 NH_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9470,9 +9468,9 @@ interventions: a: 0 b: 1 NH_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9482,9 +9480,9 @@ interventions: a: 0 b: 1 NH_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9494,9 +9492,9 @@ interventions: a: 0 b: 1 NH_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9506,9 +9504,9 @@ interventions: a: 0 b: 1 NH_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9518,9 +9516,9 @@ interventions: a: 0 b: 1 NJ_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9530,9 +9528,9 @@ interventions: a: 0 b: 1 NJ_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9542,9 +9540,9 @@ interventions: a: 0 b: 1 NJ_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9554,9 +9552,9 @@ interventions: a: 0 b: 1 NJ_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9566,9 +9564,9 @@ interventions: a: 0 b: 1 NJ_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9578,9 +9576,9 @@ interventions: a: 0 b: 1 NJ_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9590,9 +9588,9 @@ interventions: a: 0 b: 1 NJ_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9602,9 +9600,9 @@ interventions: a: 0 b: 1 NJ_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9614,9 +9612,9 @@ interventions: a: 0 b: 1 NM_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9626,9 +9624,9 @@ interventions: a: 0 b: 1 NM_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9638,9 +9636,9 @@ interventions: a: 0 b: 1 NM_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9650,9 +9648,9 @@ interventions: a: 0 b: 1 NM_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9662,9 +9660,9 @@ interventions: a: 0 b: 1 NM_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9674,9 +9672,9 @@ interventions: a: 0 b: 1 NM_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9686,9 +9684,9 @@ interventions: a: 0 b: 1 NM_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9698,9 +9696,9 @@ interventions: a: 0 b: 1 NM_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9710,9 +9708,9 @@ interventions: a: 0 b: 1 NY_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9722,9 +9720,9 @@ interventions: a: 0 b: 1 NY_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9734,9 +9732,9 @@ interventions: a: 0 b: 1 NY_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9746,9 +9744,9 @@ interventions: a: 0 b: 1 NY_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9758,9 +9756,9 @@ interventions: a: 0 b: 1 NY_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9770,9 +9768,9 @@ interventions: a: 0 b: 1 NY_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9782,9 +9780,9 @@ interventions: a: 0 b: 1 NY_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9794,9 +9792,9 @@ interventions: a: 0 b: 1 NY_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9806,9 +9804,9 @@ interventions: a: 0 b: 1 NC_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9818,9 +9816,9 @@ interventions: a: 0 b: 1 NC_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9830,9 +9828,9 @@ interventions: a: 0 b: 1 NC_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9842,9 +9840,9 @@ interventions: a: 0 b: 1 NC_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9854,9 +9852,9 @@ interventions: a: 0 b: 1 NC_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9866,9 +9864,9 @@ interventions: a: 0 b: 1 NC_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9878,9 +9876,9 @@ interventions: a: 0 b: 1 NC_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9890,9 +9888,9 @@ interventions: a: 0 b: 1 NC_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9902,9 +9900,9 @@ interventions: a: 0 b: 1 ND_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -9914,9 +9912,9 @@ interventions: a: 0 b: 1 ND_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -9926,9 +9924,9 @@ interventions: a: 0 b: 1 ND_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -9938,9 +9936,9 @@ interventions: a: 0 b: 1 ND_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -9950,9 +9948,9 @@ interventions: a: 0 b: 1 ND_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -9962,9 +9960,9 @@ interventions: a: 0 b: 1 ND_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -9974,9 +9972,9 @@ interventions: a: 0 b: 1 ND_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -9986,9 +9984,9 @@ interventions: a: 0 b: 1 ND_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -9998,9 +9996,9 @@ interventions: a: 0 b: 1 OH_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10010,9 +10008,9 @@ interventions: a: 0 b: 1 OH_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10022,9 +10020,9 @@ interventions: a: 0 b: 1 OH_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10034,9 +10032,9 @@ interventions: a: 0 b: 1 OH_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10046,9 +10044,9 @@ interventions: a: 0 b: 1 OH_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10058,9 +10056,9 @@ interventions: a: 0 b: 1 OH_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10070,9 +10068,9 @@ interventions: a: 0 b: 1 OH_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10082,9 +10080,9 @@ interventions: a: 0 b: 1 OH_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10094,9 +10092,9 @@ interventions: a: 0 b: 1 OK_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10106,9 +10104,9 @@ interventions: a: 0 b: 1 OK_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10118,9 +10116,9 @@ interventions: a: 0 b: 1 OK_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10130,9 +10128,9 @@ interventions: a: 0 b: 1 OK_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10142,9 +10140,9 @@ interventions: a: 0 b: 1 OK_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10154,9 +10152,9 @@ interventions: a: 0 b: 1 OK_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10166,9 +10164,9 @@ interventions: a: 0 b: 1 OK_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10178,9 +10176,9 @@ interventions: a: 0 b: 1 OK_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10190,9 +10188,9 @@ interventions: a: 0 b: 1 OR_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10202,9 +10200,9 @@ interventions: a: 0 b: 1 OR_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10214,9 +10212,9 @@ interventions: a: 0 b: 1 OR_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10226,9 +10224,9 @@ interventions: a: 0 b: 1 OR_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10238,9 +10236,9 @@ interventions: a: 0 b: 1 OR_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10250,9 +10248,9 @@ interventions: a: 0 b: 1 OR_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10262,9 +10260,9 @@ interventions: a: 0 b: 1 OR_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10274,9 +10272,9 @@ interventions: a: 0 b: 1 OR_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10286,9 +10284,9 @@ interventions: a: 0 b: 1 PA_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10298,9 +10296,9 @@ interventions: a: 0 b: 1 PA_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10310,9 +10308,9 @@ interventions: a: 0 b: 1 PA_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10322,9 +10320,9 @@ interventions: a: 0 b: 1 PA_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10334,9 +10332,9 @@ interventions: a: 0 b: 1 PA_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10346,9 +10344,9 @@ interventions: a: 0 b: 1 PA_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10358,9 +10356,9 @@ interventions: a: 0 b: 1 PA_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10370,9 +10368,9 @@ interventions: a: 0 b: 1 PA_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10382,9 +10380,9 @@ interventions: a: 0 b: 1 RI_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10394,9 +10392,9 @@ interventions: a: 0 b: 1 RI_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10406,9 +10404,9 @@ interventions: a: 0 b: 1 RI_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10418,9 +10416,9 @@ interventions: a: 0 b: 1 RI_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10430,9 +10428,9 @@ interventions: a: 0 b: 1 RI_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10442,9 +10440,9 @@ interventions: a: 0 b: 1 RI_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10454,9 +10452,9 @@ interventions: a: 0 b: 1 RI_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10466,9 +10464,9 @@ interventions: a: 0 b: 1 RI_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10478,9 +10476,9 @@ interventions: a: 0 b: 1 SC_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10490,9 +10488,9 @@ interventions: a: 0 b: 1 SC_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10502,9 +10500,9 @@ interventions: a: 0 b: 1 SC_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10514,9 +10512,9 @@ interventions: a: 0 b: 1 SC_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10526,9 +10524,9 @@ interventions: a: 0 b: 1 SC_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10538,9 +10536,9 @@ interventions: a: 0 b: 1 SC_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10550,9 +10548,9 @@ interventions: a: 0 b: 1 SC_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10562,9 +10560,9 @@ interventions: a: 0 b: 1 SC_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10574,9 +10572,9 @@ interventions: a: 0 b: 1 SD_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10586,9 +10584,9 @@ interventions: a: 0 b: 1 SD_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10598,9 +10596,9 @@ interventions: a: 0 b: 1 SD_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10610,9 +10608,9 @@ interventions: a: 0 b: 1 SD_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10622,9 +10620,9 @@ interventions: a: 0 b: 1 SD_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10634,9 +10632,9 @@ interventions: a: 0 b: 1 SD_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10646,9 +10644,9 @@ interventions: a: 0 b: 1 SD_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10658,9 +10656,9 @@ interventions: a: 0 b: 1 SD_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10670,9 +10668,9 @@ interventions: a: 0 b: 1 TN_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10682,9 +10680,9 @@ interventions: a: 0 b: 1 TN_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10694,9 +10692,9 @@ interventions: a: 0 b: 1 TN_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10706,9 +10704,9 @@ interventions: a: 0 b: 1 TN_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10718,9 +10716,9 @@ interventions: a: 0 b: 1 TN_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10730,9 +10728,9 @@ interventions: a: 0 b: 1 TN_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10742,9 +10740,9 @@ interventions: a: 0 b: 1 TN_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10754,9 +10752,9 @@ interventions: a: 0 b: 1 TN_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10766,9 +10764,9 @@ interventions: a: 0 b: 1 TX_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10778,9 +10776,9 @@ interventions: a: 0 b: 1 TX_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10790,9 +10788,9 @@ interventions: a: 0 b: 1 TX_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10802,9 +10800,9 @@ interventions: a: 0 b: 1 TX_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10814,9 +10812,9 @@ interventions: a: 0 b: 1 TX_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10826,9 +10824,9 @@ interventions: a: 0 b: 1 TX_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10838,9 +10836,9 @@ interventions: a: 0 b: 1 TX_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10850,9 +10848,9 @@ interventions: a: 0 b: 1 TX_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10862,9 +10860,9 @@ interventions: a: 0 b: 1 UT_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10874,9 +10872,9 @@ interventions: a: 0 b: 1 UT_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10886,9 +10884,9 @@ interventions: a: 0 b: 1 UT_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10898,9 +10896,9 @@ interventions: a: 0 b: 1 UT_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -10910,9 +10908,9 @@ interventions: a: 0 b: 1 UT_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -10922,9 +10920,9 @@ interventions: a: 0 b: 1 UT_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -10934,9 +10932,9 @@ interventions: a: 0 b: 1 UT_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -10946,9 +10944,9 @@ interventions: a: 0 b: 1 UT_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -10958,9 +10956,9 @@ interventions: a: 0 b: 1 VT_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -10970,9 +10968,9 @@ interventions: a: 0 b: 1 VT_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -10982,9 +10980,9 @@ interventions: a: 0 b: 1 VT_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10994,9 +10992,9 @@ interventions: a: 0 b: 1 VT_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11006,9 +11004,9 @@ interventions: a: 0 b: 1 VT_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11018,9 +11016,9 @@ interventions: a: 0 b: 1 VT_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11030,9 +11028,9 @@ interventions: a: 0 b: 1 VT_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11042,9 +11040,9 @@ interventions: a: 0 b: 1 VT_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11054,9 +11052,9 @@ interventions: a: 0 b: 1 VA_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -11066,9 +11064,9 @@ interventions: a: 0 b: 1 VA_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -11078,9 +11076,9 @@ interventions: a: 0 b: 1 VA_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -11090,9 +11088,9 @@ interventions: a: 0 b: 1 VA_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11102,9 +11100,9 @@ interventions: a: 0 b: 1 VA_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11114,9 +11112,9 @@ interventions: a: 0 b: 1 VA_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11126,9 +11124,9 @@ interventions: a: 0 b: 1 VA_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11138,9 +11136,9 @@ interventions: a: 0 b: 1 VA_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11150,9 +11148,9 @@ interventions: a: 0 b: 1 WA_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -11162,9 +11160,9 @@ interventions: a: 0 b: 1 WA_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -11174,9 +11172,9 @@ interventions: a: 0 b: 1 WA_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -11186,9 +11184,9 @@ interventions: a: 0 b: 1 WA_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11198,9 +11196,9 @@ interventions: a: 0 b: 1 WA_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11210,9 +11208,9 @@ interventions: a: 0 b: 1 WA_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11222,9 +11220,9 @@ interventions: a: 0 b: 1 WA_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11234,9 +11232,9 @@ interventions: a: 0 b: 1 WA_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11246,9 +11244,9 @@ interventions: a: 0 b: 1 WV_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -11258,9 +11256,9 @@ interventions: a: 0 b: 1 WV_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -11270,9 +11268,9 @@ interventions: a: 0 b: 1 WV_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -11282,9 +11280,9 @@ interventions: a: 0 b: 1 WV_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11294,9 +11292,9 @@ interventions: a: 0 b: 1 WV_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11306,9 +11304,9 @@ interventions: a: 0 b: 1 WV_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11318,9 +11316,9 @@ interventions: a: 0 b: 1 WV_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11330,9 +11328,9 @@ interventions: a: 0 b: 1 WV_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11342,9 +11340,9 @@ interventions: a: 0 b: 1 WI_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -11354,9 +11352,9 @@ interventions: a: 0 b: 1 WI_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -11366,9 +11364,9 @@ interventions: a: 0 b: 1 WI_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -11378,9 +11376,9 @@ interventions: a: 0 b: 1 WI_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11390,9 +11388,9 @@ interventions: a: 0 b: 1 WI_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11402,9 +11400,9 @@ interventions: a: 0 b: 1 WI_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11414,9 +11412,9 @@ interventions: a: 0 b: 1 WI_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11426,9 +11424,9 @@ interventions: a: 0 b: 1 WI_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11438,9 +11436,9 @@ interventions: a: 0 b: 1 WY_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -11450,9 +11448,9 @@ interventions: a: 0 b: 1 WY_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -11462,9 +11460,9 @@ interventions: a: 0 b: 1 WY_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -11474,9 +11472,9 @@ interventions: a: 0 b: 1 WY_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11486,9 +11484,9 @@ interventions: a: 0 b: 1 WY_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11498,9 +11496,9 @@ interventions: a: 0 b: 1 WY_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11510,9 +11508,9 @@ interventions: a: 0 b: 1 WY_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11522,9 +11520,9 @@ interventions: a: 0 b: 1 WY_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11534,9 +11532,9 @@ interventions: a: 0 b: 1 GU_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -11546,9 +11544,9 @@ interventions: a: 0 b: 1 GU_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -11558,9 +11556,9 @@ interventions: a: 0 b: 1 GU_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -11570,9 +11568,9 @@ interventions: a: 0 b: 1 GU_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11582,9 +11580,9 @@ interventions: a: 0 b: 1 GU_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11594,9 +11592,9 @@ interventions: a: 0 b: 1 GU_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11606,9 +11604,9 @@ interventions: a: 0 b: 1 GU_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11618,9 +11616,9 @@ interventions: a: 0 b: 1 GU_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["66000"] + subpop: ["66000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11630,9 +11628,9 @@ interventions: a: 0 b: 1 MP_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -11642,9 +11640,9 @@ interventions: a: 0 b: 1 MP_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -11654,9 +11652,9 @@ interventions: a: 0 b: 1 MP_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -11666,9 +11664,9 @@ interventions: a: 0 b: 1 MP_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11678,9 +11676,9 @@ interventions: a: 0 b: 1 MP_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11690,9 +11688,9 @@ interventions: a: 0 b: 1 MP_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11702,9 +11700,9 @@ interventions: a: 0 b: 1 MP_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11714,9 +11712,9 @@ interventions: a: 0 b: 1 MP_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["69000"] + subpop: ["69000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11726,9 +11724,9 @@ interventions: a: 0 b: 1 PR_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -11738,9 +11736,9 @@ interventions: a: 0 b: 1 PR_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -11750,9 +11748,9 @@ interventions: a: 0 b: 1 PR_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -11762,9 +11760,9 @@ interventions: a: 0 b: 1 PR_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11774,9 +11772,9 @@ interventions: a: 0 b: 1 PR_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11786,9 +11784,9 @@ interventions: a: 0 b: 1 PR_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11798,9 +11796,9 @@ interventions: a: 0 b: 1 PR_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11810,9 +11808,9 @@ interventions: a: 0 b: 1 PR_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["72000"] + subpop: ["72000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11822,9 +11820,9 @@ interventions: a: 0 b: 1 VI_incidD_vaccadj_jan2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: @@ -11834,9 +11832,9 @@ interventions: a: 0 b: 1 VI_incidD_vaccadj_feb2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: @@ -11846,9 +11844,9 @@ interventions: a: 0 b: 1 VI_incidD_vaccadj_mar2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -11858,9 +11856,9 @@ interventions: a: 0 b: 1 VI_incidD_vaccadj_apr2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: @@ -11870,9 +11868,9 @@ interventions: a: 0 b: 1 VI_incidD_vaccadj_may2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: @@ -11882,9 +11880,9 @@ interventions: a: 0 b: 1 VI_incidD_vaccadj_jun2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: @@ -11894,9 +11892,9 @@ interventions: a: 0 b: 1 VI_incidD_vaccadj_jul2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: @@ -11906,9 +11904,9 @@ interventions: a: 0 b: 1 VI_incidD_vaccadj_aug2021: - template: Reduce + template: SinglePeriodModifier parameter: incidD::probability - affected_geoids: ["78000"] + subpop: ["78000"] period_start_date: 2021-08-01 period_end_date: 2021-08-07 value: @@ -11921,7 +11919,7 @@ interventions: outcomes: method: delayframe param_from_file: TRUE - param_place_file: "usa-geoid-params-output_statelevel.parquet" + param_place_file: "usa-subpop-params-output_statelevel.parquet" scenarios: - med settings: @@ -12003,7 +12001,7 @@ outcomes: interventions: settings: med: - template: Stacked + template: StackedModifier scenarios: ["AL_incidD_vaccadj_jan2021", "AL_incidD_vaccadj_feb2021", "AL_incidD_vaccadj_mar2021", "AL_incidD_vaccadj_apr2021", "AL_incidD_vaccadj_may2021", "AL_incidD_vaccadj_jun2021", "AL_incidD_vaccadj_jul2021", "AL_incidD_vaccadj_aug2021", "AK_incidD_vaccadj_jan2021", "AK_incidD_vaccadj_feb2021", "AK_incidD_vaccadj_mar2021", "AK_incidD_vaccadj_apr2021", "AK_incidD_vaccadj_may2021", "AK_incidD_vaccadj_jun2021", "AK_incidD_vaccadj_jul2021", "AK_incidD_vaccadj_aug2021", "AZ_incidD_vaccadj_jan2021", "AZ_incidD_vaccadj_feb2021", "AZ_incidD_vaccadj_mar2021", "AZ_incidD_vaccadj_apr2021", "AZ_incidD_vaccadj_may2021", "AZ_incidD_vaccadj_jun2021", "AZ_incidD_vaccadj_jul2021", "AZ_incidD_vaccadj_aug2021", "AR_incidD_vaccadj_jan2021", "AR_incidD_vaccadj_feb2021", "AR_incidD_vaccadj_mar2021", "AR_incidD_vaccadj_apr2021", "AR_incidD_vaccadj_may2021", "AR_incidD_vaccadj_jun2021", "AR_incidD_vaccadj_jul2021", "AR_incidD_vaccadj_aug2021", "CA_incidD_vaccadj_jan2021", "CA_incidD_vaccadj_feb2021", "CA_incidD_vaccadj_mar2021", "CA_incidD_vaccadj_apr2021", "CA_incidD_vaccadj_may2021", "CA_incidD_vaccadj_jun2021", "CA_incidD_vaccadj_jul2021", "CA_incidD_vaccadj_aug2021", "CO_incidD_vaccadj_jan2021", "CO_incidD_vaccadj_feb2021", "CO_incidD_vaccadj_mar2021", "CO_incidD_vaccadj_apr2021", "CO_incidD_vaccadj_may2021", "CO_incidD_vaccadj_jun2021", "CO_incidD_vaccadj_jul2021", "CO_incidD_vaccadj_aug2021", "CT_incidD_vaccadj_jan2021", "CT_incidD_vaccadj_feb2021", "CT_incidD_vaccadj_mar2021", "CT_incidD_vaccadj_apr2021", "CT_incidD_vaccadj_may2021", "CT_incidD_vaccadj_jun2021", "CT_incidD_vaccadj_jul2021", "CT_incidD_vaccadj_aug2021", "DE_incidD_vaccadj_jan2021", "DE_incidD_vaccadj_feb2021", "DE_incidD_vaccadj_mar2021", "DE_incidD_vaccadj_apr2021", "DE_incidD_vaccadj_may2021", "DE_incidD_vaccadj_jun2021", "DE_incidD_vaccadj_jul2021", "DE_incidD_vaccadj_aug2021", "DC_incidD_vaccadj_jan2021", "DC_incidD_vaccadj_feb2021", "DC_incidD_vaccadj_mar2021", "DC_incidD_vaccadj_apr2021", "DC_incidD_vaccadj_may2021", "DC_incidD_vaccadj_jun2021", "DC_incidD_vaccadj_jul2021", "DC_incidD_vaccadj_aug2021", "FL_incidD_vaccadj_jan2021", "FL_incidD_vaccadj_feb2021", "FL_incidD_vaccadj_mar2021", "FL_incidD_vaccadj_apr2021", "FL_incidD_vaccadj_may2021", "FL_incidD_vaccadj_jun2021", "FL_incidD_vaccadj_jul2021", "FL_incidD_vaccadj_aug2021", "GA_incidD_vaccadj_jan2021", "GA_incidD_vaccadj_feb2021", "GA_incidD_vaccadj_mar2021", "GA_incidD_vaccadj_apr2021", "GA_incidD_vaccadj_may2021", "GA_incidD_vaccadj_jun2021", "GA_incidD_vaccadj_jul2021", "GA_incidD_vaccadj_aug2021", "HI_incidD_vaccadj_jan2021", "HI_incidD_vaccadj_feb2021", "HI_incidD_vaccadj_mar2021", "HI_incidD_vaccadj_apr2021", "HI_incidD_vaccadj_may2021", "HI_incidD_vaccadj_jun2021", "HI_incidD_vaccadj_jul2021", "HI_incidD_vaccadj_aug2021", "ID_incidD_vaccadj_jan2021", "ID_incidD_vaccadj_feb2021", "ID_incidD_vaccadj_mar2021", "ID_incidD_vaccadj_apr2021", "ID_incidD_vaccadj_may2021", "ID_incidD_vaccadj_jun2021", "ID_incidD_vaccadj_jul2021", "ID_incidD_vaccadj_aug2021", "IL_incidD_vaccadj_jan2021", "IL_incidD_vaccadj_feb2021", "IL_incidD_vaccadj_mar2021", "IL_incidD_vaccadj_apr2021", "IL_incidD_vaccadj_may2021", "IL_incidD_vaccadj_jun2021", "IL_incidD_vaccadj_jul2021", "IL_incidD_vaccadj_aug2021", "IN_incidD_vaccadj_jan2021", "IN_incidD_vaccadj_feb2021", "IN_incidD_vaccadj_mar2021", "IN_incidD_vaccadj_apr2021", "IN_incidD_vaccadj_may2021", "IN_incidD_vaccadj_jun2021", "IN_incidD_vaccadj_jul2021", "IN_incidD_vaccadj_aug2021", "IA_incidD_vaccadj_jan2021", "IA_incidD_vaccadj_feb2021", "IA_incidD_vaccadj_mar2021", "IA_incidD_vaccadj_apr2021", "IA_incidD_vaccadj_may2021", "IA_incidD_vaccadj_jun2021", "IA_incidD_vaccadj_jul2021", "IA_incidD_vaccadj_aug2021", "KS_incidD_vaccadj_jan2021", "KS_incidD_vaccadj_feb2021", "KS_incidD_vaccadj_mar2021", "KS_incidD_vaccadj_apr2021", "KS_incidD_vaccadj_may2021", "KS_incidD_vaccadj_jun2021", "KS_incidD_vaccadj_jul2021", "KS_incidD_vaccadj_aug2021", "KY_incidD_vaccadj_jan2021", "KY_incidD_vaccadj_feb2021", "KY_incidD_vaccadj_mar2021", "KY_incidD_vaccadj_apr2021", "KY_incidD_vaccadj_may2021", "KY_incidD_vaccadj_jun2021", "KY_incidD_vaccadj_jul2021", "KY_incidD_vaccadj_aug2021", "LA_incidD_vaccadj_jan2021", "LA_incidD_vaccadj_feb2021", "LA_incidD_vaccadj_mar2021", "LA_incidD_vaccadj_apr2021", "LA_incidD_vaccadj_may2021", "LA_incidD_vaccadj_jun2021", "LA_incidD_vaccadj_jul2021", "LA_incidD_vaccadj_aug2021", "ME_incidD_vaccadj_jan2021", "ME_incidD_vaccadj_feb2021", "ME_incidD_vaccadj_mar2021", "ME_incidD_vaccadj_apr2021", "ME_incidD_vaccadj_may2021", "ME_incidD_vaccadj_jun2021", "ME_incidD_vaccadj_jul2021", "ME_incidD_vaccadj_aug2021", "MD_incidD_vaccadj_jan2021", "MD_incidD_vaccadj_feb2021", "MD_incidD_vaccadj_mar2021", "MD_incidD_vaccadj_apr2021", "MD_incidD_vaccadj_may2021", "MD_incidD_vaccadj_jun2021", "MD_incidD_vaccadj_jul2021", "MD_incidD_vaccadj_aug2021", "MA_incidD_vaccadj_jan2021", "MA_incidD_vaccadj_feb2021", "MA_incidD_vaccadj_mar2021", "MA_incidD_vaccadj_apr2021", "MA_incidD_vaccadj_may2021", "MA_incidD_vaccadj_jun2021", "MA_incidD_vaccadj_jul2021", "MA_incidD_vaccadj_aug2021", "MI_incidD_vaccadj_jan2021", "MI_incidD_vaccadj_feb2021", "MI_incidD_vaccadj_mar2021", "MI_incidD_vaccadj_apr2021", "MI_incidD_vaccadj_may2021", "MI_incidD_vaccadj_jun2021", "MI_incidD_vaccadj_jul2021", "MI_incidD_vaccadj_aug2021", "MN_incidD_vaccadj_jan2021", "MN_incidD_vaccadj_feb2021", "MN_incidD_vaccadj_mar2021", "MN_incidD_vaccadj_apr2021", "MN_incidD_vaccadj_may2021", "MN_incidD_vaccadj_jun2021", "MN_incidD_vaccadj_jul2021", "MN_incidD_vaccadj_aug2021", "MS_incidD_vaccadj_jan2021", "MS_incidD_vaccadj_feb2021", "MS_incidD_vaccadj_mar2021", "MS_incidD_vaccadj_apr2021", "MS_incidD_vaccadj_may2021", "MS_incidD_vaccadj_jun2021", "MS_incidD_vaccadj_jul2021", "MS_incidD_vaccadj_aug2021", "MO_incidD_vaccadj_jan2021", "MO_incidD_vaccadj_feb2021", "MO_incidD_vaccadj_mar2021", "MO_incidD_vaccadj_apr2021", "MO_incidD_vaccadj_may2021", "MO_incidD_vaccadj_jun2021", "MO_incidD_vaccadj_jul2021", "MO_incidD_vaccadj_aug2021", "MT_incidD_vaccadj_jan2021", "MT_incidD_vaccadj_feb2021", "MT_incidD_vaccadj_mar2021", "MT_incidD_vaccadj_apr2021", "MT_incidD_vaccadj_may2021", "MT_incidD_vaccadj_jun2021", "MT_incidD_vaccadj_jul2021", "MT_incidD_vaccadj_aug2021", "NE_incidD_vaccadj_jan2021", "NE_incidD_vaccadj_feb2021", "NE_incidD_vaccadj_mar2021", "NE_incidD_vaccadj_apr2021", "NE_incidD_vaccadj_may2021", "NE_incidD_vaccadj_jun2021", "NE_incidD_vaccadj_jul2021", "NE_incidD_vaccadj_aug2021", "NV_incidD_vaccadj_jan2021", "NV_incidD_vaccadj_feb2021", "NV_incidD_vaccadj_mar2021", "NV_incidD_vaccadj_apr2021", "NV_incidD_vaccadj_may2021", "NV_incidD_vaccadj_jun2021", "NV_incidD_vaccadj_jul2021", "NV_incidD_vaccadj_aug2021", "NH_incidD_vaccadj_jan2021", "NH_incidD_vaccadj_feb2021", "NH_incidD_vaccadj_mar2021", "NH_incidD_vaccadj_apr2021", "NH_incidD_vaccadj_may2021", "NH_incidD_vaccadj_jun2021", "NH_incidD_vaccadj_jul2021", "NH_incidD_vaccadj_aug2021", "NJ_incidD_vaccadj_jan2021", "NJ_incidD_vaccadj_feb2021", "NJ_incidD_vaccadj_mar2021", "NJ_incidD_vaccadj_apr2021", "NJ_incidD_vaccadj_may2021", "NJ_incidD_vaccadj_jun2021", "NJ_incidD_vaccadj_jul2021", "NJ_incidD_vaccadj_aug2021", "NM_incidD_vaccadj_jan2021", "NM_incidD_vaccadj_feb2021", "NM_incidD_vaccadj_mar2021", "NM_incidD_vaccadj_apr2021", "NM_incidD_vaccadj_may2021", "NM_incidD_vaccadj_jun2021", "NM_incidD_vaccadj_jul2021", "NM_incidD_vaccadj_aug2021", "NY_incidD_vaccadj_jan2021", "NY_incidD_vaccadj_feb2021", "NY_incidD_vaccadj_mar2021", "NY_incidD_vaccadj_apr2021", "NY_incidD_vaccadj_may2021", "NY_incidD_vaccadj_jun2021", "NY_incidD_vaccadj_jul2021", "NY_incidD_vaccadj_aug2021", "NC_incidD_vaccadj_jan2021", "NC_incidD_vaccadj_feb2021", "NC_incidD_vaccadj_mar2021", "NC_incidD_vaccadj_apr2021", "NC_incidD_vaccadj_may2021", "NC_incidD_vaccadj_jun2021", "NC_incidD_vaccadj_jul2021", "NC_incidD_vaccadj_aug2021", "ND_incidD_vaccadj_jan2021", "ND_incidD_vaccadj_feb2021", "ND_incidD_vaccadj_mar2021", "ND_incidD_vaccadj_apr2021", "ND_incidD_vaccadj_may2021", "ND_incidD_vaccadj_jun2021", "ND_incidD_vaccadj_jul2021", "ND_incidD_vaccadj_aug2021", "OH_incidD_vaccadj_jan2021", "OH_incidD_vaccadj_feb2021", "OH_incidD_vaccadj_mar2021", "OH_incidD_vaccadj_apr2021", "OH_incidD_vaccadj_may2021", "OH_incidD_vaccadj_jun2021", "OH_incidD_vaccadj_jul2021", "OH_incidD_vaccadj_aug2021", "OK_incidD_vaccadj_jan2021", "OK_incidD_vaccadj_feb2021", "OK_incidD_vaccadj_mar2021", "OK_incidD_vaccadj_apr2021", "OK_incidD_vaccadj_may2021", "OK_incidD_vaccadj_jun2021", "OK_incidD_vaccadj_jul2021", "OK_incidD_vaccadj_aug2021", "OR_incidD_vaccadj_jan2021", "OR_incidD_vaccadj_feb2021", "OR_incidD_vaccadj_mar2021", "OR_incidD_vaccadj_apr2021", "OR_incidD_vaccadj_may2021", "OR_incidD_vaccadj_jun2021", "OR_incidD_vaccadj_jul2021", "OR_incidD_vaccadj_aug2021", "PA_incidD_vaccadj_jan2021", "PA_incidD_vaccadj_feb2021", "PA_incidD_vaccadj_mar2021", "PA_incidD_vaccadj_apr2021", "PA_incidD_vaccadj_may2021", "PA_incidD_vaccadj_jun2021", "PA_incidD_vaccadj_jul2021", "PA_incidD_vaccadj_aug2021", "RI_incidD_vaccadj_jan2021", "RI_incidD_vaccadj_feb2021", "RI_incidD_vaccadj_mar2021", "RI_incidD_vaccadj_apr2021", "RI_incidD_vaccadj_may2021", "RI_incidD_vaccadj_jun2021", "RI_incidD_vaccadj_jul2021", "RI_incidD_vaccadj_aug2021", "SC_incidD_vaccadj_jan2021", "SC_incidD_vaccadj_feb2021", "SC_incidD_vaccadj_mar2021", "SC_incidD_vaccadj_apr2021", "SC_incidD_vaccadj_may2021", "SC_incidD_vaccadj_jun2021", "SC_incidD_vaccadj_jul2021", "SC_incidD_vaccadj_aug2021", "SD_incidD_vaccadj_jan2021", "SD_incidD_vaccadj_feb2021", "SD_incidD_vaccadj_mar2021", "SD_incidD_vaccadj_apr2021", "SD_incidD_vaccadj_may2021", "SD_incidD_vaccadj_jun2021", "SD_incidD_vaccadj_jul2021", "SD_incidD_vaccadj_aug2021", "TN_incidD_vaccadj_jan2021", "TN_incidD_vaccadj_feb2021", "TN_incidD_vaccadj_mar2021", "TN_incidD_vaccadj_apr2021", "TN_incidD_vaccadj_may2021", "TN_incidD_vaccadj_jun2021", "TN_incidD_vaccadj_jul2021", "TN_incidD_vaccadj_aug2021", "TX_incidD_vaccadj_jan2021", "TX_incidD_vaccadj_feb2021", "TX_incidD_vaccadj_mar2021", "TX_incidD_vaccadj_apr2021", "TX_incidD_vaccadj_may2021", "TX_incidD_vaccadj_jun2021", "TX_incidD_vaccadj_jul2021", "TX_incidD_vaccadj_aug2021", "UT_incidD_vaccadj_jan2021", "UT_incidD_vaccadj_feb2021", "UT_incidD_vaccadj_mar2021", "UT_incidD_vaccadj_apr2021", "UT_incidD_vaccadj_may2021", "UT_incidD_vaccadj_jun2021", "UT_incidD_vaccadj_jul2021", "UT_incidD_vaccadj_aug2021", "VT_incidD_vaccadj_jan2021", "VT_incidD_vaccadj_feb2021", "VT_incidD_vaccadj_mar2021", "VT_incidD_vaccadj_apr2021", "VT_incidD_vaccadj_may2021", "VT_incidD_vaccadj_jun2021", "VT_incidD_vaccadj_jul2021", "VT_incidD_vaccadj_aug2021", "VA_incidD_vaccadj_jan2021", "VA_incidD_vaccadj_feb2021", "VA_incidD_vaccadj_mar2021", "VA_incidD_vaccadj_apr2021", "VA_incidD_vaccadj_may2021", "VA_incidD_vaccadj_jun2021", "VA_incidD_vaccadj_jul2021", "VA_incidD_vaccadj_aug2021", "WA_incidD_vaccadj_jan2021", "WA_incidD_vaccadj_feb2021", "WA_incidD_vaccadj_mar2021", "WA_incidD_vaccadj_apr2021", "WA_incidD_vaccadj_may2021", "WA_incidD_vaccadj_jun2021", "WA_incidD_vaccadj_jul2021", "WA_incidD_vaccadj_aug2021", "WV_incidD_vaccadj_jan2021", "WV_incidD_vaccadj_feb2021", "WV_incidD_vaccadj_mar2021", "WV_incidD_vaccadj_apr2021", "WV_incidD_vaccadj_may2021", "WV_incidD_vaccadj_jun2021", "WV_incidD_vaccadj_jul2021", "WV_incidD_vaccadj_aug2021", "WI_incidD_vaccadj_jan2021", "WI_incidD_vaccadj_feb2021", "WI_incidD_vaccadj_mar2021", "WI_incidD_vaccadj_apr2021", "WI_incidD_vaccadj_may2021", "WI_incidD_vaccadj_jun2021", "WI_incidD_vaccadj_jul2021", "WI_incidD_vaccadj_aug2021", "WY_incidD_vaccadj_jan2021", "WY_incidD_vaccadj_feb2021", "WY_incidD_vaccadj_mar2021", "WY_incidD_vaccadj_apr2021", "WY_incidD_vaccadj_may2021", "WY_incidD_vaccadj_jun2021", "WY_incidD_vaccadj_jul2021", "WY_incidD_vaccadj_aug2021", "GU_incidD_vaccadj_jan2021", "GU_incidD_vaccadj_feb2021", "GU_incidD_vaccadj_mar2021", "GU_incidD_vaccadj_apr2021", "GU_incidD_vaccadj_may2021", "GU_incidD_vaccadj_jun2021", "GU_incidD_vaccadj_jul2021", "GU_incidD_vaccadj_aug2021", "MP_incidD_vaccadj_jan2021", "MP_incidD_vaccadj_feb2021", "MP_incidD_vaccadj_mar2021", "MP_incidD_vaccadj_apr2021", "MP_incidD_vaccadj_may2021", "MP_incidD_vaccadj_jun2021", "MP_incidD_vaccadj_jul2021", "MP_incidD_vaccadj_aug2021", "PR_incidD_vaccadj_jan2021", "PR_incidD_vaccadj_feb2021", "PR_incidD_vaccadj_mar2021", "PR_incidD_vaccadj_apr2021", "PR_incidD_vaccadj_may2021", "PR_incidD_vaccadj_jun2021", "PR_incidD_vaccadj_jul2021", "PR_incidD_vaccadj_aug2021", "VI_incidD_vaccadj_jan2021", "VI_incidD_vaccadj_feb2021", "VI_incidD_vaccadj_mar2021", "VI_incidD_vaccadj_apr2021", "VI_incidD_vaccadj_may2021", "VI_incidD_vaccadj_jun2021", "VI_incidD_vaccadj_jul2021", "VI_incidD_vaccadj_aug2021"] inference: diff --git a/flepimop/R_packages/config.writer/tests/testthat/test-gen_npi.R b/flepimop/R_packages/config.writer/tests/testthat/test-gen_npi.R index 193bb40ce..a9b2b4506 100644 --- a/flepimop/R_packages/config.writer/tests/testthat/test-gen_npi.R +++ b/flepimop/R_packages/config.writer/tests/testthat/test-gen_npi.R @@ -27,7 +27,7 @@ generate_processed <- function(geodata_path, seasonality_dat <- set_seasonality_params(sim_start_date = sim_start, sim_end_date = sim_end, inference = TRUE, - template = "MultiTimeReduce", + template = "MultiPeriodModifier", v_dist="truncnorm", v_mean = c(-0.2, -0.133, -0.067, 0, 0.067, 0.133, 0.2, 0.133, 0.067, 0, -0.067, -0.133), v_sd = 0.05, v_a = -1, v_b = 1, @@ -47,7 +47,7 @@ generate_processed <- function(geodata_path, vacc_dat <- set_vacc_rates_params(vacc_path = vaccination_path, sim_end_date = sim_end, vacc_start_date="2021-01-01", - incl_geoid = NULL, + incl_subpop = NULL, scenario = vacc_scenario, compartment = FALSE) @@ -68,7 +68,7 @@ generate_processed <- function(geodata_path, sim_start_date = sim_start, sim_end_date = sim_end, inference = FALSE, - incl_geoid = NULL, + incl_subpop = NULL, scenario = vacc_scenario, v_dist="truncnorm", v_sd = 0.01, v_a = 0, v_b = 1, @@ -105,7 +105,7 @@ test_that("Interventions processing works", { outcomes_path = "outcome_adj.csv") interventions <- readr::read_csv("processed_intervention_data.csv") %>% - dplyr::filter(USPS %in% c("all", "KS", "DE", "") | geoid == "all") %>% + dplyr::filter(USPS %in% c("all", "KS", "DE", "") | subpop == "all") %>% dplyr::mutate(dplyr::across(pert_mean:pert_b, ~ifelse(stringr::str_detect(name, "variant") & start_date < as.Date("2021-06-15") | stringr::str_detect(name, "variant", negate = TRUE) , .x, NA_real_)), diff --git a/flepimop/R_packages/config.writer/tests/testthat/test-print_config.R b/flepimop/R_packages/config.writer/tests/testthat/test-print_config.R index e0a7dd95c..1a1d69be0 100644 --- a/flepimop/R_packages/config.writer/tests/testthat/test-print_config.R +++ b/flepimop/R_packages/config.writer/tests/testthat/test-print_config.R @@ -10,7 +10,7 @@ generate_config <- function(){ sim_end_date = "2021-08-07", dt = 0.25, nslots = 300, - sim_states = unique(interventions$USPS[!interventions$USPS %in% c("", "all") & !is.na(interventions$USPS)]), + modeled_states = unique(interventions$USPS[!interventions$USPS %in% c("", "all") & !is.na(interventions$USPS)]), setup_name = "usa_inference_territories_statelevel", geodata = "geodata_territories_2019_statelevel.csv", mobility = "mobility_territories_2011-2015_statelevel.csv") @@ -39,7 +39,7 @@ generate_config <- function(){ print_outcomes(dat = interventions, ifr = "med", - outcomes_parquet_file="usa-geoid-params-output_statelevel.parquet", + outcomes_parquet_file="usa-subpop-params-output_statelevel.parquet", incidC_prob_value = c(0.4, 0.4, 0.4), compartment = FALSE) diff --git a/flepimop/R_packages/config.writer/tests/testthat/vacc_rates.csv b/flepimop/R_packages/config.writer/tests/testthat/vacc_rates.csv index 10342062c..e32e53cbe 100644 --- a/flepimop/R_packages/config.writer/tests/testthat/vacc_rates.csv +++ b/flepimop/R_packages/config.writer/tests/testthat/vacc_rates.csv @@ -1,4 +1,4 @@ -USPS,geoid,month,year,scenario,start_date,end_date,pop_unvacc,vacc_rate +USPS,subpop,month,year,scenario,start_date,end_date,pop_unvacc,vacc_rate DE,10000,12,2020,2,2020-12-17,2020-12-31,956923.6607142857,1.64e-4 DE,10000,1,2021,2,2021-01-01,2021-01-31,946565.0215053763,4.24e-4 DE,10000,2,2021,2,2021-02-01,2021-02-28,923839.6870748299,0.003744 diff --git a/flepimop/R_packages/flepicommon/NAMESPACE b/flepimop/R_packages/flepicommon/NAMESPACE index d7f0983f1..3346b9a88 100644 --- a/flepimop/R_packages/flepicommon/NAMESPACE +++ b/flepimop/R_packages/flepicommon/NAMESPACE @@ -13,7 +13,7 @@ export(download_CSSE_global_data) export(download_reichlab_data) export(fix_negative_counts) export(fix_negative_counts_global) -export(fix_negative_counts_single_geoid) +export(fix_negative_counts_single_subpop) export(get_CSSE_US_data) export(get_CSSE_US_matchGlobal_data) export(get_CSSE_global_data) diff --git a/flepimop/R_packages/flepicommon/R/DataUtils.R b/flepimop/R_packages/flepicommon/R/DataUtils.R index c1a73d0b9..f76b5bfbf 100755 --- a/flepimop/R_packages/flepicommon/R/DataUtils.R +++ b/flepimop/R_packages/flepicommon/R/DataUtils.R @@ -4,14 +4,14 @@ ##' Convenience function to load the geodata file ##' ##' @param filename filename of geodata file -##' @param geoid_len length of geoid character string -##' @param geoid_pad what to pad the geoid character string with +##' @param subpop_len length of subpop character string +##' @param subpop_pad what to pad the subpop character string with ##' @param state_name whether to add column state with the US state name; defaults to TRUE for forecast or scenario hub runs. ##' ##' @details -##' Currently, the package only supports a geodata object with at least two columns: USPS with the state abbreviation and geoid with the geo IDs of the area. . +##' Currently, the package only supports a geodata object with at least two columns: USPS with the state abbreviation and subpop with the geo IDs of the area. . ##' -##' @return a data frame with columns for state USPS, county geoid and population +##' @return a data frame with columns for state USPS, county subpop and population ##' @examples ##' geodata <- load_geodata_file(filename = system.file("extdata", "geodata_territories_2019_statelevel.csv", package = "config.writer")) ##' geodata @@ -19,21 +19,21 @@ ##' @export load_geodata_file <- function(filename, - geoid_len = 0, - geoid_pad = "0", + subpop_len = 0, + subpop_pad = "0", state_name = TRUE ) { if(!file.exists(filename)){stop(paste(filename,"does not exist in",getwd()))} geodata <- readr::read_csv(filename) %>% - dplyr::mutate(geoid = as.character(geoid)) + dplyr::mutate(subpop = as.character(subpop)) - if (!("geoid" %in% names(geodata))) { - stop(paste(filename, "does not have a column named geoid")) + if (!("subpop" %in% names(geodata))) { + stop(paste(filename, "does not have a column named subpop")) } - if (geoid_len > 0) { - geodata$geoid <- stringr::str_pad(geodata$geoid, geoid_len, pad = geoid_pad) + if (subpop_len > 0) { + geodata$subpop <- stringr::str_pad(geodata$subpop, subpop_len, pad = subpop_pad) } if(state_name) { @@ -69,7 +69,7 @@ read_file_of_type <- function(extension,...){ time=col_date(), uid=col_character(), comp=col_character(), - geoid=col_character() + subpop=col_character() )))}) } if(extension == 'parquet'){ @@ -213,7 +213,7 @@ get_islandareas_data <- function() { #' @export #' #' @examples -fix_negative_counts_single_geoid <- function(.x,.y, incid_col_name, date_col_name, cum_col_name, type){ +fix_negative_counts_single_subpop <- function(.x,.y, incid_col_name, date_col_name, cum_col_name, type){ original_names <- names(.x) .x <- dplyr::arrange(.x,!!rlang::sym(date_col_name)) @@ -278,7 +278,7 @@ fix_negative_counts_single_geoid <- function(.x,.y, incid_col_name, date_col_nam # Add missing dates, fix counts that go negative, and fix NA values # -# See fix_negative_counts_single_geoid() for more details on the algorithm, +# See fix_negative_counts_single_subpop() for more details on the algorithm, # specified by argument "type" #' Title #' @@ -311,7 +311,7 @@ fix_negative_counts <- function( df <- dplyr::group_by(df, FIPS,source) # Add missing dates df <- tidyr::complete(df, !!rlang::sym(date_col_name) := min_date + seq_len(max_date - min_date)-1) - df <- dplyr::group_map(df, fix_negative_counts_single_geoid, + df <- dplyr::group_map(df, fix_negative_counts_single_subpop, incid_col_name=incid_col_name, date_col_name=date_col_name, cum_col_name=cum_col_name, @@ -324,7 +324,7 @@ fix_negative_counts <- function( # Add missing dates, fix counts that go negative, and fix NA values for global dataset (group by Country_Region and Province_State instead of by FIPS) # -# See fix_negative_counts_single_geoid() for more details on the algorithm, +# See fix_negative_counts_single_subpop() for more details on the algorithm, # specified by argument "type" #' Title #' @@ -357,7 +357,7 @@ fix_negative_counts_global <- function( df <- dplyr::group_by(df, Country_Region, Province_State, source) # Add missing dates df <- tidyr::complete(df, !!rlang::sym(date_col_name) := min_date + seq_len(max_date - min_date)-1) - df <- dplyr::group_map(df, fix_negative_counts_single_geoid, + df <- dplyr::group_map(df, fix_negative_counts_single_subpop, incid_col_name=incid_col_name, date_col_name=date_col_name, cum_col_name=cum_col_name, diff --git a/flepimop/R_packages/flepicommon/R/config_test_new.R b/flepimop/R_packages/flepicommon/R/config_test_new.R index 0264ae7f0..e6c71d0ef 100644 --- a/flepimop/R_packages/flepicommon/R/config_test_new.R +++ b/flepimop/R_packages/flepicommon/R/config_test_new.R @@ -82,7 +82,7 @@ validation_list$nslots<- function(value,full_config,config_name){ ##Checking if the following values are present or not. ##If they do not have an assigned default value then the execution will be stopped. ##If they have a default then A statement will be printed and test will continue -## NO Default: Base Path, Modeled States, Year. Nodenames +## No Default: Base Path, Modeled States, Year. subpop ## With Default: Geodata, Mobility, Popnodes, Statelevel validation_list$spatial_setup <- list() @@ -153,9 +153,9 @@ validation_list$spatial_setup$census_year <- function(value, full_config,config_ return(TRUE) } -validation_list$spatial_setup$nodenames <- function(value, full_config,config_name) { +validation_list$spatial_setup$subpop <- function(value, full_config,config_name) { if (is.null(value)) { - print("No Nodenames mentioned") #Should display a better error message than nodenames. + print("No subpops mentioned") #Should display a better error message than subpop. return(FALSE) } return(TRUE) @@ -163,7 +163,7 @@ validation_list$spatial_setup$nodenames <- function(value, full_config,config_na validation_list$spatial_setup$popnodes <- function(value, full_config,config_name) { if (is.null(value)) { - print("No Population Nodes mentioned") #Should display a better error message than nodenames. + print("No Population Nodes mentioned") #Should display a better error message than subpop. return(FALSE) } return(TRUE) @@ -176,7 +176,7 @@ validation_list$spatial_setup$include_in_report <- function(value, full_config,c validation_list$setup_name <- function(value, full_config,config_name) { if (is.null(value)) { - print("No runtype mentioned") #Should display a better error message than nodenames. + print("No runtype mentioned") #Should display a better error message than subpop. return(FALSE) } if (length(strsplit(config_copy$setup_name,split=" ")[[1]])!=1 | length(config_copy$setup_name)!=1){ diff --git a/flepimop/R_packages/inference/R/documentation.Rmd b/flepimop/R_packages/inference/R/documentation.Rmd index 547b07e60..54993796b 100644 --- a/flepimop/R_packages/inference/R/documentation.Rmd +++ b/flepimop/R_packages/inference/R/documentation.Rmd @@ -8,7 +8,7 @@ We describe these options below and present default values in the example config # Modifications to `seeding` -The model can perform inference on the seeding date and initial number of seeding infections in each geoid. An example of this new config section is: +The model can perform inference on the seeding date and initial number of seeding infections in each subpop. An example of this new config section is: ``` seeding: @@ -39,7 +39,8 @@ interventions: - Scenario1 settings: local_variance: - template: ReduceR0 + template: SinglePeriodModifier + parameter: r0 value: distribution: truncnorm mean: 0 @@ -53,7 +54,8 @@ interventions: a: -1 b: 1 stayhome: - template: ReduceR0 + template: SinglePeriodModifier + parameter: r0 period_start_date: 2020-04-04 period_end_date: 2020-04-30 value: @@ -69,7 +71,7 @@ interventions: a: -1 b: 1 Scenario1: - template: Stacked + template: StackedModifier scenarios: - local_variance - stayhome @@ -77,23 +79,23 @@ interventions: ## `interventions::settings::[setting_name]` -This configuration allows us to infer geoid-level baseline R0 estimates by adding a `local_variance` intervention. The baseline geoid-specific R0 estimate may be calculated as $$R0*(1-local_variance),$$ where R0 is the baseline simulation R0 value, and local_variance is an estimated geoid-specific value. +This configuration allows us to infer subpop-level baseline R0 estimates by adding a `local_variance` intervention. The baseline subpop-specific R0 estimate may be calculated as $$R0*(1-local_variance),$$ where R0 is the baseline simulation R0 value, and local_variance is an estimated subpop-specific value. -Interventions may be specified in the same way as before, or with an added `perturbation` section that indicates that inference should be performed on a given intervention's effectiveness. As previously, interventions with perturbations may be specified for all modeled locations or for explicit `affected_geoids.` In this setup, both the prior distribution and the range of the support of the final inferred value are specified by the `value` section. In the configuration above, the inference algorithm will search 0 to 0.9 for all geoids to estimate the effectiveness of the `stayhome` intervention period. The prior distribution on intervention effectiveness follows a truncated normal distribution with a mean of 0.6 and a standard deviation of 0.3. The `perturbation` section specifies the perturbation/step size between the previously-accepted values and the next proposal value. +Interventions may be specified in the same way as before, or with an added `perturbation` section that indicates that inference should be performed on a given intervention's effectiveness. As previously, interventions with perturbations may be specified for all modeled locations or for explicit `subpop.` In this setup, both the prior distribution and the range of the support of the final inferred value are specified by the `value` section. In the configuration above, the inference algorithm will search 0 to 0.9 for all subpop to estimate the effectiveness of the `stayhome` intervention period. The prior distribution on intervention effectiveness follows a truncated normal distribution with a mean of 0.6 and a standard deviation of 0.3. The `perturbation` section specifies the perturbation/step size between the previously-accepted values and the next proposal value. | Item | Required? | Type/Format | |-------------------|-----------------------|-------------------------------------------------| -| template | **required** | "ReduceR0" or "Stacked" | -| period_start_date | optional for ReduceR0 | date between global `start_date` and `end_date`; default is global `start_date` | -| period_end_date | optional for ReduceR0 | date between global `start_date` and `end_date`; default is global `end_date` | -| value | required for ReduceR0 | specifies both the prior distribution and range of support for the final inferred values | -| perturbation | optional for ReduceR0 | this option indicates whether inference will be performed on this setting and how the proposal value will be identified from the last accepted value | -| affected_geoids | optional for ReduceR0 | list of geoids, which must be in geodata | +| template | **required** | "SinglePeriodModifier" or "StackedModifier" | +| period_start_date | optional for SinglePeriodModifier | date between global `start_date` and `end_date`; default is global `start_date` | +| period_end_date | optional for SinglePeriodModifier | date between global `start_date` and `end_date`; default is global `end_date` | +| value | required for SinglePeriodModifier | specifies both the prior distribution and range of support for the final inferred values | +| perturbation | optional for SinglePeriodModifier | this option indicates whether inference will be performed on this setting and how the proposal value will be identified from the last accepted value | +| subpop | optional for SinglePeriodModifier | list of subpop, which must be in geodata | # New `inference` section -This section configures the settings for the inference algorithm. The below example shows the settings for some typical default settings, where the model is calibrated to the weekly incident deaths and weekly incident confirmed cases for each geoid. +This section configures the settings for the inference algorithm. The below example shows the settings for some typical default settings, where the model is calibrated to the weekly incident deaths and weekly incident confirmed cases for each subpop. ``` inference: diff --git a/flepimop/R_packages/inference/R/functions.R b/flepimop/R_packages/inference/R/functions.R index 3b237695f..0285fe7ef 100644 --- a/flepimop/R_packages/inference/R/functions.R +++ b/flepimop/R_packages/inference/R/functions.R @@ -208,14 +208,14 @@ logLikStat <- function(obs, sim, distr, param, add_one = F) { ##' ##' @param stat the statistic to calculate the penalty on ##' @param infer_frame data frame with the statistics in it -##' @param geodata geodata containing geoid from npi fram and the grouping column +##' @param geodata geodata containing subpop from npi fram and the grouping column ##' @param geo_group_col the column to group on ##' @param stat_name_col column holding stats name...default is npi_name ##' @param stat_col column hold the stat ##' @param transform how should the data be transformed before calc ##' @param min_sd what is the minimum SD to consider. Default is .1 ##' -##' @return a data frame with geoids and a per geoid LL adjustment +##' @return a data frame with subpop and a per subpop LL adjustment ##' ##' @export ##' @@ -253,7 +253,7 @@ calc_hierarchical_likadj <- function (stat, mean(!!sym(stat_col)), max(sd(!!sym(stat_col)), min_sd, na.rm=T), log=TRUE))%>% ungroup()%>% - select(geoid, likadj) + select(subpop, likadj) return(rc) } @@ -290,7 +290,7 @@ calc_prior_likadj <- function(params, ##' ##' -##' Function to compute cumulative counts across geoids +##' Function to compute cumulative counts across subpop ##' ##' @param sim_hosp output of ouctomes branching process ##' @@ -300,8 +300,8 @@ calc_prior_likadj <- function(params, ##' compute_cumulative_counts <- function(sim_hosp) { res <- sim_hosp %>% - gather(var, value, -time, -geoid) %>% - group_by(geoid, var) %>% + gather(var, value, -time, -subpop) %>% + group_by(subpop, var) %>% arrange(time) %>% mutate(cumul = cumsum(value)) %>% ungroup() %>% @@ -314,7 +314,7 @@ compute_cumulative_counts <- function(sim_hosp) { ##' ##' -##' Function to compute cumulative counts across geoids +##' Function to compute cumulative counts across subpop ##' ##' @param sim_hosp output of ouctomes branching process ##' @@ -326,7 +326,7 @@ compute_totals <- function(sim_hosp) { sim_hosp %>% group_by(time) %>% summarise_if(is.numeric, sum, na.rm = TRUE) %>% - mutate(geoid = "all") %>% + mutate(subpop = "all") %>% select(all_of(colnames(sim_hosp))) %>% rbind(sim_hosp) } @@ -505,18 +505,18 @@ perturb_hpar <- function(hpar, intervention_settings) { return(hpar) } -##' Function to go through to accept or reject proposed parameters for each geoid based -##' on a geoid specific likelihood. -##' -##' -##' @param seeding_orig original seeding data frame (must have column place) -##' @param seeding_prop proposal seeding (must have column place) -##' @param snpi_orig original npi data frame (must have column geoid) -##' @param snpi_prop proposal npi data frame (must have column geoid) -##' @param hnpi_orig original npi data frame (must have column geoid) -##' @param hnpi_prop proposal npi data frame (must have column geoid) -##' @param orig_lls original ll data frame (must have column ll and geoid) -##' @param prop_lls proposal ll fata frame (must have column ll and geoid) +##' Function to go through to accept or reject proposed parameters for each subpop based +##' on a subpop specific likelihood. +##' +##' +##' @param seeding_orig original seeding data frame (must have column subpop) +##' @param seeding_prop proposal seeding (must have column subpop) +##' @param snpi_orig original npi data frame (must have column subpop) +##' @param snpi_prop proposal npi data frame (must have column subpop) +##' @param hnpi_orig original npi data frame (must have column subpop) +##' @param hnpi_prop proposal npi data frame (must have column subpop) +##' @param orig_lls original ll data frame (must have column ll and subpop) +##' @param prop_lls proposal ll fata frame (must have column ll and subpop) ##' @return a new data frame with the confirmed seedin. ##' @export accept_reject_new_seeding_npis <- function( @@ -536,8 +536,8 @@ accept_reject_new_seeding_npis <- function( rc_hnpi <- hnpi_orig rc_hpar <- hpar_orig - if (!all(orig_lls$geoid == prop_lls$geoid)) { - stop("geoids must match") + if (!all(orig_lls$subpop == prop_lls$subpop)) { + stop("subpop must match") } ##draw accepts/rejects ratio <- exp(prop_lls$ll - orig_lls$ll) @@ -548,11 +548,11 @@ accept_reject_new_seeding_npis <- function( orig_lls$accept <- as.numeric(accept) # added column for acceptance decision orig_lls$accept_prob <- min(1,ratio) # added column for acceptance decision - for (place in orig_lls$geoid[accept]) { - rc_seeding[rc_seeding$place == place, ] <- seeding_prop[seeding_prop$place ==place, ] - rc_snpi[rc_snpi$geoid == place, ] <- snpi_prop[snpi_prop$geoid == place, ] - rc_hnpi[rc_hnpi$geoid == place, ] <- hnpi_prop[hnpi_prop$geoid == place, ] - rc_hpar[rc_hpar$geoid == place, ] <- hpar_prop[hpar_prop$geoid == place, ] + for (subpop in orig_lls$subpop[accept]) { + rc_seeding[rc_seeding$subpop == subpop, ] <- seeding_prop[seeding_prop$subpop ==subpop, ] + rc_snpi[rc_snpi$subpop == subpop, ] <- snpi_prop[snpi_prop$subpop == subpop, ] + rc_hnpi[rc_hnpi$subpop == subpop, ] <- hnpi_prop[hnpi_prop$subpop == subpop, ] + rc_hpar[rc_hpar$subpop == subpop, ] <- hpar_prop[hpar_prop$subpop == subpop, ] } return(list( @@ -654,11 +654,11 @@ perturb_snpi_from_file <- function(snpi, intervention_settings, llik){ } ## for each of them generate the perturbation and update their value - for (this_npi_ind in which(ind)){ # for each geoid that has this interventions + for (this_npi_ind in which(ind)){ # for each subpop that has this interventions - this_geoid <- snpi[["geoid"]][this_npi_ind] - this_accept_avg <- llik$accept_avg[llik$geoid==this_geoid] - his_accept_prob <- llik$accept_prob[llik$geoid==this_geoid] + this_subpop <- snpi[["subpop"]][this_npi_ind] + this_accept_avg <- llik$accept_avg[llik$subpop==this_subpop] + his_accept_prob <- llik$accept_prob[llik$subpop==this_subpop] this_intervention_setting<- intervention_settings[[intervention]] ##get the random distribution from flepicommon package @@ -750,10 +750,10 @@ perturb_hnpi_from_file <- function(hnpi, intervention_settings, llik){ } ## for each of them generate the perturbation and update their value - for (this_npi_ind in which(ind)){ # for each geoid that has this interventions + for (this_npi_ind in which(ind)){ # for each subpop that has this interventions - this_geoid <- hnpi[["geoid"]][this_npi_ind] - this_accept_avg <- llik$accept_avg[llik$geoid==this_geoid] + this_subpop <- hnpi[["subpop"]][this_npi_ind] + this_accept_avg <- llik$accept_avg[llik$subpop==this_subpop] this_intervention_setting<- intervention_settings[[intervention]] ##get the random distribution from flepicommon package diff --git a/flepimop/R_packages/inference/R/inference_slot_runner_funcs.R b/flepimop/R_packages/inference/R/inference_slot_runner_funcs.R index 10f62fd36..f97300d3b 100644 --- a/flepimop/R_packages/inference/R/inference_slot_runner_funcs.R +++ b/flepimop/R_packages/inference/R/inference_slot_runner_funcs.R @@ -5,7 +5,7 @@ ##' ##' @param all_locations all of the locations to calculate likelihood for ##' @param modeled_outcome the hospital data for the simulations -##' @param obs_nodename the name of the column containing locations. +##' @param obs_subpop the name of the column containing locations. ##' @param config the full configuration setup ##' @param obs the full observed data ##' @param ground_truth_data the data we are going to compare to aggregated to the right statistic @@ -24,7 +24,7 @@ aggregate_and_calc_loc_likelihoods <- function( all_locations, modeled_outcome, - obs_nodename, + obs_subpop, targets_config, obs, ground_truth_data, @@ -51,8 +51,8 @@ aggregate_and_calc_loc_likelihoods <- function( ## Filter to this location dplyr::filter( modeled_outcome, - !!rlang::sym(obs_nodename) == location, - time %in% unique(obs$date[obs$geoid == location]) + !!rlang::sym(obs_subpop) == location, + time %in% unique(obs$date[obs$subpop == location]) ) %>% ## Reformat into form the algorithm is looking for inference::getStats( @@ -85,12 +85,12 @@ aggregate_and_calc_loc_likelihoods <- function( likelihood_data[[location]] <- dplyr::tibble( ll = this_location_log_likelihood, filename = hosp_file, - geoid = location, + subpop = location, accept = 0, # acceptance decision (0/1) . Will be updated later when accept/reject decisions made accept_avg = 0, # running average acceptance decision accept_prob = 0 # probability of acceptance of proposal ) - names(likelihood_data)[names(likelihood_data) == 'geoid'] <- obs_nodename + names(likelihood_data)[names(likelihood_data) == 'subpop'] <- obs_subpop } #' @importFrom magrittr %>% @@ -138,7 +138,7 @@ aggregate_and_calc_loc_likelihoods <- function( ##probably a more efficient what to do this, but unclear... - likelihood_data <- dplyr::left_join(likelihood_data, ll_adjs, by = obs_nodename) %>% + likelihood_data <- dplyr::left_join(likelihood_data, ll_adjs, by = obs_subpop) %>% tidyr::replace_na(list(likadj = 0)) %>% ##avoid unmatched location problems dplyr::mutate(ll = ll + likadj) %>% dplyr::select(-likadj) @@ -155,7 +155,7 @@ aggregate_and_calc_loc_likelihoods <- function( defined_priors[[prior]]$likelihood$dist, defined_priors[[prior]]$likelihood$param )) %>% - dplyr::select(geoid, likadj) + dplyr::select(subpop, likadj) } else if (defined_priors[[prior]]$module == "outcomes_interventions") { #' @importFrom magrittr %>% @@ -165,7 +165,7 @@ aggregate_and_calc_loc_likelihoods <- function( defined_priors[[prior]]$likelihood$dist, defined_priors[[prior]]$likelihood$param )) %>% - dplyr::select(geoid, likadj) + dplyr::select(subpop, likadj) } else if (defined_priors[[prior]]$module %in% c("outcomes_parameters", "hospitalization")) { @@ -175,7 +175,7 @@ aggregate_and_calc_loc_likelihoods <- function( defined_priors[[prior]]$likelihood$dist, defined_priors[[prior]]$likelihood$param )) %>% - dplyr::select(geoid, likadj) + dplyr::select(subpop, likadj) } else if (hierarchical_stats[[stat]]$module == "seir_parameters") { stop("We currently do not support priors on seir parameters, since we don't do inference on them except via npis.") @@ -184,7 +184,7 @@ aggregate_and_calc_loc_likelihoods <- function( } ##probably a more efficient what to do this, but unclear... - likelihood_data<- dplyr::left_join(likelihood_data, ll_adjs, by = obs_nodename) %>% + likelihood_data<- dplyr::left_join(likelihood_data, ll_adjs, by = obs_subpop) %>% dplyr::mutate(ll = ll + likadj) %>% dplyr::select(-likadj) } @@ -737,7 +737,7 @@ initialize_mcmc_first_block <- function( # These functions save variables to files of the form variable/name/npi_scenario/outcome_scenario/run_id/global/intermediate/slot.(block-1),runID.variable.ext if (any(checked_par_files %in% global_file_names)) { if (!all(checked_par_files %in% global_file_names)) { - stop("Provided some InferenceSimulator input, but not all") + stop("Provided some GempyorSimulator input, but not all") } if (any(checked_sim_files %in% global_file_names)) { if (!all(checked_sim_files %in% global_file_names)) { @@ -745,7 +745,7 @@ initialize_mcmc_first_block <- function( } gempyor_inference_runner$one_simulation(sim_id2write = block - 1) } else { - stop("Provided some InferenceSimulator output(seir, hosp), but not InferenceSimulator input") + stop("Provided some GempyorSimulator output(seir, hosp), but not GempyorSimulator input") } } else { if (any(checked_sim_files %in% global_file_names)) { diff --git a/flepimop/R_packages/inference/archive/InferenceTest.R b/flepimop/R_packages/inference/archive/InferenceTest.R index 7b26d2bb6..83e383aa6 100644 --- a/flepimop/R_packages/inference/archive/InferenceTest.R +++ b/flepimop/R_packages/inference/archive/InferenceTest.R @@ -31,7 +31,7 @@ single_loc_inference_test <- function(to_fit, registerDoSNOW(cl) # Column name that stores spatial unique id - obs_nodename <- config$spatial_setup$nodenames + obs_subpop <- config$spatial_setup$subpop # Set number of simulations iterations_per_slot <- config$inference$iterations_per_slot @@ -48,13 +48,13 @@ single_loc_inference_test <- function(to_fit, sim_times <- seq.Date(as.Date(config$start_date), as.Date(config$end_date), by = "1 days") # Get unique geonames - geonames <- unique(obs[[obs_nodename]]) + geonames <- unique(obs[[obs_subpop]]) # Compute statistics of observations data_stats <- lapply( geonames, function(x) { - df <- obs[obs[[obs_nodename]] == x, ] + df <- obs[obs[[obs_subpop]] == x, ] getStats( df, "date", @@ -63,7 +63,7 @@ single_loc_inference_test <- function(to_fit, }) %>% set_names(geonames) - all_locations <- unique(obs[[obs_nodename]]) + all_locations <- unique(obs[[obs_subpop]]) # Inference loops required_packages <- c("dplyr", "magrittr", "xts", "zoo", "purrr", "stringr", "truncnorm", @@ -97,7 +97,7 @@ single_loc_inference_test <- function(to_fit, write_csv(seeding_file, append = file.exists(seeding_file)) initial_npis %>% - distinct(reduction, npi_name, geoid) %>% + distinct(reduction, npi_name, subpop) %>% mutate(slot = s, index = 0) %>% write_csv(npi_file, append = file.exists(npi_file)) @@ -136,7 +136,7 @@ single_loc_inference_test <- function(to_fit, # Compute log-likelihoods initial_log_likelihood_data <- dplyr::tibble( ll = sum(unlist(log_likelihood)), - geoid = 1 + subpop = 1 ) # Compute total loglik for each sim @@ -188,7 +188,7 @@ single_loc_inference_test <- function(to_fit, # Compute log-likelihoods log_likelihood_data <- dplyr::tibble( ll = sum(unlist(log_likelihood)), - geoid = 1 + subpop = 1 ) # Compute total loglik for each sim @@ -209,13 +209,13 @@ single_loc_inference_test <- function(to_fit, seeding_npis_list <- accept_reject_new_seeding_npis( seeding_orig = initial_seeding, seeding_prop = current_seeding, - npis_orig = distinct(initial_npis, reduction, npi_name, geoid), - npis_prop = distinct(current_npis, reduction, npi_name, geoid), + npis_orig = distinct(initial_npis, reduction, npi_name, subpop), + npis_prop = distinct(current_npis, reduction, npi_name, subpop), orig_lls = previous_likelihood_data, prop_lls = log_likelihood_data ) initial_seeding <- seeding_npis_list$seeding - initial_npis <- inner_join(seeding_npis_list$npis, select(current_npis, -reduction), by = c("geoid", "npi_name")) + initial_npis <- inner_join(seeding_npis_list$npis, select(current_npis, -reduction), by = c("subpop", "npi_name")) previous_likelihood_data <- seeding_npis_list$ll # Write to file @@ -274,7 +274,7 @@ multi_loc_inference_test <- function(to_fit, N <- length(S0s) # Column name that stores spatial unique id - obs_nodename <- config$spatial_setup$nodenames + obs_subpop <- config$spatial_setup$subpop # Set number of simulations iterations_per_slot <- config$inference$iterations_per_slot @@ -291,13 +291,13 @@ multi_loc_inference_test <- function(to_fit, sim_times <- seq.Date(as.Date(config$start_date), as.Date(config$end_date), by = "1 days") # Get unique geonames - geonames <- unique(obs[[obs_nodename]]) + geonames <- unique(obs[[obs_subpop]]) # Compute statistics of observations data_stats <- lapply( geonames, function(x) { - df <- obs[obs[[obs_nodename]] == x, ] + df <- obs[obs[[obs_subpop]] == x, ] getStats( df, "date", @@ -306,7 +306,7 @@ multi_loc_inference_test <- function(to_fit, }) %>% set_names(geonames) - all_locations <- unique(obs[[obs_nodename]]) + all_locations <- unique(obs[[obs_subpop]]) # Inference loops required_packages <- c("dplyr", "magrittr", "xts", "zoo", "purrr", "stringr", "truncnorm", @@ -325,7 +325,7 @@ multi_loc_inference_test <- function(to_fit, npis_init <- pmap(list(x = 1:N, y = offsets), function(x,y) npis_dataframe(config, - geoid = x, + subpop = x, offset = y, random = T)) %>% bind_rows() @@ -346,12 +346,12 @@ multi_loc_inference_test <- function(to_fit, write_csv(seeding_file, append = file.exists(seeding_file)) initial_npis %>% - distinct(reduction, npi_name, geoid) %>% + distinct(reduction, npi_name, subpop) %>% mutate(slot = s, index = 0) %>% write_csv(npi_file, append = file.exists(npi_file)) - npi_mat <- select(initial_npis, date, geoid, reduction) %>% - pivot_wider(values_from = "reduction", names_from = "geoid", id_cols = "date") + npi_mat <- select(initial_npis, date, subpop, reduction) %>% + pivot_wider(values_from = "reduction", names_from = "subpop", id_cols = "date") # Simulate epi initial_sim_hosp <- simulate_multi_epi(times = sim_times, @@ -371,13 +371,13 @@ multi_loc_inference_test <- function(to_fit, initial_likelihood_data <- list() for(location in all_locations) { - local_sim_hosp <- dplyr::filter(initial_sim_hosp, !!rlang::sym(obs_nodename) == location) %>% - dplyr::filter(time %in% unique(obs$date[obs$geoid == location])) + local_sim_hosp <- dplyr::filter(initial_sim_hosp, !!rlang::sym(obs_subpop) == location) %>% + dplyr::filter(time %in% unique(obs$date[obs$subpop == location])) initial_sim_stats <- inference::getStats( local_sim_hosp, "time", "sim_var", - #end_date = max(obs$date[obs[[obs_nodename]] == location]), + #end_date = max(obs$date[obs[[obs_subpop]] == location]), stat_list = config$inference$statistics ) @@ -396,7 +396,7 @@ multi_loc_inference_test <- function(to_fit, # Compute log-likelihoods initial_likelihood_data[[location]] <- dplyr::tibble( ll = sum(unlist(log_likelihood)), - geoid = location + subpop = location ) } @@ -423,8 +423,8 @@ multi_loc_inference_test <- function(to_fit, current_seeding <- perturb_seeding(initial_seeding, config$seeding$perturbation_sd, date_bounds) current_npis <- perturb_expand_npis(initial_npis, config$interventions$settings, multi = T) - npi_mat <- select(current_npis, date, geoid, reduction) %>% - pivot_wider(values_from = "reduction", names_from = "geoid", id_cols = "date") + npi_mat <- select(current_npis, date, subpop, reduction) %>% + pivot_wider(values_from = "reduction", names_from = "subpop", id_cols = "date") # Simulate hospitalizatoins sim_hosp <- simulate_multi_epi(times = sim_times, @@ -442,13 +442,13 @@ multi_loc_inference_test <- function(to_fit, current_likelihood_data <- list() for(location in all_locations) { - local_sim_hosp <- dplyr::filter(sim_hosp, !!rlang::sym(obs_nodename) == location) %>% - dplyr::filter(time %in% unique(obs$date[obs$geoid == location])) + local_sim_hosp <- dplyr::filter(sim_hosp, !!rlang::sym(obs_subpop) == location) %>% + dplyr::filter(time %in% unique(obs$date[obs$subpop == location])) sim_stats <- inference::getStats( local_sim_hosp, "time", "sim_var", - #end_date = max(obs$date[obs[[obs_nodename]] == location]), + #end_date = max(obs$date[obs[[obs_subpop]] == location]), stat_list = config$inference$statistics ) @@ -467,7 +467,7 @@ multi_loc_inference_test <- function(to_fit, # Compute log-likelihoods current_likelihood_data[[location]] <- dplyr::tibble( ll = sum(unlist(log_likelihood)), - geoid = location + subpop = location ) } @@ -496,13 +496,13 @@ multi_loc_inference_test <- function(to_fit, seeding_npis_list <- accept_reject_new_seeding_npis( seeding_orig = initial_seeding, seeding_prop = current_seeding, - npis_orig = distinct(initial_npis, reduction, npi_name, geoid), - npis_prop = distinct(current_npis, reduction, npi_name, geoid), + npis_orig = distinct(initial_npis, reduction, npi_name, subpop), + npis_prop = distinct(current_npis, reduction, npi_name, subpop), orig_lls = previous_likelihood_data, prop_lls = current_likelihood_data ) initial_seeding <- seeding_npis_list$seeding - initial_npis <- inner_join(seeding_npis_list$npis, select(current_npis, -reduction), by = c("geoid", "npi_name")) + initial_npis <- inner_join(seeding_npis_list$npis, select(current_npis, -reduction), by = c("subpop", "npi_name")) previous_likelihood_data <- seeding_npis_list$ll # Write to file @@ -712,10 +712,10 @@ simulate_multi_epi <- function(times, } } - epi <- lapply(1:N, function(x) as.data.frame(epi[,,x]) %>% mutate(geoid = x)) %>% + epi <- lapply(1:N, function(x) as.data.frame(epi[,,x]) %>% mutate(subpop = x)) %>% bind_rows() %>% mutate(time=rep(times, N)) %>% - pivot_longer(cols = c(-time, -geoid), values_to="N", names_to="comp") + pivot_longer(cols = c(-time, -subpop), values_to="N", names_to="comp") return(epi) } @@ -742,11 +742,11 @@ single_hosp_run <- function(epi, config) { dat_ <- dplyr::filter(epi, comp == "incidI") %>% select(-comp) %>% rename(incidI = N) %>% - mutate(uid = epi$geoid[1]) %>% + mutate(uid = epi$subpop[1]) %>% as.data.table() - if ("geoid" %in% colnames(dat_)) { - dat_ <- select(dat_, -geoid) + if ("subpop" %in% colnames(dat_)) { + dat_ <- select(dat_, -subpop) } dat_H <- hosp_create_delay_frame('incidI',p_hosp,dat_,time_hosp_pars,"H") @@ -771,7 +771,7 @@ single_hosp_run <- function(epi, config) { list(hosp_curr = 0)) %>% arrange(date_inds) %>% select(-date_inds) %>% - mutate(geoid = uid) %>% + mutate(subpop = uid) %>% select(-uid) return(res) @@ -780,7 +780,7 @@ single_hosp_run <- function(epi, config) { ##' @export multi_hosp_run <- function(epi, N, config) { map_df(1:N, - ~ single_hosp_run(dplyr::filter(epi, geoid == .), config)) %>% + ~ single_hosp_run(dplyr::filter(epi, subpop == .), config)) %>% dplyr::filter(time >= config$start_date, time <= config$end_date) } @@ -795,10 +795,10 @@ multi_hosp_run <- function(epi, N, config) { ##' ##' ##' @export -npis_dataframe <- function(config, random = F, geoid = 1, offset = 0, intervention_multi = 1) { +npis_dataframe <- function(config, random = F, subpop = 1, offset = 0, intervention_multi = 1) { times <- seq.Date(as.Date(config$start_date), as.Date(config$end_date), by = "1 days") - npis <- tibble(date = times, reduction = 0, npi_name = "local_variation", geoid = geoid) + npis <- tibble(date = times, reduction = 0, npi_name = "local_variation", subpop = subpop) interventions <- config$interventions$settings date_changes <- map_chr(interventions[1:2], ~ifelse(is.null(.$period_start_date), @@ -886,7 +886,7 @@ synthetic_data_multi <- function(S0s, seedings, mob, config, offsets, interventi npis <- pmap(list(x = 1:N, y = offsets, z = interventions_multi), function(x,y,z) npis_dataframe(config, - geoid = x, + subpop = x, offset = y, intervention_multi = z)) %>% bind_rows() @@ -895,8 +895,8 @@ synthetic_data_multi <- function(S0s, seedings, mob, config, offsets, interventi gamma <- flepicommon::as_evaled_expression(config$seir$parameters$gamma$value) sigma <- flepicommon::as_evaled_expression(config$seir$parameters$sigma) - npi_mat <- select(npis, date, geoid, reduction) %>% - pivot_wider(values_from = "reduction", names_from = "geoid", id_cols = "date") + npi_mat <- select(npis, date, subpop, reduction) %>% + pivot_wider(values_from = "reduction", names_from = "subpop", id_cols = "date") # Simulate epi epi <- simulate_multi_epi(times = times, @@ -912,7 +912,7 @@ synthetic_data_multi <- function(S0s, seedings, mob, config, offsets, interventi # - - - - # Setup fake data fake_data <- map_df(1:N, - ~ single_hosp_run(dplyr::filter(epi, geoid == .), config)) %>% + ~ single_hosp_run(dplyr::filter(epi, subpop == .), config)) %>% rename(date = time) %>% dplyr::filter(date >= config$start_date, date <= config$end_date) @@ -933,12 +933,12 @@ synthetic_data_multi <- function(S0s, seedings, mob, config, offsets, interventi perturb_expand_npis <- function(npis, intervention_settings, multi = F) { if(multi) { npis %>% - distinct(reduction, npi_name, geoid) %>% - group_by(geoid) %>% + distinct(reduction, npi_name, subpop) %>% + group_by(subpop) %>% group_map(~perturb_npis(.x, intervention_settings) %>% - mutate(geoid = .y$geoid[1])) %>% + mutate(subpop = .y$subpop[1])) %>% bind_rows() %>% - inner_join(select(npis, -reduction), by = c("npi_name", "geoid")) + inner_join(select(npis, -reduction), by = c("npi_name", "subpop")) } else { npis %>% distinct(reduction, npi_name) %>% diff --git a/flepimop/R_packages/inference/tests/testthat/test-accept_reject_new_seeding_npis.R b/flepimop/R_packages/inference/tests/testthat/test-accept_reject_new_seeding_npis.R index 9b8c0930a..5aba8a8a5 100644 --- a/flepimop/R_packages/inference/tests/testthat/test-accept_reject_new_seeding_npis.R +++ b/flepimop/R_packages/inference/tests/testthat/test-accept_reject_new_seeding_npis.R @@ -2,20 +2,20 @@ context("accept_reject_new_seeding_npis") test_that("all blocks are accpeted when all proposals are better",{ - seed_orig <- data.frame(place=c(rep("A",5),rep("B",5),rep("C",5)), + seed_orig <- data.frame(subpop=c(rep("A",5),rep("B",5),rep("C",5)), date=16:30, value=1:15) - seed_prop <- data.frame(place=c(rep("A",5),rep("B",5),rep("C",5)), + seed_prop <- data.frame(subpop=c(rep("A",5),rep("B",5),rep("C",5)), date=16:30, value=(1:15)*10) - npis_orig <- data.frame(geoid=c(rep("A",3),rep("B",3),rep("C",3)), + npis_orig <- data.frame(subpop=c(rep("A",3),rep("B",3),rep("C",3)), name=rep(c("X","Y","Z"),3), value=1:9) - npis_prop <- data.frame(geoid=c(rep("A",3),rep("B",3),rep("C",3)), + npis_prop <- data.frame(subpop=c(rep("A",3),rep("B",3),rep("C",3)), name=rep(c("X","Y","Z"),3), value=(1:9)*10) @@ -26,8 +26,8 @@ test_that("all blocks are accpeted when all proposals are better",{ hpar_prop$value <- runif(nrow(hpar_prop)) - orig_lls <- data.frame(geoid=c("A","B","C"),ll=rep(-10,3)) - prop_lls <- data.frame(geoid=c("A","B","C"),ll=rep(-9,3)) + orig_lls <- data.frame(subpop=c("A","B","C"),ll=rep(-10,3)) + prop_lls <- data.frame(subpop=c("A","B","C"),ll=rep(-9,3)) tmp <- accept_reject_new_seeding_npis( @@ -57,20 +57,20 @@ test_that("all blocks are accpeted when all proposals are better",{ test_that("all blocks are rejected when all proposals are 1x10^12 times worse",{ - seed_orig <- data.frame(place=c(rep("A",5),rep("B",5),rep("C",5)), + seed_orig <- data.frame(subpop=c(rep("A",5),rep("B",5),rep("C",5)), date=16:30, value=1:15) - seed_prop <- data.frame(place=c(rep("A",5),rep("B",5),rep("C",5)), + seed_prop <- data.frame(subpop=c(rep("A",5),rep("B",5),rep("C",5)), date=16:30, value=(1:15)*10) - npis_orig <- data.frame(geoid=c(rep("A",3),rep("B",3),rep("C",3)), + npis_orig <- data.frame(subpop=c(rep("A",3),rep("B",3),rep("C",3)), name=rep(c("X","Y","Z"),3), value=1:9) - npis_prop <- data.frame(geoid=c(rep("A",3),rep("B",3),rep("C",3)), + npis_prop <- data.frame(subpop=c(rep("A",3),rep("B",3),rep("C",3)), name=rep(c("X","Y","Z"),3), value=(1:9)*10) @@ -82,8 +82,8 @@ test_that("all blocks are rejected when all proposals are 1x10^12 times worse",{ - orig_lls <- data.frame(geoid=c("A","B","C"),ll=rep(-1,3)) - prop_lls <- data.frame(geoid=c("A","B","C"),ll=rep(-13,3)) + orig_lls <- data.frame(subpop=c("A","B","C"),ll=rep(-1,3)) + prop_lls <- data.frame(subpop=c("A","B","C"),ll=rep(-13,3)) tmp <- accept_reject_new_seeding_npis( @@ -112,20 +112,20 @@ test_that("all blocks are rejected when all proposals are 1x10^12 times worse",{ test_that("only middle block is accepted when appropriate",{ - seed_orig <- data.frame(place=c(rep("A",5),rep("B",5),rep("C",5)), + seed_orig <- data.frame(subpop=c(rep("A",5),rep("B",5),rep("C",5)), date=16:30, value=1:15) - seed_prop <- data.frame(place=c(rep("A",5),rep("B",5),rep("C",5)), + seed_prop <- data.frame(subpop=c(rep("A",5),rep("B",5),rep("C",5)), date=16:30, value=(1:15)*10) - npis_orig <- data.frame(geoid=c(rep("A",3),rep("B",3),rep("C",3)), + npis_orig <- data.frame(subpop=c(rep("A",3),rep("B",3),rep("C",3)), name=rep(c("X","Y","Z"),3), value=1:9) - npis_prop <- data.frame(geoid=c(rep("A",3),rep("B",3),rep("C",3)), + npis_prop <- data.frame(subpop=c(rep("A",3),rep("B",3),rep("C",3)), name=rep(c("X","Y","Z"),3), value=(1:9)*10) @@ -137,9 +137,9 @@ test_that("only middle block is accepted when appropriate",{ hpar_prop$value <- runif(nrow(hpar_prop)) - orig_lls <- data.frame(geoid=c("A","B","C"),ll=rep(-2,3)) - prop_lls <- data.frame(geoid=c("A","B","C"),ll=rep(-15,3)) - prop_lls$ll[prop_lls$geoid=="B"] <- -1 + orig_lls <- data.frame(subpop=c("A","B","C"),ll=rep(-2,3)) + prop_lls <- data.frame(subpop=c("A","B","C"),ll=rep(-15,3)) + prop_lls$ll[prop_lls$subpop=="B"] <- -1 tmp <- accept_reject_new_seeding_npis( @@ -155,9 +155,9 @@ test_that("only middle block is accepted when appropriate",{ prop_lls = prop_lls ) - sd_inds <- which(seed_orig$place!="B") - npi_inds <- which(npis_orig$geoid!="B") - ll_inds <- which(prop_lls$geoid!="B") + sd_inds <- which(seed_orig$subpop!="B") + npi_inds <- which(npis_orig$subpop!="B") + ll_inds <- which(prop_lls$subpop!="B") expect_that(tmp$seeding$value[sd_inds], equals(seed_orig$value[sd_inds])) expect_that(tmp$snpi$value[npi_inds], equals(npis_orig$value[npi_inds])) @@ -165,9 +165,9 @@ test_that("only middle block is accepted when appropriate",{ expect_that(tmp$lls$ll[ll_inds], equals(orig_lls$ll[ll_inds])) - sd_inds <- which(seed_orig$place=="B") - npi_inds <- which(npis_orig$geoid=="B") - ll_inds <- which(prop_lls$geoid=="B") + sd_inds <- which(seed_orig$subpop=="B") + npi_inds <- which(npis_orig$subpop=="B") + ll_inds <- which(prop_lls$subpop=="B") expect_that(tmp$seeding$value[sd_inds], equals(seed_prop$value[sd_inds])) expect_that(tmp$snpi$value[npi_inds], equals(npis_prop$value[npi_inds])) diff --git a/flepimop/R_packages/inference/tests/testthat/test-aggregate_and_calc_loc_likelihoods.R b/flepimop/R_packages/inference/tests/testthat/test-aggregate_and_calc_loc_likelihoods.R index e6b0be24a..6fcb39f15 100644 --- a/flepimop/R_packages/inference/tests/testthat/test-aggregate_and_calc_loc_likelihoods.R +++ b/flepimop/R_packages/inference/tests/testthat/test-aggregate_and_calc_loc_likelihoods.R @@ -7,25 +7,25 @@ context("aggregate_and_calc_loc_likelihoods") ##' get_minimal_setup <- function () { - #3geoids - geoids <- c("06001", "06002", "06003", "32001","32002","32003") + #3subpop + subpop <- c("06001", "06002", "06003", "32001","32002","32003") USPS <- c(rep("CA",3), rep("NY",3)) ##list of lcations to consider...all of them - all_locations <- geoids + all_locations <- subpop - obs_nodename <- "geoid" + obs_subpop <- "subpop" - ##Generate observed data per geoid the simulated data will be compared too + ##Generate observed data per subpop the simulated data will be compared too ##TODO times <- seq(as.Date("2020-02-15"),as.Date("2020-06-30"), by="days") day <- 1:length(times) obs_sims <- list() - for (i in 1:length(geoids)) { + for (i in 1:length(subpop)) { obs_sims[[i]] <- dplyr::tibble(date = times, - geoid = geoids[i], + subpop = subpop[i], death_incid = rpois(length(day), 1000*dnorm(day, 32, 10)), confirmed_incid = rpois(length(day), 10000*dnorm(day, 32, 10))) } @@ -33,7 +33,7 @@ get_minimal_setup <- function () { ##Aggregate the observed data to the appropriate level - geonames <- unique(obs[[obs_nodename]]) + geonames <- unique(obs[[obs_subpop]]) ##minimal confif information used by function config <- list() @@ -67,7 +67,7 @@ get_minimal_setup <- function () { data_stats <- lapply( geonames, function(x) { - df <- obs[obs[[obs_nodename]] == x, ] + df <- obs[obs[[obs_subpop]] == x, ] inference::getStats( df, "date", @@ -76,7 +76,7 @@ get_minimal_setup <- function () { }) %>% setNames(geonames) - ##Simulated data per geoid, multiple vars. Just perturb obs by default + ##Simulated data per subpop, multiple vars. Just perturb obs by default sim_hosp <- obs %>% dplyr::rename(incidD = death_incid, incidC = confirmed_incid) %>% dplyr::mutate(incidD = incidD + rpois(length(incidD), incidD))%>% @@ -84,7 +84,7 @@ get_minimal_setup <- function () { dplyr::rename(time=date) ##the observed node name. - obs_nodename <- "geoid" + obs_subpop <- "subpop" @@ -100,26 +100,26 @@ get_minimal_setup <- function () { ##geodata data frame - geodata <- dplyr::tibble(geoid = geoids, + geodata <- dplyr::tibble(subpop = subpop, USPS = USPS) ##The file containing information on the given npis. Creating 2 by default. - npi1 <- dplyr::tibble(geoid=geoids, + npi1 <- dplyr::tibble(subpop=subpop, npi_name = "local_variance", start_date = "2020-01-01", end_date = "2020-06-30", parameter = "r0", reduction = runif(6,-.5, .5)) - npi2A <- dplyr::tibble(geoid = geoids[1:3], + npi2A <- dplyr::tibble(subpop = subpop[1:3], npi_name = "full_lockdown_CA", start_date = "2020-03-25", end_date = "2020-06-01", parameter = "r0", reduction = runif(3,-.8, -.5)) - npi2B <- dplyr::tibble(geoid = geoids[4:6], + npi2B <- dplyr::tibble(subpop = subpop[4:6], npi_name = "full_lockdown_NY", start_date = "2020-03-15", end_date = "2020-05-22", @@ -129,14 +129,14 @@ get_minimal_setup <- function () { snpi <- dplyr::bind_rows(npi1, npi2A, npi2B) ##The file containing information on the given hospitalization npis. Creating 2 by default. - npi1 <- dplyr::tibble(geoid=geoids, + npi1 <- dplyr::tibble(subpop=subpop, npi_name = "local_variance", start_date = "2020-01-01", end_date = "2020-06-30", parameter = "hosp::inf", reduction = runif(6,-.5, .5)) - npi2 <- dplyr::tibble(geoid = geoids[1:3], + npi2 <- dplyr::tibble(subpop = subpop[1:3], npi_name = "full_lockdown_CA", start_date = "2020-03-25", end_date = "2020-06-01", @@ -147,11 +147,11 @@ get_minimal_setup <- function () { hnpi <- dplyr::bind_rows(npi1, npi2) ##Set up hospitalizatoin params. - hpar1 <- dplyr::tibble(geoid=geoids, + hpar1 <- dplyr::tibble(subpop=subpop, parameter="p_confirmed_inf", value=0.1) - hpar2 <- dplyr::tibble(geoid=geoids, + hpar2 <- dplyr::tibble(subpop=subpop, parameter="p_hosp_inf", value=.07) @@ -160,7 +160,7 @@ get_minimal_setup <- function () { return(list(all_locations=all_locations, sim_hosp=sim_hosp, - obs_nodename=obs_nodename, + obs_subpop=obs_subpop, config=config, obs=obs, data_stats=data_stats, @@ -182,7 +182,7 @@ test_that("aggregate_and_calc_loc_likelihoods returns a likelihood per location tmp <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -195,7 +195,7 @@ test_that("aggregate_and_calc_loc_likelihoods returns a likelihood per location expect_that(nrow(tmp), equals(length(stuff$all_locations))) - expect_that(sort(colnames(tmp)), equals(sort(c("ll","accept","accept_prob","accept_avg","filename",stuff$obs_nodename)))) + expect_that(sort(colnames(tmp)), equals(sort(c("ll","accept","accept_prob","accept_avg","filename",stuff$obs_subpop)))) }) @@ -212,7 +212,7 @@ test_that("likelihood of perfect data is less that likelihood of imperfect data" tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -226,7 +226,7 @@ test_that("likelihood of perfect data is less that likelihood of imperfect data" tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = alt_sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -262,7 +262,7 @@ test_that("removing deaths as a stat makes the likelihood invariant to changes i tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -278,7 +278,7 @@ test_that("removing deaths as a stat makes the likelihood invariant to changes i tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = alt_sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -297,7 +297,7 @@ test_that("removing deaths as a stat makes the likelihood invariant to changes i tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -313,7 +313,7 @@ test_that("removing deaths as a stat makes the likelihood invariant to changes i tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = alt_sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -348,7 +348,7 @@ test_that("removing confirmed as a stat makes the likelihood invariant to change tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -364,7 +364,7 @@ test_that("removing confirmed as a stat makes the likelihood invariant to change tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = alt_sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -383,7 +383,7 @@ test_that("removing confirmed as a stat makes the likelihood invariant to change tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -399,7 +399,7 @@ test_that("removing confirmed as a stat makes the likelihood invariant to change tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = alt_sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -427,7 +427,7 @@ test_that("likelihoood insenstive to parameters with no multi-level compoenent o tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -443,7 +443,7 @@ test_that("likelihoood insenstive to parameters with no multi-level compoenent o tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -481,7 +481,7 @@ test_that("likelihood is senstive to changes to correct npi paramerers when mult tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -497,7 +497,7 @@ test_that("likelihood is senstive to changes to correct npi paramerers when mult tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -512,7 +512,7 @@ test_that("likelihood is senstive to changes to correct npi paramerers when mult tmp3 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -552,7 +552,7 @@ test_that("likelihood is sensitive to changes to correct hpar parameters when mu tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -569,7 +569,7 @@ test_that("likelihood is sensitive to changes to correct hpar parameters when mu tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -585,7 +585,7 @@ test_that("likelihood is sensitive to changes to correct hpar parameters when mu tmp3 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -626,7 +626,7 @@ test_that("when prior is specified, likilhood is higher when nearer prior mean f tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -642,7 +642,7 @@ test_that("when prior is specified, likilhood is higher when nearer prior mean f tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -657,7 +657,7 @@ test_that("when prior is specified, likilhood is higher when nearer prior mean f tmp3 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -697,7 +697,7 @@ test_that("when prior is specified, likilhood is higher when nearer prior mean f tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -714,7 +714,7 @@ test_that("when prior is specified, likilhood is higher when nearer prior mean f tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -730,7 +730,7 @@ test_that("when prior is specified, likilhood is higher when nearer prior mean f tmp3 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -775,7 +775,7 @@ test_that("Hierarchical structure works on interventions not defined for all loc tmp1 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -791,7 +791,7 @@ test_that("Hierarchical structure works on interventions not defined for all loc tmp2 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -806,7 +806,7 @@ test_that("Hierarchical structure works on interventions not defined for all loc tmp3 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, @@ -821,7 +821,7 @@ test_that("Hierarchical structure works on interventions not defined for all loc tmp4 <- aggregate_and_calc_loc_likelihoods( all_locations = stuff$all_locations, modeled_outcome = stuff$sim_hosp, - obs_nodename = stuff$obs_nodename, + obs_subpop = stuff$obs_subpop, targets_config = stuff$config[['inference']][['statistics']], obs = stuff$obs, ground_truth_data = stuff$data_stats, diff --git a/flepimop/R_packages/inference/tests/testthat/test-calc_hierarchical_likadj.R b/flepimop/R_packages/inference/tests/testthat/test-calc_hierarchical_likadj.R index 93245f1ad..86379b019 100644 --- a/flepimop/R_packages/inference/tests/testthat/test-calc_hierarchical_likadj.R +++ b/flepimop/R_packages/inference/tests/testthat/test-calc_hierarchical_likadj.R @@ -7,7 +7,7 @@ test_that("penalty is based on selected stat", { npi2 <- runif (6,-1,1) ##makes data frame with stats - infer_frame <- data.frame(geoid=rep(c("01001","01002","01003", + infer_frame <- data.frame(subpop=rep(c("01001","01002","01003", "06001", "06002", "06003"),2), npi_name=rep(c("npi 1", "npi 2"), each=6), reduction=c(npi1,npi2)) @@ -16,7 +16,7 @@ test_that("penalty is based on selected stat", { ##make geodata dataframe - geodata <- data.frame(geoid=c("01001","01002","01003", + geodata <- data.frame(subpop=c("01001","01002","01003", "06001", "06002","06003"), USPS=rep(c("HI","CA"), each=3)) @@ -46,7 +46,7 @@ test_that("NPIs with equal values have highe LL than npis with different values" npi2 <- rep(runif (1,-1,1),6) ##makes data frame with stats - infer_frame <- data.frame(geoid=rep(c("01001","01002","01003", + infer_frame <- data.frame(subpop=rep(c("01001","01002","01003", "06001", "06002", "06003"),2), npi_name=rep(c("npi 1", "npi 2"), each=6), reduction=c(npi1,npi2)) @@ -55,7 +55,7 @@ test_that("NPIs with equal values have highe LL than npis with different values" ##make geodata dataframe - geodata <- data.frame(geoid=c("01001","01002","01003", + geodata <- data.frame(subpop=c("01001","01002","01003", "06001", "06002","06003"), USPS=rep(c("HI","CA"), each=3)) @@ -81,7 +81,7 @@ test_that("Groups with equal values have highe LL than npis with different value npi2 <- c(rep(runif(1,-1,1),3),runif(3,-1,1)) ##makes data frame with stats - infer_frame <- data.frame(geoid=rep(c("01001","01002","01003", + infer_frame <- data.frame(subpop=rep(c("01001","01002","01003", "06001", "06002", "06003"),2), npi_name=rep(c("npi 1", "npi 2"), each=6), reduction=c(npi1,npi2)) @@ -90,7 +90,7 @@ test_that("Groups with equal values have highe LL than npis with different value ##make geodata dataframe - geodata <- data.frame(geoid=c("01001","01002","01003", + geodata <- data.frame(subpop=c("01001","01002","01003", "06001", "06002","06003"), USPS=rep(c("HI","CA"), each=3)) @@ -127,7 +127,7 @@ test_that("equal values use minimum variance", { npi1 <- rep(1,3) ##makes data frame with stats - infer_frame <- dplyr::tibble(geoid=c("01001","01002","01003"), + infer_frame <- dplyr::tibble(subpop=c("01001","01002","01003"), npi_name=rep("npi 1", 3), reduction=npi1) @@ -135,7 +135,7 @@ test_that("equal values use minimum variance", { ##make geodata dataframe - geodata <- dplyr::tibble(geoid=c("01001","01002","01003", + geodata <- dplyr::tibble(subpop=c("01001","01002","01003", "06001", "06002","06003"), USPS=rep(c("HI","CA"), each=3)) @@ -155,13 +155,13 @@ test_that("transforms give the appropriate likelihoods", { # val <- c(0.25698943, 0.23411552, 0.09412548) ##makes data frame with stats - infer_frame <- dplyr::tibble(geoid=c("01001","01002","01003"), + infer_frame <- dplyr::tibble(subpop=c("01001","01002","01003"), npi_name=rep("val1", each=3), value=val) ##make geodata dataframe - geodata <- dplyr::tibble(geoid=c("01001","01002","01003", + geodata <- dplyr::tibble(subpop=c("01001","01002","01003", "06001", "06002","06003"), USPS=rep(c("HI","CA"), each=3)) @@ -197,18 +197,18 @@ test_that("transforms give the appropriate likelihoods", { }) -test_that("sensible things are returned whern there is only 1 geoid in a location", { +test_that("sensible things are returned whern there is only 1 subpop in a location", { val<- runif(4,0,1) ##makes data frame with stats - infer_frame <- dplyr::tibble(geoid=c("01001", "06001", "06002","06003"), + infer_frame <- dplyr::tibble(subpop=c("01001", "06001", "06002","06003"), npi_name=rep("val1", 4), value=val) ##make geodata dataframe - geodata <- dplyr::tibble(geoid=c("01001","01002","01003", + geodata <- dplyr::tibble(subpop=c("01001","01002","01003", "06001", "06002","06003"), USPS=rep(c("HI","CA"), each=3)) @@ -222,8 +222,8 @@ test_that("sensible things are returned whern there is only 1 geoid in a locatio ##print(adj) - ##make sure that the one geoid thing is zero - expect_true(!is.na(adj$likadj[adj$geoid=="01001"])) + ##make sure that the one subpop thing is zero + expect_true(!is.na(adj$likadj[adj$subpop=="01001"])) }) @@ -234,13 +234,13 @@ test_that("logit transform does not blow up on 0 or 1", { val[2] <- 1 ##makes data frame with stats - infer_frame <- dplyr::tibble(geoid=c("01001","01002","01003"), + infer_frame <- dplyr::tibble(subpop=c("01001","01002","01003"), npi_name=rep("val1", each=3), value=val) ##make geodata dataframe - geodata <- dplyr::tibble(geoid=c("01001","01002","01003", + geodata <- dplyr::tibble(subpop=c("01001","01002","01003", "06001", "06002","06003"), USPS=rep(c("HI","CA"), each=3)) diff --git a/flepimop/R_packages/inference/tests/testthat/test-perturb_npis.R b/flepimop/R_packages/inference/tests/testthat/test-perturb_npis.R index e1df1baca..e8d506237 100644 --- a/flepimop/R_packages/inference/tests/testthat/test-perturb_npis.R +++ b/flepimop/R_packages/inference/tests/testthat/test-perturb_npis.R @@ -3,7 +3,7 @@ context("perturb_npis") test_that("perturb_snpi always stays within support", { N <- 10000 npis <- data.frame( - geoid = rep('00000',times=N), + subpop = rep('00000',times=N), npi_name = rep("test_npi",times=N), start_date = rep("2020-02-01",times=N), end_date = rep("2020-02-02",times=N), @@ -11,7 +11,7 @@ test_that("perturb_snpi always stays within support", { reduction = rep(-.099,times=N) ) npi_settings <- list(test_npi = list( - template = "Reduce", + template = "SinglePeriodModifier", parameter = "r0", value = list( distribution = "truncnorm", @@ -35,7 +35,7 @@ test_that("perturb_snpi always stays within support", { test_that("perturb_snpi has a median of 0 after 10000 sims",{ N <- 10000 npis <- data.frame( - geoid = rep('00000',times=N), + subpop = rep('00000',times=N), npi_name = rep("test_npi",times=N), start_date = rep("2020-02-01",times=N), end_date = rep("2020-02-02",times=N), @@ -43,7 +43,7 @@ test_that("perturb_snpi has a median of 0 after 10000 sims",{ reduction = rep(0,times=N) ) npi_settings <- list( - template = "Reduce", + template = "SinglePeriodModifier", parameter = "r0", value = list( distribution = "truncnorm", @@ -79,7 +79,7 @@ test_that("perturb_snpi has a median of 0 after 10000 sims",{ test_that("perturb_snpi does not perturb npis without a perturbation section", { N <- 10000 npis <- data.frame( - geoid = rep('00000',times=N), + subpop = rep('00000',times=N), npi_name = rep("test_npi",times=N), start_date = rep("2020-02-01",times=N), end_date = rep("2020-02-02",times=N), @@ -87,7 +87,7 @@ test_that("perturb_snpi does not perturb npis without a perturbation section", { reduction = rep(-.099,times=N) ) npi_settings <- list(test_npi = list( - template = "Reduce", + template = "SinglePeriodModifier", parameter = "r0", value = list( distribution = "truncnorm", diff --git a/flepimop/R_packages/inference/tests/testthat/test-perturb_seeding.R b/flepimop/R_packages/inference/tests/testthat/test-perturb_seeding.R index b64e1a6c1..420f71e73 100644 --- a/flepimop/R_packages/inference/tests/testthat/test-perturb_seeding.R +++ b/flepimop/R_packages/inference/tests/testthat/test-perturb_seeding.R @@ -3,7 +3,7 @@ context("perturb_seeding") test_that("seeding date always stays within date bounds", { N <- 10000 seeding <- data.frame(date=rep(as.Date("2020-02-01"), N), - place=1:N, + subpop=1:N, amount=rep(10,N)) date_bounds <- as.Date(c("2020-01-31", "2020-02-02")) @@ -18,7 +18,7 @@ test_that("seeding date always stays within date bounds", { test_that("the median of the seeding pertubations is 0 after 10000 sims", { N <- 10000 seeding <- data.frame(date=rep(as.Date("2020-02-01"), N), - place=1:N, + subpop=1:N, amount=rep(10,N)) date_bounds <- as.Date(c("2020-01-20", "2020-02-20")) diff --git a/flepimop/gempyor_pkg/docs/Rinterface.Rmd b/flepimop/gempyor_pkg/docs/Rinterface.Rmd index 16145addb..af1d61d44 100644 --- a/flepimop/gempyor_pkg/docs/Rinterface.Rmd +++ b/flepimop/gempyor_pkg/docs/Rinterface.Rmd @@ -44,10 +44,10 @@ gempyor <- reticulate::import("gempyor") ### Building a simulator -We create an `InferenceSimulator` object by providing the path of config file. The config used here, from the npi continuous integration tests, is derived from our recent forcast hub config: `config_FCH_R12_optSev_lowIE_blk5_Mar6.yml` on March 6, 2022. +We create an `GempyorSimulator` object by providing the path of config file. The config used here, from the npi continuous integration tests, is derived from our recent forcast hub config: `config_FCH_R12_optSev_lowIE_blk5_Mar6.yml` on March 6, 2022. ```{r} config_filepath = '../tests/npi/config_npi.yml' -gempyor_simulator <- gempyor$InferenceSimulator( +gempyor_simulator <- gempyor$GempyorSimulator( config_path=config_filepath, run_id="test_run_id", prefix="test_prefix/", @@ -115,12 +115,12 @@ We can also get the reduction in time that applies to each parameter. This is a reduc <- npi_seir$getReduction(param = 'r0') -reduc <- reduc %>% rownames_to_column(var = 'geoid') +reduc <- reduc %>% rownames_to_column(var = 'subpop') reduc <- reduc %>% - pivot_longer(cols=colnames(reduc %>% select(-geoid)), names_to = "date", values_to = "reduction") %>% + pivot_longer(cols=colnames(reduc %>% select(-subpop)), names_to = "date", values_to = "reduction") %>% mutate(date=as.Date(date)) # let's plot it: -reduc %>% ggplot(aes(x=date, y=reduction)) + geom_path() + facet_wrap(~ geoid) +reduc %>% ggplot(aes(x=date, y=reduction)) + geom_path() + facet_wrap(~ subpop) ``` Now the same for outcome. We can check which parameters gets modified by this NPI by using the `getReductionDF()` method: @@ -132,12 +132,12 @@ as it is only `inciditoc_all` here, we can plot it ```{r, fig.show=TRUE} reduc <- npi_outcome$getReduction(param = 'inciditoc_all') # There is a bit of R to get it to something usable, it's probably a very ugly way to do this: -reduc <- reduc %>% rownames_to_column(var = 'geoid') +reduc <- reduc %>% rownames_to_column(var = 'subpop') reduc <- reduc %>% - pivot_longer(cols=colnames(reduc %>% select(-geoid)), names_to = "date", values_to = "reduction") %>% + pivot_longer(cols=colnames(reduc %>% select(-subpop)), names_to = "date", values_to = "reduction") %>% mutate(date=as.Date(date)) -reduc %>% ggplot(aes(x=date, y=reduction)) + geom_path() + facet_wrap(~ geoid) +reduc %>% ggplot(aes(x=date, y=reduction)) + geom_path() + facet_wrap(~ subpop) ``` @@ -149,15 +149,15 @@ param_reduc = gempyor_simulator$get_seir_parameter_reduced(npi_seir=npi_seir) # # We can also provide an array as returned by gempyor_simulator$get_seir_parameters() param_reduc_from = gempyor_simulator$get_seir_parameter_reduced(npi_seir=npi_seir, p_draw=params_draw_arr) -param_reduc <- param_reduc %>% pivot_longer(cols = param_reduc %>% select(-date, -geoid) %>% colnames(), names_to = 'parameter') +param_reduc <- param_reduc %>% pivot_longer(cols = param_reduc %>% select(-date, -subpop) %>% colnames(), names_to = 'parameter') -param_reduc %>% filter(parameter=='r0') %>% ggplot(aes(x=date, y=value)) + geom_line() + facet_wrap(~geoid) +param_reduc %>% filter(parameter=='r0') %>% ggplot(aes(x=date, y=value)) + geom_line() + facet_wrap(~subpop) ``` Let's plot the vaccination rate, the same way, from the same dataframe: ```{r, fig.show=TRUE} -param_reduc %>% filter(parameter=='nu1age18to64') %>% ggplot(aes(x=date, y=value)) + geom_path() + facet_wrap(~ geoid) +param_reduc %>% filter(parameter=='nu1age18to64') %>% ggplot(aes(x=date, y=value)) + geom_path() + facet_wrap(~ subpop) ``` ### Get compartment graph image diff --git a/flepimop/gempyor_pkg/docs/Rinterface.html b/flepimop/gempyor_pkg/docs/Rinterface.html index bdbeb1978..26cd8f05c 100644 --- a/flepimop/gempyor_pkg/docs/Rinterface.html +++ b/flepimop/gempyor_pkg/docs/Rinterface.html @@ -240,21 +240,21 @@

Import

library(ggplot2)
 library(tibble)
 # reticulate::use_python(Sys.which('python'),require=TRUE)
-reticulate::use_condaenv('flepimop-env')   
+reticulate::use_condaenv('flepimop-env')
 gempyor <- reticulate::import("gempyor")

Building a simulator

-

We create an InferenceSimulator object by providing the path of config file. It may take a while to run all of that. First build the object. The config used here, from the npi continuous integration tests, is derived from our recent forcast hub config: config_FCH_R12_optSev_lowIE_blk5_Mar6.yml on March 6, 2022.

+

We create an GempyorSimulator object by providing the path of config file. It may take a while to run all of that. First build the object. The config used here, from the npi continuous integration tests, is derived from our recent forcast hub config: config_FCH_R12_optSev_lowIE_blk5_Mar6.yml on March 6, 2022.

config_filepath = '../tests/npi/config_npi.yml'
-gempyor_simulator <- gempyor$InferenceSimulator(
+gempyor_simulator <- gempyor$GempyorSimulator(
                           config_path=config_filepath,
                           run_id="test_run_id",
                           prefix="test_prefix/",
                           first_sim_index=1,
                           npi_scenario="inference",   # NPIs scenario to use
                           outcome_scenario="med",        # Outcome scenario to use
-                          stoch_traj_flag=FALSE,      
+                          stoch_traj_flag=FALSE,
                           spatial_path_prefix = '../tests/npi/' # prefix where to find the folder indicated in spatial_setup
 )

Here we specify that the data folder specified in the config lies in the test/npi/ folder, not in the current directory. The only mandatory arguments is the config_path. The default values of the other arguments are

@@ -266,7 +266,7 @@

Building a simulator

stoch_traj_flag=False, rng_seed=None, nslots=1, - initialize=True, + initialize=True, out_run_id=None, # if out_run_id should be different from in_run_id, put it here out_prefix=None, # if out_prefix should be different from in_prefix, put it here spatial_path_prefix="", # in case the data folder is on another directory @@ -285,7 +285,7 @@

Exploration methods

Parameters

It is possible to draw the parameters of the disease dynamics. The following line draw from config (hence each call will return a different draw from the prior), but the syntax would be the same with load_ID, bypass_FN, bypass_DF, where a spar file would be loaded.

-
# this variation returns a dataframe. 
+
# this variation returns a dataframe.
 params_draw_df = gempyor_simulator$get_seir_parametersDF()   # could also accept (load_ID=True, sim_id2load=XXX) or (bypass_DF=<some_spar_df>) or (bypass_FN=<some_spar_filename>)
 
 ## This return an array, which is useful together with a NPI to get the reduce parameter (cf. later in the tutorial)
@@ -309,19 +309,19 @@ 

NPIs

npi_seir$getReductionDF()

We can also get the reduction in time that applies to each parameter. This is a time-serie. The parameter should be lower case (This will be removed soon, TODO).

reduc <- npi_seir$getReduction(param = 'r0')
 
 
-reduc <- reduc %>% rownames_to_column(var = 'geoid') 
-reduc <- reduc %>% 
-  pivot_longer(cols=colnames(reduc %>% select(-geoid)), names_to = "date", values_to = "reduction") %>% 
-  mutate(date=as.Date(date))  
+reduc <- reduc %>% rownames_to_column(var = 'subpop')
+reduc <- reduc %>%
+  pivot_longer(cols=colnames(reduc %>% select(-subpop)), names_to = "date", values_to = "reduction") %>%
+  mutate(date=as.Date(date))
 # let's plot it:
-reduc %>% ggplot(aes(x=date, y=reduction)) + geom_path() + facet_wrap(~ geoid)
+reduc %>% ggplot(aes(x=date, y=reduction)) + geom_path() + facet_wrap(~ subpop)

Now the same for outcome. We can check which parameters gets modified by this NPI by using the getReductionDF() method:

npi_outcome$getReductionDF() %>% select('parameter') %>% unique()
@@ -333,35 +333,35 @@

NPIs

as it is only inciditoc_all here, we can plot it

reduc <- npi_outcome$getReduction(param = 'inciditoc_all')
 # There is a bit of R to get it to something usable, it's probably a very ugly way to do this:
-reduc <- reduc %>% rownames_to_column(var = 'geoid') 
-reduc <- reduc %>% 
-  pivot_longer(cols=colnames(reduc %>% select(-geoid)), names_to = "date", values_to = "reduction") %>%
+reduc <- reduc %>% rownames_to_column(var = 'subpop')
+reduc <- reduc %>%
+  pivot_longer(cols=colnames(reduc %>% select(-subpop)), names_to = "date", values_to = "reduction") %>%
   mutate(date=as.Date(date))
 
-reduc %>% ggplot(aes(x=date, y=reduction)) + geom_path() + facet_wrap(~ geoid)
+reduc %>% ggplot(aes(x=date, y=reduction)) + geom_path() + facet_wrap(~ subpop)

SEIR Parameters, but reduced

We can also plot the pameters after reduction with the npi. We just have to provided the npi object. The reduction contains all parameter. Here we build it and plot R0 in time (not that the trends are inverted from the getReduction above ^)

-
# This will draw new parameters from config and applies the already defined NPI. If load_ID, bypass_DF or bypass_FN 
+
# This will draw new parameters from config and applies the already defined NPI. If load_ID, bypass_DF or bypass_FN
 param_reduc = gempyor_simulator$get_seir_parameter_reduced(npi_seir=npi_seir) # could also accept (load_ID=True, sim_id2load=XXX) or (bypass_DF=<some_spar_df>) or (bypass_FN=<some_spar_filename>)
 
-# We can also provide an array as returned by gempyor_simulator$get_seir_parameters() 
+# We can also provide an array as returned by gempyor_simulator$get_seir_parameters()
 param_reduc_from = gempyor_simulator$get_seir_parameter_reduced(npi_seir=npi_seir, p_draw=params_draw_arr)
-param_reduc <- param_reduc %>% pivot_longer(cols = param_reduc %>% select(-date, -geoid) %>% colnames(), names_to = 'parameter')
+param_reduc <- param_reduc %>% pivot_longer(cols = param_reduc %>% select(-date, -subpop) %>% colnames(), names_to = 'parameter')
 
-param_reduc %>% filter(parameter=='r0') %>% ggplot(aes(x=date, y=value)) + geom_line() + facet_wrap(~geoid)
+param_reduc %>% filter(parameter=='r0') %>% ggplot(aes(x=date, y=value)) + geom_line() + facet_wrap(~subpop)

Let’s plot the vaccination rate, the same way, from the same dataframe:

-
param_reduc %>% filter(parameter=='nu1age18to64') %>% ggplot(aes(x=date, y=value)) + geom_path() + facet_wrap(~ geoid)
+
param_reduc %>% filter(parameter=='nu1age18to64') %>% ggplot(aes(x=date, y=value)) + geom_path() + facet_wrap(~ subpop)

Get compartment graph image

We can plot the compartment transition graph with this config. There is a possibility to apply filters in order to have tractable graph. The graph is plotted as a separate pdf file.

gempyor_simulator$plot_transition_graph(output_file="full_graph")
-gempyor_simulator$plot_transition_graph(output_file="readable_graph", 
-                                        source_filters= list(list("age0to17"), list("OMICRON", "WILD")), 
+gempyor_simulator$plot_transition_graph(output_file="readable_graph",
+                                        source_filters= list(list("age0to17"), list("OMICRON", "WILD")),
                                         destination_filters= list(list("OMICRON", "WILD")))

here if source_filters is [[“age0to17”], [“OMICRON”, “WILD”]], it means filter (keep) all transitions that have as source: age0to17 AND (OMICRON OR WILD).

diff --git a/flepimop/gempyor_pkg/docs/integration_benchmark.ipynb b/flepimop/gempyor_pkg/docs/integration_benchmark.ipynb index eb6094c93..e392401cd 100644 --- a/flepimop/gempyor_pkg/docs/integration_benchmark.ipynb +++ b/flepimop/gempyor_pkg/docs/integration_benchmark.ipynb @@ -200,12 +200,12 @@ "\n", "s = setup.Setup(\n", " setup_name=config[\"name\"].get() + \"_\" + str(npi_scenario),\n", - " spatial_setup=setup.SpatialSetup(\n", + " spatial_setup=subpopulation_structure.SubpopulationStructure(\n", " setup_name=config[\"setup_name\"].get(),\n", " geodata_file=spatial_base_path / spatial_config[\"geodata\"].get(),\n", " mobility_file=spatial_base_path / spatial_config[\"mobility\"].get(),\n", " popnodes_key=spatial_config[\"popnodes\"].get(),\n", - " nodenames_key=spatial_config[\"nodenames\"].get(),\n", + " subpop_key=spatial_config[\"subpop\"].get(),\n", " ),\n", " nslots=nslots,\n", " npi_scenario=npi_scenario,\n", @@ -307,7 +307,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", "):\n", @@ -331,7 +331,7 @@ " keys_ref = [\n", " \"seeding_sources\",\n", " \"seeding_destinations\",\n", - " \"seeding_places\",\n", + " \"seeding_subpops\",\n", " \"day_start_idx\",\n", " ]\n", " for key, item in seeding_data.items():\n", @@ -347,8 +347,8 @@ " assert len(mobility_data) > 0\n", "\n", " assert type(mobility_data[0]) == np.float64\n", - " assert len(mobility_data) == len(mobility_geoid_indices)\n", - " assert type(mobility_geoid_indices[0]) == np.int32\n", + " assert len(mobility_data) == len(mobility_subpop_indices)\n", + " assert type(mobility_subpop_indices[0]) == np.int32\n", " assert len(mobility_data_indices) == s.nnodes + 1\n", " assert type(mobility_data_indices[0]) == np.int32\n", " assert len(s.popnodes) == s.nnodes\n", @@ -367,7 +367,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " s.popnodes,\n", " stoch_traj_flag,\n", @@ -444,7 +444,7 @@ " npi = NPI.NPIBase.execute(\n", " npi_config=s.npi_config,\n", " global_config=config,\n", - " geoids=s.spatset.nodenames,\n", + " subpop=s.subpop_struct.subpop,\n", " pnames_overlap_operation_sum=s.parameters.intervention_overlap_operation[\"sum\"],\n", " )\n", "\n", @@ -452,7 +452,7 @@ " initial_conditions = s.seedingAndIC.draw_ic(sim_id, setup=s)\n", " seeding_data, seeding_amounts = s.seedingAndIC.draw_seeding(sim_id, setup=s)\n", "\n", - "mobility_geoid_indices = s.mobility.indices\n", + "mobility_subpop_indices = s.mobility.indices\n", "mobility_data_indices = s.mobility.indptr\n", "mobility_data = s.mobility.data\n", "\n", @@ -561,7 +561,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -626,7 +626,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -729,7 +729,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -792,7 +792,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -855,7 +855,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -932,7 +932,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -991,7 +991,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -1050,7 +1050,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -1096,7 +1096,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -1154,7 +1154,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -1175,7 +1175,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -12050,7 +12050,7 @@ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/var/folders/y5/jj4qlxkx619gkh07d2zt6h840000gn/T/ipykernel_76044/342140651.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mintegration_method\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmet\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1.0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m states = steps_SEIR(\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0mparsed_parameters\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/var/folders/y5/jj4qlxkx619gkh07d2zt6h840000gn/T/ipykernel_76044/2880317610.py\u001b[0m in \u001b[0;36msteps_SEIR\u001b[0;34m(s, parsed_parameters, transition_array, proportion_array, proportion_info, initial_conditions, seeding_data, seeding_amounts, mobility_data, mobility_geoid_indices, mobility_data_indices, stoch_traj_flag)\u001b[0m\n\u001b[1;32m 96\u001b[0m raise ValueError(f\"with method {s.integration_method}, only deterministic\"\n\u001b[1;32m 97\u001b[0m f\"integration is possible (got stoch_straj_flag={stoch_traj_flag}\")\n\u001b[0;32m---> 98\u001b[0;31m \u001b[0mseir_sim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msteps_ode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mode_integration\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mfnct_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mintegration_method\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mintegration_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 99\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mintegration_method\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'rk4.jit1'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0mseir_sim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msteps_ode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrk4_integration1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mfnct_args\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/var/folders/y5/jj4qlxkx619gkh07d2zt6h840000gn/T/ipykernel_76044/2880317610.py\u001b[0m in \u001b[0;36msteps_SEIR\u001b[0;34m(s, parsed_parameters, transition_array, proportion_array, proportion_info, initial_conditions, seeding_data, seeding_amounts, mobility_data, mobility_subpop_indices, mobility_data_indices, stoch_traj_flag)\u001b[0m\n\u001b[1;32m 96\u001b[0m raise ValueError(f\"with method {s.integration_method}, only deterministic\"\n\u001b[1;32m 97\u001b[0m f\"integration is possible (got stoch_straj_flag={stoch_traj_flag}\")\n\u001b[0;32m---> 98\u001b[0;31m \u001b[0mseir_sim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msteps_ode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mode_integration\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mfnct_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mintegration_method\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mintegration_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 99\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mintegration_method\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'rk4.jit1'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0mseir_sim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msteps_ode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrk4_integration1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mfnct_args\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/Documents/phd/flepiMoP/flepiMoP/SEIR/steps_ode.py\u001b[0m in \u001b[0;36mode_integration\u001b[0;34m(ncompartments, nspatial_nodes, ndays, parameters, dt, transitions, proportion_info, transition_sum_compartments, initial_conditions, seeding_data, seeding_amounts, mobility_data, mobility_row_indices, mobility_data_indices, population, stochastic_p, integration_method)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mx_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx_\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mintegration_method\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'scipy.solve_ivp'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m \u001b[0msol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msolve_ivp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrhs_wrapper\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mtoday\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtoday\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mt_eval\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtoday\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0msol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msol\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mintegration_method\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'scipy.odeint'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/opt/miniconda3/envs/covidSProd6/lib/python3.9/site-packages/scipy/integrate/_ivp/ivp.py\u001b[0m in \u001b[0;36msolve_ivp\u001b[0;34m(fun, t_span, y0, method, t_eval, dense_output, events, vectorized, args, **options)\u001b[0m\n\u001b[1;32m 574\u001b[0m \u001b[0mstatus\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 575\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mstatus\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 576\u001b[0;31m \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msolver\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 577\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 578\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msolver\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstatus\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'finished'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/opt/miniconda3/envs/covidSProd6/lib/python3.9/site-packages/scipy/integrate/_ivp/base.py\u001b[0m in \u001b[0;36mstep\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 179\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 181\u001b[0;31m \u001b[0msuccess\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_step_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 182\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0msuccess\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", @@ -12083,7 +12083,7 @@ " seeding_data,\n", " seeding_amounts,\n", " mobility_data,\n", - " mobility_geoid_indices,\n", + " mobility_subpop_indices,\n", " mobility_data_indices,\n", " stoch_traj_flag,\n", " )\n", @@ -12569,19 +12569,19 @@ " seeding_data['day_start_idx'][today + 1]\n", " ):\n", " this_seeding_amounts = seeding_amounts[seeding_instance_idx]\n", - " seeding_places = seeding_data['seeding_places'][seeding_instance_idx]\n", + " seeding_subpops = seeding_data['seeding_subpops'][seeding_instance_idx]\n", " seeding_sources = seeding_data['seeding_sources'][seeding_instance_idx]\n", " seeding_destinations = seeding_data['seeding_destinations'][seeding_instance_idx]\n", " # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx]\n", - " states_next[seeding_sources][seeding_places] -= this_seeding_amounts\n", - " states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * \\\n", - " (states_next[seeding_sources][seeding_places] > 0)\n", - " states_next[seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * \\\n", + " (states_next[seeding_sources][seeding_subpops] > 0)\n", + " states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " total_seeded += this_seeding_amounts\n", " times_seeded += 1\n", " # ADD TO cumulative, this is debatable,\n", - " states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " ### Shape\n", "\n", @@ -12766,19 +12766,19 @@ " seeding_data['day_start_idx'][today + 1]\n", " ):\n", " this_seeding_amounts = seeding_amounts[seeding_instance_idx]\n", - " seeding_places = seeding_data['seeding_places'][seeding_instance_idx]\n", + " seeding_subpops = seeding_data['seeding_subpops'][seeding_instance_idx]\n", " seeding_sources = seeding_data['seeding_sources'][seeding_instance_idx]\n", " seeding_destinations = seeding_data['seeding_destinations'][seeding_instance_idx]\n", " # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx]\n", - " states_next[seeding_sources][seeding_places] -= this_seeding_amounts\n", - " states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * \\\n", - " (states_next[seeding_sources][seeding_places] > 0)\n", - " states_next[seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * \\\n", + " (states_next[seeding_sources][seeding_subpops] > 0)\n", + " states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " total_seeded += this_seeding_amounts\n", " times_seeded += 1\n", " # ADD TO cumulative, this is debatable,\n", - " states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " ### Shape\n", "\n", @@ -12948,19 +12948,19 @@ " seeding_data['day_start_idx'][today + 1]\n", " ):\n", " this_seeding_amounts = seeding_amounts[seeding_instance_idx]\n", - " seeding_places = seeding_data['seeding_places'][seeding_instance_idx]\n", + " seeding_subpops = seeding_data['seeding_subpops'][seeding_instance_idx]\n", " seeding_sources = seeding_data['seeding_sources'][seeding_instance_idx]\n", " seeding_destinations = seeding_data['seeding_destinations'][seeding_instance_idx]\n", " # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx]\n", - " states_next[seeding_sources][seeding_places] -= this_seeding_amounts\n", - " states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * \\\n", - " (states_next[seeding_sources][seeding_places] > 0)\n", - " states_next[seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * \\\n", + " (states_next[seeding_sources][seeding_subpops] > 0)\n", + " states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " total_seeded += this_seeding_amounts\n", " times_seeded += 1\n", " # ADD TO cumulative, this is debatable,\n", - " states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " ### Shape\n", "\n", @@ -13000,7 +13000,7 @@ " stochastic_p # 16\n", " ):\n", "\n", - " seeding_places_dict = seeding_data['seeding_places']\n", + " seeding_subpops_dict = seeding_data['seeding_subpops']\n", " seeding_sources_dict = seeding_data['seeding_sources']\n", " seeding_destinations_dict = seeding_data['seeding_destinations']\n", " day_start_idx_dict = seeding_data['day_start_idx']\n", @@ -13125,19 +13125,19 @@ " day_start_idx_dict[today + 1]\n", " ):\n", " this_seeding_amounts = seeding_amounts[seeding_instance_idx]\n", - " seeding_places = seeding_places_dict[seeding_instance_idx]\n", + " seeding_subpops = seeding_subpops_dict[seeding_instance_idx]\n", " seeding_sources = seeding_sources_dict[seeding_instance_idx]\n", " seeding_destinations = seeding_destinations_dict[seeding_instance_idx]\n", " # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx]\n", - " states_next[seeding_sources][seeding_places] -= this_seeding_amounts\n", - " states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * \\\n", - " (states_next[seeding_sources][seeding_places] > 0)\n", - " states_next[seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * \\\n", + " (states_next[seeding_sources][seeding_subpops] > 0)\n", + " states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", "\n", " # ADD TO cumulative, this is debatable,\n", " # WARNING this here.\n", - " x_[1][seeding_destinations][seeding_places] += this_seeding_amounts\n", + " x_[1][seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " ### Shape\n", "\n", @@ -13324,19 +13324,19 @@ " seeding_data['day_start_idx'][today + 1]\n", " ):\n", " this_seeding_amounts = seeding_amounts[seeding_instance_idx]\n", - " seeding_places = seeding_data['seeding_places'][seeding_instance_idx]\n", + " seeding_subpops = seeding_data['seeding_subpops'][seeding_instance_idx]\n", " seeding_sources = seeding_data['seeding_sources'][seeding_instance_idx]\n", " seeding_destinations = seeding_data['seeding_destinations'][seeding_instance_idx]\n", " # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx]\n", - " states_next[seeding_sources][seeding_places] -= this_seeding_amounts\n", - " states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * \\\n", - " (states_next[seeding_sources][seeding_places] > 0)\n", - " states_next[seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * \\\n", + " (states_next[seeding_sources][seeding_subpops] > 0)\n", + " states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " total_seeded += this_seeding_amounts\n", " times_seeded += 1\n", " # ADD TO cumulative, this is debatable,\n", - " states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " ### Shape\n", "\n", @@ -13421,19 +13421,19 @@ " seeding_data['day_start_idx'][today + 1]\n", " ):\n", " this_seeding_amounts = seeding_amounts[seeding_instance_idx]\n", - " seeding_places = seeding_data['seeding_places'][seeding_instance_idx]\n", + " seeding_subpops = seeding_data['seeding_subpops'][seeding_instance_idx]\n", " seeding_sources = seeding_data['seeding_sources'][seeding_instance_idx]\n", " seeding_destinations = seeding_data['seeding_destinations'][seeding_instance_idx]\n", " # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx]\n", - " states_next[seeding_sources][seeding_places] -= this_seeding_amounts\n", - " states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * \\\n", - " (states_next[seeding_sources][seeding_places] > 0)\n", - " states_next[seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * \\\n", + " (states_next[seeding_sources][seeding_subpops] > 0)\n", + " states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " total_seeded += this_seeding_amounts\n", " times_seeded += 1\n", " # ADD TO cumulative, this is debatable,\n", - " states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " ### Shape\n", "\n", @@ -13706,19 +13706,19 @@ " seeding_data['day_start_idx'][today + 1]\n", " ):\n", " this_seeding_amounts = seeding_amounts[seeding_instance_idx]\n", - " seeding_places = seeding_data['seeding_places'][seeding_instance_idx]\n", + " seeding_subpops = seeding_data['seeding_subpops'][seeding_instance_idx]\n", " seeding_sources = seeding_data['seeding_sources'][seeding_instance_idx]\n", " seeding_destinations = seeding_data['seeding_destinations'][seeding_instance_idx]\n", " # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx]\n", - " states_next[seeding_sources][seeding_places] -= this_seeding_amounts\n", - " states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * \\\n", - " (states_next[seeding_sources][seeding_places] > 0)\n", - " states_next[seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * \\\n", + " (states_next[seeding_sources][seeding_subpops] > 0)\n", + " states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " total_seeded += this_seeding_amounts\n", " times_seeded += 1\n", " # ADD TO cumulative, this is debatable,\n", - " states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " ### Shape\n", "\n", @@ -13794,7 +13794,7 @@ " ## Initial Conditions\n", " \"float64[:,:],\" ## initial_conditions [ ncompartments x nspatial_nodes ]\n", " ## Seeding\n", - " \"DictType(unicode_type, int64[:]),\" # seeding keys: 'seeding_places', 'seeding_destinations', 'seeding_sources'\n", + " \"DictType(unicode_type, int64[:]),\" # seeding keys: 'seeding_subpops', 'seeding_destinations', 'seeding_sources'\n", " \"float64[:],\" # seeding_amounts\n", " ## Mobility\n", " \"float64[:],\" # mobility_data [ nmobility_instances ]\n", @@ -13952,19 +13952,19 @@ " seeding_data['day_start_idx'][today + 1]\n", " ):\n", " this_seeding_amounts = seeding_amounts[seeding_instance_idx]\n", - " seeding_places = seeding_data['seeding_places'][seeding_instance_idx]\n", + " seeding_subpops = seeding_data['seeding_subpops'][seeding_instance_idx]\n", " seeding_sources = seeding_data['seeding_sources'][seeding_instance_idx]\n", " seeding_destinations = seeding_data['seeding_destinations'][seeding_instance_idx]\n", " # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx]\n", - " states_next[seeding_sources][seeding_places] -= this_seeding_amounts\n", - " states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * \\\n", - " (states_next[seeding_sources][seeding_places] > 0)\n", - " states_next[seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts\n", + " states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * \\\n", + " (states_next[seeding_sources][seeding_subpops] > 0)\n", + " states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " total_seeded += this_seeding_amounts\n", " times_seeded += 1\n", " # ADD TO cumulative, this is debatable,\n", - " states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts\n", + " states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts\n", "\n", " ### Shape\n", "\n", diff --git a/flepimop/gempyor_pkg/docs/integration_doc.ipynb b/flepimop/gempyor_pkg/docs/integration_doc.ipynb index bf938e5ad..f98873201 100644 --- a/flepimop/gempyor_pkg/docs/integration_doc.ipynb +++ b/flepimop/gempyor_pkg/docs/integration_doc.ipynb @@ -55,7 +55,7 @@ ], "source": [ "config_filepath = \"../tests/npi/config_npi.yml\"\n", - "gempyor_simulator = gempyor.InferenceSimulator(\n", + "gempyor_simulator = gempyor.GempyorSimulator(\n", " config_path=config_filepath,\n", " run_id=\"test_run_id\",\n", " prefix=\"test_prefix/\",\n", @@ -95,7 +95,7 @@ } ], "source": [ - "# copied from InferenceSimulator/one_simulation\n", + "# copied from GempyorSimulator/one_simulation\n", "\n", "sim_id2write = 0\n", "load_ID = False\n", diff --git a/flepimop/gempyor_pkg/docs/interface.ipynb b/flepimop/gempyor_pkg/docs/interface.ipynb index c50d29997..bde9af0ec 100644 --- a/flepimop/gempyor_pkg/docs/interface.ipynb +++ b/flepimop/gempyor_pkg/docs/interface.ipynb @@ -46,7 +46,7 @@ ], "source": [ "config_filepath = \"../tests/npi/config_npi.yml\"\n", - "gempyor_simulator = gempyor.InferenceSimulator(\n", + "gempyor_simulator = gempyor.GempyorSimulator(\n", " config_path=config_filepath,\n", " run_id=\"test_run_id\",\n", " prefix=\"test_prefix/\",\n", diff --git a/flepimop/gempyor_pkg/setup.cfg b/flepimop/gempyor_pkg/setup.cfg index 96edcfd49..3de937cb7 100644 --- a/flepimop/gempyor_pkg/setup.cfg +++ b/flepimop/gempyor_pkg/setup.cfg @@ -39,6 +39,7 @@ install_requires = console_scripts = gempyor-outcomes = gempyor.simulate_outcome:simulate gempyor-seir = gempyor.simulate_seir:simulate + gempyor-simulate = gempyor.simulate:simulate [options.packages.find] where = src diff --git a/flepimop/gempyor_pkg/src/gempyor/NPI/ReduceIntervention.py b/flepimop/gempyor_pkg/src/gempyor/NPI/ModifierModifier.py similarity index 91% rename from flepimop/gempyor_pkg/src/gempyor/NPI/ReduceIntervention.py rename to flepimop/gempyor_pkg/src/gempyor/NPI/ModifierModifier.py index 526f5797d..ab7e5d902 100644 --- a/flepimop/gempyor_pkg/src/gempyor/NPI/ReduceIntervention.py +++ b/flepimop/gempyor_pkg/src/gempyor/NPI/ModifierModifier.py @@ -8,13 +8,13 @@ debug_print = False -class ReduceIntervention(NPIBase): +class ModifierModifier(NPIBase): def __init__( self, *, npi_config, global_config, - geoids, + subpops, loaded_df=None, pnames_overlap_operation_sum=[], ): @@ -23,11 +23,11 @@ def __init__( self.start_date = global_config["start_date"].as_date() self.end_date = global_config["end_date"].as_date() - self.geoids = geoids + self.subpops = subpops self.parameters = pd.DataFrame( 0.0, - index=self.geoids, + index=self.subpops, columns=["npi_name", "start_date", "end_date", "parameter", "reduction"], ) @@ -61,7 +61,7 @@ def __init__( self.sub_npi = NPIBase.execute( npi_config=scenario_npi_config, global_config=global_config, - geoids=geoids, + subpops=subpops, loaded_df=loaded_df, ) new_params = self.sub_npi.param_name # either a list (if stacked) or a string @@ -122,9 +122,9 @@ def __checkErrors(self): if not (self.parameters["start_date"] <= self.parameters["end_date"]).all(): raise ValueError(f"at least one period_start_date is greater than the corresponding period end date") - for n in self.affected_geoids: - if n not in self.geoids: - raise ValueError(f"Invalid config value {n} not in geoids") + for n in self.affected_subpops: + if n not in self.subpops: + raise ValueError(f"Invalid config value {n} not in subpops") # if not ((min_start_date >= self.scenario_start_date)): # raise ValueError(f"{self.name} : at least one period_start_date occurs before the baseline intervention begins") @@ -152,7 +152,7 @@ def getReductionToWrite(self): return pd.concat(self.reduction_params, ignore_index=True) def __createFromDf(self, loaded_df, npi_config): - loaded_df.index = loaded_df.geoid + loaded_df.index = loaded_df.subpop loaded_df = loaded_df[loaded_df["npi_name"] == self.name] self.parameters = loaded_df[["npi_name", "start_date", "end_date", "parameter", "reduction"]].copy() @@ -173,7 +173,7 @@ def __createFromDf(self, loaded_df, npi_config): # else: # self.parameters["start_date"] = self.end_date - self.affected_geoids = set(self.parameters.index) + self.affected_subpops = set(self.parameters.index) # parameter name is picked from config too: (before: ) # self.param_name = self.parameters["parameter"].unique()[0] # [0] to convert ndarray to str # now: @@ -184,14 +184,14 @@ def __createFromConfig(self, npi_config): # Get name of the parameter to reduce self.param_name = npi_config["parameter"].as_str().lower().replace(" ", "") - # Optional config field "affected_geoids" - # If values of "affected_geoids" is "all" or unspecified, run on all geoids. - # Otherwise, run only on geoids specified. - self.affected_geoids = set(self.geoids) - if npi_config["affected_geoids"].exists() and npi_config["affected_geoids"].get() != "all": - self.affected_geoids = {str(n.get()) for n in npi_config["affected_geoids"]} + # Optional config field "subpop" + # If values of "subpop" is "all" or unspecified, run on all subpops. + # Otherwise, run only on subpops specified. + self.affected_subpops = set(self.subpops) + if npi_config["subpop"].exists() and npi_config["subpop"].get() != "all": + self.affected_subpops = {str(n.get()) for n in npi_config["subpop"]} - self.parameters = self.parameters[self.parameters.index.isin(self.affected_geoids)] + self.parameters = self.parameters[self.parameters.index.isin(self.affected_subpops)] # Create reduction self.dist = npi_config["value"].as_random_distribution() @@ -204,6 +204,6 @@ def __createFromConfig(self, npi_config): ) self.parameters["parameter"] = self.param_name - self.spatial_groups = helpers.get_spatial_groups(npi_config, list(self.affected_geoids)) + self.spatial_groups = helpers.get_spatial_groups(npi_config, list(self.affected_subpops)) if self.spatial_groups["grouped"]: - raise ValueError("Spatial groups are not supported for ReduceIntervention interventions") + raise ValueError("Spatial groups are not supported for ModifierModifier interventions") diff --git a/flepimop/gempyor_pkg/src/gempyor/NPI/MultiTimeReduce.py b/flepimop/gempyor_pkg/src/gempyor/NPI/MultiPeriodModifier.py similarity index 67% rename from flepimop/gempyor_pkg/src/gempyor/NPI/MultiTimeReduce.py rename to flepimop/gempyor_pkg/src/gempyor/NPI/MultiPeriodModifier.py index 12953d38c..3438aac1f 100644 --- a/flepimop/gempyor_pkg/src/gempyor/NPI/MultiTimeReduce.py +++ b/flepimop/gempyor_pkg/src/gempyor/NPI/MultiPeriodModifier.py @@ -4,13 +4,13 @@ from .base import NPIBase -class MultiTimeReduce(NPIBase): +class MultiPeriodModifier(NPIBase): def __init__( self, *, npi_config, global_config, - geoids, + subpops, loaded_df=None, pnames_overlap_operation_sum=[], sanitize=False, @@ -27,23 +27,23 @@ def __init__( self.start_date = global_config["start_date"].as_date() self.end_date = global_config["end_date"].as_date() - self.geoids = geoids + self.subpops = subpops self.npi = pd.DataFrame( 0.0, - index=self.geoids, + index=self.subpops, columns=pd.date_range(self.start_date, self.end_date), ) self.parameters = pd.DataFrame( data={ - "npi_name": [""] * len(self.geoids), - "parameter": [""] * len(self.geoids), - "start_date": [[self.start_date]] * len(self.geoids), - "end_date": [[self.end_date]] * len(self.geoids), - "reduction": [0.0] * len(self.geoids), + "npi_name": [""] * len(self.subpops), + "parameter": [""] * len(self.subpops), + "start_date": [[self.start_date]] * len(self.subpops), + "end_date": [[self.end_date]] * len(self.subpops), + "reduction": [0.0] * len(self.subpops), }, - index=self.geoids, + index=self.subpops, ) self.param_name = npi_config["parameter"].as_str().lower() @@ -61,14 +61,14 @@ def __init__( raise ValueError("at least one period start or end date is not between global dates") for grp_config in npi_config["groups"]: - affected_geoids_grp = self.__get_affected_geoids_grp(grp_config) - for sub_index in range(len(self.parameters["start_date"][affected_geoids_grp[0]])): + affected_subpops_grp = self.__get_affected_subpops_grp(grp_config) + for sub_index in range(len(self.parameters["start_date"][affected_subpops_grp[0]])): period_range = pd.date_range( - self.parameters["start_date"][affected_geoids_grp[0]][sub_index], - self.parameters["end_date"][affected_geoids_grp[0]][sub_index], + self.parameters["start_date"][affected_subpops_grp[0]][sub_index], + self.parameters["end_date"][affected_subpops_grp[0]][sub_index], ) - self.npi.loc[affected_geoids_grp, period_range] = np.tile( - self.parameters["reduction"][affected_geoids_grp], + self.npi.loc[affected_subpops_grp, period_range] = np.tile( + self.parameters["reduction"][affected_subpops_grp], (len(period_range), 1), ).T @@ -100,9 +100,9 @@ def __checkErrors(self): if not (self.parameters["start_date"] <= self.parameters["end_date"]).all(): raise ValueError(f"at least one period_start_date is greater than the corresponding period end date") - for n in self.affected_geoids: - if n not in self.geoids: - raise ValueError(f"Invalid config value {n} not in geoids") + for n in self.affected_subpops: + if n not in self.subpops: + raise ValueError(f"Invalid config value {n} not in subpops") ### if self.param_name not in REDUCE_PARAMS: ### raise ValueError(f"Invalid parameter name: {self.param_name}. Must be one of {REDUCE_PARAMS}") @@ -120,16 +120,16 @@ def __createFromConfig(self, npi_config): # Get name of the parameter to reduce self.param_name = npi_config["parameter"].as_str().lower().replace(" ", "") - self.affected_geoids = self.__get_affected_geoids(npi_config) + self.affected_subpops = self.__get_affected_subpops(npi_config) - self.parameters = self.parameters[self.parameters.index.isin(self.affected_geoids)] + self.parameters = self.parameters[self.parameters.index.isin(self.affected_subpops)] dist = npi_config["value"].as_random_distribution() self.parameters["npi_name"] = self.name self.parameters["parameter"] = self.param_name self.spatial_groups = [] for grp_config in npi_config["groups"]: - affected_geoids_grp = self.__get_affected_geoids_grp(grp_config) + affected_subpops_grp = self.__get_affected_subpops_grp(grp_config) # Create reduction start_dates = [] end_dates = [] @@ -140,52 +140,52 @@ def __createFromConfig(self, npi_config): else: start_dates = [self.start_date] end_dates = [self.end_date] - this_spatial_group = helpers.get_spatial_groups(grp_config, affected_geoids_grp) + this_spatial_group = helpers.get_spatial_groups(grp_config, affected_subpops_grp) self.spatial_groups.append(this_spatial_group) # print(self.name, this_spatial_groups) # unfortunately, we cannot use .loc here, because it is not possible to assign a list of list # to a subset of a dataframe... so we iterate. - for geoid in this_spatial_group["ungrouped"]: - self.parameters.at[geoid, "start_date"] = start_dates - self.parameters.at[geoid, "end_date"] = end_dates - self.parameters.at[geoid, "reduction"] = dist(size=1) + for subpop in this_spatial_group["ungrouped"]: + self.parameters.at[subpop, "start_date"] = start_dates + self.parameters.at[subpop, "end_date"] = end_dates + self.parameters.at[subpop, "reduction"] = dist(size=1) for group in this_spatial_group["grouped"]: drawn_value = dist(size=1) - for geoid in group: - self.parameters.at[geoid, "start_date"] = start_dates - self.parameters.at[geoid, "end_date"] = end_dates - self.parameters.at[geoid, "reduction"] = drawn_value - - def __get_affected_geoids_grp(self, grp_config): - if grp_config["affected_geoids"].get() == "all": - affected_geoids_grp = self.geoids + for subpop in group: + self.parameters.at[subpop, "start_date"] = start_dates + self.parameters.at[subpop, "end_date"] = end_dates + self.parameters.at[subpop, "reduction"] = drawn_value + + def __get_affected_subpops_grp(self, grp_config): + if grp_config["subpop"].get() == "all": + affected_subpops_grp = self.subpops else: - affected_geoids_grp = [str(n.get()) for n in grp_config["affected_geoids"]] - return affected_geoids_grp + affected_subpops_grp = [str(n.get()) for n in grp_config["subpop"]] + return affected_subpops_grp def __createFromDf(self, loaded_df, npi_config): - loaded_df.index = loaded_df.geoid + loaded_df.index = loaded_df.subpop loaded_df = loaded_df[loaded_df["npi_name"] == self.name] - self.affected_geoids = self.__get_affected_geoids(npi_config) + self.affected_subpops = self.__get_affected_subpops(npi_config) - self.parameters = self.parameters[self.parameters.index.isin(self.affected_geoids)] + self.parameters = self.parameters[self.parameters.index.isin(self.affected_subpops)] self.parameters["npi_name"] = self.name self.parameters["parameter"] = self.param_name # self.parameters = loaded_df[["npi_name", "start_date", "end_date", "parameter", "reduction"]].copy() # self.parameters["start_date"] = [[datetime.date.fromisoformat(date) for date in strdate.split(",")] for strdate in self.parameters["start_date"]] # self.parameters["end_date"] = [[datetime.date.fromisoformat(date) for date in strdate.split(",")] for strdate in self.parameters["end_date"]] - # self.affected_geoids = set(self.parameters.index) + # self.affected_subpops = set(self.parameters.index) if self.sanitize: - if len(self.affected_geoids) != len(self.parameters): - print(f"loading {self.name} and we got {len(self.parameters)} geoids") - print(f"getting from config that it affects {len(self.affected_geoids)}") + if len(self.affected_subpops) != len(self.parameters): + print(f"loading {self.name} and we got {len(self.parameters)} subpops") + print(f"getting from config that it affects {len(self.affected_subpops)}") self.spatial_groups = [] for grp_config in npi_config["groups"]: - affected_geoids_grp = self.__get_affected_geoids_grp(grp_config) + affected_subpops_grp = self.__get_affected_subpops_grp(grp_config) # Create reduction start_dates = [] end_dates = [] @@ -196,36 +196,36 @@ def __createFromDf(self, loaded_df, npi_config): else: start_dates = [self.start_date] end_dates = [self.end_date] - this_spatial_group = helpers.get_spatial_groups(grp_config, affected_geoids_grp) + this_spatial_group = helpers.get_spatial_groups(grp_config, affected_subpops_grp) self.spatial_groups.append(this_spatial_group) - for geoid in this_spatial_group["ungrouped"]: - if not geoid in loaded_df.index: - self.parameters.at[geoid, "start_date"] = start_dates - self.parameters.at[geoid, "end_date"] = end_dates + for subpop in this_spatial_group["ungrouped"]: + if not subpop in loaded_df.index: + self.parameters.at[subpop, "start_date"] = start_dates + self.parameters.at[subpop, "end_date"] = end_dates dist = npi_config["value"].as_random_distribution() - self.parameters.at[geoid, "reduction"] = dist(size=1) + self.parameters.at[subpop, "reduction"] = dist(size=1) else: - self.parameters.at[geoid, "start_date"] = start_dates - self.parameters.at[geoid, "end_date"] = end_dates - self.parameters.at[geoid, "reduction"] = loaded_df.at[geoid, "reduction"] + self.parameters.at[subpop, "start_date"] = start_dates + self.parameters.at[subpop, "end_date"] = end_dates + self.parameters.at[subpop, "reduction"] = loaded_df.at[subpop, "reduction"] for group in this_spatial_group["grouped"]: if ",".join(group) in loaded_df.index: # ordered, so it's ok - for geoid in group: - self.parameters.at[geoid, "start_date"] = start_dates - self.parameters.at[geoid, "end_date"] = end_dates - self.parameters.at[geoid, "reduction"] = loaded_df.at[",".join(group), "reduction"] + for subpop in group: + self.parameters.at[subpop, "start_date"] = start_dates + self.parameters.at[subpop, "end_date"] = end_dates + self.parameters.at[subpop, "reduction"] = loaded_df.at[",".join(group), "reduction"] else: dist = npi_config["value"].as_random_distribution() drawn_value = dist(size=1) - for geoid in group: - self.parameters.at[geoid, "start_date"] = start_dates - self.parameters.at[geoid, "end_date"] = end_dates - self.parameters.at[geoid, "reduction"] = drawn_value + for subpop in group: + self.parameters.at[subpop, "start_date"] = start_dates + self.parameters.at[subpop, "end_date"] = end_dates + self.parameters.at[subpop, "reduction"] = drawn_value - self.parameters = self.parameters.loc[list(self.affected_geoids)] - # self.parameters = self.parameters[self.parameters.index.isin(self.affected_geoids) ] - # self.parameters = self.parameters[self.affected_geoids] + self.parameters = self.parameters.loc[list(self.affected_subpops)] + # self.parameters = self.parameters[self.parameters.index.isin(self.affected_subpops) ] + # self.parameters = self.parameters[self.affected_subpops] # parameter name is picked from config too: (before: ) # self.param_name = self.parameters["parameter"].unique()[0] # [0] to convert ndarray to str @@ -233,20 +233,20 @@ def __createFromDf(self, loaded_df, npi_config): self.param_name = npi_config["parameter"].as_str().lower().replace(" ", "") self.parameters["parameter"] = self.param_name - def __get_affected_geoids(self, npi_config): - # Optional config field "affected_geoids" - # If values of "affected_geoids" is "all" or unspecified, run on all geoids. - # Otherwise, run only on geoids specified. - affected_geoids_grp = [] + def __get_affected_subpops(self, npi_config): + # Optional config field "subpop" + # If values of "subpop" is "all" or unspecified, run on all subpops. + # Otherwise, run only on subpops specified. + affected_subpops_grp = [] for grp_config in npi_config["groups"]: - if grp_config["affected_geoids"].get() == "all": - affected_geoids_grp = self.geoids + if grp_config["subpop"].get() == "all": + affected_subpops_grp = self.subpops else: - affected_geoids_grp += [str(n.get()) for n in grp_config["affected_geoids"]] - affected_geoids = set(affected_geoids_grp) - if len(affected_geoids) != len(affected_geoids_grp): - raise ValueError(f"In NPI {self.name}, some geoids belong to several groups. This is unsupported.") - return affected_geoids + affected_subpops_grp += [str(n.get()) for n in grp_config["subpop"]] + affected_subpops = set(affected_subpops_grp) + if len(affected_subpops) != len(affected_subpops_grp): + raise ValueError(f"In NPI {self.name}, some subpops belong to several groups. This is unsupported.") + return affected_subpops def getReduction(self, param, default=0.0): "Return the reduction for this param, `default` if no reduction defined" @@ -257,11 +257,11 @@ def getReduction(self, param, default=0.0): def getReductionToWrite(self): df_list = [] - # self.parameters.index is a list of geoids + # self.parameters.index is a list of subpops for this_spatial_groups in self.spatial_groups: # spatially ungrouped dataframe df_ungroup = self.parameters[self.parameters.index.isin(this_spatial_groups["ungrouped"])].copy() - df_ungroup.index.name = "geoid" + df_ungroup.index.name = "subpop" df_ungroup["start_date"] = df_ungroup["start_date"].apply( lambda l: ",".join([d.strftime("%Y-%m-%d") for d in l]) ) @@ -272,12 +272,12 @@ def getReductionToWrite(self): # spatially grouped dataframe. They are nested within multitime reduce groups, # so we can set the same dates for allof them for group in this_spatial_groups["grouped"]: - # we use the first geoid to represent the group + # we use the first subpop to represent the group df_group = self.parameters[self.parameters.index == group[0]].copy() row_group = pd.DataFrame.from_dict( { - "geoid": ",".join(group), + "subpop": ",".join(group), "npi_name": df_group["npi_name"], "parameter": df_group["parameter"], "start_date": df_group["start_date"].apply( @@ -286,7 +286,7 @@ def getReductionToWrite(self): "end_date": df_group["end_date"].apply(lambda l: ",".join([d.strftime("%Y-%m-%d") for d in l])), "reduction": df_group["reduction"], } - ).set_index("geoid") + ).set_index("subpop") df_list.append(row_group) df = pd.concat(df_list) diff --git a/flepimop/gempyor_pkg/src/gempyor/NPI/ReduceR0.py b/flepimop/gempyor_pkg/src/gempyor/NPI/ReduceR0.py deleted file mode 100644 index d24b255dd..000000000 --- a/flepimop/gempyor_pkg/src/gempyor/NPI/ReduceR0.py +++ /dev/null @@ -1,17 +0,0 @@ -import pandas as pd -import numpy as np - -from .base import NPIBase -from .Reduce import Reduce - - -class ReduceR0(Reduce): - def __init__(self, *, npi_config, global_config, geoids, loaded_df=None, pnames_overlap_operation_sum=[]): - npi_config["parameter"] = "r0" - super().__init__( - npi_config=npi_config, - global_config=global_config, - geoids=geoids, - loaded_df=loaded_df, - pnames_overlap_operation_sum=pnames_overlap_operation_sum, - ) diff --git a/flepimop/gempyor_pkg/src/gempyor/NPI/Reduce.py b/flepimop/gempyor_pkg/src/gempyor/NPI/SinglePeriodModifier.py similarity index 87% rename from flepimop/gempyor_pkg/src/gempyor/NPI/Reduce.py rename to flepimop/gempyor_pkg/src/gempyor/NPI/SinglePeriodModifier.py index 9c38f6eac..54232c61f 100644 --- a/flepimop/gempyor_pkg/src/gempyor/NPI/Reduce.py +++ b/flepimop/gempyor_pkg/src/gempyor/NPI/SinglePeriodModifier.py @@ -5,13 +5,13 @@ from .base import NPIBase -class Reduce(NPIBase): +class SinglePeriodModifier(NPIBase): def __init__( self, *, npi_config, global_config, - geoids, + subpops, loaded_df=None, pnames_overlap_operation_sum=[], ): @@ -26,16 +26,16 @@ def __init__( self.start_date = global_config["start_date"].as_date() self.end_date = global_config["end_date"].as_date() - self.geoids = geoids + self.subpops = subpops self.npi = pd.DataFrame( 0.0, - index=self.geoids, + index=self.subpops, columns=pd.date_range(self.start_date, self.end_date), ) self.parameters = pd.DataFrame( 0.0, - index=self.geoids, + index=self.subpops, columns=["npi_name", "start_date", "end_date", "parameter", "reduction"], ) @@ -77,9 +77,9 @@ def __checkErrors(self): if not (self.parameters["start_date"] <= self.parameters["end_date"]).all(): raise ValueError(f"at least one period_start_date is greater than the corresponding period end date") - for n in self.affected_geoids: - if n not in self.geoids: - raise ValueError(f"Invalid config value {n} not in geoids") + for n in self.affected_subpops: + if n not in self.subpops: + raise ValueError(f"Invalid config value {n} not in subpops") ### if self.param_name not in REDUCE_PARAMS: ### raise ValueError(f"Invalid parameter name: {self.param_name}. Must be one of {REDUCE_PARAMS}") @@ -97,14 +97,14 @@ def __createFromConfig(self, npi_config): # Get name of the parameter to reduce self.param_name = npi_config["parameter"].as_str().lower().replace(" ", "") - # Optional config field "affected_geoids" - # If values of "affected_geoids" is "all" or unspecified, run on all geoids. - # Otherwise, run only on geoids specified. - self.affected_geoids = set(self.geoids) - if npi_config["affected_geoids"].exists() and npi_config["affected_geoids"].get() != "all": - self.affected_geoids = {str(n.get()) for n in npi_config["affected_geoids"]} + # Optional config field "subpop" + # If values of "subpop" is "all" or unspecified, run on all subpops. + # Otherwise, run only on subpops specified. + self.affected_subpops = set(self.subpops) + if npi_config["subpop"].exists() and npi_config["subpop"].get() != "all": + self.affected_subpops = {str(n.get()) for n in npi_config["subpop"]} - self.parameters = self.parameters[self.parameters.index.isin(self.affected_geoids)] + self.parameters = self.parameters[self.parameters.index.isin(self.affected_subpops)] # Create reduction self.dist = npi_config["value"].as_random_distribution() @@ -116,7 +116,7 @@ def __createFromConfig(self, npi_config): npi_config["period_end_date"].as_date() if npi_config["period_end_date"].exists() else self.end_date ) self.parameters["parameter"] = self.param_name - self.spatial_groups = helpers.get_spatial_groups(npi_config, list(self.affected_geoids)) + self.spatial_groups = helpers.get_spatial_groups(npi_config, list(self.affected_subpops)) if self.spatial_groups["ungrouped"]: self.parameters.loc[self.spatial_groups["ungrouped"], "reduction"] = self.dist( size=len(self.spatial_groups["ungrouped"]) @@ -127,15 +127,15 @@ def __createFromConfig(self, npi_config): self.parameters.loc[group, "reduction"] = drawn_value def __createFromDf(self, loaded_df, npi_config): - loaded_df.index = loaded_df.geoid + loaded_df.index = loaded_df.subpop loaded_df = loaded_df[loaded_df["npi_name"] == self.name] - self.affected_geoids = set(self.geoids) - if npi_config["affected_geoids"].exists() and npi_config["affected_geoids"].get() != "all": - self.affected_geoids = {str(n.get()) for n in npi_config["affected_geoids"]} + self.affected_subpops = set(self.subpops) + if npi_config["subpop"].exists() and npi_config["subpop"].get() != "all": + self.affected_subpops = {str(n.get()) for n in npi_config["subpop"]} self.param_name = npi_config["parameter"].as_str().lower().replace(" ", "") - self.parameters = self.parameters[self.parameters.index.isin(self.affected_geoids)] + self.parameters = self.parameters[self.parameters.index.isin(self.affected_subpops)] self.parameters["npi_name"] = self.name self.parameters["parameter"] = self.param_name @@ -161,10 +161,10 @@ def __createFromDf(self, loaded_df, npi_config): # self.param_name = self.parameters["parameter"].unique()[0] # [0] to convert ndarray to str # now: - # TODO: to be consistent with MTR, we want to also draw the values for the geoids + # TODO: to be consistent with MTR, we want to also draw the values for the subpops # that are not in the loaded_df. - self.spatial_groups = helpers.get_spatial_groups(npi_config, list(self.affected_geoids)) + self.spatial_groups = helpers.get_spatial_groups(npi_config, list(self.affected_subpops)) if self.spatial_groups["ungrouped"]: self.parameters.loc[self.spatial_groups["ungrouped"], "reduction"] = loaded_df.loc[ self.spatial_groups["ungrouped"], "reduction" @@ -182,25 +182,25 @@ def getReduction(self, param, default=0.0): def getReductionToWrite(self): # spatially ungrouped dataframe df = self.parameters[self.parameters.index.isin(self.spatial_groups["ungrouped"])].copy() - df.index.name = "geoid" + df.index.name = "subpop" df["start_date"] = df["start_date"].astype("str") df["end_date"] = df["end_date"].astype("str") # spatially grouped dataframe for group in self.spatial_groups["grouped"]: - # we use the first geoid to represent the group + # we use the first subpop to represent the group df_group = self.parameters[self.parameters.index == group[0]].copy() row_group = pd.DataFrame.from_dict( { - "geoid": ",".join(group), + "subpop": ",".join(group), "npi_name": df_group["npi_name"], "parameter": df_group["parameter"], "start_date": df_group["start_date"].astype("str"), "end_date": df_group["end_date"].astype("str"), "reduction": df_group["reduction"], } - ).set_index("geoid") + ).set_index("subpop") df = pd.concat([df, row_group]) df = df.reset_index() diff --git a/flepimop/gempyor_pkg/src/gempyor/NPI/Stacked.py b/flepimop/gempyor_pkg/src/gempyor/NPI/StackedModifier.py similarity index 94% rename from flepimop/gempyor_pkg/src/gempyor/NPI/Stacked.py rename to flepimop/gempyor_pkg/src/gempyor/NPI/StackedModifier.py index 7181f8d66..def228f2b 100644 --- a/flepimop/gempyor_pkg/src/gempyor/NPI/Stacked.py +++ b/flepimop/gempyor_pkg/src/gempyor/NPI/StackedModifier.py @@ -14,13 +14,13 @@ REDUCTION_METADATA_CAP = int(os.getenv("FLEPI_MAX_STACK_SIZE", 50000)) -class Stacked(NPIBase): +class StackedModifier(NPIBase): def __init__( self, *, npi_config, global_config, - geoids, + subpops, loaded_df=None, pnames_overlap_operation_sum=[], ): @@ -29,7 +29,7 @@ def __init__( self.start_date = global_config["start_date"].as_date() self.end_date = global_config["end_date"].as_date() - self.geoids = geoids + self.subpops = subpops self.param_name = [] self.reductions = {} # {param: 1 for param in REDUCE_PARAMS} self.reduction_params = collections.deque() @@ -59,7 +59,7 @@ def __init__( sub_npi = NPIBase.execute( npi_config=scenario_npi_config, global_config=global_config, - geoids=geoids, + subpops=subpops, loaded_df=loaded_df, ) @@ -103,7 +103,7 @@ def __init__( # check that no NPI is called several times, and retourn them if len(sub_npis_unique_names) != len(set(sub_npis_unique_names)): raise ValueError( - f"Stacked NPI {self.name} calls a NPI, which calls another NPI. The NPI that is called multiple time is/are: {set([x for x in sub_npis_unique_names if sub_npis_unique_names.count(x) > 1])}" + f"StackedModifier NPI {self.name} calls a NPI, which calls another NPI. The NPI that is called multiple time is/are: {set([x for x in sub_npis_unique_names if sub_npis_unique_names.count(x) > 1])}" ) self.__checkErrors() diff --git a/flepimop/gempyor_pkg/src/gempyor/NPI/base.py b/flepimop/gempyor_pkg/src/gempyor/NPI/base.py index b5f739ce9..1e375d3e6 100644 --- a/flepimop/gempyor_pkg/src/gempyor/NPI/base.py +++ b/flepimop/gempyor_pkg/src/gempyor/NPI/base.py @@ -16,7 +16,7 @@ def __init__(self, *, name): def getReduction(self, param, default=None): pass - # Returns dataframe with columns: , time, parameter, name. Index is sequential. + # Returns dataframe with columns: , time, parameter, name. Index is sequential. @abc.abstractmethod def getReductionToWrite(self): pass @@ -28,7 +28,7 @@ def execute( *, npi_config, global_config, - geoids, + subpops, loaded_df=None, pnames_overlap_operation_sum=[], ): @@ -37,7 +37,7 @@ def execute( return npi_class( npi_config=npi_config, global_config=global_config, - geoids=geoids, + subpops=subpops, loaded_df=loaded_df, pnames_overlap_operation_sum=pnames_overlap_operation_sum, ) diff --git a/flepimop/gempyor_pkg/src/gempyor/NPI/helpers.py b/flepimop/gempyor_pkg/src/gempyor/NPI/helpers.py index bd9f53082..297b33977 100644 --- a/flepimop/gempyor_pkg/src/gempyor/NPI/helpers.py +++ b/flepimop/gempyor_pkg/src/gempyor/NPI/helpers.py @@ -21,12 +21,12 @@ def reduce_parameter( raise ValueError(f"Unknown method to do NPI reduction, got {method}") -def get_spatial_groups(grp_config, affected_geoids: list) -> dict: +def get_spatial_groups(grp_config, affected_subpops: list) -> dict: """ Spatial groups are defined in the config file as a list (of lists). They have the same value. - grouped is a list of lists of geoids - ungrouped is a list of geoids + grouped is a list of lists of subpops + ungrouped is a list of subpops the list are ordered, and this is important so we can get back and forth from the written to disk part that is comma separated """ @@ -34,28 +34,28 @@ def get_spatial_groups(grp_config, affected_geoids: list) -> dict: spatial_groups = {"grouped": [], "ungrouped": []} if not grp_config["spatial_groups"].exists(): - spatial_groups["ungrouped"] = affected_geoids + spatial_groups["ungrouped"] = affected_subpops else: if grp_config["spatial_groups"].get() == "all": - spatial_groups["grouped"] = [affected_geoids] + spatial_groups["grouped"] = [affected_subpops] else: spatial_groups["grouped"] = grp_config["spatial_groups"].get() spatial_groups["ungrouped"] = list( - set(affected_geoids) - set(flatten_list_of_lists(spatial_groups["grouped"])) + set(affected_subpops) - set(flatten_list_of_lists(spatial_groups["grouped"])) ) - # flatten the list of lists of grouped geoids, so we can do some checks + # flatten the list of lists of grouped subpops, so we can do some checks flat_grouped_list = flatten_list_of_lists(spatial_groups["grouped"]) - # check that all geoids are either grouped or ungrouped - if set(flat_grouped_list + spatial_groups["ungrouped"]) != set(affected_geoids): - print("set of grouped and ungrouped geoids", set(flat_grouped_list + spatial_groups["ungrouped"])) - print("set of affected geoids ", set(affected_geoids)) + # check that all subpops are either grouped or ungrouped + if set(flat_grouped_list + spatial_groups["ungrouped"]) != set(affected_subpops): + print("set of grouped and ungrouped subpops", set(flat_grouped_list + spatial_groups["ungrouped"])) + print("set of affected subpops ", set(affected_subpops)) raise ValueError(f"The two above sets are differs for for intervention with config \n {grp_config}") if len(set(flat_grouped_list + spatial_groups["ungrouped"])) != len( flat_grouped_list + spatial_groups["ungrouped"] ): raise ValueError( - f"spatial_group error. for intervention with config \n {grp_config} \n duplicate entries in the set of grouped and ungrouped geoids" + f"spatial_group error. for intervention with config \n {grp_config} \n duplicate entries in the set of grouped and ungrouped subpops" ) spatial_groups["grouped"] = make_list_of_list(spatial_groups["grouped"]) diff --git a/flepimop/gempyor_pkg/src/gempyor/compartments.py b/flepimop/gempyor_pkg/src/gempyor/compartments.py index 5a5c032d1..bb568a436 100644 --- a/flepimop/gempyor_pkg/src/gempyor/compartments.py +++ b/flepimop/gempyor_pkg/src/gempyor/compartments.py @@ -65,7 +65,6 @@ def access_original_config_by_multi_index(self, config_piece, index, dimension=N if dimension is None: dimension = [None for i in index] tmp = [y for y in zip(index, range(len(index)), dimension)] - tmp = zip(index, range(len(index)), dimension) tmp = [list_access_element(config_piece[x[1]], x[0], x[2], encapsulate_as_list) for x in tmp] return tmp @@ -304,7 +303,7 @@ def constructFromConfig(self, seir_config, compartment_config): def get_transition_array(self): with Timer("SEIR.compartments"): - transition_array = np.zeros((self.transitions.shape[1], self.transitions.shape[0]), dtype="int") + transition_array = np.zeros((self.transitions.shape[1], self.transitions.shape[0]), dtype="int64") for cit, colname in enumerate(("source", "destination")): for it, elem in enumerate(self.transitions[colname]): elem = reduce(lambda a, b: a + "_" + b, elem) diff --git a/flepimop/gempyor_pkg/src/gempyor/data/usa-geoid-params-output.parquet b/flepimop/gempyor_pkg/src/gempyor/data/usa-geoid-params-output.parquet index ccadc92e18e4ccb80e6931ab74dac039ac8814d0..d08a4fc58f7c327f2d2e9a89d9e52a250bea8d2a 100644 GIT binary patch delta 1204 zcmb_cPfXKL7=JBLU|Dnr-m;RaXta?CW1GVaPktS25C^P{bD5F|bjyUmItSz5g^Mx9 zn>1z~G|>wuE{YMa7(t0w4jwsplamKShzGw{${?Y7@}+(6d#~U3`~ALOo36jEd-<%c zDG6GT*3#{b8oIZ}CFr{lC2yKe`#I0*MgNcUZVwSepDC^7q!S2&M3pA6sK|Hw%4T0 zTy7XE=wsQwXv!y8Q7>_1DNrpzUC6SRj37%;jWjN8+AI}!oD+p78@&ADllfHjIqMA2 zaDwuP@Lp|2gdH{3xUyvpWP@c0WafB0+;YQYPR5_Xmay1OhS=x&yh)g^6fi}S1v zN!-2G#$OeeL|xc$Wd)_wKmXYvKl;j7h9$18!wE~A=p^W@em^%kLS2NqFY$*)SNt(< z_=NR~CsE}8?Xp}ol)d+Qqdct}llFV7oQ-q!$1Ii{^!&|Dr`&%S=FqD5yLpOzJ#vHh z?UJjB5K;2ELDL4)*AG1Oy{hS8V*wNZQ1NEtCcrExd58hzA)2?&6in!6Q52w$t++p2 zahC#Egl-F9f<28}Rbdt~WQg5DmIwwt-92ot%(B@ESzrNx63V3Kf_GGiGh!5gt2Ls~ zSFMjZ*XNNRl(}p=R?fyJ0y#^H5@yX!C2?YWYRWo2Ks{{M))MauX5#}hqv;eFEWc|U zCrhwRXftz%pVf(ntP$^9l0r>z*R{Wt{YVe&Fe-$9L_e=pQfc_YwY3aH=7< z6=~xh)5ODkr@>r4dlfLzLmtXPt*56xBOyB*+J4?=llD>^-))U-!_l7re>4tax zgXK`bN9rV7Bm;0hR6aK4155wLr&-T)>stAR=^t-y8CqFS$baiQZ{*i+H$DL;4pxjz z6iF}G{$4%=SkJJ`^qpH{ll9Z=^Zv~rypdnNU%$vw&)VdE+w_z7HvL8No<#bt{lwnB z?eSf|GV57AH2v4*z$_WSBwx>YLi;ZN`DEnM9q-1~SxmT65Hoh z^8rzAi|>P5Q`@|8G_kvkE`=srI}2&IR#)bYb{B}9537pM<+~$HvNPhl-Sz&xAq z($=vw7Nw3xV`1oktu}HgsVJz!7l_~tV%a6`xN{eSAMbw^KchwlAq$m}^PEH|f#?Qe z5Ne=w!xqwL;MNbY5RAt9<#O8D!`t>^>+=YVXoTPwJ6Tx7Kd?urn1J*2Yk5sI>)A@8 z8ZY$)D_1cDeNkCbXra0?Xyi2zVwsxi2pX%(*~+iKxzU=6^O034QO(~nfZQI^EwsS?!KCz(*#JJiQ6nsnagJLTaFSd|^n>DXn+gBl8uNKbnT*|ba zv@+&mIx)=aF}S!j_|oGZScLT{_%7fV((o&5-}_^DY2R~Z0j3MyW)@%wfY2TeFgGR- z%o$MC5N$bw2G0r@JP3``2&;4k4=GsCG;2G+$PNHrAUcNicmko^q$lte6}Jg6wo@2L z@JtAtwDmbGw1llrFE7*{4!DrVdSDKK<9iLfz$;{;fhQ+8w1LVKmKi3CQS7w12*9`m z5hhf1vXgbD6F%!aCr%JSnCRWJrfeJ$JDs`lSf8V!$tZPXrG%DOa!YT9-kv20_lNi_ JKoIy}=)aWSOWFVc diff --git a/flepimop/gempyor_pkg/src/gempyor/dev/dev_seir.py b/flepimop/gempyor_pkg/src/gempyor/dev/dev_seir.py index 0268e0b09..3781497bb 100644 --- a/flepimop/gempyor_pkg/src/gempyor/dev/dev_seir.py +++ b/flepimop/gempyor_pkg/src/gempyor/dev/dev_seir.py @@ -20,12 +20,12 @@ config.read(user=False) config.set_file(f"{DATA_DIR}/config.yml") -ss = setup.SpatialSetup( +ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) first_sim_index = 1 @@ -54,11 +54,11 @@ seeding_data = s.seedingAndIC.draw_seeding(sim_id=100, setup=s) initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) -mobility_geoid_indices = s.mobility.indices +mobility_subpop_indices = s.mobility.indices mobility_data_indices = s.mobility.indptr mobility_data = s.mobility.data -npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) +npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) params = s.parameters.parameters_reduce(params, npi) @@ -84,7 +84,7 @@ initial_conditions, seeding_data, mobility_data, - mobility_geoid_indices, + mobility_subpop_indices, mobility_data_indices, s.popnodes, True, diff --git a/flepimop/gempyor_pkg/src/gempyor/dev/steps.py b/flepimop/gempyor_pkg/src/gempyor/dev/steps.py index 8cc22b2f9..002529df5 100644 --- a/flepimop/gempyor_pkg/src/gempyor/dev/steps.py +++ b/flepimop/gempyor_pkg/src/gempyor/dev/steps.py @@ -167,20 +167,20 @@ def rhs(t, x, today): seeding_data["day_start_idx"][today + 1], ): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_data["seeding_places"][seeding_instance_idx] + seeding_subpops = seeding_data["seeding_subpops"][seeding_instance_idx] seeding_sources = seeding_data["seeding_sources"][seeding_instance_idx] seeding_destinations = seeding_data["seeding_destinations"][seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts total_seeded += this_seeding_amounts times_seeded += 1 # ADD TO cumulative, this is debatable, - states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts + states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts ### Shape @@ -380,20 +380,20 @@ def rk4_integrate(t, x, today): seeding_data["day_start_idx"][today + 1], ): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_data["seeding_places"][seeding_instance_idx] + seeding_subpops = seeding_data["seeding_subpops"][seeding_instance_idx] seeding_sources = seeding_data["seeding_sources"][seeding_instance_idx] seeding_destinations = seeding_data["seeding_destinations"][seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts total_seeded += this_seeding_amounts times_seeded += 1 # ADD TO cumulative, this is debatable, - states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts + states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts ### Shape @@ -573,20 +573,20 @@ def rk4_integrate(t, x, today): seeding_data["day_start_idx"][today + 1], ): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_data["seeding_places"][seeding_instance_idx] + seeding_subpops = seeding_data["seeding_subpops"][seeding_instance_idx] seeding_sources = seeding_data["seeding_sources"][seeding_instance_idx] seeding_destinations = seeding_data["seeding_destinations"][seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts total_seeded += this_seeding_amounts times_seeded += 1 # ADD TO cumulative, this is debatable, - states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts + states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts ### Shape @@ -628,7 +628,7 @@ def rk4_integration3( stochastic_p, # 16 ): - seeding_places_dict = seeding_data["seeding_places"] + seeding_subpops_dict = seeding_data["seeding_subpops"] seeding_sources_dict = seeding_data["seeding_sources"] seeding_destinations_dict = seeding_data["seeding_destinations"] day_start_idx_dict = seeding_data["day_start_idx"] @@ -759,19 +759,19 @@ def day_wrapper_rk4(today, states_next): x_ = np.zeros((2, ncompartments, nspatial_nodes)) for seeding_instance_idx in range(day_start_idx_dict[today], day_start_idx_dict[today + 1]): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_places_dict[seeding_instance_idx] + seeding_subpops = seeding_subpops_dict[seeding_instance_idx] seeding_sources = seeding_sources_dict[seeding_instance_idx] seeding_destinations = seeding_destinations_dict[seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts # ADD TO cumulative, this is debatable, # WARNING this here. - x_[1][seeding_destinations][seeding_places] += this_seeding_amounts + x_[1][seeding_destinations][seeding_subpops] += this_seeding_amounts ### Shape @@ -966,20 +966,20 @@ def rk4_integrate(t, x, today): seeding_data["day_start_idx"][today + 1], ): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_data["seeding_places"][seeding_instance_idx] + seeding_subpops = seeding_data["seeding_subpops"][seeding_instance_idx] seeding_sources = seeding_data["seeding_sources"][seeding_instance_idx] seeding_destinations = seeding_data["seeding_destinations"][seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts total_seeded += this_seeding_amounts times_seeded += 1 # ADD TO cumulative, this is debatable, - states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts + states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts ### Shape @@ -1062,20 +1062,20 @@ def rk4_integration5( seeding_data["day_start_idx"][today + 1], ): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_data["seeding_places"][seeding_instance_idx] + seeding_subpops = seeding_data["seeding_subpops"][seeding_instance_idx] seeding_sources = seeding_data["seeding_sources"][seeding_instance_idx] seeding_destinations = seeding_data["seeding_destinations"][seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts total_seeded += this_seeding_amounts times_seeded += 1 # ADD TO cumulative, this is debatable, - states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts + states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts ### Shape @@ -1379,20 +1379,20 @@ def rk4_integrate(today, x): seeding_data["day_start_idx"][today + 1], ): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_data["seeding_places"][seeding_instance_idx] + seeding_subpops = seeding_data["seeding_subpops"][seeding_instance_idx] seeding_sources = seeding_data["seeding_sources"][seeding_instance_idx] seeding_destinations = seeding_data["seeding_destinations"][seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts total_seeded += this_seeding_amounts times_seeded += 1 # ADD TO cumulative, this is debatable, - states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts + states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts ### Shape @@ -1468,7 +1468,7 @@ def rk4_integrate(today, x): ## Initial Conditions "float64[:,:]," ## initial_conditions [ ncompartments x nspatial_nodes ] ## Seeding - "DictType(unicode_type, int64[:])," # seeding keys: 'seeding_places', 'seeding_destinations', 'seeding_sources' + "DictType(unicode_type, int64[:])," # seeding keys: 'seeding_subpops', 'seeding_destinations', 'seeding_sources' "float64[:]," # seeding_amounts ## Mobility "float64[:]," # mobility_data [ nmobility_instances ] @@ -1635,20 +1635,20 @@ def rk4_integrate(t, x, today): seeding_data["day_start_idx"][today + 1], ): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_data["seeding_places"][seeding_instance_idx] + seeding_subpops = seeding_data["seeding_subpops"][seeding_instance_idx] seeding_sources = seeding_data["seeding_sources"][seeding_instance_idx] seeding_destinations = seeding_data["seeding_destinations"][seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts total_seeded += this_seeding_amounts times_seeded += 1 # ADD TO cumulative, this is debatable, - states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts + states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts ### Shape diff --git a/flepimop/gempyor_pkg/src/gempyor/interface.py b/flepimop/gempyor_pkg/src/gempyor/interface.py index 64df26077..181044b69 100644 --- a/flepimop/gempyor_pkg/src/gempyor/interface.py +++ b/flepimop/gempyor_pkg/src/gempyor/interface.py @@ -10,7 +10,7 @@ import pathlib -from . import seir, setup, file_paths +from . import seir, setup, file_paths, subpopulation_structure from . import outcomes from .utils import config, Timer, read_df, profile import numpy as np @@ -38,7 +38,7 @@ # logger.addHandler(handler) -class InferenceSimulator: +class GempyorSimulator: def __init__( self, config_path, @@ -80,14 +80,14 @@ def __init__( write_parquet = True self.s = setup.Setup( setup_name=config["name"].get() + "_" + str(npi_scenario), - spatial_setup=setup.SpatialSetup( + spatial_setup=subpopulation_structure.SubpopulationStructure( setup_name=config["setup_name"].get(), geodata_file=spatial_base_path / spatial_config["geodata"].get(), mobility_file=spatial_base_path / spatial_config["mobility"].get() if spatial_config["mobility"].exists() else None, - popnodes_key=spatial_config["popnodes"].get(), - nodenames_key=spatial_config["nodenames"].get(), + popnodes_key="population", + subpop_names_key="subpop", ), nslots=nslots, npi_scenario=npi_scenario, @@ -118,7 +118,7 @@ def __init__( f""" gempyor >> prefix: {in_prefix};""" # ti: {s.ti}; tf: {s.tf}; ) - self.already_built = False # whether we have already build the costly object we just build once. + self.already_built = False # whether we have already build the costly objects that need just one build def update_prefix(self, new_prefix, new_out_prefix=None): self.s.in_prefix = new_prefix @@ -156,7 +156,7 @@ def one_simulation_legacy(self, sim_id2write: int, load_ID: bool = False, sim_id sim_id2load=sim_id2load, ) return 0 - + def build_structure(self): ( self.unique_strings, @@ -165,7 +165,6 @@ def build_structure(self): self.proportion_info, ) = self.s.compartments.get_transition_array() self.already_built = True - # @profile() def one_simulation( @@ -228,7 +227,7 @@ def one_simulation( ### Run every time: with Timer("SEIR.parameters"): # Draw or load parameters - + p_draw = self.get_seir_parameters(load_ID=load_ID, sim_id2load=sim_id2load) # reduce them parameters = self.s.parameters.parameters_reduce(p_draw, npi_seir) @@ -247,8 +246,9 @@ def one_simulation( else: initial_conditions = self.s.seedingAndIC.draw_ic(sim_id2write, setup=self.s) seeding_data, seeding_amounts = self.s.seedingAndIC.draw_seeding(sim_id2write, setup=self.s) - self.debug_seeding_date = seeding_data + self.debug_seeding_data = seeding_data self.debug_seeding_amounts = seeding_amounts + self.debug_initial_conditions = initial_conditions with Timer("SEIR.compute"): states = seir.steps_SEIR( @@ -374,13 +374,13 @@ def get_seir_parameter_reduced( parameters = self.s.parameters.parameters_reduce(p_draw, npi_seir) full_df = pd.DataFrame() - for i, geoid in enumerate(self.s.spatset.nodenames): + for i, subpop in enumerate(self.s.spatset.subpop_names): a = pd.DataFrame( parameters[:, :, i].T, columns=self.s.parameters.pnames, index=pd.date_range(self.s.ti, self.s.tf, freq="D"), ) - a["geoid"] = geoid + a["subpop"] = subpop full_df = pd.concat([full_df, a]) # for R, duplicate names are not allowed in index: @@ -389,29 +389,33 @@ def get_seir_parameter_reduced( return full_df - # TODO these function should support bypass - def get_parsed_parameters_seir(self, load_ID=False, + # TODO these function should support bypass + def get_parsed_parameters_seir( + self, + load_ID=False, sim_id2load=None, - #bypass_DF=None, - #bypass_FN=None, + # bypass_DF=None, + # bypass_FN=None, ): if not self.already_built: self.build_structure() - + npi_seir = seir.build_npi_SEIR(s=self.s, load_ID=load_ID, sim_id2load=sim_id2load, config=config) p_draw = self.get_seir_parameters(load_ID=load_ID, sim_id2load=sim_id2load) parameters = self.s.parameters.parameters_reduce(p_draw, npi_seir) parsed_parameters = self.s.compartments.parse_parameters( - parameters, self.s.parameters.pnames, self.unique_strings - ) + parameters, self.s.parameters.pnames, self.unique_strings + ) return parsed_parameters - - def get_reduced_parameters_seir(self, load_ID=False, + + def get_reduced_parameters_seir( + self, + load_ID=False, sim_id2load=None, - #bypass_DF=None, - #bypass_FN=None, + # bypass_DF=None, + # bypass_FN=None, ): npi_seir = seir.build_npi_SEIR(s=self.s, load_ID=load_ID, sim_id2load=sim_id2load, config=config) p_draw = self.get_seir_parameters(load_ID=load_ID, sim_id2load=sim_id2load) @@ -419,15 +423,14 @@ def get_reduced_parameters_seir(self, load_ID=False, parameters = self.s.parameters.parameters_reduce(p_draw, npi_seir) parsed_parameters = self.s.compartments.parse_parameters( - parameters, self.s.parameters.pnames, self.unique_strings - ) + parameters, self.s.parameters.pnames, self.unique_strings + ) return parsed_parameters - def paramred_parallel(run_spec, snpi_fn): config_filepath = run_spec["config"] - gempyor_simulator = InferenceSimulator( + gempyor_simulator = GempyorSimulator( config_path=config_filepath, run_id="test_run_id", prefix="test_prefix/", @@ -453,7 +456,7 @@ def paramred_parallel(run_spec, snpi_fn): def paramred_parallel_config(run_spec, dummy): config_filepath = run_spec["config"] - gempyor_simulator = InferenceSimulator( + gempyor_simulator = GempyorSimulator( config_path=config_filepath, run_id="test_run_id", prefix="test_prefix/", diff --git a/flepimop/gempyor_pkg/src/gempyor/outcomes.py b/flepimop/gempyor_pkg/src/gempyor/outcomes.py index ec455f76b..2760b9bbe 100644 --- a/flepimop/gempyor_pkg/src/gempyor/outcomes.py +++ b/flepimop/gempyor_pkg/src/gempyor/outcomes.py @@ -72,14 +72,14 @@ def build_npi_Outcomes( npi = NPI.NPIBase.execute( npi_config=s.npi_config_outcomes, global_config=config, - geoids=s.spatset.nodenames, + subpops=s.subpop_struct.subpop_names, loaded_df=loaded_df, ) else: npi = NPI.NPIBase.execute( npi_config=s.npi_config_outcomes, global_config=config, - geoids=s.spatset.nodenames, + subpops=s.subpop_struct.subpop_names, ) return npi @@ -124,27 +124,27 @@ def read_parameters_from_config(s: setup.Setup): outcomes_config = s.outcomes_config["settings"][s.outcome_scenario] if s.outcomes_config["param_from_file"].get(): # Load the actual csv file - branching_file = s.outcomes_config["param_place_file"].as_str() + branching_file = s.outcomes_config["param_subpop_file"].as_str() branching_data = pa.parquet.read_table(branching_file).to_pandas() if "relative_probability" not in list(branching_data["quantity"]): raise ValueError(f"No 'relative_probability' quantity in {branching_file}, therefor making it useless") print( - "Loaded geoids in loaded relative probablity file:", - len(branching_data.geoid.unique()), + "Loaded subpops in loaded relative probablity file:", + len(branching_data.subpop.unique()), "", end="", ) - branching_data = branching_data[branching_data["geoid"].isin(s.spatset.nodenames)] + branching_data = branching_data[branching_data["subpop"].isin(s.subpop_struct.subpop_names)] print( "Intersect with seir simulation: ", - len(branching_data.geoid.unique()), + len(branching_data.subpop.unique()), "kept", ) - if len(branching_data.geoid.unique()) != len(s.spatset.nodenames): + if len(branching_data.subpop.unique()) != len(s.subpop_struct.subpop_names): raise ValueError( - f"Places in seir input files does not correspond to places in outcome probability file {branching_file}" + f"Places in seir input files does not correspond to subpops in outcome probability file {branching_file}" ) subclasses = [""] @@ -229,9 +229,9 @@ def read_parameters_from_config(s: setup.Setup): if len(rel_probability) > 0: logging.debug(f"Using 'param_from_file' for relative probability in outcome {class_name}") # Sort it in case the relative probablity file is mispecified - rel_probability.geoid = rel_probability.geoid.astype("category") - rel_probability.geoid = rel_probability.geoid.cat.set_categories(s.spatset.nodenames) - rel_probability = rel_probability.sort_values(["geoid"]) + rel_probability.subpop = rel_probability.subpop.astype("category") + rel_probability.subpop = rel_probability.subpop.cat.set_categories(s.subpop_struct.subpop_names) + rel_probability = rel_probability.sort_values(["subpop"]) parameters[class_name]["rel_probability"] = rel_probability["value"].to_numpy() else: logging.debug( @@ -266,7 +266,7 @@ def postprocess_and_write(sim_id, s, outcomes, hpar, npi): if npi is None: hnpi = pd.DataFrame( columns=[ - "geoid", + "subpop", "npi_name", "start_date", "end_date", @@ -279,16 +279,16 @@ def postprocess_and_write(sim_id, s, outcomes, hpar, npi): s.write_simID(ftype="hnpi", sim_id=sim_id, df=hnpi) -def dataframe_from_array(data, places, dates, comp_name): +def dataframe_from_array(data, subpops, dates, comp_name): """ Produce a dataframe in long form from a numpy matrix of - dimensions: dates * places. This dataframe are merged together + dimensions: dates * subpops. This dataframe are merged together to produce the final output """ - df = pd.DataFrame(data.astype(np.double), columns=places, index=dates) + df = pd.DataFrame(data.astype(np.double), columns=subpops, index=dates) df.index.name = "date" df.reset_index(inplace=True) - df = pd.melt(df, id_vars="date", value_name=comp_name, var_name="geoid") + df = pd.melt(df, id_vars="date", value_name=comp_name, var_name="subpop") return df @@ -300,13 +300,13 @@ def read_seir_sim(s, sim_id): def compute_all_multioutcomes(*, s, sim_id2write, parameters, loaded_values=None, npi=None): """Compute delay frame based on temporally varying input. We load the seir sim corresponding to sim_id to write""" - hpar = pd.DataFrame(columns=["geoid", "quantity", "outcome", "value"]) + hpar = pd.DataFrame(columns=["subpop", "quantity", "outcome", "value"]) all_data = {} dates = pd.date_range(s.ti, s.tf, freq="D") outcomes = dataframe_from_array( - np.zeros((len(dates), len(s.spatset.nodenames)), dtype=int), - s.spatset.nodenames, + np.zeros((len(dates), len(s.subpop_struct.subpop_names)), dtype=int), + s.subpop_struct.subpop_names, dates, "zeros", ).drop("zeros", axis=1) @@ -323,16 +323,16 @@ def compute_all_multioutcomes(*, s, sim_id2write, parameters, loaded_values=None source_array = get_filtered_incidI( seir_sim, dates, - s.spatset.nodenames, + s.subpop_struct.subpop_names, {"incidence": {"infection_stage": "I1"}}, ) all_data["incidI"] = source_array outcomes = pd.merge( outcomes, - dataframe_from_array(source_array, s.spatset.nodenames, dates, "incidI"), + dataframe_from_array(source_array, s.subpop_struct.subpop_names, dates, "incidI"), ) elif isinstance(source_name, dict): - source_array = get_filtered_incidI(seir_sim, dates, s.spatset.nodenames, source_name) + source_array = get_filtered_incidI(seir_sim, dates, s.subpop_struct.subpop_names, source_name) # we don't keep source in this cases else: # already defined outcomes source_array = all_data[source_name] @@ -347,14 +347,14 @@ def compute_all_multioutcomes(*, s, sim_id2write, parameters, loaded_values=None ].to_numpy() else: probabilities = parameters[new_comp]["probability"].as_random_distribution()( - size=len(s.spatset.nodenames) - ) # one draw per geoid + size=len(s.subpop_struct.subpop_names) + ) # one draw per subpop if "rel_probability" in parameters[new_comp]: probabilities = probabilities * parameters[new_comp]["rel_probability"] delays = parameters[new_comp]["delay"].as_random_distribution()( - size=len(s.spatset.nodenames) - ) # one draw per geoid + size=len(s.subpop_struct.subpop_names) + ) # one draw per subpop probabilities[probabilities > 1] = 1 probabilities[probabilities < 0] = 0 probabilities = np.repeat(probabilities[:, np.newaxis], len(dates), axis=1).T # duplicate in time @@ -366,18 +366,18 @@ def compute_all_multioutcomes(*, s, sim_id2write, parameters, loaded_values=None hpar, pd.DataFrame.from_dict( { - "geoid": s.spatset.nodenames, - "quantity": ["probability"] * len(s.spatset.nodenames), - "outcome": [new_comp] * len(s.spatset.nodenames), - "value": probabilities[0] * np.ones(len(s.spatset.nodenames)), + "subpop": s.subpop_struct.subpop_names, + "quantity": ["probability"] * len(s.subpop_struct.subpop_names), + "outcome": [new_comp] * len(s.subpop_struct.subpop_names), + "value": probabilities[0] * np.ones(len(s.subpop_struct.subpop_names)), } ), pd.DataFrame.from_dict( { - "geoid": s.spatset.nodenames, - "quantity": ["delay"] * len(s.spatset.nodenames), - "outcome": [new_comp] * len(s.spatset.nodenames), - "value": delays[0] * np.ones(len(s.spatset.nodenames)), + "subpop": s.subpop_struct.subpop_names, + "quantity": ["delay"] * len(s.subpop_struct.subpop_names), + "outcome": [new_comp] * len(s.subpop_struct.subpop_names), + "value": delays[0] * np.ones(len(s.subpop_struct.subpop_names)), } ), ], @@ -407,7 +407,7 @@ def compute_all_multioutcomes(*, s, sim_id2write, parameters, loaded_values=None stoch_delay_flag = False all_data[new_comp] = multishift(all_data[new_comp], delays, stoch_delay_flag=stoch_delay_flag) # Produce a dataframe an merge it - df_p = dataframe_from_array(all_data[new_comp], s.spatset.nodenames, dates, new_comp) + df_p = dataframe_from_array(all_data[new_comp], s.subpop_struct.subpop_names, dates, new_comp) outcomes = pd.merge(outcomes, df_p) # Make duration @@ -418,8 +418,8 @@ def compute_all_multioutcomes(*, s, sim_id2write, parameters, loaded_values=None ]["value"].to_numpy() else: durations = parameters[new_comp]["duration"].as_random_distribution()( - size=len(s.spatset.nodenames) - ) # one draw per geoid + size=len(s.subpop_struct.subpop_names) + ) # one draw per subpop durations = np.repeat(durations[:, np.newaxis], len(dates), axis=1).T # duplicate in time durations = np.round(durations).astype(int) @@ -428,10 +428,10 @@ def compute_all_multioutcomes(*, s, sim_id2write, parameters, loaded_values=None hpar, pd.DataFrame.from_dict( { - "geoid": s.spatset.nodenames, - "quantity": ["duration"] * len(s.spatset.nodenames), - "outcome": [new_comp] * len(s.spatset.nodenames), - "value": durations[0] * np.ones(len(s.spatset.nodenames)), + "subpop": s.subpop_struct.subpop_names, + "quantity": ["duration"] * len(s.subpop_struct.subpop_names), + "outcome": [new_comp] * len(s.subpop_struct.subpop_names), + "value": durations[0] * np.ones(len(s.subpop_struct.subpop_names)), } ), ], @@ -465,7 +465,7 @@ def compute_all_multioutcomes(*, s, sim_id2write, parameters, loaded_values=None df_p = dataframe_from_array( all_data[parameters[new_comp]["duration_name"]], - s.spatset.nodenames, + s.subpop_struct.subpop_names, dates, parameters[new_comp]["duration_name"], ) @@ -473,20 +473,20 @@ def compute_all_multioutcomes(*, s, sim_id2write, parameters, loaded_values=None elif "sum" in parameters[new_comp]: sum_outcome = np.zeros( - (len(dates), len(s.spatset.nodenames)), + (len(dates), len(s.subpop_struct.subpop_names)), dtype=all_data[parameters[new_comp]["sum"][0]].dtype, ) # Sum all concerned compartment. for cmp in parameters[new_comp]["sum"]: sum_outcome += all_data[cmp] all_data[new_comp] = sum_outcome - df_p = dataframe_from_array(sum_outcome, s.spatset.nodenames, dates, new_comp) + df_p = dataframe_from_array(sum_outcome, s.subpop_struct.subpop_names, dates, new_comp) outcomes = pd.merge(outcomes, df_p) return outcomes, hpar -def get_filtered_incidI(diffI, dates, places, filters): +def get_filtered_incidI(diffI, dates, subpops, filters): if list(filters.keys()) == ["incidence"]: vtype = "incidence" @@ -497,7 +497,7 @@ def get_filtered_incidI(diffI, dates, places, filters): diffI.drop(["mc_value_type"], inplace=True, axis=1) filters = filters[vtype] - incidI_arr = np.zeros((len(dates), len(places)), dtype=int) + incidI_arr = np.zeros((len(dates), len(subpops)), dtype=int) df = diffI.copy() for mc_type, mc_value in filters.items(): if isinstance(mc_value, str): diff --git a/flepimop/gempyor_pkg/src/gempyor/parameters.py b/flepimop/gempyor_pkg/src/gempyor/parameters.py index 0e7d25410..7ed1f4ab4 100644 --- a/flepimop/gempyor_pkg/src/gempyor/parameters.py +++ b/flepimop/gempyor_pkg/src/gempyor/parameters.py @@ -20,8 +20,7 @@ def __init__( *, ti: datetime.date, tf: datetime.date, - nodenames: list, - config_version: str = "v2", + subpop_names: list, ): self.pconfig = parameter_config self.pnames = [] @@ -31,149 +30,71 @@ def __init__( self.pnames2pindex = {} self.intervention_overlap_operation = {"sum": [], "prod": []} - if config_version == "v3": - self.pnames = self.pconfig.keys() - self.npar = len(self.pnames) - if self.npar != len(set([name.lower() for name in self.pnames])): - raise ValueError( - "Parameters of the SEIR model have the same name (remember that case is not sufficient!)" - #NOTE: should this lines be eliminated? - ) - - # Attributes of dictionary - for idx, pn in enumerate(self.pnames): - self.pnames2pindex[pn] = idx - self.pdata[pn] = {} - self.pdata[pn]["idx"] = idx - - # Parameter characterized by it's distribution - if self.pconfig[pn]["value"].exists(): - self.pdata[pn]["dist"] = self.pconfig[pn]["value"].as_random_distribution() - - # Parameter given as a file - elif self.pconfig[pn]["timeserie"].exists(): - fn_name = self.pconfig[pn]["timeserie"].get() - df = utils.read_df(fn_name).set_index("date") - df.index = pd.to_datetime(df.index) - if len(df.columns) >= len(nodenames): # one ts per geoid - df = df[nodenames] # make sure the order of geoids is the same as the reference - # (nodenames from spatial setup) and select the columns - elif len(df.columns) == 1: - df = pd.DataFrame( - pd.concat([df] * len(nodenames), axis=1).values, index=df.index, columns=nodenames - ) - else: - print("loaded col :", sorted(list(df.columns))) - print("geodata col:", sorted(nodenames)) - raise ValueError( - f"""ERROR loading file {fn_name} for parameter {pn}: the number of non 'date' - columns are {len(df.columns)}, expected {len(nodenames)} (the number of geoids) or one.""" - ) - - df = df[str(ti) : str(tf)] - if not (len(df.index) == len(pd.date_range(ti, tf))): - print("config dates:", pd.date_range(ti, tf)) - print("loaded dates:", df.index) - raise ValueError( - f"""ERROR loading file {fn_name} for parameter {pn}: - the 'date' index of the provided file does not cover the whole config time span from - {ti}->{tf}, where we have dates from {str(df.index[0])} to {str(df.index[-1])}""" - ) - # check the date range, need the lenght to be equal - if not (pd.date_range(ti, tf) == df.index).all(): - print("config dates:", pd.date_range(ti, tf)) - print("loaded dates:", df.index) - raise ValueError( - f"""ERROR loading file {fn_name} for parameter {pn}: - the 'date' index of the provided file does not cover the whole config time span from - {ti}->{tf}""" - ) + self.pnames = self.pconfig.keys() + self.npar = len(self.pnames) + if self.npar != len(set([name.lower() for name in self.pnames])): + raise ValueError("Parameters of the SEIR model have the same name (remember that case is not sufficient!)") + #NOTE: this lines was not eliminated so been targeted in test - self.pdata[pn]["ts"] = df - if self.pconfig[pn]["intervention_overlap_operation"].exists(): - self.pdata[pn]["intervention_overlap_operation"] = self.pconfig[pn][ - "intervention_overlap_operation" - ].as_str() + # Attributes of dictionary + for idx, pn in enumerate(self.pnames): + self.pnames2pindex[pn] = idx + self.pdata[pn] = {} + self.pdata[pn]["idx"] = idx + + # Parameter characterized by it's distribution + if self.pconfig[pn]["value"].exists(): + self.pdata[pn]["dist"] = self.pconfig[pn]["value"].as_random_distribution() + + # Parameter given as a file + elif self.pconfig[pn]["timeserie"].exists(): + fn_name = self.pconfig[pn]["timeserie"].get() + df = utils.read_df(fn_name).set_index("date") + df.index = pd.to_datetime(df.index) + if len(df.columns) >= len(subpop_names): # one ts per subpop + df = df[subpop_names] # make sure the order of subpops is the same as the reference + # (subpop_names from spatial setup) and select the columns + elif len(df.columns) == 1: + df = pd.DataFrame( + pd.concat([df] * len(subpop_names), axis=1).values, index=df.index, columns=subpop_names + ) else: - self.pdata[pn]["intervention_overlap_operation"] = "prod" - logging.debug( - f"No 'intervention_overlap_operation' for parameter {pn}, assuming multiplicative NPIs" + print("loaded col :", sorted(list(df.columns))) + print("geodata col:", sorted(subpop_names)) + raise ValueError( + f"""ERROR loading file {fn_name} for parameter {pn}: the number of non 'date' + columns are {len(df.columns)}, expected {len(subpop_names)} (the number of subpops) or one.""" ) - self.intervention_overlap_operation[self.pdata[pn]["intervention_overlap_operation"]].append(pn.lower()) - elif config_version == "old": - n_parallel_compartments = 1 - n_parallel_transitions = 0 - compartments_dict = {} - compartments_map = {} - transition_map = {} - if "parallel_structure" in self.pconfig: - if "compartments" not in self.pconfig["parallel_structure"]: + df = df[str(ti) : str(tf)] + if not (len(df.index) == len(pd.date_range(ti, tf))): + print("config dates:", pd.date_range(ti, tf)) + print("loaded dates:", df.index) raise ValueError( - f"A config specifying a parallel structure should assign compartments to that structure" + f"""ERROR loading file {fn_name} for parameter {pn}: + the 'date' index of the provided file does not cover the whole config time span from + {ti}->{tf}, where we have dates from {str(df.index[0])} to {str(df.index[-1])}""" ) - compartments_map = self.pconfig["parallel_structure"]["compartments"] - n_parallel_compartments = len(compartments_map.get()) - compartments_dict = {k: v for v, k in enumerate(compartments_map.get())} - if not "transitions" in self.pconfig["parallel_structure"]: + # check the date range, need the lenght to be equal + if not (pd.date_range(ti, tf) == df.index).all(): + print("config dates:", pd.date_range(ti, tf)) + print("loaded dates:", df.index) raise ValueError( - f"A config specifying a parallel structure should assign transitions to that structure" + f"""ERROR loading file {fn_name} for parameter {pn}: + the 'date' index of the provided file does not cover the whole config time span from + {ti}->{tf}""" ) - transitions_map = self.pconfig["parallel_structure"]["transitions"] - n_parallel_transitions = len(transitions_map.get()) - transition_map = transitions_map - - self.alpha_val = 1.0 - if "alpha" in self.pconfig: - self.alpha_val = self.pconfig["alpha"].as_evaled_expression() - self.sigma_val = self.pconfig["sigma"].as_evaled_expression() - gamma_dist = self.pconfig["gamma"].as_random_distribution() - R0s_dist = self.pconfig["R0s"].as_random_distribution() - ### Do some conversions - # Convert numbers to distribution like object that can be called - p_dists = { - "alpha": self.picklable_lamda_alpha, - "sigma": self.picklable_lamda_sigma, - "gamma": gamma_dist, - "R0": R0s_dist, - } - for key in p_dists: - self.intervention_overlap_operation["prod"].append(key.lower()) - - if n_parallel_compartments > 1.5: - for compartment, index in compartments_dict.items(): - if "susceptibility_reduction" in compartments_map[compartment]: - pn = f"susceptibility_reduction{index}" - p_dists[pn] = compartments_map[compartment]["susceptibility_reduction"].as_random_distribution() - self.intervention_overlap_operation["prod"].append(pn.lower()) - else: - raise ValueError(f"Susceptibility Reduction not found for comp {compartment}") - if "transmissibility_reduction" in compartments_map[compartment]: - pn = f"transmissibility_reduction{index}" - p_dists[pn] = compartments_map[compartment][ - "transmissibility_reduction" - ].as_random_distribution() - self.intervention_overlap_operation["prod"].append(pn.lower()) - else: - raise ValueError(f"Transmissibility Reduction not found for comp {compartment}") - for transition in range(n_parallel_transitions): - pn = f"transition_rate{transition}" - p_dists[pn] = transition_map[transition]["rate"].as_random_distribution() - self.intervention_overlap_operation["sum"].append(pn.lower()) + self.pdata[pn]["ts"] = df + if self.pconfig[pn]["intervention_overlap_operation"].exists(): + self.pdata[pn]["intervention_overlap_operation"] = self.pconfig[pn][ + "intervention_overlap_operation" + ].as_str() + else: + self.pdata[pn]["intervention_overlap_operation"] = "prod" + logging.debug(f"No 'intervention_overlap_operation' for parameter {pn}, assuming multiplicative NPIs") + self.intervention_overlap_operation[self.pdata[pn]["intervention_overlap_operation"]].append(pn.lower()) - ### Build the new structure - for idx, pn in enumerate(p_dists): - self.pnames.append(pn) - self.pnames2pindex[pn] = idx - self.pdata[pn] = {} - self.pdata[pn]["idx"] = idx - self.pdata[pn]["dist"] = p_dists[pn] - if "transition_rate" not in pn: - self.pdata[pn]["intervention_overlap_operation"] = "prod" - else: - self.pdata[pn]["intervention_overlap_operation"] = "sum" - self.npar = len(self.pnames) logging.debug(f"We have {self.npar} parameter: {self.pnames}") logging.debug(f"Data to sample is: {self.pdata}") logging.debug(f"Index in arrays are: {self.pnames2pindex}") diff --git a/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py b/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py index d1b46c2c6..61a650908 100644 --- a/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py +++ b/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py @@ -27,7 +27,7 @@ def _DataFrame2NumbaDict(df, amounts, setup) -> nb.typed.Dict: ) seeding_dict["seeding_sources"] = np.zeros(len(amounts), dtype=np.int64) seeding_dict["seeding_destinations"] = np.zeros(len(amounts), dtype=np.int64) - seeding_dict["seeding_places"] = np.zeros(len(amounts), dtype=np.int64) + seeding_dict["seeding_subpops"] = np.zeros(len(amounts), dtype=np.int64) seeding_amounts = np.zeros(len(amounts), dtype=np.float64) nb_seed_perday = np.zeros(setup.n_days, dtype=np.int64) @@ -35,9 +35,9 @@ def _DataFrame2NumbaDict(df, amounts, setup) -> nb.typed.Dict: n_seeding_ignored_before = 0 n_seeding_ignored_after = 0 for idx, (row_index, row) in enumerate(df.iterrows()): - if row["place"] not in setup.spatset.nodenames: + if row["subpop"] not in setup.subpop_struct.subpop_names: raise ValueError( - f"Invalid place '{row['place']}' in row {row_index + 1} of seeding::lambda_file. Not found in geodata." + f"Invalid subpop '{row['subpop']}' in row {row_index + 1} of seeding::lambda_file. Not found in geodata." ) if (row["date"].date() - setup.ti).days >= 0: @@ -49,7 +49,7 @@ def _DataFrame2NumbaDict(df, amounts, setup) -> nb.typed.Dict: destination_dict = {grp_name: row[f"destination_{grp_name}"] for grp_name in cmp_grp_names} seeding_dict["seeding_sources"][idx] = setup.compartments.get_comp_idx(source_dict) seeding_dict["seeding_destinations"][idx] = setup.compartments.get_comp_idx(destination_dict) - seeding_dict["seeding_places"][idx] = setup.spatset.nodenames.index(row["place"]) + seeding_dict["seeding_subpops"][idx] = setup.subpop_struct.subpop_names.index(row["subpop"]) seeding_amounts[idx] = amounts[idx] else: n_seeding_ignored_after += 1 @@ -90,38 +90,73 @@ def draw_ic(self, sim_id: int, setup) -> np.ndarray: allow_missing_compartments = False if "allow_missing_nodes" in self.initial_conditions_config.keys(): if self.initial_conditions_config["allow_missing_nodes"].get(): - allow_missing_nodes=True + allow_missing_nodes = True if "allow_missing_compartments" in self.initial_conditions_config.keys(): if self.initial_conditions_config["allow_missing_compartments"].get(): - allow_missing_compartments=True + allow_missing_compartments = True + + # Places to allocate the rest of the population + rests = [] if method == "Default": ## JK : This could be specified in the config y0 = np.zeros((setup.compartments.compartments.shape[0], setup.nnodes)) y0[0, :] = setup.popnodes - elif method == "SetInitialConditions": - # TODO: this format should allow not complete configurations - # - Does not support the new way of doing compartiment indexing - logger.critical("Untested method SetInitialConditions !!! Please report this messsage.") - ic_df = pd.read_csv( - self.initial_conditions_config["states_file"].as_str(), - converters={"place": lambda x: str(x)}, - skipinitialspace=True, - ) - if ic_df.empty: - raise ValueError(f"There is no entry for initial time ti in the provided initial_conditions::states_file.") + + elif method == "SetInitialConditions" or method == "SetInitialConditionsFolderDraw": + # TODO Think about - Does not support the new way of doing compartment indexing + if method == "SetInitialConditionsFolderDraw": + ic_df = setup.read_simID(ftype=self.initial_conditions_config["initial_file_type"], sim_id=sim_id) + else: + ic_df = read_df( + self.initial_conditions_config["initial_conditions_file"].get(), + ) + y0 = np.zeros((setup.compartments.compartments.shape[0], setup.nnodes)) - for pl_idx, pl in enumerate(setup.spatset.nodenames): # - if pl in list(ic_df["place"]): - states_pl = ic_df[ic_df["place"] == pl] + for pl_idx, pl in enumerate(setup.subpop_struct.subpop_names): # + if pl in list(ic_df["subpop"]): + states_pl = ic_df[ic_df["subpop"] == pl] for comp_idx, comp_name in setup.compartments.compartments["name"].items(): - y0[comp_idx, pl_idx] = float(states_pl[states_pl["comp"] == comp_name]["amount"]) + + if "mc_name" in states_pl.columns: + ic_df_compartment_val = states_pl[states_pl["mc_name"] == comp_name]["amount"] + else: + filters = setup.compartments.compartments.iloc[comp_idx].drop("name") + ic_df_compartment = states_pl.copy() + for mc_name, mc_value in filters.items(): + ic_df_compartment = ic_df_compartment[ic_df_compartment["mc_" + mc_name] == mc_value][ + "amount" + ] + if len(ic_df_compartment_val) > 1: + raise ValueError( + f"ERROR: Several ({len(ic_df_compartment_val)}) rows are matches for compartment {comp_name} in init file: filters returned {ic_df_compartment_val}" + ) + elif ic_df_compartment_val.empty: + if allow_missing_compartments: + ic_df_compartment_val = 0.0 + else: + raise ValueError( + f"Initial Conditions: Could not set compartment {comp_name} (id: {comp_idx}) in node {pl} (id: {pl_idx}). The data from the init file is {states_pl}. \n \ + Use 'allow_missing_compartments' to default to 0 for compartments without initial conditions" + ) + if "rest" in ic_df_compartment_val: + rests.append([comp_idx, pl_idx]) + else: + y0[comp_idx, pl_idx] = float(ic_df_compartment_val) elif allow_missing_nodes: - print(f"WARNING: State load does not exist for node {pl}, assuming fully susceptible population") - y0[0, pl_idx] = setup.popnodes[pl_idx] + logger.critical( + f"No initial conditions for for node {pl}, assuming everyone (n={setup.popnodes[pl_idx]}) in the first metacompartment ({setup.compartments.compartments['name'].iloc[0]})" + ) + if "proportional" in self.initial_conditions_config.keys(): + if self.initial_conditions_config["proportional"].get(): + y0[0, pl_idx] = 1.0 + else: + y0[0, pl_idx] = setup.popnodes[pl_idx] + else: + y0[0, pl_idx] = setup.popnodes[pl_idx] else: raise ValueError( - f"place {pl} does not exist in initial_conditions::states_file. You can set allow_missing_nodes=TRUE to bypass this error" + f"subpop {pl} does not exist in initial_conditions::states_file. You can set allow_missing_nodes=TRUE to bypass this error" ) elif method == "InitialConditionsFolderDraw" or method == "FromFile": if method == "InitialConditionsFolderDraw": @@ -132,61 +167,85 @@ def draw_ic(self, sim_id: int, setup) -> np.ndarray: ) # annoying conversion because sometime the parquet columns get attributed a timezone... - ic_df["date"] = pd.to_datetime(ic_df["date"], utc=True) # force date to be UTC + ic_df["date"] = pd.to_datetime(ic_df["date"], utc=True) # force date to be UTC ic_df["date"] = ic_df["date"].dt.date ic_df["date"] = ic_df["date"].astype(str) ic_df = ic_df[(ic_df["date"] == str(setup.ti)) & (ic_df["mc_value_type"] == "prevalence")] if ic_df.empty: - raise ValueError(f"There is no entry for initial time ti in the provided initial_conditions::states_file.") + raise ValueError( + f"There is no entry for initial time ti in the provided initial_conditions::states_file." + ) y0 = np.zeros((setup.compartments.compartments.shape[0], setup.nnodes)) for comp_idx, comp_name in setup.compartments.compartments["name"].items(): # rely on all the mc's instead of mc_name to avoid errors due to e.g order. - # before: only + # before: only # ic_df_compartment = ic_df[ic_df["mc_name"] == comp_name] filters = setup.compartments.compartments.iloc[comp_idx].drop("name") ic_df_compartment = ic_df.copy() for mc_name, mc_value in filters.items(): - ic_df_compartment = ic_df_compartment[ic_df_compartment["mc_"+mc_name] == mc_value] - + ic_df_compartment = ic_df_compartment[ic_df_compartment["mc_" + mc_name] == mc_value] if len(ic_df_compartment) > 1: - #ic_df_compartment = ic_df_compartment.iloc[0] - raise ValueError(f"ERROR: Several ({len(ic_df_compartment)}) rows are matches for compartment {mc_name} in init file: filter {filters} returned {ic_df_compartment}") + # ic_df_compartment = ic_df_compartment.iloc[0] + raise ValueError( + f"ERROR: Several ({len(ic_df_compartment)}) rows are matches for compartment {mc_name} in init file: filter {filters} returned {ic_df_compartment}" + ) elif ic_df_compartment.empty: if allow_missing_compartments: - ic_df_compartment = pd.DataFrame(0, columns=ic_df_compartment.columns, index = [0]) + ic_df_compartment = pd.DataFrame(0, columns=ic_df_compartment.columns, index=[0]) else: - raise ValueError(f"Initial Conditions: Could not set compartment {comp_name} (id: {comp_idx}) in node {pl} (id: {pl_idx}). The data from the init file is {ic_df_compartment[pl]}.") - elif (ic_df_compartment["mc_name"].iloc[0] != comp_name): - print(f"WARNING: init file mc_name {ic_df_compartment['mc_name'].iloc[0]} does not match compartment mc_name {comp_name}") - + raise ValueError( + f"Initial Conditions: Could not set compartment {comp_name} (id: {comp_idx}) in node {pl} (id: {pl_idx}). The data from the init file is {ic_df_compartment[pl]}." + ) + elif ic_df_compartment["mc_name"].iloc[0] != comp_name: + print( + f"WARNING: init file mc_name {ic_df_compartment['mc_name'].iloc[0]} does not match compartment mc_name {comp_name}" + ) - for pl_idx, pl in enumerate(setup.spatset.nodenames): + for pl_idx, pl in enumerate(setup.subpop_struct.subpop_names): if pl in ic_df.columns: - y0[comp_idx, pl_idx] = float(ic_df_compartment[pl]) + y0[comp_idx, pl_idx] = float(ic_df_compartment[pl]) elif allow_missing_nodes: - logging.warning( - f"WARNING: State load does not exist for node {pl}, assuming fully susceptible population" + logger.critical( + f"No initial conditions for for node {pl}, assuming everyone (n={setup.popnodes[pl_idx]}) in the first metacompartments ({setup.compartments.compartments['name'].iloc[0]})" ) + if "proportion" in self.initial_conditions_config.keys(): + if self.initial_conditions_config["proportion"].get(): + y0[0, pl_idx] = 1.0 y0[0, pl_idx] = setup.popnodes[pl_idx] else: raise ValueError( - f"place {pl} does not exist in initial_conditions::states_file. You can set allow_missing_nodes=TRUE to bypass this error" + f"subpop {pl} does not exist in initial_conditions::states_file. You can set allow_missing_nodes=TRUE to bypass this error" ) else: raise NotImplementedError(f"unknown initial conditions method [got: {method}]") - + + # rest + if rests: # not empty + for comp_idx, pl_idx in rests: + total = setup.popnodes[pl_idx] + if "proportional" in self.initial_conditions_config.keys(): + if self.initial_conditions_config["proportional"].get(): + total = 1.0 + y0[comp_idx, pl_idx] = total - y0[:, pl_idx].sum() + + if "proportional" in self.initial_conditions_config.keys(): + if self.initial_conditions_config["proportional"].get(): + y0 = y0 * setup.popnodes[pl_idx] + # check that the inputed values sums to the node_population: error = False - for pl_idx, pl in enumerate(setup.spatset.nodenames): + for pl_idx, pl in enumerate(setup.subpop_struct.subpop_names): n_y0 = y0[:, pl_idx].sum() n_pop = setup.popnodes[pl_idx] - if abs(n_y0-n_pop) > 100: + if abs(n_y0 - n_pop) > 1: error = True - print(f"ERROR: place {pl} (idx: pl_idx) has a population from initial condition of {n_y0} while population from geodata is {n_pop} (absolute difference should be < 1, here is {abs(n_y0-n_pop)})") - if False: + print( + f"ERROR: subpop_names {pl} (idx: pl_idx) has a population from initial condition of {n_y0} while population from geodata is {n_pop} (absolute difference should be < 1, here is {abs(n_y0-n_pop)})" + ) + if error: raise ValueError() return y0 @@ -198,13 +257,13 @@ def draw_seeding(self, sim_id: int, setup) -> nb.typed.Dict: if method == "NegativeBinomialDistributed" or method == "PoissonDistributed": seeding = pd.read_csv( self.seeding_config["lambda_file"].as_str(), - converters={"place": lambda x: str(x)}, + converters={"subpop": lambda x: str(x)}, parse_dates=["date"], skipinitialspace=True, ) - dupes = seeding[seeding.duplicated(["place", "date"])].index + 1 + dupes = seeding[seeding.duplicated(["subpop", "date"])].index + 1 if not dupes.empty: - raise ValueError(f"Repeated place-date in rows {dupes.tolist()} of seeding::lambda_file.") + raise ValueError(f"Repeated subpop-date in rows {dupes.tolist()} of seeding::lambda_file.") elif method == "FolderDraw": seeding = pd.read_csv( setup.get_input_filename( @@ -212,19 +271,19 @@ def draw_seeding(self, sim_id: int, setup) -> nb.typed.Dict: sim_id=sim_id, extension_override="csv", ), - converters={"place": lambda x: str(x)}, + converters={"subpop": lambda x: str(x)}, parse_dates=["date"], skipinitialspace=True, ) elif method == "FromFile": seeding = pd.read_csv( self.seeding_config["seeding_file"].get(), - converters={"place": lambda x: str(x)}, + converters={"subpop": lambda x: str(x)}, parse_dates=["date"], skipinitialspace=True, ) elif method == "NoSeeding": - seeding = pd.DataFrame(columns=["date", "place"]) + seeding = pd.DataFrame(columns=["date", "subpop"]) return _DataFrame2NumbaDict(df=seeding, amounts=[], setup=setup) else: raise NotImplementedError(f"unknown seeding method [got: {method}]") @@ -236,6 +295,7 @@ def draw_seeding(self, sim_id: int, setup) -> nb.typed.Dict: if method == "PoissonDistributed": amounts = np.random.poisson(seeding["amount"]) elif method == "NegativeBinomialDistributed": + raise ValueError("Seeding method 'NegativeBinomialDistributed' is not supported by flepiMoP anymore.") amounts = np.random.negative_binomial(n=5, p=5 / (seeding["amount"] + 5)) elif method == "FolderDraw" or method == "FromFile": amounts = seeding["amount"] diff --git a/flepimop/gempyor_pkg/src/gempyor/seir.py b/flepimop/gempyor_pkg/src/gempyor/seir.py index 44e1e6bf2..3edadb0c4 100644 --- a/flepimop/gempyor_pkg/src/gempyor/seir.py +++ b/flepimop/gempyor_pkg/src/gempyor/seir.py @@ -13,7 +13,7 @@ logger = logging.getLogger(__name__) -def steps_SEIR( +def build_step_source_arg( s, parsed_parameters, transition_array, @@ -42,7 +42,7 @@ def steps_SEIR( keys_ref = [ "seeding_sources", "seeding_destinations", - "seeding_places", + "seeding_subpops", "day_start_idx", ] for key, item in seeding_data.items(): @@ -84,6 +84,30 @@ def steps_SEIR( "population": s.popnodes, "stochastic_p": s.stoch_traj_flag, } + return fnct_args + + +def steps_SEIR( + s, + parsed_parameters, + transition_array, + proportion_array, + proportion_info, + initial_conditions, + seeding_data, + seeding_amounts, +): + + fnct_args = build_step_source_arg( + s, + parsed_parameters, + transition_array, + proportion_array, + proportion_info, + initial_conditions, + seeding_data, + seeding_amounts, + ) logging.info(f"Integrating with method {s.integration_method}") @@ -147,7 +171,7 @@ def build_npi_SEIR(s, load_ID, sim_id2load, config, bypass_DF=None, bypass_FN=No npi = NPI.NPIBase.execute( npi_config=s.npi_config_seir, global_config=config, - geoids=s.spatset.nodenames, + subpops=s.subpop_struct.subpop_names, loaded_df=loaded_df, pnames_overlap_operation_sum=s.parameters.intervention_overlap_operation["sum"], ) @@ -155,7 +179,7 @@ def build_npi_SEIR(s, load_ID, sim_id2load, config, bypass_DF=None, bypass_FN=No npi = NPI.NPIBase.execute( npi_config=s.npi_config_seir, global_config=config, - geoids=s.spatset.nodenames, + subpops=s.subpop_struct.subpop_names, pnames_overlap_operation_sum=s.parameters.intervention_overlap_operation["sum"], ) return npi @@ -269,7 +293,7 @@ def states2Df(s, states): prev_df = pd.DataFrame( data=states_prev.reshape(s.n_days * s.compartments.get_ncomp(), s.nnodes), index=ts_index, - columns=s.spatset.nodenames, + columns=s.subpop_struct.subpop_names, ).reset_index() prev_df = pd.merge( left=s.compartments.get_compartments_explicitDF(), @@ -287,7 +311,7 @@ def states2Df(s, states): incid_df = pd.DataFrame( data=states_incid.reshape(s.n_days * s.compartments.get_ncomp(), s.nnodes), index=ts_index, - columns=s.spatset.nodenames, + columns=s.subpop_struct.subpop_names, ).reset_index() incid_df = pd.merge( left=s.compartments.get_compartments_explicitDF(), diff --git a/flepimop/gempyor_pkg/src/gempyor/setup.py b/flepimop/gempyor_pkg/src/gempyor/setup.py index 25d5ca01f..f4be77e81 100644 --- a/flepimop/gempyor_pkg/src/gempyor/setup.py +++ b/flepimop/gempyor_pkg/src/gempyor/setup.py @@ -12,6 +12,7 @@ from . import compartments from . import parameters from . import seeding_ic +from .subpopulation_structure import SubpopulationStructure from .utils import config, read_df, write_df from . import file_paths import logging @@ -21,7 +22,7 @@ class Setup: """ - This class hold a setup model setup. + This class hold a full model setup. """ def __init__( @@ -33,7 +34,6 @@ def __init__( ti, # time to start tf, # time to finish npi_scenario=None, - config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, @@ -61,6 +61,7 @@ def __init__( self.tf = tf ## we end on 23:59 on tf if self.tf <= self.ti: raise ValueError("tf (time to finish) is less than or equal to ti (time to start)") + self.npi_scenario = npi_scenario self.npi_config_seir = npi_config_seir self.seeding_config = seeding_config @@ -75,11 +76,11 @@ def __init__( self.first_sim_index = first_sim_index self.outcome_scenario = outcome_scenario - self.spatset = spatial_setup + self.subpop_struct = spatial_setup self.n_days = (self.tf - self.ti).days + 1 # because we include s.ti and s.tf - self.nnodes = self.spatset.nnodes - self.popnodes = self.spatset.popnodes - self.mobility = self.spatset.mobility + self.nnodes = self.subpop_struct.nnodes + self.popnodes = self.subpop_struct.popnodes + self.mobility = self.subpop_struct.mobility self.stoch_traj_flag = stoch_traj_flag @@ -106,7 +107,6 @@ def __init__( if "integration" in self.seir_config.keys(): if "method" in self.seir_config["integration"].keys(): self.integration_method = self.seir_config["integration"]["method"].get() - print(self.integration_method) if self.integration_method == "best.current": self.integration_method = "rk4.jit" if self.integration_method == "rk4": @@ -129,39 +129,23 @@ def __init__( if self.dt is not None: self.dt = float(self.dt) - if config_version is None: - config_version = "v3" - logging.debug(f"Config version not provided, infering type {config_version}") - - if config_version not in ["old", "v2", "v3"]: - raise ValueError( - f"Configuration version unknown: {config_version}. \n" - f"Should be either non-specified (default: 'v3'), or set to 'old' or 'v2'." - ) - elif config_version == "old" or config_version == "v2": - # NOTE: even behaved as old, "v2" seems by default in parameter.py - raise ValueError( - f"Configuration version 'old' and 'v2' are no longer supported by flepiMoP\n" - f"Please use a 'v3' instead, or use the COVIDScenarioPipeline package. " + # Think if we really want to hold this up. + self.parameters = parameters.Parameters( + parameter_config=self.parameters_config, + # NOTE: 'config_version' was gone, no longer needed? + ti=self.ti, + tf=self.tf, + subpop_names=self.subpop_struct.subpop_names, ) - - # Think if we really want to hold this up. - self.parameters = parameters.Parameters( - parameter_config=self.parameters_config, - config_version=config_version, - ti=self.ti, - tf=self.tf, - nodenames=self.spatset.nodenames, - ) - self.seedingAndIC = seeding_ic.SeedingAndIC( - seeding_config=self.seeding_config, - initial_conditions_config=self.initial_conditions_config, - ) - # really ugly references to the config globally here. - if config["compartments"].exists() and self.seir_config is not None: - self.compartments = compartments.Compartments( - seir_config=self.seir_config, compartments_config=config["compartments"] + self.seedingAndIC = seeding_ic.SeedingAndIC( + seeding_config=self.seeding_config, + initial_conditions_config=self.initial_conditions_config, ) + # really ugly references to the config globally here. + if config["compartments"].exists() and self.seir_config is not None: + self.compartments = compartments.Compartments( + seir_config=self.seir_config, compartments_config=config["compartments"] + ) # 3. Outcomes self.npi_config_outcomes = None @@ -281,98 +265,3 @@ def write_simID( df=df, ) return fname - - -class SpatialSetup: - def __init__(self, *, setup_name, geodata_file, mobility_file, popnodes_key, nodenames_key): - self.setup_name = setup_name - self.data = pd.read_csv( - geodata_file, converters={nodenames_key: lambda x: str(x).strip()}, skipinitialspace=True - ) # geoids and populations, strip whitespaces - self.nnodes = len(self.data) # K = # of locations - - # popnodes_key is the name of the column in geodata_file with populations - if popnodes_key not in self.data: - raise ValueError( - f"popnodes_key: {popnodes_key} does not correspond to a column in geodata: {self.data.columns}" - ) - self.popnodes = self.data[popnodes_key].to_numpy() # population - if len(np.argwhere(self.popnodes == 0)): - raise ValueError( - f"There are {len(np.argwhere(self.popnodes == 0))} nodes with population zero, this is not supported." - ) - - # nodenames_key is the name of the column in geodata_file with geoids - if nodenames_key not in self.data: - raise ValueError(f"nodenames_key: {nodenames_key} does not correspond to a column in geodata.") - self.nodenames = self.data[nodenames_key].tolist() - if len(self.nodenames) != len(set(self.nodenames)): - raise ValueError(f"There are duplicate nodenames in geodata.") - - if mobility_file is not None: - mobility_file = pathlib.Path(mobility_file) - if mobility_file.suffix == ".txt": - print("Mobility files as matrices are not recommended. Please switch soon to long form csv files.") - self.mobility = scipy.sparse.csr_matrix( - np.loadtxt(mobility_file), dtype=int - ) # K x K matrix of people moving - # Validate mobility data - if self.mobility.shape != (self.nnodes, self.nnodes): - raise ValueError( - f"mobility data must have dimensions of length of geodata ({self.nnodes}, {self.nnodes}). Actual: {self.mobility.shape}" - ) - - elif mobility_file.suffix == ".csv": - mobility_data = pd.read_csv(mobility_file, converters={"ori": str, "dest": str}, skipinitialspace=True) - nn_dict = {v: k for k, v in enumerate(self.nodenames)} - mobility_data["ori_idx"] = mobility_data["ori"].apply(nn_dict.__getitem__) - mobility_data["dest_idx"] = mobility_data["dest"].apply(nn_dict.__getitem__) - if any(mobility_data["ori_idx"] == mobility_data["dest_idx"]): - raise ValueError( - f"Mobility fluxes with same origin and destination in long form matrix. This is not supported" - ) - - self.mobility = scipy.sparse.coo_matrix( - (mobility_data.amount, (mobility_data.ori_idx, mobility_data.dest_idx)), - shape=(self.nnodes, self.nnodes), - dtype=int, - ).tocsr() - - elif mobility_file.suffix == ".npz": - self.mobility = scipy.sparse.load_npz(mobility_file).astype(int) - # Validate mobility data - # data valication/arrangement is needed - if self.mobility.shape != (self.nnodes, self.nnodes): - raise ValueError( - f"mobility data must have dimensions of length of geodata ({self.nnodes}, {self.nnodes}). Actual: {self.mobility.shape}" - ) - else: - raise ValueError( - f"Mobility data must either be a .csv file in longform (recommended) or a .txt matrix file. Got {mobility_file}" - ) - - # Make sure mobility values <= the population of src node - tmp = (self.mobility.T - self.popnodes).T - tmp[tmp < 0] = 0 - if tmp.any(): - rows, cols, values = scipy.sparse.find(tmp) - errmsg = "" - for r, c, v in zip(rows, cols, values): - errmsg += f"\n({r}, {c}) = {self.mobility[r, c]} > population of '{self.nodenames[r]}' = {self.popnodes[r]}" - raise ValueError( - f"The following entries in the mobility data exceed the source node populations in geodata:{errmsg}" - ) - - tmp = self.popnodes - np.squeeze(np.asarray(self.mobility.sum(axis=1))) - tmp[tmp > 0] = 0 - if tmp.any(): - (row,) = np.where(tmp) - errmsg = "" - for r in row: - errmsg += f"\n sum accross row {r} exceed population of node '{self.nodenames[r]}' ({self.popnodes[r]}), by {-tmp[r]}" - raise ValueError( - f"The following rows in the mobility data exceed the source node populations in geodata:{errmsg}" - ) - else: - logging.critical("No mobility matrix specified -- assuming no one moves") - self.mobility = scipy.sparse.csr_matrix(np.zeros((self.nnodes, self.nnodes)), dtype=int) diff --git a/flepimop/gempyor_pkg/src/gempyor/simulate.py b/flepimop/gempyor_pkg/src/gempyor/simulate.py new file mode 100644 index 000000000..102d6422c --- /dev/null +++ b/flepimop/gempyor_pkg/src/gempyor/simulate.py @@ -0,0 +1,417 @@ +#!/usr/bin/env python + +## +# @file +# @brief Runs hospitalization model +# +# @details +# +# ## Configuration Items +# +# ```yaml +# name: +# setup_name: +# start_date: +# end_date: +# dt: float +# nslots: overridden by the -n/--nslots script parameter +# data_path: +# spatial_setup: +# geodata: +# mobility: +# +# seir: +# parameters +# alpha: +# sigma: +# gamma: +# R0s: +# +# interventions: +# scenarios: +# - +# - +# - ... +# settings: +# : +# template: choose one - "SinglePeriodModifier", ", "StackedModifier" +# ... +# : +# template: choose one - "SinglePeriodModifier", "", "StackedModifier" +# ... +# +# seeding: +# method: choose one - "PoissonDistributed", "FolderDraw" +# ``` +# +# ### interventions::scenarios::settings:: +# +# If {template} is +# ```yaml +# interventions: +# scenarios: +# : +# template: SinglePeriodModifier +# parameter: choose one - "alpha, sigma, gamma, r0" +# period_start_date: +# period_end_date: +# value: +# subpop: optional +# ``` +# +# If {template} is +# ```yaml +# interventions: +# scenarios: +# : +# template: +# period_start_date: +# period_end_date: +# value: +# subpop: optional +# ``` +# +# If {template} is StackedModifier +# ```yaml +# interventions: +# scenarios: +# : +# template: StackedModifier +# scenarios: +# ``` +# +# ### seeding +# +# If {seeding::method} is PoissonDistributed +# ```yaml +# seeding: +# method: PoissonDistributed +# lambda_file: +# ``` +# +# If {seeding::method} is FolderDraw +# ```yaml +# seeding: +# method: FolderDraw +# folder_path: \; make sure this ends in a '/' +# ``` +# +# ## Input Data +# +# * {data_path}/{spatial_setup::geodata} is a csv with columns {spatial_setup::subpop_names} and {spatial_setup::popnodes} +# * {data_path}/{spatial_setup::mobility} +# +# If {seeding::method} is PoissonDistributed +# * {seeding::lambda_file} +# +# If {seeding::method} is FolderDraw +# * {seeding::folder_path}/[simulation ID].impa.csv +# +# ## Output Data +# +# * model_output/{setup_name}_[scenario]/[simulation ID].seir.[csv/parquet] +# * model_parameters/{setup_name}_[scenario]/[simulation ID].spar.[csv/parquet] +# * model_parameters/{setup_name}_[scenario]/[simulation ID].snpi.[csv/parquet] +# ## Configuration Items +# +# ```yaml +# outcomes: +# method: delayframe # Only fast is supported atm. Makes fast delay_table computations. Later agent-based method ? +# paths: +# param_from_file: TRUE # +# param_subpop_file: # OPTIONAL: File with param per csv. For each param in this file +# scenarios: # Outcomes scenarios to run +# - low_death_rate +# - mid_death_rate +# settings: # Setting for each scenario +# low_death_rate: +# new_comp1: # New compartement name +# source: incidence # Source of the new compartement: either an previously defined compartement or "incidence" for diffI of the SEIR +# probability: # Branching probability from source +# delay: # Delay from incidence of source to incidence of new_compartement +# duration: # OPTIONAL ! Duration in new_comp. If provided, the model add to it's +# #output "new_comp1_curr" with current amount in new_comp1 +# new_comp2: # Example for a second compatiment +# source: new_comp1 +# probability: +# delay: +# duration: +# death_tot: # Possibility to combine compartements for death. +# sum: ['death_hosp', 'death_ICU', 'death_incid'] +# +# mid_death_rate: +# ... +# +# ## Input Data +# +# * {param_subpop_file} is a csv with columns subpop, parameter, value. Parameter is constructed as, e.g for comp1: +# probability: Pnew_comp1|source +# delay: Dnew_comp1 +# duration: Lnew_comp1 + + +# ## Output Data +# * {output_path}/model_output/{setup_name}_[scenario]/[simulation ID].hosp.parquet + + +## @cond + +import multiprocessing +import pathlib +import time, os + +import click + +from gempyor import seir, outcomes, setup, file_paths +from gempyor.utils import config + +# from .profile import profile_options + + +@click.command() +@click.option( + "-c", + "--config", + "config_file", + envvar=["CONFIG_PATH", "CONFIG_PATH"], + type=click.Path(exists=True), + required=True, + help="configuration file for this simulation", +) +@click.option( + "-s", + "--npi_scenario", + "npi_scenarios", + envvar="FLEPI_NPI_SCENARIOS", + type=str, + default=[], + multiple=True, + help="override the NPI scenario(s) run for this simulation [supports multiple NPI scenarios: `-s Wuhan -s None`]", +) +@click.option( + "-d", + "--scenarios_outcomes", + "scenarios_outcomes", + envvar="FLEPI_DEATHRATES", + type=str, + default=[], + multiple=True, + help="Scenario of outcomes to run", +) +@click.option( + "-n", + "--nslots", + envvar="FLEPI_NUM_SLOTS", + type=click.IntRange(min=1), + help="override the # of simulation runs in the config file", +) +@click.option( + "-i", + "--first_sim_index", + envvar="FIRST_SIM_INDEX", + type=click.IntRange(min=1), + default=1, + show_default=True, + help="The index of the first simulation", +) +@click.option( + "-j", + "--jobs", + envvar="FLEPI_NJOBS", + type=click.IntRange(min=1), + default=multiprocessing.cpu_count(), + show_default=True, + help="the parallelization factor", +) +@click.option( + "--stochastic/--non-stochastic", + "--stochastic/--non-stochastic", + "stoch_traj_flag", + envvar="FLEPI_STOCHASTIC_RUN", + type=bool, + default=False, + help="Flag determining whether to run stochastic simulations or not", +) +@click.option( + "--in-id", + "--in-id", + "in_run_id", + envvar="FLEPI_RUN_INDEX", + type=str, + default=file_paths.run_id(), + show_default=True, + help="Unique identifier for the run", +) # Default does not make sense here +@click.option( + "--out-id", + "--out-id", + "out_run_id", + envvar="FLEPI_RUN_INDEX", + type=str, + default=file_paths.run_id(), + show_default=True, + help="Unique identifier for the run", +) +@click.option( + "--in-prefix", + "--in-prefix", + "in_prefix", + envvar="FLEPI_PREFIX", + type=str, + default=None, + show_default=True, + help="unique identifier for the run", +) +@click.option( + "--interactive/--batch", + default=False, + help="run in interactive or batch mode [default: batch]", +) +@click.option( + "--write-csv/--no-write-csv", + default=False, + show_default=True, + help="write CSV output at end of simulation", +) +@click.option( + "--write-parquet/--no-write-parquet", + default=True, + show_default=True, + help="write parquet file output at end of simulation", +) +# @profile_options +def simulate( + config_file, + in_run_id, + out_run_id, + npi_scenarios, + scenarios_outcomes, + in_prefix, + nslots, + jobs, + interactive, + write_csv, + write_parquet, + first_sim_index, + stoch_traj_flag, +): + + spatial_path_prefix = "" + config.clear() + config.read(user=False) + config.set_file(config_file) + spatial_config = config["spatial_setup"] + spatial_base_path = config["data_path"].get() + spatial_base_path = pathlib.Path(spatial_path_prefix + spatial_base_path) + + if not npi_scenarios: + npi_scenarios = config["interventions"]["scenarios"].as_str_seq() + print(f"NPI Scenarios to be run: {', '.join(npi_scenarios)}") + + print(f"Outcomes scenarios to be run: {', '.join(scenarios_outcomes)}") + + if in_prefix is None: + in_prefix = config["name"].get() + "/" + + if not nslots: + nslots = config["nslots"].as_number() + print(f"Simulations to be run: {nslots}") + + spatial_setup = subpopulation_structure.SubpopulationStructure( + setup_name=config["setup_name"].get(), + geodata_file=spatial_base_path / spatial_config["geodata"].get(), + mobility_file=spatial_base_path / spatial_config["mobility"].get() + if spatial_config["mobility"].exists() + else None, + popnodes_key="population", + subpop_names_key="subpop", + ) + + start = time.monotonic() + for npi_scenario in npi_scenarios: + + s = setup.Setup( + setup_name=config["name"].get() + "/" + str(npi_scenario) + "/", + spatial_setup=spatial_setup, + nslots=nslots, + npi_scenario=npi_scenario, + npi_config_seir=config["interventions"]["settings"][npi_scenario], + seeding_config=config["seeding"], + initial_conditions_config=config["initial_conditions"], + parameters_config=config["seir"]["parameters"], + seir_config=config["seir"], + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + interactive=interactive, + write_csv=write_csv, + write_parquet=write_parquet, + first_sim_index=first_sim_index, + in_run_id=in_run_id, + in_prefix=config["name"].get() + "/", + out_run_id=out_run_id, + out_prefix=config["name"].get() + "/" + str(npi_scenario) + "/" + out_run_id + "/", + stoch_traj_flag=stoch_traj_flag, + ) + + print( + f""" +>> Scenario: {npi_scenario} from config {config_file} +>> Starting {s.nslots} model runs beginning from {s.first_sim_index} on {jobs} processes +>> Setup *** {s.setup_name} *** from {s.ti} to {s.tf} + """ + ) + seir.run_parallel_SEIR(s, config=config, n_jobs=jobs) + print(f">> All SEIR runs completed in {time.monotonic() - start:.1f} seconds") + + if config["outcomes"].exists(): + if not scenarios_outcomes: + scenarios_outcomes = config["outcomes"]["scenarios"].as_str_seq() + start = time.monotonic() + for scenario_outcomes in scenarios_outcomes: + print(f"outcome {scenario_outcomes}") + + out_prefix = config["name"].get() + "/" + str(scenario_outcomes) + "/" + + s = setup.Setup( + setup_name=config["name"].get() + "/" + str(scenarios_outcomes) + "/", + spatial_setup=spatial_setup, + nslots=nslots, + outcomes_config=config["outcomes"], + outcomes_scenario=scenario_outcomes, + ti=config["start_date"].as_date(), + tf=config["end_date"].as_date(), + write_csv=write_csv, + write_parquet=write_parquet, + first_sim_index=first_sim_index, + in_run_id=in_run_id, + in_prefix=in_prefix, + out_run_id=out_run_id, + out_prefix=out_prefix, + stoch_traj_flag=stoch_traj_flag, + ) + + outdir = file_paths.create_dir_name(out_run_id, out_prefix, "hosp") + os.makedirs(outdir, exist_ok=True) + + print( + f""" + >> Starting {nslots} model runs beginning from {first_sim_index} on {jobs} processes + >> Scenario: {scenario_outcomes} + >> writing to folder : {out_prefix} + >> running ***{'STOCHASTIC' if stoch_traj_flag else 'DETERMINISTIC'}*** trajectories""" + ) + + if config["outcomes"]["method"].get() == "delayframe": + outcomes.run_parallel_outcomes(sim_id2write=first_sim_index, s=s, nslots=nslots, n_jobs=jobs) + else: + raise ValueError(f"Only method 'delayframe' is supported at the moment.") + + print(f">> All Outcomes runs completed in {time.monotonic() - start:.1f} seconds") + else: + print("No observable found in config") + + +if __name__ == "__main__": + simulate() + +## @endcond diff --git a/flepimop/gempyor_pkg/src/gempyor/simulate_outcome.py b/flepimop/gempyor_pkg/src/gempyor/simulate_outcome.py index e0ec8b96b..41f8f4c75 100755 --- a/flepimop/gempyor_pkg/src/gempyor/simulate_outcome.py +++ b/flepimop/gempyor_pkg/src/gempyor/simulate_outcome.py @@ -13,7 +13,7 @@ # method: delayframe # Only fast is supported atm. Makes fast delay_table computations. Later agent-based method ? # paths: # param_from_file: TRUE # -# param_place_file: # OPTIONAL: File with param per csv. For each param in this file +# param_subpop_file: # OPTIONAL: File with param per csv. For each param in this file # scenarios: # Outcomes scenarios to run # - low_death_rate # - mid_death_rate @@ -38,7 +38,7 @@ # # ## Input Data # -# * {param_place_file} is a csv with columns place, parameter, value. Parameter is constructed as, e.g for comp1: +# * {param_subpop_file} is a csv with columns subpop, parameter, value. Parameter is constructed as, e.g for comp1: # probability: Pnew_comp1|source # delay: Dnew_comp1 # duration: Lnew_comp1 @@ -197,14 +197,14 @@ def simulate( nslots = config["nslots"].as_number() print(f"Simulations to be run: {nslots}") - spatial_setup = setup.SpatialSetup( + spatial_setup = subpopulation_structure.SubpopulationStructure( setup_name=config["setup_name"].get(), geodata_file=spatial_base_path / spatial_config["geodata"].get(), mobility_file=spatial_base_path / spatial_config["mobility"].get() if spatial_config["mobility"].exists() else None, - popnodes_key=spatial_config["popnodes"].get(), - nodenames_key=spatial_config["nodenames"].get(), + popnodes_key="population", + subpop_names_key="subpop", ) start = time.monotonic() diff --git a/flepimop/gempyor_pkg/src/gempyor/simulate_seir.py b/flepimop/gempyor_pkg/src/gempyor/simulate_seir.py index d4d523fc0..5995bde77 100755 --- a/flepimop/gempyor_pkg/src/gempyor/simulate_seir.py +++ b/flepimop/gempyor_pkg/src/gempyor/simulate_seir.py @@ -19,8 +19,6 @@ # spatial_setup: # geodata: # mobility: -# nodenames: -# popnodes: # # seir: # parameters @@ -36,10 +34,10 @@ # - ... # settings: # : -# template: choose one - "Reduce", ReduceR0", "Stacked" +# template: choose one - "SinglePeriodModifier", ", "StackedModifier" # ... # : -# template: choose one - "Reduce", "ReduceR0", "Stacked" +# template: choose one - "SinglePeriodModifier", "", "StackedModifier" # ... # # seeding: @@ -48,37 +46,37 @@ # # ### interventions::scenarios::settings:: # -# If {template} is ReduceR0 +# If {template} is # ```yaml # interventions: # scenarios: # : -# template: Reduce +# template: SinglePeriodModifier # parameter: choose one - "alpha, sigma, gamma, r0" # period_start_date: # period_end_date: # value: -# affected_geoids: optional +# subpop: optional # ``` # -# If {template} is ReduceR0 +# If {template} is # ```yaml # interventions: # scenarios: # : -# template: ReduceR0 +# template: # period_start_date: # period_end_date: # value: -# affected_geoids: optional +# subpop: optional # ``` # -# If {template} is Stacked +# If {template} is StackedModifier # ```yaml # interventions: # scenarios: # : -# template: Stacked +# template: StackedModifier # scenarios: # ``` # @@ -100,7 +98,7 @@ # # ## Input Data # -# * {data_path}/{spatial_setup::geodata} is a csv with columns {spatial_setup::nodenames} and {spatial_setup::popnodes} +# * {data_path}/{spatial_setup::geodata} is a csv with columns {spatial_setup::subpop_names} and {spatial_setup::popnodes} # * {data_path}/{spatial_setup::mobility} # # If {seeding::method} is PoissonDistributed @@ -251,14 +249,14 @@ def simulate( if not nslots: nslots = config["nslots"].as_number() - spatial_setup = setup.SpatialSetup( + spatial_setup = subpopulation_structure.SubpopulationStructure( setup_name=config["setup_name"].get(), geodata_file=spatial_base_path / spatial_config["geodata"].get(), mobility_file=spatial_base_path / spatial_config["mobility"].get() if spatial_config["mobility"].exists() else None, - popnodes_key=spatial_config["popnodes"].get(), - nodenames_key=spatial_config["nodenames"].get(), + popnodes_key="population", + subpop_names_key="subpop", ) start = time.monotonic() diff --git a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py index 2789e9342..e20b4e930 100644 --- a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py +++ b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py @@ -226,18 +226,18 @@ def rk4_integrate(t, x, today): seeding_data["day_start_idx"][min(today + int(np.ceil(dt)), len(seeding_data["day_start_idx"]) - 1)], ): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_data["seeding_places"][seeding_instance_idx] + seeding_subpops = seeding_data["seeding_subpops"][seeding_instance_idx] seeding_sources = seeding_data["seeding_sources"][seeding_instance_idx] seeding_destinations = seeding_data["seeding_destinations"][seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts # ADD TO cumulative, this is debatable, - states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts + states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts x_ = np.zeros((2, ncompartments, nspatial_nodes)) x_[0] = states_next diff --git a/flepimop/gempyor_pkg/src/gempyor/steps_source.py b/flepimop/gempyor_pkg/src/gempyor/steps_source.py index 9e52cb830..b8af1d493 100644 --- a/flepimop/gempyor_pkg/src/gempyor/steps_source.py +++ b/flepimop/gempyor_pkg/src/gempyor/steps_source.py @@ -40,7 +40,7 @@ ## Initial Conditions "float64[:,:]," ## initial_conditions [ ncompartments x nspatial_nodes ] ## Seeding - "DictType(unicode_type, int64[:])," # seeding keys: 'seeding_places', 'seeding_destinations', 'seeding_sources' + "DictType(unicode_type, int64[:])," # seeding keys: 'seeding_subpops', 'seeding_destinations', 'seeding_sources' "float64[:]," # seeding_amounts ## Mobility "float64[:]," # mobility_data [ nmobility_instances ] @@ -109,20 +109,20 @@ def steps_SEIR_nb( seeding_data["day_start_idx"][today + 1], ): this_seeding_amounts = seeding_amounts[seeding_instance_idx] - seeding_places = seeding_data["seeding_places"][seeding_instance_idx] + seeding_subpops = seeding_data["seeding_subpops"][seeding_instance_idx] seeding_sources = seeding_data["seeding_sources"][seeding_instance_idx] seeding_destinations = seeding_data["seeding_destinations"][seeding_instance_idx] # this_seeding_amounts = this_seeding_amounts < states_next[seeding_sources] ? this_seeding_amounts : states_next[seeding_instance_idx] - states_next[seeding_sources][seeding_places] -= this_seeding_amounts - states_next[seeding_sources][seeding_places] = states_next[seeding_sources][seeding_places] * ( - states_next[seeding_sources][seeding_places] > 0 + states_next[seeding_sources][seeding_subpops] -= this_seeding_amounts + states_next[seeding_sources][seeding_subpops] = states_next[seeding_sources][seeding_subpops] * ( + states_next[seeding_sources][seeding_subpops] > 0 ) - states_next[seeding_destinations][seeding_places] += this_seeding_amounts + states_next[seeding_destinations][seeding_subpops] += this_seeding_amounts total_seeded += this_seeding_amounts times_seeded += 1 # ADD TO cumulative, this is debatable, - states_daily_incid[today][seeding_destinations][seeding_places] += this_seeding_amounts + states_daily_incid[today][seeding_destinations][seeding_subpops] += this_seeding_amounts total_infected = 0 for transition_index in range(ntransitions): diff --git a/flepimop/gempyor_pkg/src/gempyor/subpopulation_structure.py b/flepimop/gempyor_pkg/src/gempyor/subpopulation_structure.py new file mode 100644 index 000000000..083b6111d --- /dev/null +++ b/flepimop/gempyor_pkg/src/gempyor/subpopulation_structure.py @@ -0,0 +1,103 @@ +import pathlib +import numpy as np +import pandas as pd +import scipy.sparse +from .utils import read_df, write_df +import logging + + +logger = logging.getLogger(__name__) + + +class SubpopulationStructure: + def __init__(self, *, setup_name, geodata_file, mobility_file, popnodes_key, subpop_names_key): + self.setup_name = setup_name + self.data = pd.read_csv( + geodata_file, converters={subpop_names_key: lambda x: str(x).strip()}, skipinitialspace=True + ) # subpops and populations, strip whitespaces + self.nnodes = len(self.data) # K = # of locations + + # popnodes_key is the name of the column in geodata_file with populations + if popnodes_key not in self.data: + raise ValueError( + f"popnodes_key: {popnodes_key} does not correspond to a column in geodata: {self.data.columns}" + ) + self.popnodes = self.data[popnodes_key].to_numpy() # population + if len(np.argwhere(self.popnodes == 0)): + raise ValueError( + f"There are {len(np.argwhere(self.popnodes == 0))} nodes with population zero, this is not supported." + ) + + # subpop_names_key is the name of the column in geodata_file with subpops + if subpop_names_key not in self.data: + raise ValueError(f"subpop_names_key: {subpop_names_key} does not correspond to a column in geodata.") + self.subpop_names = self.data[subpop_names_key].tolist() + if len(self.subpop_names) != len(set(self.subpop_names)): + raise ValueError(f"There are duplicate subpop_names in geodata.") + + if mobility_file is not None: + mobility_file = pathlib.Path(mobility_file) + if mobility_file.suffix == ".txt": + print("Mobility files as matrices are not recommended. Please switch soon to long form csv files.") + self.mobility = scipy.sparse.csr_matrix( + np.loadtxt(mobility_file), dtype=int + ) # K x K matrix of people moving + # Validate mobility data + if self.mobility.shape != (self.nnodes, self.nnodes): + raise ValueError( + f"mobility data must have dimensions of length of geodata ({self.nnodes}, {self.nnodes}). Actual: {self.mobility.shape}" + ) + + elif mobility_file.suffix == ".csv": + mobility_data = pd.read_csv(mobility_file, converters={"ori": str, "dest": str}, skipinitialspace=True) + nn_dict = {v: k for k, v in enumerate(self.subpop_names)} + mobility_data["ori_idx"] = mobility_data["ori"].apply(nn_dict.__getitem__) + mobility_data["dest_idx"] = mobility_data["dest"].apply(nn_dict.__getitem__) + if any(mobility_data["ori_idx"] == mobility_data["dest_idx"]): + raise ValueError( + f"Mobility fluxes with same origin and destination in long form matrix. This is not supported" + ) + + self.mobility = scipy.sparse.coo_matrix( + (mobility_data.amount, (mobility_data.ori_idx, mobility_data.dest_idx)), + shape=(self.nnodes, self.nnodes), + dtype=int, + ).tocsr() + + elif mobility_file.suffix == ".npz": + self.mobility = scipy.sparse.load_npz(mobility_file).astype(int) + # Validate mobility data + if self.mobility.shape != (self.nnodes, self.nnodes): + raise ValueError( + f"mobility data must have dimensions of length of geodata ({self.nnodes}, {self.nnodes}). Actual: {self.mobility.shape}" + ) + else: + raise ValueError( + f"Mobility data must either be a .csv file in longform (recommended) or a .txt matrix file. Got {mobility_file}" + ) + + # Make sure mobility values <= the population of src node + tmp = (self.mobility.T - self.popnodes).T + tmp[tmp < 0] = 0 + if tmp.any(): + rows, cols, values = scipy.sparse.find(tmp) + errmsg = "" + for r, c, v in zip(rows, cols, values): + errmsg += f"\n({r}, {c}) = {self.mobility[r, c]} > population of '{self.subpop_names[r]}' = {self.popnodes[r]}" + raise ValueError( + f"The following entries in the mobility data exceed the source node populations in geodata:{errmsg}" + ) + + tmp = self.popnodes - np.squeeze(np.asarray(self.mobility.sum(axis=1))) + tmp[tmp > 0] = 0 + if tmp.any(): + (row,) = np.where(tmp) + errmsg = "" + for r in row: + errmsg += f"\n sum accross row {r} exceed population of node '{self.subpop_names[r]}' ({self.popnodes[r]}), by {-tmp[r]}" + raise ValueError( + f"The following rows in the mobility data exceed the source node populations in geodata:{errmsg}" + ) + else: + logging.critical("No mobility matrix specified -- assuming no one moves") + self.mobility = scipy.sparse.csr_matrix(np.zeros((self.nnodes, self.nnodes)), dtype=int) diff --git a/flepimop/gempyor_pkg/src/gempyor/utils.py b/flepimop/gempyor_pkg/src/gempyor/utils.py index 41e2d0bea..ecd73c080 100644 --- a/flepimop/gempyor_pkg/src/gempyor/utils.py +++ b/flepimop/gempyor_pkg/src/gempyor/utils.py @@ -36,7 +36,8 @@ def read_df(fname: str, extension: str = "") -> pd.DataFrame: fname = f"{fname}.{extension}" extension = fname.split(".")[-1] if extension == "csv": - df = pd.read_csv(fname) + # The converter prevents e.g leading geoid (0600) to be converted as int; and works when the column is absent + df = pd.read_csv(fname, converters={"subpop": lambda x: str(x)}, skipinitialspace=True) elif extension == "parquet": df = pa.parquet.read_table(fname).to_pandas() else: diff --git a/flepimop/gempyor_pkg/tests/npi/config_npi.yml b/flepimop/gempyor_pkg/tests/npi/config_npi.yml index 9f1e2b0a4..20909f1e9 100644 --- a/flepimop/gempyor_pkg/tests/npi/config_npi.yml +++ b/flepimop/gempyor_pkg/tests/npi/config_npi.yml @@ -69,8 +69,6 @@ spatial_setup: - WY geodata: geodata_2019_statelevel.csv mobility: mobility_2011-2015_statelevel.csv - popnodes: pop2019est - nodenames: geoid include_in_report: include_in_report state_level: TRUE @@ -707,9 +705,9 @@ interventions: - inference settings: local_variance: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: "all" + subpop: "all" period_start_date: 2020-01-01 period_end_date: 2022-09-03 value: @@ -725,9 +723,9 @@ interventions: a: -1 b: 1 local_variance_chi3_NEW: - template: Reduce + template: SinglePeriodModifier parameter: chi3 - affected_geoids: "all" + subpop: "all" period_start_date: 2020-01-01 period_end_date: 2022-09-03 value: @@ -743,310 +741,310 @@ interventions: a: -1 b: 1 school_year: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: ["01000"] + - subpop: ["01000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["02000"] + - subpop: ["02000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["04000"] + - subpop: ["04000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["05000"] + - subpop: ["05000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["06000"] + - subpop: ["06000"] periods: - start_date: 2021-09-30 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2021-09-20 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["09000"] + - subpop: ["09000"] periods: - start_date: 2021-10-04 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["10000"] + - subpop: ["10000"] periods: - start_date: 2021-09-30 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["11000"] + - subpop: ["11000"] periods: - start_date: 2021-11-01 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["12000"] + - subpop: ["12000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["13000"] + - subpop: ["13000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["15000"] + - subpop: ["15000"] periods: - start_date: 2021-11-12 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["16000"] + - subpop: ["16000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["17000"] + - subpop: ["17000"] periods: - start_date: 2021-08-30 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["18000"] + - subpop: ["18000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["19000"] + - subpop: ["19000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["20000"] + - subpop: ["20000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["21000"] + - subpop: ["21000"] periods: - start_date: 2021-08-19 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["22000"] + - subpop: ["22000"] periods: - start_date: 2021-10-27 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["23000"] + - subpop: ["23000"] periods: - start_date: 2021-10-29 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["24000"] + - subpop: ["24000"] periods: - start_date: 2021-09-14 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["25000"] + - subpop: ["25000"] periods: - start_date: 2021-08-24 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["26000"] + - subpop: ["26000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["27000"] + - subpop: ["27000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["28000"] + - subpop: ["28000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["29000"] + - subpop: ["29000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["30000"] + - subpop: ["30000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["31000"] + - subpop: ["31000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["32000"] + - subpop: ["32000"] periods: - start_date: 2021-11-01 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["33000"] + - subpop: ["33000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2021-11-01 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["35000"] + - subpop: ["35000"] periods: - start_date: 2021-08-20 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["36000"] + - subpop: ["36000"] periods: - start_date: 2021-11-01 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["37000"] + - subpop: ["37000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["38000"] + - subpop: ["38000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["39000"] + - subpop: ["39000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["40000"] + - subpop: ["40000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["41000"] + - subpop: ["41000"] periods: - start_date: 2021-10-18 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2021-09-07 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["44000"] + - subpop: ["44000"] periods: - start_date: 2021-10-01 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["45000"] + - subpop: ["45000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["46000"] + - subpop: ["46000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["47000"] + - subpop: ["47000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["48000"] + - subpop: ["48000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["49000"] + - subpop: ["49000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["50000"] + - subpop: ["50000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["51000"] + - subpop: ["51000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["53000"] + - subpop: ["53000"] periods: - start_date: 2021-10-18 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["54000"] + - subpop: ["54000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["55000"] + - subpop: ["55000"] periods: - start_date: 2021-08-19 end_date: 2021-11-23 - start_date: 2022-01-03 end_date: 2022-09-03 - - affected_geoids: ["56000"] + - subpop: ["56000"] periods: - start_date: 2021-08-16 end_date: 2021-11-23 @@ -1065,210 +1063,210 @@ interventions: a: -1 b: 1 holiday_season2021: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: ["01000"] + - subpop: ["01000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["02000"] + - subpop: ["02000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["04000"] + - subpop: ["04000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["05000"] + - subpop: ["05000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["06000"] + - subpop: ["06000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["08000"] + - subpop: ["08000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["09000"] + - subpop: ["09000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["10000"] + - subpop: ["10000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["11000"] + - subpop: ["11000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["12000"] + - subpop: ["12000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["13000"] + - subpop: ["13000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["15000"] + - subpop: ["15000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["16000"] + - subpop: ["16000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["17000"] + - subpop: ["17000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["18000"] + - subpop: ["18000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["19000"] + - subpop: ["19000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["20000"] + - subpop: ["20000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["21000"] + - subpop: ["21000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["22000"] + - subpop: ["22000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["23000"] + - subpop: ["23000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["24000"] + - subpop: ["24000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["25000"] + - subpop: ["25000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["26000"] + - subpop: ["26000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["27000"] + - subpop: ["27000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["28000"] + - subpop: ["28000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["29000"] + - subpop: ["29000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["30000"] + - subpop: ["30000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["31000"] + - subpop: ["31000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["32000"] + - subpop: ["32000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["33000"] + - subpop: ["33000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["34000"] + - subpop: ["34000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["35000"] + - subpop: ["35000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["36000"] + - subpop: ["36000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["37000"] + - subpop: ["37000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["38000"] + - subpop: ["38000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["39000"] + - subpop: ["39000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["40000"] + - subpop: ["40000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["41000"] + - subpop: ["41000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["42000"] + - subpop: ["42000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["44000"] + - subpop: ["44000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["45000"] + - subpop: ["45000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["46000"] + - subpop: ["46000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["47000"] + - subpop: ["47000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["48000"] + - subpop: ["48000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["49000"] + - subpop: ["49000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["50000"] + - subpop: ["50000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["51000"] + - subpop: ["51000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["53000"] + - subpop: ["53000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["54000"] + - subpop: ["54000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["55000"] + - subpop: ["55000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 - - affected_geoids: ["56000"] + - subpop: ["56000"] periods: - start_date: 2021-11-24 end_date: 2022-01-02 @@ -1285,9 +1283,9 @@ interventions: a: -1 b: 1 AL_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2020-04-04 period_end_date: 2020-04-30 value: @@ -1303,9 +1301,9 @@ interventions: a: -1 b: 1 AL_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2020-05-01 period_end_date: 2020-05-21 value: @@ -1321,9 +1319,9 @@ interventions: a: -1 b: 1 AL_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2020-05-22 period_end_date: 2020-07-15 value: @@ -1339,9 +1337,9 @@ interventions: a: -1 b: 1 AL_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2020-07-16 period_end_date: 2021-03-03 value: @@ -1357,9 +1355,9 @@ interventions: a: -1 b: 1 AL_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-03-04 period_end_date: 2021-04-08 value: @@ -1375,9 +1373,9 @@ interventions: a: -1 b: 1 AL_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-04-09 period_end_date: 2021-05-30 value: @@ -1393,9 +1391,9 @@ interventions: a: -1 b: 1 AL_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-05-31 period_end_date: 2021-08-15 value: @@ -1411,9 +1409,9 @@ interventions: a: -1 b: 1 AK_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2020-03-28 period_end_date: 2020-04-23 value: @@ -1429,9 +1427,9 @@ interventions: a: -1 b: 1 AK_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2020-04-24 period_end_date: 2020-05-07 value: @@ -1447,9 +1445,9 @@ interventions: a: -1 b: 1 AK_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2020-05-08 period_end_date: 2020-05-21 value: @@ -1465,9 +1463,9 @@ interventions: a: -1 b: 1 AK_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2020-05-22 period_end_date: 2020-11-15 value: @@ -1483,9 +1481,9 @@ interventions: a: -1 b: 1 AK_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2020-11-16 period_end_date: 2021-02-14 value: @@ -1501,9 +1499,9 @@ interventions: a: -1 b: 1 AK_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-02-15 period_end_date: 2021-08-15 value: @@ -1519,9 +1517,9 @@ interventions: a: -1 b: 1 AZ_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2020-03-31 period_end_date: 2020-05-15 value: @@ -1537,9 +1535,9 @@ interventions: a: -1 b: 1 AZ_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2020-05-16 period_end_date: 2020-06-28 value: @@ -1555,9 +1553,9 @@ interventions: a: -1 b: 1 AZ_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2020-06-29 period_end_date: 2020-10-01 value: @@ -1573,9 +1571,9 @@ interventions: a: -1 b: 1 AZ_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2020-10-02 period_end_date: 2020-12-02 value: @@ -1591,9 +1589,9 @@ interventions: a: -1 b: 1 AZ_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2020-12-03 period_end_date: 2021-03-04 value: @@ -1609,9 +1607,9 @@ interventions: a: -1 b: 1 AZ_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-03-05 period_end_date: 2021-03-24 value: @@ -1627,9 +1625,9 @@ interventions: a: -1 b: 1 AZ_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-03-25 period_end_date: 2021-08-15 value: @@ -1645,9 +1643,9 @@ interventions: a: -1 b: 1 AR_sdA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2020-03-20 period_end_date: 2020-05-03 value: @@ -1663,9 +1661,9 @@ interventions: a: -1 b: 1 AR_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2020-05-04 period_end_date: 2020-06-14 value: @@ -1681,9 +1679,9 @@ interventions: a: -1 b: 1 AR_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2020-06-15 period_end_date: 2020-07-19 value: @@ -1699,9 +1697,9 @@ interventions: a: -1 b: 1 AR_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2020-07-20 period_end_date: 2020-11-18 value: @@ -1717,9 +1715,9 @@ interventions: a: -1 b: 1 AR_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2020-11-19 period_end_date: 2021-01-01 value: @@ -1735,9 +1733,9 @@ interventions: a: -1 b: 1 AR_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-01-02 period_end_date: 2021-02-25 value: @@ -1753,9 +1751,9 @@ interventions: a: -1 b: 1 AR_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-02-26 period_end_date: 2021-03-30 value: @@ -1771,9 +1769,9 @@ interventions: a: -1 b: 1 AR_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-03-31 period_end_date: 2021-08-15 value: @@ -1789,9 +1787,9 @@ interventions: a: -1 b: 1 CA_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2020-03-19 period_end_date: 2020-05-07 value: @@ -1807,9 +1805,9 @@ interventions: a: -1 b: 1 CA_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2020-05-08 period_end_date: 2020-06-11 value: @@ -1825,9 +1823,9 @@ interventions: a: -1 b: 1 CA_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2020-06-12 period_end_date: 2020-07-05 value: @@ -1843,9 +1841,9 @@ interventions: a: -1 b: 1 CA_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2020-07-06 period_end_date: 2020-11-20 value: @@ -1861,9 +1859,9 @@ interventions: a: -1 b: 1 CA_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2020-11-21 period_end_date: 2020-12-05 value: @@ -1879,9 +1877,9 @@ interventions: a: -1 b: 1 CA_lockdownB: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2020-12-06 period_end_date: 2021-01-11 value: @@ -1897,9 +1895,9 @@ interventions: a: -1 b: 1 CA_lockdownC: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-01-12 period_end_date: 2021-01-24 value: @@ -1915,9 +1913,9 @@ interventions: a: -1 b: 1 CA_open_p1C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-01-25 period_end_date: 2021-02-26 value: @@ -1933,9 +1931,9 @@ interventions: a: -1 b: 1 CA_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-02-27 period_end_date: 2021-04-06 value: @@ -1951,9 +1949,9 @@ interventions: a: -1 b: 1 CA_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-04-07 period_end_date: 2021-06-14 value: @@ -1969,9 +1967,9 @@ interventions: a: -1 b: 1 CA_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-06-15 period_end_date: 2021-08-02 value: @@ -1987,9 +1985,9 @@ interventions: a: -1 b: 1 CA_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-08-03 period_end_date: 2021-09-19 value: @@ -2005,9 +2003,9 @@ interventions: a: -1 b: 1 CA_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-09-20 period_end_date: 2021-09-29 value: @@ -2023,9 +2021,9 @@ interventions: a: -1 b: 1 CO_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2020-03-26 period_end_date: 2020-04-26 value: @@ -2041,9 +2039,9 @@ interventions: a: -1 b: 1 CO_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2020-04-27 period_end_date: 2020-06-30 value: @@ -2059,9 +2057,9 @@ interventions: a: -1 b: 1 CO_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2020-07-01 period_end_date: 2020-09-28 value: @@ -2077,9 +2075,9 @@ interventions: a: -1 b: 1 CO_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2020-09-29 period_end_date: 2020-11-04 value: @@ -2095,9 +2093,9 @@ interventions: a: -1 b: 1 CO_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2020-11-05 period_end_date: 2020-11-19 value: @@ -2113,9 +2111,9 @@ interventions: a: -1 b: 1 CO_lockdownB: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2020-11-20 period_end_date: 2021-01-03 value: @@ -2131,9 +2129,9 @@ interventions: a: -1 b: 1 CO_open_p1C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-01-04 period_end_date: 2021-02-05 value: @@ -2149,9 +2147,9 @@ interventions: a: -1 b: 1 CO_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-02-06 period_end_date: 2021-03-14 value: @@ -2167,9 +2165,9 @@ interventions: a: -1 b: 1 CO_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-03-15 period_end_date: 2021-03-23 value: @@ -2185,9 +2183,9 @@ interventions: a: -1 b: 1 CO_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-03-24 period_end_date: 2021-04-15 value: @@ -2203,9 +2201,9 @@ interventions: a: -1 b: 1 CO_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-04-16 period_end_date: 2021-05-13 value: @@ -2221,9 +2219,9 @@ interventions: a: -1 b: 1 CO_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-05-14 period_end_date: 2021-05-31 value: @@ -2239,9 +2237,9 @@ interventions: a: -1 b: 1 CO_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-06-01 period_end_date: 2021-09-19 value: @@ -2257,9 +2255,9 @@ interventions: a: -1 b: 1 CT_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2020-03-23 period_end_date: 2020-05-20 value: @@ -2275,9 +2273,9 @@ interventions: a: -1 b: 1 CT_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2020-05-21 period_end_date: 2020-06-16 value: @@ -2293,9 +2291,9 @@ interventions: a: -1 b: 1 CT_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2020-06-17 period_end_date: 2020-10-07 value: @@ -2311,9 +2309,9 @@ interventions: a: -1 b: 1 CT_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2020-10-08 period_end_date: 2020-11-05 value: @@ -2329,9 +2327,9 @@ interventions: a: -1 b: 1 CT_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2020-11-06 period_end_date: 2021-01-18 value: @@ -2347,9 +2345,9 @@ interventions: a: -1 b: 1 CT_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-01-19 period_end_date: 2021-03-18 value: @@ -2365,9 +2363,9 @@ interventions: a: -1 b: 1 CT_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-03-19 period_end_date: 2021-04-01 value: @@ -2383,9 +2381,9 @@ interventions: a: -1 b: 1 CT_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-04-02 period_end_date: 2021-04-30 value: @@ -2401,9 +2399,9 @@ interventions: a: -1 b: 1 CT_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-05-01 period_end_date: 2021-05-18 value: @@ -2419,9 +2417,9 @@ interventions: a: -1 b: 1 CT_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-05-19 period_end_date: 2021-08-04 value: @@ -2437,9 +2435,9 @@ interventions: a: -1 b: 1 CT_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-08-05 period_end_date: 2021-10-03 value: @@ -2455,9 +2453,9 @@ interventions: a: -1 b: 1 DE_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2020-03-24 period_end_date: 2020-05-31 value: @@ -2473,9 +2471,9 @@ interventions: a: -1 b: 1 DE_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2020-06-01 period_end_date: 2020-06-14 value: @@ -2491,9 +2489,9 @@ interventions: a: -1 b: 1 DE_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2020-06-15 period_end_date: 2020-11-22 value: @@ -2509,9 +2507,9 @@ interventions: a: -1 b: 1 DE_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2020-11-23 period_end_date: 2020-12-13 value: @@ -2527,9 +2525,9 @@ interventions: a: -1 b: 1 DE_open_p1C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2020-12-14 period_end_date: 2021-01-07 value: @@ -2545,9 +2543,9 @@ interventions: a: -1 b: 1 DE_open_p1D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-01-08 period_end_date: 2021-02-11 value: @@ -2563,9 +2561,9 @@ interventions: a: -1 b: 1 DE_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-02-12 period_end_date: 2021-02-18 value: @@ -2581,9 +2579,9 @@ interventions: a: -1 b: 1 DE_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-02-19 period_end_date: 2021-03-31 value: @@ -2599,9 +2597,9 @@ interventions: a: -1 b: 1 DE_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-04-01 period_end_date: 2021-05-20 value: @@ -2617,9 +2615,9 @@ interventions: a: -1 b: 1 DE_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-05-21 period_end_date: 2021-08-15 value: @@ -2635,9 +2633,9 @@ interventions: a: -1 b: 1 DE_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-08-16 period_end_date: 2021-09-29 value: @@ -2653,9 +2651,9 @@ interventions: a: -1 b: 1 DC_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2020-04-01 period_end_date: 2020-05-29 value: @@ -2671,9 +2669,9 @@ interventions: a: -1 b: 1 DC_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2020-05-30 period_end_date: 2020-06-21 value: @@ -2689,9 +2687,9 @@ interventions: a: -1 b: 1 DC_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2020-06-22 period_end_date: 2020-11-24 value: @@ -2707,9 +2705,9 @@ interventions: a: -1 b: 1 DC_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2020-11-25 period_end_date: 2020-12-13 value: @@ -2725,9 +2723,9 @@ interventions: a: -1 b: 1 DC_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2020-12-14 period_end_date: 2020-12-22 value: @@ -2743,9 +2741,9 @@ interventions: a: -1 b: 1 DC_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2020-12-23 period_end_date: 2021-01-21 value: @@ -2761,9 +2759,9 @@ interventions: a: -1 b: 1 DC_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-01-22 period_end_date: 2021-03-21 value: @@ -2779,9 +2777,9 @@ interventions: a: -1 b: 1 DC_open_p2E: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-03-22 period_end_date: 2021-04-30 value: @@ -2797,9 +2795,9 @@ interventions: a: -1 b: 1 DC_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-05-01 period_end_date: 2021-05-16 value: @@ -2815,9 +2813,9 @@ interventions: a: -1 b: 1 DC_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-05-17 period_end_date: 2021-05-20 value: @@ -2833,9 +2831,9 @@ interventions: a: -1 b: 1 DC_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-05-21 period_end_date: 2021-06-10 value: @@ -2851,9 +2849,9 @@ interventions: a: -1 b: 1 DC_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-06-11 period_end_date: 2021-07-30 value: @@ -2869,9 +2867,9 @@ interventions: a: -1 b: 1 DC_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-07-31 period_end_date: 2021-09-29 value: @@ -2887,9 +2885,9 @@ interventions: a: -1 b: 1 DC_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-09-30 period_end_date: 2021-10-31 value: @@ -2905,9 +2903,9 @@ interventions: a: -1 b: 1 FL_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2020-04-03 period_end_date: 2020-05-04 value: @@ -2923,9 +2921,9 @@ interventions: a: -1 b: 1 FL_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2020-05-05 period_end_date: 2020-05-17 value: @@ -2941,9 +2939,9 @@ interventions: a: -1 b: 1 FL_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2020-05-18 period_end_date: 2020-06-04 value: @@ -2959,9 +2957,9 @@ interventions: a: -1 b: 1 FL_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2020-06-05 period_end_date: 2020-06-25 value: @@ -2977,9 +2975,9 @@ interventions: a: -1 b: 1 FL_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2020-06-26 period_end_date: 2020-09-13 value: @@ -2995,9 +2993,9 @@ interventions: a: -1 b: 1 FL_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2020-09-14 period_end_date: 2020-09-24 value: @@ -3013,9 +3011,9 @@ interventions: a: -1 b: 1 FL_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2020-09-25 period_end_date: 2021-05-02 value: @@ -3031,9 +3029,9 @@ interventions: a: -1 b: 1 FL_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-05-03 period_end_date: 2021-08-15 value: @@ -3049,9 +3047,9 @@ interventions: a: -1 b: 1 GA_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2020-04-03 period_end_date: 2020-04-27 value: @@ -3067,9 +3065,9 @@ interventions: a: -1 b: 1 GA_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2020-04-28 period_end_date: 2020-05-31 value: @@ -3085,9 +3083,9 @@ interventions: a: -1 b: 1 GA_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2020-06-01 period_end_date: 2020-06-30 value: @@ -3103,9 +3101,9 @@ interventions: a: -1 b: 1 GA_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2020-07-01 period_end_date: 2020-09-10 value: @@ -3121,9 +3119,9 @@ interventions: a: -1 b: 1 GA_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2020-09-11 period_end_date: 2020-12-14 value: @@ -3139,9 +3137,9 @@ interventions: a: -1 b: 1 GA_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2020-12-15 period_end_date: 2021-04-07 value: @@ -3157,9 +3155,9 @@ interventions: a: -1 b: 1 GA_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-04-08 period_end_date: 2021-04-30 value: @@ -3175,9 +3173,9 @@ interventions: a: -1 b: 1 GA_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-05-01 period_end_date: 2021-05-30 value: @@ -3193,9 +3191,9 @@ interventions: a: -1 b: 1 GA_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-05-31 period_end_date: 2021-08-15 value: @@ -3211,9 +3209,9 @@ interventions: a: -1 b: 1 HI_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2020-03-25 period_end_date: 2020-05-06 value: @@ -3229,9 +3227,9 @@ interventions: a: -1 b: 1 HI_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2020-05-07 period_end_date: 2020-05-31 value: @@ -3247,9 +3245,9 @@ interventions: a: -1 b: 1 HI_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2020-06-01 period_end_date: 2020-08-07 value: @@ -3265,9 +3263,9 @@ interventions: a: -1 b: 1 HI_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2020-08-08 period_end_date: 2020-09-23 value: @@ -3283,9 +3281,9 @@ interventions: a: -1 b: 1 HI_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2020-09-24 period_end_date: 2020-10-26 value: @@ -3301,9 +3299,9 @@ interventions: a: -1 b: 1 HI_open_p1C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2020-10-27 period_end_date: 2020-11-10 value: @@ -3319,9 +3317,9 @@ interventions: a: -1 b: 1 HI_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2020-11-11 period_end_date: 2021-01-18 value: @@ -3337,9 +3335,9 @@ interventions: a: -1 b: 1 HI_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-01-19 period_end_date: 2021-02-24 value: @@ -3355,9 +3353,9 @@ interventions: a: -1 b: 1 HI_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-02-25 period_end_date: 2021-03-10 value: @@ -3373,9 +3371,9 @@ interventions: a: -1 b: 1 HI_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-03-11 period_end_date: 2021-05-09 value: @@ -3391,9 +3389,9 @@ interventions: a: -1 b: 1 HI_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-05-10 period_end_date: 2021-05-24 value: @@ -3409,9 +3407,9 @@ interventions: a: -1 b: 1 HI_open_p3D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-05-25 period_end_date: 2021-06-10 value: @@ -3427,9 +3425,9 @@ interventions: a: -1 b: 1 HI_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-06-11 period_end_date: 2021-07-07 value: @@ -3445,9 +3443,9 @@ interventions: a: -1 b: 1 HI_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-07-08 period_end_date: 2021-08-10 value: @@ -3463,9 +3461,9 @@ interventions: a: -1 b: 1 HI_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-08-11 period_end_date: 2021-09-14 value: @@ -3481,9 +3479,9 @@ interventions: a: -1 b: 1 HI_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-09-15 period_end_date: 2021-11-07 value: @@ -3499,9 +3497,9 @@ interventions: a: -1 b: 1 HI_open_p6B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-11-08 period_end_date: 2021-11-11 value: @@ -3517,9 +3515,9 @@ interventions: a: -1 b: 1 ID_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2020-03-25 period_end_date: 2020-04-30 value: @@ -3535,9 +3533,9 @@ interventions: a: -1 b: 1 ID_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2020-05-01 period_end_date: 2020-05-15 value: @@ -3553,9 +3551,9 @@ interventions: a: -1 b: 1 ID_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2020-05-16 period_end_date: 2020-05-29 value: @@ -3571,9 +3569,9 @@ interventions: a: -1 b: 1 ID_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2020-05-30 period_end_date: 2020-06-12 value: @@ -3589,9 +3587,9 @@ interventions: a: -1 b: 1 ID_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2020-06-13 period_end_date: 2020-10-26 value: @@ -3607,9 +3605,9 @@ interventions: a: -1 b: 1 ID_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2020-10-27 period_end_date: 2020-11-12 value: @@ -3625,9 +3623,9 @@ interventions: a: -1 b: 1 ID_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2020-11-13 period_end_date: 2020-12-29 value: @@ -3643,9 +3641,9 @@ interventions: a: -1 b: 1 ID_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2020-12-30 period_end_date: 2021-02-01 value: @@ -3661,9 +3659,9 @@ interventions: a: -1 b: 1 ID_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-02-02 period_end_date: 2021-05-10 value: @@ -3679,9 +3677,9 @@ interventions: a: -1 b: 1 ID_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-05-11 period_end_date: 2021-08-15 value: @@ -3697,9 +3695,9 @@ interventions: a: -1 b: 1 IL_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2020-03-21 period_end_date: 2020-05-29 value: @@ -3715,9 +3713,9 @@ interventions: a: -1 b: 1 IL_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2020-05-30 period_end_date: 2020-06-25 value: @@ -3733,9 +3731,9 @@ interventions: a: -1 b: 1 IL_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2020-06-26 period_end_date: 2020-07-23 value: @@ -3751,9 +3749,9 @@ interventions: a: -1 b: 1 IL_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2020-07-24 period_end_date: 2020-09-30 value: @@ -3769,9 +3767,9 @@ interventions: a: -1 b: 1 IL_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2020-10-01 period_end_date: 2020-10-29 value: @@ -3787,9 +3785,9 @@ interventions: a: -1 b: 1 IL_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2020-10-30 period_end_date: 2020-11-19 value: @@ -3805,9 +3803,9 @@ interventions: a: -1 b: 1 IL_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2020-11-20 period_end_date: 2021-01-17 value: @@ -3823,9 +3821,9 @@ interventions: a: -1 b: 1 IL_open_p3D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-01-18 period_end_date: 2021-01-31 value: @@ -3841,9 +3839,9 @@ interventions: a: -1 b: 1 IL_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-02-01 period_end_date: 2021-05-16 value: @@ -3859,9 +3857,9 @@ interventions: a: -1 b: 1 IL_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-05-17 period_end_date: 2021-06-10 value: @@ -3877,9 +3875,9 @@ interventions: a: -1 b: 1 IL_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-06-11 period_end_date: 2021-07-26 value: @@ -3895,9 +3893,9 @@ interventions: a: -1 b: 1 IL_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-07-27 period_end_date: 2021-08-03 value: @@ -3913,9 +3911,9 @@ interventions: a: -1 b: 1 IL_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-08-04 period_end_date: 2021-08-29 value: @@ -3931,9 +3929,9 @@ interventions: a: -1 b: 1 IN_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2020-03-24 period_end_date: 2020-05-03 value: @@ -3949,9 +3947,9 @@ interventions: a: -1 b: 1 IN_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2020-05-04 period_end_date: 2020-05-21 value: @@ -3967,9 +3965,9 @@ interventions: a: -1 b: 1 IN_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2020-05-22 period_end_date: 2020-06-11 value: @@ -3985,9 +3983,9 @@ interventions: a: -1 b: 1 IN_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2020-06-12 period_end_date: 2020-07-03 value: @@ -4003,9 +4001,9 @@ interventions: a: -1 b: 1 IN_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2020-07-04 period_end_date: 2020-09-25 value: @@ -4021,9 +4019,9 @@ interventions: a: -1 b: 1 IN_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2020-09-26 period_end_date: 2020-11-10 value: @@ -4039,9 +4037,9 @@ interventions: a: -1 b: 1 IN_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2020-11-11 period_end_date: 2021-01-10 value: @@ -4057,9 +4055,9 @@ interventions: a: -1 b: 1 IN_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-01-11 period_end_date: 2021-01-31 value: @@ -4075,9 +4073,9 @@ interventions: a: -1 b: 1 IN_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-02-01 period_end_date: 2021-02-14 value: @@ -4093,9 +4091,9 @@ interventions: a: -1 b: 1 IN_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-02-15 period_end_date: 2021-03-01 value: @@ -4111,9 +4109,9 @@ interventions: a: -1 b: 1 IN_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-03-02 period_end_date: 2021-04-05 value: @@ -4129,9 +4127,9 @@ interventions: a: -1 b: 1 IN_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-04-06 period_end_date: 2021-06-30 value: @@ -4147,9 +4145,9 @@ interventions: a: -1 b: 1 IN_open_p5C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-07-01 period_end_date: 2021-08-15 value: @@ -4165,9 +4163,9 @@ interventions: a: -1 b: 1 IA_sdA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-04-02 period_end_date: 2020-05-14 value: @@ -4183,9 +4181,9 @@ interventions: a: -1 b: 1 IA_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-05-15 period_end_date: 2020-05-27 value: @@ -4201,9 +4199,9 @@ interventions: a: -1 b: 1 IA_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-05-28 period_end_date: 2020-06-11 value: @@ -4219,9 +4217,9 @@ interventions: a: -1 b: 1 IA_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-06-12 period_end_date: 2020-08-26 value: @@ -4237,9 +4235,9 @@ interventions: a: -1 b: 1 IA_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-08-27 period_end_date: 2020-10-03 value: @@ -4255,9 +4253,9 @@ interventions: a: -1 b: 1 IA_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-10-04 period_end_date: 2020-11-10 value: @@ -4273,9 +4271,9 @@ interventions: a: -1 b: 1 IA_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-11-11 period_end_date: 2020-12-16 value: @@ -4291,9 +4289,9 @@ interventions: a: -1 b: 1 IA_open_p3D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-12-17 period_end_date: 2021-01-07 value: @@ -4309,9 +4307,9 @@ interventions: a: -1 b: 1 IA_open_p3E: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-01-08 period_end_date: 2021-02-06 value: @@ -4327,9 +4325,9 @@ interventions: a: -1 b: 1 IA_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-02-07 period_end_date: 2021-08-15 value: @@ -4345,9 +4343,9 @@ interventions: a: -1 b: 1 KS_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2020-03-30 period_end_date: 2020-05-04 value: @@ -4363,9 +4361,9 @@ interventions: a: -1 b: 1 KS_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2020-05-05 period_end_date: 2020-05-21 value: @@ -4381,9 +4379,9 @@ interventions: a: -1 b: 1 KS_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2020-05-22 period_end_date: 2020-06-07 value: @@ -4399,9 +4397,9 @@ interventions: a: -1 b: 1 KS_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2020-06-08 period_end_date: 2020-07-02 value: @@ -4417,9 +4415,9 @@ interventions: a: -1 b: 1 KS_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2020-07-03 period_end_date: 2021-03-30 value: @@ -4435,9 +4433,9 @@ interventions: a: -1 b: 1 KS_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-03-31 period_end_date: 2021-04-05 value: @@ -4453,9 +4451,9 @@ interventions: a: -1 b: 1 KS_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-04-06 period_end_date: 2021-05-13 value: @@ -4471,9 +4469,9 @@ interventions: a: -1 b: 1 KS_open_p4C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-05-14 period_end_date: 2021-08-15 value: @@ -4489,9 +4487,9 @@ interventions: a: -1 b: 1 KY_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-03-26 period_end_date: 2020-05-10 value: @@ -4507,9 +4505,9 @@ interventions: a: -1 b: 1 KY_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-05-11 period_end_date: 2020-05-21 value: @@ -4525,9 +4523,9 @@ interventions: a: -1 b: 1 KY_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-05-22 period_end_date: 2020-06-28 value: @@ -4543,9 +4541,9 @@ interventions: a: -1 b: 1 KY_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-06-29 period_end_date: 2020-07-27 value: @@ -4561,9 +4559,9 @@ interventions: a: -1 b: 1 KY_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-07-28 period_end_date: 2020-08-10 value: @@ -4579,9 +4577,9 @@ interventions: a: -1 b: 1 KY_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-08-11 period_end_date: 2020-11-19 value: @@ -4597,9 +4595,9 @@ interventions: a: -1 b: 1 KY_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-11-20 period_end_date: 2020-12-13 value: @@ -4615,9 +4613,9 @@ interventions: a: -1 b: 1 KY_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-12-14 period_end_date: 2021-03-04 value: @@ -4633,9 +4631,9 @@ interventions: a: -1 b: 1 KY_open_p3D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-03-05 period_end_date: 2021-05-15 value: @@ -4651,9 +4649,9 @@ interventions: a: -1 b: 1 KY_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-05-16 period_end_date: 2021-05-27 value: @@ -4669,9 +4667,9 @@ interventions: a: -1 b: 1 KY_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-05-28 period_end_date: 2021-06-10 value: @@ -4687,9 +4685,9 @@ interventions: a: -1 b: 1 KY_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-06-11 period_end_date: 2021-07-28 value: @@ -4705,9 +4703,9 @@ interventions: a: -1 b: 1 KY_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-07-29 period_end_date: 2021-08-09 value: @@ -4723,9 +4721,9 @@ interventions: a: -1 b: 1 KY_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-08-10 period_end_date: 2021-08-18 value: @@ -4741,9 +4739,9 @@ interventions: a: -1 b: 1 LA_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2020-03-23 period_end_date: 2020-05-14 value: @@ -4759,9 +4757,9 @@ interventions: a: -1 b: 1 LA_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2020-05-15 period_end_date: 2020-06-04 value: @@ -4777,9 +4775,9 @@ interventions: a: -1 b: 1 LA_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2020-06-05 period_end_date: 2020-07-12 value: @@ -4795,9 +4793,9 @@ interventions: a: -1 b: 1 LA_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2020-07-13 period_end_date: 2020-09-10 value: @@ -4813,9 +4811,9 @@ interventions: a: -1 b: 1 LA_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2020-09-11 period_end_date: 2020-11-24 value: @@ -4831,9 +4829,9 @@ interventions: a: -1 b: 1 LA_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2020-11-25 period_end_date: 2021-03-02 value: @@ -4849,9 +4847,9 @@ interventions: a: -1 b: 1 LA_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-03-03 period_end_date: 2021-03-10 value: @@ -4867,9 +4865,9 @@ interventions: a: -1 b: 1 LA_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-03-11 period_end_date: 2021-03-30 value: @@ -4885,9 +4883,9 @@ interventions: a: -1 b: 1 LA_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-03-31 period_end_date: 2021-04-27 value: @@ -4903,9 +4901,9 @@ interventions: a: -1 b: 1 LA_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-04-28 period_end_date: 2021-05-25 value: @@ -4921,9 +4919,9 @@ interventions: a: -1 b: 1 LA_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-05-26 period_end_date: 2021-08-03 value: @@ -4939,9 +4937,9 @@ interventions: a: -1 b: 1 LA_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-08-04 period_end_date: 2021-10-26 value: @@ -4957,9 +4955,9 @@ interventions: a: -1 b: 1 ME_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2020-04-02 period_end_date: 2020-04-30 value: @@ -4975,9 +4973,9 @@ interventions: a: -1 b: 1 ME_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2020-05-01 period_end_date: 2020-05-31 value: @@ -4993,9 +4991,9 @@ interventions: a: -1 b: 1 ME_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2020-06-01 period_end_date: 2020-06-30 value: @@ -5011,9 +5009,9 @@ interventions: a: -1 b: 1 ME_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2020-07-01 period_end_date: 2020-10-12 value: @@ -5029,9 +5027,9 @@ interventions: a: -1 b: 1 ME_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2020-10-13 period_end_date: 2020-11-19 value: @@ -5047,9 +5045,9 @@ interventions: a: -1 b: 1 ME_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2020-11-20 period_end_date: 2021-01-31 value: @@ -5065,9 +5063,9 @@ interventions: a: -1 b: 1 ME_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-02-01 period_end_date: 2021-02-11 value: @@ -5083,9 +5081,9 @@ interventions: a: -1 b: 1 ME_open_p4C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-02-12 period_end_date: 2021-03-25 value: @@ -5101,9 +5099,9 @@ interventions: a: -1 b: 1 ME_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-03-26 period_end_date: 2021-05-23 value: @@ -5119,9 +5117,9 @@ interventions: a: -1 b: 1 ME_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-05-24 period_end_date: 2021-10-28 value: @@ -5137,9 +5135,9 @@ interventions: a: -1 b: 1 MD_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2020-03-30 period_end_date: 2020-05-14 value: @@ -5155,9 +5153,9 @@ interventions: a: -1 b: 1 MD_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2020-05-15 period_end_date: 2020-06-04 value: @@ -5173,9 +5171,9 @@ interventions: a: -1 b: 1 MD_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2020-06-05 period_end_date: 2020-09-03 value: @@ -5191,9 +5189,9 @@ interventions: a: -1 b: 1 MD_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2020-09-04 period_end_date: 2020-11-10 value: @@ -5209,9 +5207,9 @@ interventions: a: -1 b: 1 MD_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2020-11-11 period_end_date: 2020-12-16 value: @@ -5227,9 +5225,9 @@ interventions: a: -1 b: 1 MD_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2020-12-17 period_end_date: 2021-01-31 value: @@ -5245,9 +5243,9 @@ interventions: a: -1 b: 1 MD_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-02-01 period_end_date: 2021-03-11 value: @@ -5263,9 +5261,9 @@ interventions: a: -1 b: 1 MD_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-03-12 period_end_date: 2021-05-14 value: @@ -5281,9 +5279,9 @@ interventions: a: -1 b: 1 MD_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-05-15 period_end_date: 2021-06-30 value: @@ -5299,9 +5297,9 @@ interventions: a: -1 b: 1 MD_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-07-01 period_end_date: 2021-07-26 value: @@ -5317,9 +5315,9 @@ interventions: a: -1 b: 1 MD_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-07-27 period_end_date: 2021-08-31 value: @@ -5335,9 +5333,9 @@ interventions: a: -1 b: 1 MD_open_p8A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-09-01 period_end_date: 2021-09-13 value: @@ -5353,9 +5351,9 @@ interventions: a: -1 b: 1 MA_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-03-24 period_end_date: 2020-05-18 value: @@ -5371,9 +5369,9 @@ interventions: a: -1 b: 1 MA_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-05-19 period_end_date: 2020-06-07 value: @@ -5389,9 +5387,9 @@ interventions: a: -1 b: 1 MA_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-06-08 period_end_date: 2020-07-05 value: @@ -5407,9 +5405,9 @@ interventions: a: -1 b: 1 MA_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-07-06 period_end_date: 2020-10-04 value: @@ -5425,9 +5423,9 @@ interventions: a: -1 b: 1 MA_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-10-05 period_end_date: 2020-10-22 value: @@ -5443,9 +5441,9 @@ interventions: a: -1 b: 1 MA_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-10-23 period_end_date: 2020-12-12 value: @@ -5461,9 +5459,9 @@ interventions: a: -1 b: 1 MA_open_p3D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-12-13 period_end_date: 2020-12-25 value: @@ -5479,9 +5477,9 @@ interventions: a: -1 b: 1 MA_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-12-26 period_end_date: 2021-01-24 value: @@ -5497,9 +5495,9 @@ interventions: a: -1 b: 1 MA_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-01-25 period_end_date: 2021-02-07 value: @@ -5515,9 +5513,9 @@ interventions: a: -1 b: 1 MA_open_p3E: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-02-08 period_end_date: 2021-02-28 value: @@ -5533,9 +5531,9 @@ interventions: a: -1 b: 1 MA_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-03-01 period_end_date: 2021-03-21 value: @@ -5551,9 +5549,9 @@ interventions: a: -1 b: 1 MA_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-03-22 period_end_date: 2021-04-29 value: @@ -5569,9 +5567,9 @@ interventions: a: -1 b: 1 MA_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-04-30 period_end_date: 2021-05-28 value: @@ -5587,9 +5585,9 @@ interventions: a: -1 b: 1 MA_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-05-29 period_end_date: 2021-08-23 value: @@ -5605,9 +5603,9 @@ interventions: a: -1 b: 1 MI_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2020-03-24 period_end_date: 2020-05-31 value: @@ -5623,9 +5621,9 @@ interventions: a: -1 b: 1 MI_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2020-06-01 period_end_date: 2020-06-30 value: @@ -5641,9 +5639,9 @@ interventions: a: -1 b: 1 MI_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2020-07-01 period_end_date: 2020-09-08 value: @@ -5659,9 +5657,9 @@ interventions: a: -1 b: 1 MI_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2020-09-09 period_end_date: 2020-10-08 value: @@ -5677,9 +5675,9 @@ interventions: a: -1 b: 1 MI_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2020-10-09 period_end_date: 2020-11-17 value: @@ -5695,9 +5693,9 @@ interventions: a: -1 b: 1 MI_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2020-11-18 period_end_date: 2020-12-20 value: @@ -5713,9 +5711,9 @@ interventions: a: -1 b: 1 MI_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2020-12-21 period_end_date: 2021-01-15 value: @@ -5731,9 +5729,9 @@ interventions: a: -1 b: 1 MI_open_p2E: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-01-16 period_end_date: 2021-01-31 value: @@ -5749,9 +5747,9 @@ interventions: a: -1 b: 1 MI_open_p2F: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-02-01 period_end_date: 2021-03-04 value: @@ -5767,9 +5765,9 @@ interventions: a: -1 b: 1 MI_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-03-05 period_end_date: 2021-03-21 value: @@ -5785,9 +5783,9 @@ interventions: a: -1 b: 1 MI_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-03-22 period_end_date: 2021-05-14 value: @@ -5803,9 +5801,9 @@ interventions: a: -1 b: 1 MI_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-05-15 period_end_date: 2021-05-31 value: @@ -5821,9 +5819,9 @@ interventions: a: -1 b: 1 MI_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-06-01 period_end_date: 2021-06-21 value: @@ -5839,9 +5837,9 @@ interventions: a: -1 b: 1 MI_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-06-22 period_end_date: 2021-08-15 value: @@ -5857,9 +5855,9 @@ interventions: a: -1 b: 1 MN_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2020-03-27 period_end_date: 2020-05-17 value: @@ -5875,9 +5873,9 @@ interventions: a: -1 b: 1 MN_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2020-05-18 period_end_date: 2020-05-31 value: @@ -5893,9 +5891,9 @@ interventions: a: -1 b: 1 MN_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2020-06-01 period_end_date: 2020-06-09 value: @@ -5911,9 +5909,9 @@ interventions: a: -1 b: 1 MN_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2020-06-10 period_end_date: 2020-07-24 value: @@ -5929,9 +5927,9 @@ interventions: a: -1 b: 1 MN_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2020-07-25 period_end_date: 2020-11-12 value: @@ -5947,9 +5945,9 @@ interventions: a: -1 b: 1 MN_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2020-11-13 period_end_date: 2020-12-17 value: @@ -5965,9 +5963,9 @@ interventions: a: -1 b: 1 MN_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2020-12-18 period_end_date: 2021-01-10 value: @@ -5983,9 +5981,9 @@ interventions: a: -1 b: 1 MN_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-01-11 period_end_date: 2021-02-12 value: @@ -6001,9 +5999,9 @@ interventions: a: -1 b: 1 MN_open_p3D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-02-13 period_end_date: 2021-03-14 value: @@ -6019,9 +6017,9 @@ interventions: a: -1 b: 1 MN_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-03-15 period_end_date: 2021-03-31 value: @@ -6037,9 +6035,9 @@ interventions: a: -1 b: 1 MN_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-04-01 period_end_date: 2021-05-06 value: @@ -6055,9 +6053,9 @@ interventions: a: -1 b: 1 MN_open_p4C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-05-07 period_end_date: 2021-05-13 value: @@ -6073,9 +6071,9 @@ interventions: a: -1 b: 1 MN_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-05-14 period_end_date: 2021-05-27 value: @@ -6091,9 +6089,9 @@ interventions: a: -1 b: 1 MN_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-05-28 period_end_date: 2021-08-15 value: @@ -6109,9 +6107,9 @@ interventions: a: -1 b: 1 MS_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2020-04-03 period_end_date: 2020-04-27 value: @@ -6127,9 +6125,9 @@ interventions: a: -1 b: 1 MS_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2020-04-28 period_end_date: 2020-05-06 value: @@ -6145,9 +6143,9 @@ interventions: a: -1 b: 1 MS_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2020-05-07 period_end_date: 2020-05-31 value: @@ -6163,9 +6161,9 @@ interventions: a: -1 b: 1 MS_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2020-06-01 period_end_date: 2020-09-13 value: @@ -6181,9 +6179,9 @@ interventions: a: -1 b: 1 MS_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2020-09-14 period_end_date: 2020-11-24 value: @@ -6199,9 +6197,9 @@ interventions: a: -1 b: 1 MS_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2020-11-25 period_end_date: 2020-12-10 value: @@ -6217,9 +6215,9 @@ interventions: a: -1 b: 1 MS_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2020-12-11 period_end_date: 2021-03-02 value: @@ -6235,9 +6233,9 @@ interventions: a: -1 b: 1 MS_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-03-03 period_end_date: 2021-03-30 value: @@ -6253,9 +6251,9 @@ interventions: a: -1 b: 1 MS_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-03-31 period_end_date: 2021-04-29 value: @@ -6271,9 +6269,9 @@ interventions: a: -1 b: 1 MS_open_p5C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-04-30 period_end_date: 2021-08-15 value: @@ -6289,9 +6287,9 @@ interventions: a: -1 b: 1 MO_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2020-04-06 period_end_date: 2020-05-03 value: @@ -6307,9 +6305,9 @@ interventions: a: -1 b: 1 MO_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2020-05-04 period_end_date: 2020-06-15 value: @@ -6325,9 +6323,9 @@ interventions: a: -1 b: 1 MO_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2020-06-16 period_end_date: 2021-05-16 value: @@ -6343,9 +6341,9 @@ interventions: a: -1 b: 1 MO_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-05-17 period_end_date: 2021-08-15 value: @@ -6361,9 +6359,9 @@ interventions: a: -1 b: 1 MT_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2020-03-28 period_end_date: 2020-04-26 value: @@ -6379,9 +6377,9 @@ interventions: a: -1 b: 1 MT_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2020-04-27 period_end_date: 2020-05-31 value: @@ -6397,9 +6395,9 @@ interventions: a: -1 b: 1 MT_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2020-06-01 period_end_date: 2020-11-19 value: @@ -6415,9 +6413,9 @@ interventions: a: -1 b: 1 MT_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2020-11-20 period_end_date: 2021-01-14 value: @@ -6433,9 +6431,9 @@ interventions: a: -1 b: 1 MT_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-01-15 period_end_date: 2021-02-11 value: @@ -6451,9 +6449,9 @@ interventions: a: -1 b: 1 MT_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-02-12 period_end_date: 2021-08-15 value: @@ -6469,9 +6467,9 @@ interventions: a: -1 b: 1 NE_sdA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-03-16 period_end_date: 2020-05-03 value: @@ -6487,9 +6485,9 @@ interventions: a: -1 b: 1 NE_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-05-04 period_end_date: 2020-05-31 value: @@ -6505,9 +6503,9 @@ interventions: a: -1 b: 1 NE_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-06-01 period_end_date: 2020-06-21 value: @@ -6523,9 +6521,9 @@ interventions: a: -1 b: 1 NE_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-06-22 period_end_date: 2020-09-13 value: @@ -6541,9 +6539,9 @@ interventions: a: -1 b: 1 NE_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-09-14 period_end_date: 2020-10-20 value: @@ -6559,9 +6557,9 @@ interventions: a: -1 b: 1 NE_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-10-21 period_end_date: 2020-11-10 value: @@ -6577,9 +6575,9 @@ interventions: a: -1 b: 1 NE_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-11-11 period_end_date: 2020-12-11 value: @@ -6595,9 +6593,9 @@ interventions: a: -1 b: 1 NE_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-12-12 period_end_date: 2020-12-23 value: @@ -6613,9 +6611,9 @@ interventions: a: -1 b: 1 NE_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-12-24 period_end_date: 2021-01-29 value: @@ -6631,9 +6629,9 @@ interventions: a: -1 b: 1 NE_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-01-30 period_end_date: 2021-05-23 value: @@ -6649,9 +6647,9 @@ interventions: a: -1 b: 1 NE_open_p4C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-05-24 period_end_date: 2021-08-15 value: @@ -6667,9 +6665,9 @@ interventions: a: -1 b: 1 NV_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2020-04-01 period_end_date: 2020-05-08 value: @@ -6685,9 +6683,9 @@ interventions: a: -1 b: 1 NV_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2020-05-09 period_end_date: 2020-05-28 value: @@ -6703,9 +6701,9 @@ interventions: a: -1 b: 1 NV_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2020-05-29 period_end_date: 2020-07-09 value: @@ -6721,9 +6719,9 @@ interventions: a: -1 b: 1 NV_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2020-07-10 period_end_date: 2020-09-19 value: @@ -6739,9 +6737,9 @@ interventions: a: -1 b: 1 NV_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2020-09-20 period_end_date: 2020-11-23 value: @@ -6757,9 +6755,9 @@ interventions: a: -1 b: 1 NV_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2020-11-24 period_end_date: 2021-02-14 value: @@ -6775,9 +6773,9 @@ interventions: a: -1 b: 1 NV_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-02-15 period_end_date: 2021-03-14 value: @@ -6793,9 +6791,9 @@ interventions: a: -1 b: 1 NV_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-03-15 period_end_date: 2021-03-29 value: @@ -6811,9 +6809,9 @@ interventions: a: -1 b: 1 NV_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-03-30 period_end_date: 2021-04-30 value: @@ -6829,9 +6827,9 @@ interventions: a: -1 b: 1 NV_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-05-01 period_end_date: 2021-05-02 value: @@ -6847,9 +6845,9 @@ interventions: a: -1 b: 1 NV_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-05-03 period_end_date: 2021-05-31 value: @@ -6865,9 +6863,9 @@ interventions: a: -1 b: 1 NV_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-06-01 period_end_date: 2021-07-29 value: @@ -6883,9 +6881,9 @@ interventions: a: -1 b: 1 NV_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-07-30 period_end_date: 2021-09-09 value: @@ -6901,9 +6899,9 @@ interventions: a: -1 b: 1 NV_open_p7B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-09-10 period_end_date: 2021-10-31 value: @@ -6919,9 +6917,9 @@ interventions: a: -1 b: 1 NH_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2020-03-27 period_end_date: 2020-05-10 value: @@ -6937,9 +6935,9 @@ interventions: a: -1 b: 1 NH_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2020-05-11 period_end_date: 2020-06-14 value: @@ -6955,9 +6953,9 @@ interventions: a: -1 b: 1 NH_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2020-06-15 period_end_date: 2020-06-28 value: @@ -6973,9 +6971,9 @@ interventions: a: -1 b: 1 NH_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2020-06-29 period_end_date: 2020-10-14 value: @@ -6991,9 +6989,9 @@ interventions: a: -1 b: 1 NH_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2020-10-15 period_end_date: 2020-10-29 value: @@ -7009,9 +7007,9 @@ interventions: a: -1 b: 1 NH_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2020-10-30 period_end_date: 2020-11-19 value: @@ -7027,9 +7025,9 @@ interventions: a: -1 b: 1 NH_open_p3D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2020-11-20 period_end_date: 2021-03-10 value: @@ -7045,9 +7043,9 @@ interventions: a: -1 b: 1 NH_open_p3E: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-03-11 period_end_date: 2021-04-16 value: @@ -7063,9 +7061,9 @@ interventions: a: -1 b: 1 NH_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-04-17 period_end_date: 2021-05-07 value: @@ -7081,9 +7079,9 @@ interventions: a: -1 b: 1 NH_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-05-08 period_end_date: 2021-08-15 value: @@ -7099,9 +7097,9 @@ interventions: a: -1 b: 1 NJ_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2020-03-21 period_end_date: 2020-05-18 value: @@ -7117,9 +7115,9 @@ interventions: a: -1 b: 1 NJ_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2020-05-19 period_end_date: 2020-06-14 value: @@ -7135,9 +7133,9 @@ interventions: a: -1 b: 1 NJ_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2020-06-15 period_end_date: 2020-09-03 value: @@ -7153,9 +7151,9 @@ interventions: a: -1 b: 1 NJ_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2020-09-04 period_end_date: 2020-11-11 value: @@ -7171,9 +7169,9 @@ interventions: a: -1 b: 1 NJ_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2020-11-12 period_end_date: 2020-12-06 value: @@ -7189,9 +7187,9 @@ interventions: a: -1 b: 1 NJ_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2020-12-07 period_end_date: 2021-01-01 value: @@ -7207,9 +7205,9 @@ interventions: a: -1 b: 1 NJ_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-01-02 period_end_date: 2021-02-04 value: @@ -7225,9 +7223,9 @@ interventions: a: -1 b: 1 NJ_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-02-05 period_end_date: 2021-02-21 value: @@ -7243,9 +7241,9 @@ interventions: a: -1 b: 1 NJ_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-02-22 period_end_date: 2021-03-18 value: @@ -7261,9 +7259,9 @@ interventions: a: -1 b: 1 NJ_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-03-19 period_end_date: 2021-04-01 value: @@ -7279,9 +7277,9 @@ interventions: a: -1 b: 1 NJ_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-04-02 period_end_date: 2021-05-27 value: @@ -7297,9 +7295,9 @@ interventions: a: -1 b: 1 NJ_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-05-28 period_end_date: 2021-06-03 value: @@ -7315,9 +7313,9 @@ interventions: a: -1 b: 1 NJ_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-06-04 period_end_date: 2021-08-08 value: @@ -7333,9 +7331,9 @@ interventions: a: -1 b: 1 NJ_open_p8A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-08-09 period_end_date: 2021-10-17 value: @@ -7351,9 +7349,9 @@ interventions: a: -1 b: 1 NJ_open_p9A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-10-18 period_end_date: 2021-10-31 value: @@ -7369,9 +7367,9 @@ interventions: a: -1 b: 1 NM_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2020-03-24 period_end_date: 2020-05-31 value: @@ -7387,9 +7385,9 @@ interventions: a: -1 b: 1 NM_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2020-06-01 period_end_date: 2020-07-12 value: @@ -7405,9 +7403,9 @@ interventions: a: -1 b: 1 NM_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2020-07-13 period_end_date: 2020-08-28 value: @@ -7423,9 +7421,9 @@ interventions: a: -1 b: 1 NM_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2020-08-29 period_end_date: 2020-10-15 value: @@ -7441,9 +7439,9 @@ interventions: a: -1 b: 1 NM_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2020-10-16 period_end_date: 2020-11-15 value: @@ -7459,9 +7457,9 @@ interventions: a: -1 b: 1 NM_lockdownB: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2020-11-16 period_end_date: 2020-12-01 value: @@ -7477,9 +7475,9 @@ interventions: a: -1 b: 1 NM_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2020-12-02 period_end_date: 2021-02-09 value: @@ -7495,9 +7493,9 @@ interventions: a: -1 b: 1 NM_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-02-10 period_end_date: 2021-02-23 value: @@ -7513,9 +7511,9 @@ interventions: a: -1 b: 1 NM_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-02-24 period_end_date: 2021-03-09 value: @@ -7531,9 +7529,9 @@ interventions: a: -1 b: 1 NM_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-03-10 period_end_date: 2021-03-23 value: @@ -7549,9 +7547,9 @@ interventions: a: -1 b: 1 NM_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-03-24 period_end_date: 2021-04-06 value: @@ -7567,9 +7565,9 @@ interventions: a: -1 b: 1 NM_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-04-07 period_end_date: 2021-04-20 value: @@ -7585,9 +7583,9 @@ interventions: a: -1 b: 1 NM_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-04-21 period_end_date: 2021-05-04 value: @@ -7603,9 +7601,9 @@ interventions: a: -1 b: 1 NM_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-05-05 period_end_date: 2021-05-13 value: @@ -7621,9 +7619,9 @@ interventions: a: -1 b: 1 NM_open_p6B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-05-14 period_end_date: 2021-06-01 value: @@ -7639,9 +7637,9 @@ interventions: a: -1 b: 1 NM_open_p6C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-06-02 period_end_date: 2021-06-30 value: @@ -7657,9 +7655,9 @@ interventions: a: -1 b: 1 NM_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-07-01 period_end_date: 2021-08-19 value: @@ -7675,9 +7673,9 @@ interventions: a: -1 b: 1 NY_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-03-22 period_end_date: 2020-06-07 value: @@ -7693,9 +7691,9 @@ interventions: a: -1 b: 1 NY_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-06-08 period_end_date: 2020-06-21 value: @@ -7711,9 +7709,9 @@ interventions: a: -1 b: 1 NY_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-06-22 period_end_date: 2020-07-05 value: @@ -7729,9 +7727,9 @@ interventions: a: -1 b: 1 NY_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-07-06 period_end_date: 2020-07-19 value: @@ -7747,9 +7745,9 @@ interventions: a: -1 b: 1 NY_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-07-20 period_end_date: 2020-09-29 value: @@ -7765,9 +7763,9 @@ interventions: a: -1 b: 1 NY_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-09-30 period_end_date: 2020-10-13 value: @@ -7783,9 +7781,9 @@ interventions: a: -1 b: 1 NY_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-10-14 period_end_date: 2020-11-12 value: @@ -7801,9 +7799,9 @@ interventions: a: -1 b: 1 NY_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-11-13 period_end_date: 2020-12-13 value: @@ -7819,9 +7817,9 @@ interventions: a: -1 b: 1 NY_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-12-14 period_end_date: 2021-01-26 value: @@ -7837,9 +7835,9 @@ interventions: a: -1 b: 1 NY_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-01-27 period_end_date: 2021-02-11 value: @@ -7855,9 +7853,9 @@ interventions: a: -1 b: 1 NY_open_p3D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-02-12 period_end_date: 2021-03-18 value: @@ -7873,9 +7871,9 @@ interventions: a: -1 b: 1 NY_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-03-19 period_end_date: 2021-03-31 value: @@ -7891,9 +7889,9 @@ interventions: a: -1 b: 1 NY_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-04-01 period_end_date: 2021-05-18 value: @@ -7909,9 +7907,9 @@ interventions: a: -1 b: 1 NY_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-05-19 period_end_date: 2021-09-12 value: @@ -7927,9 +7925,9 @@ interventions: a: -1 b: 1 NY_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-09-13 period_end_date: 2021-09-26 value: @@ -7945,9 +7943,9 @@ interventions: a: -1 b: 1 NY_open_p7B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-09-27 period_end_date: 2021-10-31 value: @@ -7963,9 +7961,9 @@ interventions: a: -1 b: 1 NC_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2020-03-30 period_end_date: 2020-05-07 value: @@ -7981,9 +7979,9 @@ interventions: a: -1 b: 1 NC_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2020-05-08 period_end_date: 2020-05-21 value: @@ -7999,9 +7997,9 @@ interventions: a: -1 b: 1 NC_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2020-05-22 period_end_date: 2020-09-03 value: @@ -8017,9 +8015,9 @@ interventions: a: -1 b: 1 NC_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2020-09-04 period_end_date: 2020-10-01 value: @@ -8035,9 +8033,9 @@ interventions: a: -1 b: 1 NC_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2020-10-02 period_end_date: 2020-12-10 value: @@ -8053,9 +8051,9 @@ interventions: a: -1 b: 1 NC_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2020-12-11 period_end_date: 2021-02-25 value: @@ -8071,9 +8069,9 @@ interventions: a: -1 b: 1 NC_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-02-26 period_end_date: 2021-03-25 value: @@ -8089,9 +8087,9 @@ interventions: a: -1 b: 1 NC_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-03-26 period_end_date: 2021-04-29 value: @@ -8107,9 +8105,9 @@ interventions: a: -1 b: 1 NC_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-04-30 period_end_date: 2021-05-13 value: @@ -8125,9 +8123,9 @@ interventions: a: -1 b: 1 NC_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-05-14 period_end_date: 2021-08-15 value: @@ -8143,9 +8141,9 @@ interventions: a: -1 b: 1 ND_sdA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2020-03-19 period_end_date: 2020-04-30 value: @@ -8161,9 +8159,9 @@ interventions: a: -1 b: 1 ND_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2020-05-01 period_end_date: 2020-05-28 value: @@ -8179,9 +8177,9 @@ interventions: a: -1 b: 1 ND_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2020-05-29 period_end_date: 2020-10-15 value: @@ -8197,9 +8195,9 @@ interventions: a: -1 b: 1 ND_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2020-10-16 period_end_date: 2020-11-15 value: @@ -8215,9 +8213,9 @@ interventions: a: -1 b: 1 ND_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2020-11-16 period_end_date: 2020-12-21 value: @@ -8233,9 +8231,9 @@ interventions: a: -1 b: 1 ND_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2020-12-22 period_end_date: 2021-01-07 value: @@ -8251,9 +8249,9 @@ interventions: a: -1 b: 1 ND_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-01-08 period_end_date: 2021-01-17 value: @@ -8269,9 +8267,9 @@ interventions: a: -1 b: 1 ND_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-01-18 period_end_date: 2021-08-15 value: @@ -8287,9 +8285,9 @@ interventions: a: -1 b: 1 OH_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2020-03-23 period_end_date: 2020-05-03 value: @@ -8305,9 +8303,9 @@ interventions: a: -1 b: 1 OH_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2020-05-04 period_end_date: 2020-05-20 value: @@ -8323,9 +8321,9 @@ interventions: a: -1 b: 1 OH_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2020-05-21 period_end_date: 2020-06-18 value: @@ -8341,9 +8339,9 @@ interventions: a: -1 b: 1 OH_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2020-06-19 period_end_date: 2020-09-20 value: @@ -8359,9 +8357,9 @@ interventions: a: -1 b: 1 OH_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2020-09-21 period_end_date: 2020-11-18 value: @@ -8377,9 +8375,9 @@ interventions: a: -1 b: 1 OH_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2020-11-19 period_end_date: 2021-02-10 value: @@ -8395,9 +8393,9 @@ interventions: a: -1 b: 1 OH_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-02-11 period_end_date: 2021-03-01 value: @@ -8413,9 +8411,9 @@ interventions: a: -1 b: 1 OH_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-03-02 period_end_date: 2021-04-04 value: @@ -8431,9 +8429,9 @@ interventions: a: -1 b: 1 OH_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-04-05 period_end_date: 2021-04-26 value: @@ -8449,9 +8447,9 @@ interventions: a: -1 b: 1 OH_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-04-27 period_end_date: 2021-05-16 value: @@ -8467,9 +8465,9 @@ interventions: a: -1 b: 1 OH_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-05-17 period_end_date: 2021-06-01 value: @@ -8485,9 +8483,9 @@ interventions: a: -1 b: 1 OH_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-06-02 period_end_date: 2021-06-18 value: @@ -8503,9 +8501,9 @@ interventions: a: -1 b: 1 OH_open_p6B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-06-19 period_end_date: 2021-08-15 value: @@ -8521,9 +8519,9 @@ interventions: a: -1 b: 1 OK_sdA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2020-03-24 period_end_date: 2020-04-23 value: @@ -8539,9 +8537,9 @@ interventions: a: -1 b: 1 OK_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2020-04-24 period_end_date: 2020-05-14 value: @@ -8557,9 +8555,9 @@ interventions: a: -1 b: 1 OK_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2020-05-15 period_end_date: 2020-05-31 value: @@ -8575,9 +8573,9 @@ interventions: a: -1 b: 1 OK_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2020-06-01 period_end_date: 2020-11-15 value: @@ -8593,9 +8591,9 @@ interventions: a: -1 b: 1 OK_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2020-11-16 period_end_date: 2020-12-13 value: @@ -8611,9 +8609,9 @@ interventions: a: -1 b: 1 OK_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2020-12-14 period_end_date: 2021-01-13 value: @@ -8629,9 +8627,9 @@ interventions: a: -1 b: 1 OK_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-01-14 period_end_date: 2021-03-11 value: @@ -8647,9 +8645,9 @@ interventions: a: -1 b: 1 OK_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-03-12 period_end_date: 2021-08-15 value: @@ -8665,9 +8663,9 @@ interventions: a: -1 b: 1 OR_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2020-03-23 period_end_date: 2020-05-14 value: @@ -8683,9 +8681,9 @@ interventions: a: -1 b: 1 OR_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2020-05-15 period_end_date: 2020-06-04 value: @@ -8701,9 +8699,9 @@ interventions: a: -1 b: 1 OR_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2020-06-05 period_end_date: 2020-06-30 value: @@ -8719,9 +8717,9 @@ interventions: a: -1 b: 1 OR_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2020-07-01 period_end_date: 2020-11-10 value: @@ -8737,9 +8735,9 @@ interventions: a: -1 b: 1 OR_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2020-11-11 period_end_date: 2020-11-17 value: @@ -8755,9 +8753,9 @@ interventions: a: -1 b: 1 OR_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2020-11-18 period_end_date: 2020-12-02 value: @@ -8773,9 +8771,9 @@ interventions: a: -1 b: 1 OR_open_p1C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2020-12-03 period_end_date: 2021-02-11 value: @@ -8791,9 +8789,9 @@ interventions: a: -1 b: 1 OR_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-02-12 period_end_date: 2021-02-25 value: @@ -8809,9 +8807,9 @@ interventions: a: -1 b: 1 OR_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-02-26 period_end_date: 2021-03-28 value: @@ -8827,9 +8825,9 @@ interventions: a: -1 b: 1 OR_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-03-29 period_end_date: 2021-04-18 value: @@ -8845,9 +8843,9 @@ interventions: a: -1 b: 1 OR_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-04-19 period_end_date: 2021-04-29 value: @@ -8863,9 +8861,9 @@ interventions: a: -1 b: 1 OR_open_p2E: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-04-30 period_end_date: 2021-06-08 value: @@ -8881,9 +8879,9 @@ interventions: a: -1 b: 1 OR_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-06-09 period_end_date: 2021-06-29 value: @@ -8899,9 +8897,9 @@ interventions: a: -1 b: 1 OR_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-06-30 period_end_date: 2021-08-12 value: @@ -8917,9 +8915,9 @@ interventions: a: -1 b: 1 OR_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-08-13 period_end_date: 2021-08-26 value: @@ -8935,9 +8933,9 @@ interventions: a: -1 b: 1 OR_open_p7B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-08-27 period_end_date: 2021-10-17 value: @@ -8953,9 +8951,9 @@ interventions: a: -1 b: 1 PA_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2020-03-28 period_end_date: 2020-05-07 value: @@ -8971,9 +8969,9 @@ interventions: a: -1 b: 1 PA_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2020-05-08 period_end_date: 2020-05-28 value: @@ -8989,9 +8987,9 @@ interventions: a: -1 b: 1 PA_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2020-05-29 period_end_date: 2020-07-15 value: @@ -9007,9 +9005,9 @@ interventions: a: -1 b: 1 PA_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2020-07-16 period_end_date: 2020-09-13 value: @@ -9025,9 +9023,9 @@ interventions: a: -1 b: 1 PA_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2020-09-14 period_end_date: 2020-10-05 value: @@ -9043,9 +9041,9 @@ interventions: a: -1 b: 1 PA_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2020-10-06 period_end_date: 2020-12-11 value: @@ -9061,9 +9059,9 @@ interventions: a: -1 b: 1 PA_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2020-12-12 period_end_date: 2021-01-03 value: @@ -9079,9 +9077,9 @@ interventions: a: -1 b: 1 PA_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-01-04 period_end_date: 2021-02-28 value: @@ -9097,9 +9095,9 @@ interventions: a: -1 b: 1 PA_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-03-01 period_end_date: 2021-04-03 value: @@ -9115,9 +9113,9 @@ interventions: a: -1 b: 1 PA_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-04-04 period_end_date: 2021-05-12 value: @@ -9133,9 +9131,9 @@ interventions: a: -1 b: 1 PA_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-05-13 period_end_date: 2021-05-16 value: @@ -9151,9 +9149,9 @@ interventions: a: -1 b: 1 PA_open_p6B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-05-17 period_end_date: 2021-05-30 value: @@ -9169,9 +9167,9 @@ interventions: a: -1 b: 1 PA_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-05-31 period_end_date: 2021-06-27 value: @@ -9187,9 +9185,9 @@ interventions: a: -1 b: 1 PA_open_p7B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-06-28 period_end_date: 2021-09-06 value: @@ -9205,9 +9203,9 @@ interventions: a: -1 b: 1 RI_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2020-03-28 period_end_date: 2020-05-08 value: @@ -9223,9 +9221,9 @@ interventions: a: -1 b: 1 RI_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2020-05-09 period_end_date: 2020-05-31 value: @@ -9241,9 +9239,9 @@ interventions: a: -1 b: 1 RI_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2020-06-01 period_end_date: 2020-06-29 value: @@ -9259,9 +9257,9 @@ interventions: a: -1 b: 1 RI_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2020-06-30 period_end_date: 2020-11-07 value: @@ -9277,9 +9275,9 @@ interventions: a: -1 b: 1 RI_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2020-11-08 period_end_date: 2020-11-29 value: @@ -9295,9 +9293,9 @@ interventions: a: -1 b: 1 RI_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2020-11-30 period_end_date: 2020-12-20 value: @@ -9313,9 +9311,9 @@ interventions: a: -1 b: 1 RI_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2020-12-21 period_end_date: 2021-01-19 value: @@ -9331,9 +9329,9 @@ interventions: a: -1 b: 1 RI_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-01-20 period_end_date: 2021-02-11 value: @@ -9349,9 +9347,9 @@ interventions: a: -1 b: 1 RI_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-02-12 period_end_date: 2021-03-18 value: @@ -9367,9 +9365,9 @@ interventions: a: -1 b: 1 RI_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-03-19 period_end_date: 2021-05-17 value: @@ -9385,9 +9383,9 @@ interventions: a: -1 b: 1 RI_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-05-18 period_end_date: 2021-05-20 value: @@ -9403,9 +9401,9 @@ interventions: a: -1 b: 1 RI_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-05-21 period_end_date: 2021-08-12 value: @@ -9421,9 +9419,9 @@ interventions: a: -1 b: 1 RI_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-08-13 period_end_date: 2021-08-18 value: @@ -9439,9 +9437,9 @@ interventions: a: -1 b: 1 RI_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-08-19 period_end_date: 2021-09-30 value: @@ -9457,9 +9455,9 @@ interventions: a: -1 b: 1 SC_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2020-04-07 period_end_date: 2020-04-20 value: @@ -9475,9 +9473,9 @@ interventions: a: -1 b: 1 SC_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2020-04-21 period_end_date: 2020-05-10 value: @@ -9493,9 +9491,9 @@ interventions: a: -1 b: 1 SC_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2020-05-11 period_end_date: 2020-08-02 value: @@ -9511,9 +9509,9 @@ interventions: a: -1 b: 1 SC_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2020-08-03 period_end_date: 2020-10-01 value: @@ -9529,9 +9527,9 @@ interventions: a: -1 b: 1 SC_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2020-10-02 period_end_date: 2021-02-28 value: @@ -9547,9 +9545,9 @@ interventions: a: -1 b: 1 SC_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-03-01 period_end_date: 2021-03-18 value: @@ -9565,9 +9563,9 @@ interventions: a: -1 b: 1 SC_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-03-19 period_end_date: 2021-05-10 value: @@ -9583,9 +9581,9 @@ interventions: a: -1 b: 1 SC_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-05-11 period_end_date: 2021-06-05 value: @@ -9601,9 +9599,9 @@ interventions: a: -1 b: 1 SC_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-06-06 period_end_date: 2021-08-15 value: @@ -9619,9 +9617,9 @@ interventions: a: -1 b: 1 SD_sdA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2020-03-16 period_end_date: 2020-04-27 value: @@ -9637,9 +9635,9 @@ interventions: a: -1 b: 1 SD_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2020-04-28 period_end_date: 2021-08-15 value: @@ -9655,9 +9653,9 @@ interventions: a: -1 b: 1 TN_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2020-04-02 period_end_date: 2020-04-30 value: @@ -9673,9 +9671,9 @@ interventions: a: -1 b: 1 TN_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2020-05-01 period_end_date: 2020-05-24 value: @@ -9691,9 +9689,9 @@ interventions: a: -1 b: 1 TN_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2020-05-25 period_end_date: 2020-09-28 value: @@ -9709,9 +9707,9 @@ interventions: a: -1 b: 1 TN_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2020-09-29 period_end_date: 2020-12-19 value: @@ -9727,9 +9725,9 @@ interventions: a: -1 b: 1 TN_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2020-12-20 period_end_date: 2021-01-19 value: @@ -9745,9 +9743,9 @@ interventions: a: -1 b: 1 TN_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-01-20 period_end_date: 2021-02-27 value: @@ -9763,9 +9761,9 @@ interventions: a: -1 b: 1 TN_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-02-28 period_end_date: 2021-04-27 value: @@ -9781,9 +9779,9 @@ interventions: a: -1 b: 1 TN_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-04-28 period_end_date: 2021-08-15 value: @@ -9799,9 +9797,9 @@ interventions: a: -1 b: 1 TX_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2020-03-31 period_end_date: 2020-04-30 value: @@ -9817,9 +9815,9 @@ interventions: a: -1 b: 1 TX_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2020-05-01 period_end_date: 2020-05-17 value: @@ -9835,9 +9833,9 @@ interventions: a: -1 b: 1 TX_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2020-05-18 period_end_date: 2020-06-02 value: @@ -9853,9 +9851,9 @@ interventions: a: -1 b: 1 TX_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2020-06-03 period_end_date: 2020-06-25 value: @@ -9871,9 +9869,9 @@ interventions: a: -1 b: 1 TX_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2020-06-26 period_end_date: 2020-09-20 value: @@ -9889,9 +9887,9 @@ interventions: a: -1 b: 1 TX_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2020-09-21 period_end_date: 2020-10-13 value: @@ -9907,9 +9905,9 @@ interventions: a: -1 b: 1 TX_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2020-10-14 period_end_date: 2021-03-09 value: @@ -9925,9 +9923,9 @@ interventions: a: -1 b: 1 TX_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-03-10 period_end_date: 2021-08-15 value: @@ -9943,9 +9941,9 @@ interventions: a: -1 b: 1 UT_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2020-03-27 period_end_date: 2020-05-01 value: @@ -9961,9 +9959,9 @@ interventions: a: -1 b: 1 UT_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2020-05-02 period_end_date: 2020-05-15 value: @@ -9979,9 +9977,9 @@ interventions: a: -1 b: 1 UT_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2020-05-16 period_end_date: 2020-06-18 value: @@ -9997,9 +9995,9 @@ interventions: a: -1 b: 1 UT_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2020-06-19 period_end_date: 2020-10-14 value: @@ -10015,9 +10013,9 @@ interventions: a: -1 b: 1 UT_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2020-10-15 period_end_date: 2020-11-08 value: @@ -10033,9 +10031,9 @@ interventions: a: -1 b: 1 UT_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2020-11-09 period_end_date: 2020-11-23 value: @@ -10051,9 +10049,9 @@ interventions: a: -1 b: 1 UT_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2020-11-24 period_end_date: 2021-03-04 value: @@ -10069,9 +10067,9 @@ interventions: a: -1 b: 1 UT_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-03-05 period_end_date: 2021-04-01 value: @@ -10087,9 +10085,9 @@ interventions: a: -1 b: 1 UT_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-04-02 period_end_date: 2021-04-09 value: @@ -10105,9 +10103,9 @@ interventions: a: -1 b: 1 UT_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-04-10 period_end_date: 2021-05-04 value: @@ -10123,9 +10121,9 @@ interventions: a: -1 b: 1 UT_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-05-05 period_end_date: 2021-08-15 value: @@ -10141,9 +10139,9 @@ interventions: a: -1 b: 1 VT_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2020-03-25 period_end_date: 2020-05-15 value: @@ -10159,9 +10157,9 @@ interventions: a: -1 b: 1 VT_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2020-05-16 period_end_date: 2020-05-31 value: @@ -10177,9 +10175,9 @@ interventions: a: -1 b: 1 VT_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2020-06-01 period_end_date: 2020-06-25 value: @@ -10195,9 +10193,9 @@ interventions: a: -1 b: 1 VT_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2020-06-26 period_end_date: 2020-07-31 value: @@ -10213,9 +10211,9 @@ interventions: a: -1 b: 1 VT_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2020-08-01 period_end_date: 2020-11-13 value: @@ -10231,9 +10229,9 @@ interventions: a: -1 b: 1 VT_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2020-11-14 period_end_date: 2021-02-11 value: @@ -10249,9 +10247,9 @@ interventions: a: -1 b: 1 VT_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-02-12 period_end_date: 2021-03-23 value: @@ -10267,9 +10265,9 @@ interventions: a: -1 b: 1 VT_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-03-24 period_end_date: 2021-05-14 value: @@ -10285,9 +10283,9 @@ interventions: a: -1 b: 1 VT_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-05-15 period_end_date: 2021-06-13 value: @@ -10303,9 +10301,9 @@ interventions: a: -1 b: 1 VT_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-06-14 period_end_date: 2021-08-15 value: @@ -10321,9 +10319,9 @@ interventions: a: -1 b: 1 VA_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-03-30 period_end_date: 2020-05-14 value: @@ -10339,9 +10337,9 @@ interventions: a: -1 b: 1 VA_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-05-15 period_end_date: 2020-06-04 value: @@ -10357,9 +10355,9 @@ interventions: a: -1 b: 1 VA_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-06-05 period_end_date: 2020-06-30 value: @@ -10375,9 +10373,9 @@ interventions: a: -1 b: 1 VA_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-07-01 period_end_date: 2020-07-30 value: @@ -10393,9 +10391,9 @@ interventions: a: -1 b: 1 VA_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-07-31 period_end_date: 2020-09-09 value: @@ -10411,9 +10409,9 @@ interventions: a: -1 b: 1 VA_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-09-10 period_end_date: 2020-11-14 value: @@ -10429,9 +10427,9 @@ interventions: a: -1 b: 1 VA_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-11-15 period_end_date: 2020-12-13 value: @@ -10447,9 +10445,9 @@ interventions: a: -1 b: 1 VA_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-12-14 period_end_date: 2021-02-28 value: @@ -10465,9 +10463,9 @@ interventions: a: -1 b: 1 VA_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: @@ -10483,9 +10481,9 @@ interventions: a: -1 b: 1 VA_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-04-01 period_end_date: 2021-05-13 value: @@ -10501,9 +10499,9 @@ interventions: a: -1 b: 1 VA_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-05-14 period_end_date: 2021-05-27 value: @@ -10519,9 +10517,9 @@ interventions: a: -1 b: 1 VA_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-05-28 period_end_date: 2021-08-15 value: @@ -10537,9 +10535,9 @@ interventions: a: -1 b: 1 WA_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2020-03-23 period_end_date: 2020-05-04 value: @@ -10555,9 +10553,9 @@ interventions: a: -1 b: 1 WA_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2020-05-05 period_end_date: 2020-05-28 value: @@ -10573,9 +10571,9 @@ interventions: a: -1 b: 1 WA_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2020-05-29 period_end_date: 2020-07-01 value: @@ -10591,9 +10589,9 @@ interventions: a: -1 b: 1 WA_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2020-07-02 period_end_date: 2020-10-12 value: @@ -10609,9 +10607,9 @@ interventions: a: -1 b: 1 WA_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2020-10-13 period_end_date: 2020-11-15 value: @@ -10627,9 +10625,9 @@ interventions: a: -1 b: 1 WA_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2020-11-16 period_end_date: 2021-01-10 value: @@ -10645,9 +10643,9 @@ interventions: a: -1 b: 1 WA_open_p2D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-01-11 period_end_date: 2021-01-31 value: @@ -10663,9 +10661,9 @@ interventions: a: -1 b: 1 WA_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-02-01 period_end_date: 2021-02-13 value: @@ -10681,9 +10679,9 @@ interventions: a: -1 b: 1 WA_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-02-14 period_end_date: 2021-03-21 value: @@ -10699,9 +10697,9 @@ interventions: a: -1 b: 1 WA_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-03-22 period_end_date: 2021-05-12 value: @@ -10717,9 +10715,9 @@ interventions: a: -1 b: 1 WA_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-05-13 period_end_date: 2021-05-17 value: @@ -10735,9 +10733,9 @@ interventions: a: -1 b: 1 WA_open_p6B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-05-18 period_end_date: 2021-06-29 value: @@ -10753,9 +10751,9 @@ interventions: a: -1 b: 1 WA_open_p7A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-06-30 period_end_date: 2021-07-05 value: @@ -10771,9 +10769,9 @@ interventions: a: -1 b: 1 WA_open_p8A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-07-06 period_end_date: 2021-08-22 value: @@ -10789,9 +10787,9 @@ interventions: a: -1 b: 1 WA_open_p9A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-08-23 period_end_date: 2021-09-12 value: @@ -10807,9 +10805,9 @@ interventions: a: -1 b: 1 WA_open_p9B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-09-13 period_end_date: 2021-10-17 value: @@ -10825,9 +10823,9 @@ interventions: a: -1 b: 1 WV_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2020-03-24 period_end_date: 2020-05-03 value: @@ -10843,9 +10841,9 @@ interventions: a: -1 b: 1 WV_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2020-05-04 period_end_date: 2020-05-20 value: @@ -10861,9 +10859,9 @@ interventions: a: -1 b: 1 WV_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2020-05-21 period_end_date: 2020-06-04 value: @@ -10879,9 +10877,9 @@ interventions: a: -1 b: 1 WV_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2020-06-05 period_end_date: 2020-06-30 value: @@ -10897,9 +10895,9 @@ interventions: a: -1 b: 1 WV_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2020-07-01 period_end_date: 2020-07-13 value: @@ -10915,9 +10913,9 @@ interventions: a: -1 b: 1 WV_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2020-07-14 period_end_date: 2020-10-12 value: @@ -10933,9 +10931,9 @@ interventions: a: -1 b: 1 WV_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2020-10-13 period_end_date: 2020-11-25 value: @@ -10951,9 +10949,9 @@ interventions: a: -1 b: 1 WV_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2020-11-26 period_end_date: 2021-02-13 value: @@ -10969,9 +10967,9 @@ interventions: a: -1 b: 1 WV_open_p3D: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-02-14 period_end_date: 2021-03-04 value: @@ -10987,9 +10985,9 @@ interventions: a: -1 b: 1 WV_open_p4B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-03-05 period_end_date: 2021-04-19 value: @@ -11005,9 +11003,9 @@ interventions: a: -1 b: 1 WV_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-04-20 period_end_date: 2021-05-13 value: @@ -11023,9 +11021,9 @@ interventions: a: -1 b: 1 WV_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-05-14 period_end_date: 2021-06-07 value: @@ -11041,9 +11039,9 @@ interventions: a: -1 b: 1 WV_open_p6B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-06-08 period_end_date: 2021-06-19 value: @@ -11059,9 +11057,9 @@ interventions: a: -1 b: 1 WV_open_p6C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-06-20 period_end_date: 2021-08-15 value: @@ -11077,9 +11075,9 @@ interventions: a: -1 b: 1 WI_lockdownA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2020-03-25 period_end_date: 2020-05-13 value: @@ -11095,9 +11093,9 @@ interventions: a: -1 b: 1 WI_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2020-05-14 period_end_date: 2020-06-12 value: @@ -11113,9 +11111,9 @@ interventions: a: -1 b: 1 WI_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2020-06-13 period_end_date: 2020-07-31 value: @@ -11131,9 +11129,9 @@ interventions: a: -1 b: 1 WI_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2020-08-01 period_end_date: 2020-10-28 value: @@ -11149,9 +11147,9 @@ interventions: a: -1 b: 1 WI_open_p1B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2020-10-29 period_end_date: 2021-01-12 value: @@ -11167,9 +11165,9 @@ interventions: a: -1 b: 1 WI_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-01-13 period_end_date: 2021-02-08 value: @@ -11185,9 +11183,9 @@ interventions: a: -1 b: 1 WI_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-02-09 period_end_date: 2021-03-18 value: @@ -11203,9 +11201,9 @@ interventions: a: -1 b: 1 WI_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-03-19 period_end_date: 2021-03-30 value: @@ -11221,9 +11219,9 @@ interventions: a: -1 b: 1 WI_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-03-31 period_end_date: 2021-05-31 value: @@ -11239,9 +11237,9 @@ interventions: a: -1 b: 1 WI_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-06-01 period_end_date: 2021-08-04 value: @@ -11257,9 +11255,9 @@ interventions: a: -1 b: 1 WI_open_p5C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-08-05 period_end_date: 2021-08-18 value: @@ -11275,9 +11273,9 @@ interventions: a: -1 b: 1 WY_sdA: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2020-03-28 period_end_date: 2020-04-30 value: @@ -11293,9 +11291,9 @@ interventions: a: -1 b: 1 WY_open_p1A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2020-05-01 period_end_date: 2020-05-14 value: @@ -11311,9 +11309,9 @@ interventions: a: -1 b: 1 WY_open_p2A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2020-05-15 period_end_date: 2020-06-14 value: @@ -11329,9 +11327,9 @@ interventions: a: -1 b: 1 WY_open_p3A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2020-06-15 period_end_date: 2020-08-15 value: @@ -11347,9 +11345,9 @@ interventions: a: -1 b: 1 WY_open_p4A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2020-08-16 period_end_date: 2020-11-23 value: @@ -11365,9 +11363,9 @@ interventions: a: -1 b: 1 WY_open_p3B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2020-11-24 period_end_date: 2020-12-08 value: @@ -11383,9 +11381,9 @@ interventions: a: -1 b: 1 WY_open_p2B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2020-12-09 period_end_date: 2021-01-08 value: @@ -11401,9 +11399,9 @@ interventions: a: -1 b: 1 WY_open_p2C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-01-09 period_end_date: 2021-01-25 value: @@ -11419,9 +11417,9 @@ interventions: a: -1 b: 1 WY_open_p3C: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-01-26 period_end_date: 2021-02-14 value: @@ -11437,9 +11435,9 @@ interventions: a: -1 b: 1 WY_open_p5A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-02-15 period_end_date: 2021-02-28 value: @@ -11455,9 +11453,9 @@ interventions: a: -1 b: 1 WY_open_p5B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-03-01 period_end_date: 2021-03-15 value: @@ -11473,9 +11471,9 @@ interventions: a: -1 b: 1 WY_open_p6A: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-03-16 period_end_date: 2021-05-20 value: @@ -11491,9 +11489,9 @@ interventions: a: -1 b: 1 WY_open_p6B: - template: Reduce + template: SinglePeriodModifier parameter: r0 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-05-21 period_end_date: 2021-08-15 value: @@ -11509,10 +11507,10 @@ interventions: a: -1 b: 1 Seas_jan: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-01-01 end_date: 2020-01-31 @@ -11533,10 +11531,10 @@ interventions: a: -1 b: 1 Seas_feb: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-02-01 end_date: 2020-02-29 @@ -11557,10 +11555,10 @@ interventions: a: -1 b: 1 Seas_mar: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-03-01 end_date: 2020-03-31 @@ -11581,10 +11579,10 @@ interventions: a: -1 b: 1 Seas_may: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-05-01 end_date: 2020-05-31 @@ -11605,10 +11603,10 @@ interventions: a: -1 b: 1 Seas_jun: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-06-01 end_date: 2020-06-30 @@ -11629,10 +11627,10 @@ interventions: a: -1 b: 1 Seas_jul: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-07-01 end_date: 2020-07-31 @@ -11653,10 +11651,10 @@ interventions: a: -1 b: 1 Seas_aug: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-08-01 end_date: 2020-08-31 @@ -11677,10 +11675,10 @@ interventions: a: -1 b: 1 Seas_sep: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-09-01 end_date: 2020-09-30 @@ -11701,10 +11699,10 @@ interventions: a: -1 b: 1 Seas_oct: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-10-01 end_date: 2020-10-31 @@ -11723,10 +11721,10 @@ interventions: a: -1 b: 1 Seas_nov: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-11-01 end_date: 2020-11-30 @@ -11745,10 +11743,10 @@ interventions: a: -1 b: 1 Seas_dec: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: 2020-12-01 end_date: 2020-12-31 @@ -11767,44095 +11765,44095 @@ interventions: a: -1 b: 1 AL_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00065 AL_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00139 AL_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00002 AL_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00162 AL_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01672 AL_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00007 AL_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00283 AL_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00899 AL_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00012 AL_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00624 AL_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01364 AL_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00021 AL_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00308 AL_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00594 AL_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0005 AL_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00164 AL_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0025 AL_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0009 AL_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00261 AL_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00443 AL_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00149 AL_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00429 AL_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00513 AL_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0008 AL_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00439 AL_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00668 AL_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00045 AL_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00208 AL_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00431 AL_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000066 AL_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000274 AL_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000361 AL_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0007 AL_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0021 AL_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00692 AL_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000118 AL_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001277 AL_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.009406 AL_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00126 AL_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00248 AL_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00372 AL_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000207 AL_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002072 AL_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.009624 AL_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0009 AL_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00208 AL_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00301 AL_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.000802 AL_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.005037 AL_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.009959 AL_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00235 AL_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00172 AL_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0024 AL_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000602 AL_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004002 AL_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004818 AL_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00109 AL_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00138 AL_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00188 AL_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001411 AL_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001714 AL_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001908 AL_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00062 AL_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00108 AL_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00143 AL_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000802 AL_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002324 AL_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002267 AL_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00034 AL_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00083 AL_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00107 AL_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000447 AL_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002234 AL_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001615 AL_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00019 AL_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00063 AL_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0008 AL_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.000616 AL_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.004066 AL_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002955 AL_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0001 AL_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00047 AL_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00059 AL_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001184 AL_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001793 AL_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001455 AL_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00006 AL_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00035 AL_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00043 AL_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00086 AL_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001262 AL_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002178 AL_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00003 AL_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00026 AL_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00031 AL_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002081 AL_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001695 AL_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001045 AK_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.0017 AK_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00558 AK_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00021 AK_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00378 AK_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01738 AK_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00032 AK_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00693 AK_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02207 AK_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00066 AK_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00783 AK_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0082 AK_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00065 AK_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00392 AK_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00409 AK_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00156 AK_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00265 AK_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0025 AK_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00095 AK_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00292 AK_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00332 AK_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00098 AK_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00213 AK_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00246 AK_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00061 AK_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00385 AK_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00388 AK_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00049 AK_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00268 AK_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00473 AK_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00032 AK_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000877 AK_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00254 AK_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00252 AK_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00294 AK_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00755 AK_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000657 AK_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002864 AK_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.011449 AK_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00221 AK_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00239 AK_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0016 AK_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000641 AK_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.005171 AK_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01801 AK_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00226 AK_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00203 AK_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00113 AK_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001491 AK_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006825 AK_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.003991 AK_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00215 AK_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00171 AK_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0008 AK_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000885 AK_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004849 AK_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003697 AK_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00143 AK_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00141 AK_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00056 AK_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000995 AK_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002245 AK_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001451 AK_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00116 AK_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00114 AK_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00038 AK_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000592 AK_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002175 AK_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001382 AK_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00094 AK_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00091 AK_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00026 AK_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000468 AK_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001393 AK_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000993 AK_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00075 AK_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00072 AK_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00018 AK_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002032 AK_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001932 AK_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00129 AK_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0006 AK_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00056 AK_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00012 AK_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002322 AK_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002232 AK_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00153 AK_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00048 AK_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00043 AK_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00008 AK_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001938 AK_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001682 AK_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002516 AK_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00038 AK_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00034 AK_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00006 AK_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001821 AK_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001455 AK_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000562 AZ_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00089 AZ_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00159 AZ_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00001 AZ_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00311 AZ_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01523 AZ_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00005 AZ_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00318 AZ_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01806 AZ_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00035 AZ_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00862 AZ_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01427 AZ_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00093 AZ_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00566 AZ_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00743 AZ_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00176 AZ_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0031 AZ_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00377 AZ_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00128 AZ_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00313 AZ_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00476 AZ_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00128 AZ_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00319 AZ_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00348 AZ_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00081 AZ_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00348 AZ_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00406 AZ_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00062 AZ_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00248 AZ_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00475 AZ_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000048 AZ_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000357 AZ_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000438 AZ_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00255 AZ_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00258 AZ_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00667 AZ_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000345 AZ_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002293 AZ_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.008334 AZ_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00269 AZ_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00248 AZ_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00436 AZ_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000922 AZ_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002448 AZ_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.015189 AZ_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00217 AZ_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00204 AZ_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00375 AZ_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001802 AZ_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006721 AZ_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.010339 AZ_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00242 AZ_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00166 AZ_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00317 AZ_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0011 AZ_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006124 AZ_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004748 AZ_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00153 AZ_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00132 AZ_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00264 AZ_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001258 AZ_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003114 AZ_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00225 AZ_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00118 AZ_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00102 AZ_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00214 AZ_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000779 AZ_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002519 AZ_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001927 AZ_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0009 AZ_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00078 AZ_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0017 AZ_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000587 AZ_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001692 AZ_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000965 AZ_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00069 AZ_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00059 AZ_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00134 AZ_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002079 AZ_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002599 AZ_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001451 AZ_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00052 AZ_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00044 AZ_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00104 AZ_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002641 AZ_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00181 AZ_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001188 AZ_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00039 AZ_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00032 AZ_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0008 AZ_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001877 AZ_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001496 AZ_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001841 AZ_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00029 AZ_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00024 AZ_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00061 AZ_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002004 AZ_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001507 AZ_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000996 AR_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00088 AR_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00173 AR_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00005 AR_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00234 AR_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01012 AR_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0001 AR_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00277 AR_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01718 AR_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00033 AR_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00787 AR_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0123 AR_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00036 AR_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00338 AR_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00471 AR_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00102 AR_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00209 AR_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0025 AR_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00081 AR_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00214 AR_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00273 AR_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00216 AR_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00579 AR_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00686 AR_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0007 AR_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00405 AR_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00414 AR_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00054 AR_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00204 AR_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00425 AR_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000099 AR_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000345 AR_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000485 AR_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00129 AR_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00281 AR_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00877 AR_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000328 AR_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002106 AR_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006772 AR_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00157 AR_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00267 AR_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00363 AR_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000363 AR_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001742 AR_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.013149 AR_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00181 AR_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00222 AR_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00295 AR_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.000994 AR_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006327 AR_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00933 AR_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00366 AR_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00181 AR_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00236 AR_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00071 AR_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004472 AR_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004089 AR_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0013 AR_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00145 AR_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00185 AR_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002166 AR_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002068 AR_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001769 AR_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00103 AR_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00112 AR_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00141 AR_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000676 AR_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001417 AR_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001083 AR_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00082 AR_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00085 AR_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00106 AR_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000525 AR_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.003464 AR_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002675 AR_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00064 AR_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00064 AR_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00079 AR_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001075 AR_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003839 AR_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002227 AR_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0005 AR_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00048 AR_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00059 AR_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001571 AR_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001602 AR_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001272 AR_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00038 AR_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00035 AR_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00043 AR_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001518 AR_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001613 AR_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002735 AR_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0003 AR_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00026 AR_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00031 AR_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.003177 AR_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001703 AR_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001119 CA_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00078 CA_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00186 CA_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00198 CA_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01571 CA_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00003 CA_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00414 CA_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02452 CA_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00018 CA_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01321 CA_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02204 CA_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00194 CA_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01154 CA_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01182 CA_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00268 CA_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00582 CA_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0091 CA_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00124 CA_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00465 CA_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.01365 CA_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0015 CA_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00577 CA_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.01559 CA_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00105 CA_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00634 CA_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.02715 CA_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00068 CA_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00665 CA_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.10606 CA_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000028 CA_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000351 CA_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000518 CA_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00511 CA_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00742 CA_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00804 CA_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000178 CA_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001525 CA_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.008804 CA_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00358 CA_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00376 CA_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02659 CA_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001923 CA_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002781 CA_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.018963 CA_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00251 CA_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00264 CA_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02661 CA_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002541 CA_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008913 CA_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.011036 CA_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0029 CA_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00182 CA_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02658 CA_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001224 CA_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.011418 CA_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006393 CA_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002 CA_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00122 CA_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02666 CA_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001362 CA_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004924 CA_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002951 CA_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00133 CA_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00079 CA_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02656 CA_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000996 CA_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.003038 CA_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002264 CA_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00087 CA_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00051 CA_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0263 CA_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000642 CA_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002565 CA_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002312 CA_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00056 CA_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00032 CA_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0271 CA_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.004083 CA_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003343 CA_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001975 CA_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00036 CA_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0002 CA_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.025 CA_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.003452 CA_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002619 CA_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0021 CA_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00023 CA_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00013 CA_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.03125 CA_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002008 CA_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003038 CA_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00015 CA_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00008 CA_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.01408 CA_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00221 CA_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001407 CA_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000059 CO_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00128 CO_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00314 CO_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00002 CO_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00151 CO_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01298 CO_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00013 CO_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00363 CO_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0288 CO_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00086 CO_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01299 CO_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01335 CO_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00108 CO_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00898 CO_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00764 CO_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00291 CO_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00518 CO_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00449 CO_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0012 CO_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00287 CO_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00334 CO_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00128 CO_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00338 CO_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00369 CO_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00053 CO_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00391 CO_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00434 CO_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00044 CO_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00311 CO_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00721 CO_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000132 CO_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000786 CO_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001407 CO_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0035 CO_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00297 CO_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01251 CO_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000858 CO_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001368 CO_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006815 CO_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00396 CO_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001 CO_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00798 CO_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001065 CO_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002204 CO_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.022209 CO_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00245 CO_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00059 CO_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00807 CO_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002747 CO_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008761 CO_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007897 CO_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00247 CO_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00035 CO_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00813 CO_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001187 CO_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.009965 CO_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003748 CO_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00125 CO_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00021 CO_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00818 CO_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001202 CO_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004403 CO_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002073 CO_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00107 CO_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00012 CO_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00822 CO_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000501 CO_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002356 CO_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001277 CO_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0009 CO_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00007 CO_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00826 CO_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000416 CO_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001659 CO_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001011 CO_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00076 CO_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00004 CO_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00828 CO_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002251 CO_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002388 CO_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001249 CO_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00064 CO_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00002 CO_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0083 CO_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004235 CO_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001829 CO_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001329 CO_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00053 CO_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00001 CO_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00831 CO_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002019 CO_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00171 CO_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002397 CO_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00044 CO_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00001 CO_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00834 CO_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002142 CO_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000632 CO_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001243 CT_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00143 CT_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00319 CT_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0001 CT_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00062 CT_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01755 CT_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00011 CT_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00586 CT_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02973 CT_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00068 CT_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01467 CT_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02086 CT_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00215 CT_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01323 CT_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01501 CT_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00369 CT_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00694 CT_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.01111 CT_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00135 CT_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00436 CT_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00783 CT_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00185 CT_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00612 CT_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.01218 CT_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00165 CT_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00699 CT_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.02307 CT_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0011 CT_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00797 CT_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.09318 CT_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000112 CT_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001144 CT_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000917 CT_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00575 CT_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01143 CT_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00768 CT_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000678 CT_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000579 CT_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.010424 CT_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00533 CT_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00559 CT_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02536 CT_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002113 CT_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003573 CT_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.021313 CT_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00256 CT_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0042 CT_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02538 CT_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00352 CT_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.009442 CT_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.009738 CT_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00436 CT_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00305 CT_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02518 CT_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001198 CT_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.013553 CT_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004984 CT_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00312 CT_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00214 CT_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02555 CT_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001696 CT_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004944 CT_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002563 CT_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00206 CT_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00144 CT_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02642 CT_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001497 CT_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002806 CT_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001577 CT_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00193 CT_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00095 CT_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.02532 CT_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000986 CT_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002458 CT_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001175 CT_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00063 CT_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00062 CT_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.02778 CT_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.004709 CT_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003313 CT_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001669 CT_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00038 CT_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0004 CT_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.02 CT_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004416 CT_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00264 CT_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002095 CT_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00022 CT_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00026 CT_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002095 CT_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003549 CT_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00013 CT_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00016 CT_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 1 CT_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.003116 CT_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001532 CT_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000057 DE_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00098 DE_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00184 DE_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00148 DE_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01111 DE_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00271 DE_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02547 DE_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00043 DE_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01164 DE_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02294 DE_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00123 DE_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00901 DE_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01413 DE_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00262 DE_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00507 DE_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00934 DE_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00126 DE_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00291 DE_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00717 DE_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00128 DE_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00364 DE_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0097 DE_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00076 DE_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00361 DE_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.01162 DE_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00045 DE_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00379 DE_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.04731 DE_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000543 DE_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000521 DE_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00288 DE_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00378 DE_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.07528 DE_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000427 DE_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001417 DE_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.007054 DE_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00383 DE_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00155 DE_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02678 DE_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001217 DE_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001663 DE_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.015708 DE_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00194 DE_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001 DE_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02699 DE_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00258 DE_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008167 DE_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.016214 DE_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00242 DE_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00064 DE_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02742 DE_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001155 DE_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.009221 DE_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006172 DE_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00131 DE_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00041 DE_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02509 DE_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001185 DE_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004472 DE_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002811 DE_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00077 DE_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00025 DE_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02479 DE_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000742 DE_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002316 DE_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001613 DE_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00045 DE_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00016 DE_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.03704 DE_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000432 DE_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001915 DE_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001323 DE_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00026 DE_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0001 DE_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002176 DE_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002457 DE_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001716 DE_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00015 DE_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00006 DE_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.5 DE_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00372 DE_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001834 DE_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00151 DE_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00009 DE_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00003 DE_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001758 DE_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00251 DE_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00005 DE_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00002 DE_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001929 DE_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000862 DC_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00049 DC_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00473 DC_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00001 DC_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00138 DC_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01093 DC_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00002 DC_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00397 DC_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01584 DC_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00014 DC_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01226 DC_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0144 DC_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00091 DC_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01411 DC_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00977 DC_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00222 DC_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00522 DC_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00553 DC_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00133 DC_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00437 DC_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0057 DC_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00122 DC_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00409 DC_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00666 DC_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00199 DC_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.005 DC_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00925 DC_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0012 DC_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00616 DC_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.02267 DC_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000023 DC_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000213 DC_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.002204 DC_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00448 DC_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0085 DC_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.09467 DC_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000141 DC_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001014 DC_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.008139 DC_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00457 DC_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00132 DC_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02932 DC_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000905 DC_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00224 DC_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.012333 DC_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0029 DC_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00072 DC_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0292 DC_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002211 DC_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008274 DC_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.009731 DC_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00345 DC_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0004 DC_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02844 DC_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001161 DC_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.013126 DC_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005285 DC_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00521 DC_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00021 DC_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0297 DC_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001259 DC_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.005475 DC_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003653 DC_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00297 DC_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00011 DC_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02439 DC_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001892 DC_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002869 DC_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002196 DC_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00308 DC_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00006 DC_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.05263 DC_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001118 DC_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001897 DC_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001635 DC_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00055 DC_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00003 DC_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00361 DC_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002614 DC_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00028 DC_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00002 DC_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004436 DC_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002698 DC_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00014 DC_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00001 DC_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002196 DC_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003675 DC_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00007 DC_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002941 DC_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000738 FL_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00104 FL_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00202 FL_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00003 FL_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00041 FL_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01562 FL_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00006 FL_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00267 FL_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02016 FL_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00029 FL_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00909 FL_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01886 FL_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00057 FL_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.007 FL_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01064 FL_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00176 FL_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00472 FL_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00688 FL_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00147 FL_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00351 FL_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00542 FL_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0018 FL_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00646 FL_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.01032 FL_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00103 FL_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00583 FL_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0147 FL_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00058 FL_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00339 FL_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01867 FL_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000059 FL_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000815 FL_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000542 FL_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00192 FL_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00251 FL_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.04295 FL_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000293 FL_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000312 FL_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.009782 FL_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00235 FL_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00059 FL_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01786 FL_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000569 FL_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001583 FL_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.015349 FL_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00281 FL_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00029 FL_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.01791 FL_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001755 FL_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006232 FL_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.010984 FL_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00277 FL_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00015 FL_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.01792 FL_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001321 FL_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.007897 FL_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005555 FL_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00166 FL_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00007 FL_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.01795 FL_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001784 FL_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004525 FL_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00287699999999999 FL_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00095 FL_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00004 FL_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.01794 FL_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001011 FL_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00291 FL_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001688 FL_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00054 FL_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00002 FL_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.01795 FL_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000567 FL_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.003169 FL_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001775 FL_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0003 FL_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00001 FL_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.01796 FL_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001459 FL_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.004421 FL_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002705 FL_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00017 FL_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.01798 FL_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002401 FL_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002362 FL_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001859 FL_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00009 FL_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.01794 FL_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002343 FL_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001717 FL_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002357 FL_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00005 FL_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.01783 FL_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002404 FL_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000447 FL_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000461 GA_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00062 GA_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00163 GA_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00112 GA_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01204 GA_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00009 GA_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00239 GA_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01868 GA_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00047 GA_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00946 GA_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01322 GA_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00038 GA_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00419 GA_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0057 GA_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00116 GA_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00252 GA_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00304 GA_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00106 GA_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00229 GA_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00288 GA_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0014 GA_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00345 GA_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0043 GA_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00072 GA_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00482 GA_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00566 GA_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00059 GA_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00271 GA_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00487 GA_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000089 GA_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000315 GA_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000463 GA_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00135 GA_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00229 GA_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00594 GA_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000472 GA_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000948 GA_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006798 GA_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00223 GA_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00226 GA_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00365 GA_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000374 GA_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001404 GA_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.016498 GA_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00164 GA_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00177 GA_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00303 GA_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00129 GA_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007231 GA_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007964 GA_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00257 GA_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00136 GA_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00249 GA_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000931 GA_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005306 GA_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00433 GA_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00138 GA_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00103 GA_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00201 GA_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001306 GA_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002783 GA_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002069 GA_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00116 GA_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00076 GA_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00158 GA_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0007 GA_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00184 GA_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001296 GA_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00096 GA_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00055 GA_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00123 GA_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00057 GA_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001938 GA_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001362 GA_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00079 GA_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00039 GA_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00094 GA_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001153 GA_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003308 GA_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002032 GA_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00065 GA_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00028 GA_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00072 GA_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001948 GA_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002265 GA_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001558 GA_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00053 GA_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0002 GA_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00054 GA_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00172 GA_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001522 GA_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001867 GA_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00043 GA_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00014 GA_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00041 GA_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002135 GA_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001532 GA_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001069 HI_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.001 HI_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.0018 HI_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00153 HI_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00753 HI_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00692 HI_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01354 HI_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00874 HI_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01619 HI_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00281 HI_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0221 HI_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.06922 HI_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0034 HI_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00861 HI_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.05385 HI_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00102 HI_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0036 HI_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.07797 HI_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00102 HI_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0051 HI_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00141 HI_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00904 HI_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00097 HI_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00753 HI_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000551 HI_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000529 HI_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00782 HI_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0106 HI_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00875 HI_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001076 HI_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.005127 HI_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00492 HI_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00637 HI_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02929 HI_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002803 HI_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.005203 HI_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.009221 HI_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00247 HI_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00491 HI_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02888 HI_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.003156 HI_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006928 HI_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.013684 HI_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00215 HI_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00364 HI_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02992 HI_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001011 HI_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.013462 HI_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.016809 HI_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0036 HI_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00261 HI_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0298 HI_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000956 HI_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.008972 HI_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.011967 HI_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00202 HI_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00178 HI_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02459 HI_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001158 HI_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002297 HI_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001315 HI_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00142 HI_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00119 HI_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.04 HI_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001016 HI_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001685 HI_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0007 HI_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00078 HI_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.04 HI_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.006518 HI_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003075 HI_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00047 HI_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00051 HI_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004318 HI_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002898 HI_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0003 HI_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00033 HI_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001756 HI_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002913 HI_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0002 HI_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00021 HI_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001717 HI_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001576 ID_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00083 ID_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.0017 ID_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00002 ID_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00179 ID_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01092 ID_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00016 ID_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00289 ID_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02243 ID_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00063 ID_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00806 ID_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01147 ID_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00044 ID_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00345 ID_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00453 ID_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00096 ID_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00227 ID_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00319 ID_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00058 ID_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00146 ID_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00217 ID_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00087 ID_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00208 ID_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00305 ID_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00097 ID_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00331 ID_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00463 ID_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00104 ID_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00255 ID_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00544 ID_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000155 ID_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000388 ID_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000492 ID_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00137 ID_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00202 ID_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00747 ID_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000626 ID_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001451 ID_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006288 ID_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00237 ID_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00216 ID_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00346 ID_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000438 ID_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00221 ID_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.017586 ID_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00165 ID_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00188 ID_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0029 ID_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.000929 ID_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006248 ID_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008519 ID_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00222 ID_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0016 ID_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00239 ID_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000565 ID_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004402 ID_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003021 ID_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00202 ID_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00134 ID_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00194 ID_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0008 ID_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002263 ID_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001855 ID_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00215 ID_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00109 ID_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00154 ID_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000954 ID_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00136 ID_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001064 ID_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00195 ID_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00088 ID_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00121 ID_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000995 ID_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001186 ID_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00105 ID_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00164 ID_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0007 ID_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00094 ID_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001229 ID_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002442 ID_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001759 ID_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00129 ID_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00055 ID_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00072 ID_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002198 ID_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002093 ID_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001766 ID_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00095 ID_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00043 ID_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00055 ID_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001485 ID_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001466 ID_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002347 ID_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00067 ID_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00033 ID_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00041 ID_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001921 ID_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001495 ID_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001126 IL_Dose1_jan2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00001 IL_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00086 IL_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00203 IL_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00075 IL_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00103 IL_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01276 IL_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00011 IL_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00564 IL_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01819 IL_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0002 IL_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01134 IL_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02292 IL_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00101 IL_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00958 IL_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01136 IL_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0029 IL_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00592 IL_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00719 IL_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00144 IL_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00389 IL_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00546 IL_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0015 IL_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00448 IL_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00734 IL_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00041 IL_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00488 IL_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00944 IL_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00035 IL_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00364 IL_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01776 IL_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00011 IL_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000512 IL_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000578 IL_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00322 IL_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00242 IL_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01358 IL_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000196 IL_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000759 IL_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.007843 IL_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00438 IL_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00185 IL_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00558 IL_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000997 IL_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.004074 IL_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.013936 IL_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0023 IL_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00134 IL_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00506 IL_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00287699999999999 IL_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008095 IL_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.013991 IL_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00301 IL_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00097 IL_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00451 IL_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001173 IL_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.009241 IL_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006197 IL_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00098 IL_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00069 IL_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00395 IL_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001513 IL_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.005082 IL_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003042 IL_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00084 IL_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00048 IL_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00337 IL_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000387 IL_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002811 IL_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00169 IL_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00072 IL_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00033 IL_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00282 IL_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000325 IL_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00218 IL_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00142 IL_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00061 IL_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00023 IL_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00232 IL_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002405 IL_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002827 IL_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002001 IL_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00052 IL_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00016 IL_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00188 IL_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004148 IL_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00214 IL_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00201 IL_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00044 IL_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0001 IL_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0015 IL_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002061 IL_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00118 IL_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002437 IL_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00037 IL_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00007 IL_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00119 IL_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0023 IL_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001166 IL_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001203 IN_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00103 IN_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00215 IN_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00134 IN_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01192 IN_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00004 IN_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0029 IN_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02603 IN_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00023 IN_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00785 IN_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01063 IN_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00077 IN_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00507 IN_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00536 IN_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00143 IN_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00263 IN_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00316 IN_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00087 IN_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00221 IN_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00297 IN_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00102 IN_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00229 IN_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00282 IN_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00043 IN_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00211 IN_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00297 IN_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00038 IN_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00188 IN_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00314 IN_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000044 IN_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000586 IN_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000725 IN_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00192 IN_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00167 IN_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00469 IN_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000229 IN_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001392 IN_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006246 IN_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0019 IN_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00147 IN_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00291 IN_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000767 IN_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001522 IN_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0212 IN_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0015 IN_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00128 IN_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00244 IN_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001467 IN_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00602 IN_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00651 IN_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00174 IN_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00112 IN_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00203 IN_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000738 IN_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005959 IN_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003406 IN_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00087 IN_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00098 IN_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00167 IN_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001028 IN_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003015 IN_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001913 IN_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00077 IN_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00085 IN_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00134 IN_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00042 IN_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001974 IN_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001408 IN_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00068 IN_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00073 IN_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00107 IN_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000364 IN_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001247 IN_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000854 IN_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00059 IN_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00062 IN_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00084 IN_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00155 IN_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001797 IN_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001232 IN_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00052 IN_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00053 IN_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00066 IN_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001996 IN_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00141 IN_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.000975 IN_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00045 IN_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00045 IN_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00051 IN_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001263 IN_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001215 IN_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0015 IN_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0004 IN_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00039 IN_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00039 IN_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00161 IN_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001046 IN_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000861 IA_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00133 IA_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00229 IA_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00001 IA_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00261 IA_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00771 IA_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00002 IA_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00293 IA_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.03278 IA_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00036 IA_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0111 IA_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0166 IA_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00086 IA_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00601 IA_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.007 IA_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.002 IA_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0027 IA_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00371 IA_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00075 IA_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00164 IA_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00252 IA_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00127 IA_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00262 IA_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00368 IA_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00088 IA_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00224 IA_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00393 IA_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00047 IA_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00198 IA_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00641 IA_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000017 IA_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000692 IA_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00083 IA_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0027 IA_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00173 IA_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01432 IA_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000363 IA_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002219 IA_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00485 IA_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00259 IA_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00151 IA_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00814 IA_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000856 IA_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001874 IA_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.022036 IA_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00188 IA_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0013 IA_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00822 IA_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001918 IA_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007562 IA_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.009681 IA_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00266 IA_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00112 IA_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00828 IA_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00073 IA_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.008112 IA_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004072 IA_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00188 IA_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00096 IA_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00833 IA_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001134 IA_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002724 IA_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001644 IA_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0013 IA_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00082 IA_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00837 IA_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000942 IA_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001203 IA_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00087 IA_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00134 IA_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0007 IA_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0084 IA_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000461 IA_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001388 IA_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000856 IA_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00143 IA_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00059 IA_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00842 IA_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002064 IA_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001834 IA_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001086 IA_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00132 IA_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00049 IA_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00844 IA_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002696 IA_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001362 IA_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001253 IA_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00118 IA_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00041 IA_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00845 IA_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001704 IA_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001155 IA_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002414 IA_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00104 IA_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00035 IA_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00845 IA_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002259 IA_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000979 IA_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00117 KS_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00091 KS_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00176 KS_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00156 KS_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00814 KS_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00002 KS_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00416 KS_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02565 KS_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00009 KS_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01132 KS_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.03095 KS_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00088 KS_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00441 KS_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00941 KS_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00159 KS_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00239 KS_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00591 KS_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00076 KS_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00174 KS_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00512 KS_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00184 KS_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00498 KS_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.01243 KS_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00117 KS_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0036 KS_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0166 KS_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00066 KS_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00267 KS_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.06612 KS_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000016 KS_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000564 KS_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000723 KS_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00264 KS_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00359 KS_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00815 KS_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000089 KS_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001016 KS_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.004333 KS_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00251 KS_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0015 KS_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02687 KS_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000879 KS_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003157 KS_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.017611 KS_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00268 KS_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00103 KS_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02705 KS_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001542 KS_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008258 KS_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.01742 KS_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0028 KS_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00071 KS_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02713 KS_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000734 KS_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006082 KS_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00498 KS_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00221 KS_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00048 KS_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02597 KS_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001769 KS_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002274 KS_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001994 KS_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00148 KS_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00032 KS_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02694 KS_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001117 KS_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001374 KS_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001294 KS_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00137 KS_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00021 KS_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.02941 KS_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000539 KS_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002823 KS_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001936 KS_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0014 KS_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00014 KS_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0339 KS_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002206 KS_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002722 KS_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002197 KS_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00115 KS_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00009 KS_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00256 KS_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001777 KS_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002725 KS_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00091 KS_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00006 KS_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.25 KS_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00168 KS_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00224 KS_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001071 KS_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0007 KS_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00004 KS_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.003032 KS_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001008 KY_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00117 KY_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00246 KY_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0001 KY_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0016 KY_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00958 KY_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00009 KY_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00523 KY_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02167 KY_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00018 KY_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00908 KY_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01784 KY_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0006 KY_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00439 KY_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00701 KY_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0017 KY_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00342 KY_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00541 KY_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00107 KY_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00291 KY_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00345 KY_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00107 KY_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00472 KY_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00548 KY_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00078 KY_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00361 KY_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00958 KY_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00056 KY_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00268 KY_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01854 KY_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000093 KY_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000631 KY_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000724 KY_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00214 KY_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00194 KY_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01041 KY_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000175 KY_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001419 KY_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006459 KY_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00221 KY_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00137 KY_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00441 KY_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000597 KY_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003336 KY_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.015612 KY_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0019 KY_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00095 KY_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00384 KY_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001709 KY_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00757 KY_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.011958 KY_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00178 KY_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00067 KY_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0033 KY_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000961 KY_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005284 KY_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004791 KY_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00134 KY_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00046 KY_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00278 KY_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001049 KY_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00295 KY_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00246 KY_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00098 KY_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00032 KY_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00229 KY_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000758 KY_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001896 KY_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001657 KY_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00071 KY_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00021 KY_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00185 KY_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000545 KY_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.003252 KY_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001317 KY_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00052 KY_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00015 KY_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00148 KY_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001619 KY_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002705 KY_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002484 KY_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00037 KY_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0001 KY_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00116 KY_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00239 KY_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001916 KY_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002897 KY_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00026 KY_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00007 KY_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00091 KY_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00162 KY_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00133 KY_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002931 KY_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00019 KY_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00004 KY_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0007 KY_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001573 KY_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000918 KY_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00118 LA_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00102 LA_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00241 LA_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00162 LA_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01464 LA_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00002 LA_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00346 LA_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02022 LA_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00007 LA_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00612 LA_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00894 LA_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00034 LA_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00233 LA_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00355 LA_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00085 LA_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00199 LA_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00259 LA_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00053 LA_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0017 LA_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00382 LA_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00179 LA_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00549 LA_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00694 LA_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0006 LA_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00367 LA_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00448 LA_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00044 LA_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00204 LA_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00358 LA_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000016 LA_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000596 LA_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000686 LA_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00116 LA_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00237 LA_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00279 LA_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000074 LA_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00129 LA_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.008358 LA_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00116 LA_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00247 LA_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00213 LA_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000336 LA_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001689 LA_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.016631 LA_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00114 LA_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00208 LA_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00159 LA_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.000827 LA_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00635 LA_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007729 LA_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00278 LA_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00172 LA_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00118 LA_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000498 LA_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00277 LA_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.002575 LA_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00096 LA_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00139 LA_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00087 LA_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001754 LA_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002064 LA_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001727 LA_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00071 LA_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0011 LA_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00063 LA_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000592 LA_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001395 LA_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001761 LA_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00052 LA_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00085 LA_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00046 LA_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000431 LA_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002692 LA_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001775 LA_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00038 LA_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00064 LA_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00033 LA_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001009 LA_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.004441 LA_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002733 LA_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00028 LA_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00049 LA_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00023 LA_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00114 LA_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001431 LA_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001366 LA_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0002 LA_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00036 LA_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00016 LA_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.000952 LA_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001483 LA_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.000986 LA_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00014 LA_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00027 LA_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00012 LA_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00253 LA_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001746 LA_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000711 ME_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00147 ME_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00213 ME_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00007 ME_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00148 ME_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00722 ME_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00003 ME_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00361 ME_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.03098 ME_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00026 ME_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.014 ME_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.03231 ME_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00152 ME_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01209 ME_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01211 ME_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00438 ME_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00684 ME_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00972 ME_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00083 ME_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0031 ME_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0075 ME_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00095 ME_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00379 ME_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00783 ME_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00081 ME_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00613 ME_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.01949 ME_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0005 ME_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00466 ME_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.06597 ME_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000033 ME_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00093 ME_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00117 ME_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00513 ME_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00811 ME_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00795 ME_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000264 ME_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001407 ME_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.003378 ME_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0044 ME_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00332 ME_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02604 ME_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001508 ME_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001956 ME_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.019125 ME_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00144 ME_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00232 ME_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02583 ME_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.004094 ME_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008475 ME_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.019428 ME_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00174 ME_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0016 ME_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02626 ME_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000773 ME_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.013894 ME_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004665 ME_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0014 ME_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00108 ME_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0262 ME_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000861 ME_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.005202 ME_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00248 ME_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00087 ME_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0007 ME_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02985 ME_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000776 ME_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002052 ME_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001179 ME_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00054 ME_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00045 ME_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0215 ME_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000474 ME_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001754 ME_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000972 ME_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00033 ME_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00029 ME_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.02439 ME_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.004073 ME_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002918 ME_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001547 ME_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0002 ME_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00018 ME_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.04167 ME_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004008 ME_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002133 ME_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002066 ME_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00012 ME_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00012 ME_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001339 ME_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003252 ME_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00007 ME_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00007 ME_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001354 ME_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00134 MD_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00097 MD_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00194 MD_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00005 MD_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00211 MD_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00729 MD_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00013 MD_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00449 MD_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02412 MD_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00039 MD_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01229 MD_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02212 MD_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00175 MD_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01144 MD_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0119 MD_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00321 MD_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00664 MD_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00846 MD_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00127 MD_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00393 MD_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00987 MD_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00159 MD_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00479 MD_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0072 MD_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00135 MD_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00508 MD_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00958 MD_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00116 MD_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00497 MD_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01807 MD_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000132 MD_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000513 MD_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000913 MD_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00487 MD_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00477 MD_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0418 MD_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000388 MD_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00157 MD_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.004005 MD_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0046 MD_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00283 MD_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0151 MD_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001732 MD_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003223 MD_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.016165 MD_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00278 MD_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00197 MD_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.01516 MD_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.003013 MD_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00827 MD_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0155 MD_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00349 MD_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00135 MD_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0152 MD_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001135 MD_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.011213 MD_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006073 MD_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00274 MD_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00091 MD_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.01521 MD_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001587 MD_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.005142 MD_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003075 MD_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00234 MD_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00059 MD_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.01525 MD_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001243 MD_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002948 MD_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002905 MD_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00113 MD_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00038 MD_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.01524 MD_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000937 MD_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002255 MD_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001195 MD_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0006 MD_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00025 MD_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.01525 MD_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003956 MD_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002759 MD_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001566 MD_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00037 MD_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00016 MD_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.01519 MD_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004268 MD_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002134 MD_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001563 MD_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00022 MD_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0001 MD_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0153 MD_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002111 MD_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002143 MD_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002656 MD_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00013 MD_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00006 MD_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.01518 MD_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002741 MD_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001328 MD_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000786 MA_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00109 MA_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00173 MA_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00004 MA_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00258 MA_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00512 MA_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00004 MA_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0045 MA_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.03448 MA_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00017 MA_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01412 MA_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.03076 MA_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00282 MA_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01818 MA_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0192 MA_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00395 MA_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00768 MA_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.01267 MA_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0019 MA_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00461 MA_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00941 MA_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00168 MA_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.005 MA_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.01143 MA_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00113 MA_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00592 MA_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.03417 MA_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00086 MA_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00741 MA_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.08862 MA_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000042 MA_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000578 MA_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001332 MA_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00786 MA_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01304 MA_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0079 MA_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000169 MA_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001762 MA_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001366 MA_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00587 MA_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0064 MA_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02615 MA_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002797 MA_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003521 MA_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.022314 MA_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00314 MA_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00496 MA_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02604 MA_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.003814 MA_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008629 MA_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.016559 MA_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00339 MA_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00369 MA_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02612 MA_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001563 MA_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.015325 MA_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006398 MA_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0022 MA_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00265 MA_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02622 MA_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001509 MA_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.006346 MA_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002913 MA_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00156 MA_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00182 MA_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0268 MA_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001033 MA_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002798 MA_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001316 MA_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00221 MA_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00122 MA_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.02577 MA_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000918 MA_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001902 MA_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001 MA_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00051 MA_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00081 MA_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.02353 MA_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.006094 MA_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002434 MA_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001485 MA_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00031 MA_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00053 MA_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.02469 MA_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.005215 MA_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002105 MA_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001272 MA_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00018 MA_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00034 MA_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.02778 MA_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002492 MA_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003692 MA_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0001 MA_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00022 MA_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0625 MA_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002363 MA_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001563 MA_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000058 MI_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.0009 MI_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00188 MI_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00002 MI_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00168 MI_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01072 MI_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00006 MI_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00338 MI_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02177 MI_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00041 MI_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01022 MI_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01358 MI_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00105 MI_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00683 MI_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00845 MI_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00206 MI_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00317 MI_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00472 MI_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00086 MI_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00164 MI_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00275 MI_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00076 MI_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00195 MI_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00275 MI_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00043 MI_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00164 MI_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00311 MI_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00033 MI_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00153 MI_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00594 MI_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000065 MI_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000518 MI_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000533 MI_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00285 MI_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00142 MI_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0078 MI_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000407 MI_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001225 MI_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.007047 MI_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00229 MI_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00131 MI_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00425 MI_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001041 MI_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002375 MI_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.015951 MI_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00135 MI_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00121 MI_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00364 MI_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00199 MI_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007229 MI_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.009437 MI_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0013 MI_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00112 MI_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00307 MI_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000758 MI_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.007981 MI_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005445 MI_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00076 MI_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00103 MI_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00254 MI_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000801 MI_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003148 MI_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002498 MI_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00059 MI_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00094 MI_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00205 MI_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000419 MI_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001514 MI_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001218 MI_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00046 MI_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00086 MI_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00163 MI_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000321 MI_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001211 MI_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000963 MI_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00035 MI_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00078 MI_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00128 MI_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002151 MI_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001294 MI_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001102 MI_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00027 MI_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00071 MI_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00099 MI_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002499 MI_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001059 MI_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001428 MI_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00021 MI_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00064 MI_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00076 MI_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001289 MI_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00096 MI_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002168 MI_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00016 MI_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00058 MI_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00058 MI_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001107 MI_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000869 MI_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001086 MN_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00105 MN_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00212 MN_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00001 MN_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00196 MN_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01018 MN_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00007 MN_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00416 MN_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.03411 MN_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00039 MN_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01207 MN_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01562 MN_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00136 MN_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00954 MN_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00981 MN_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0026 MN_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00388 MN_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00542 MN_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00097 MN_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.002 MN_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00453 MN_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0012 MN_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00312 MN_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00568 MN_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00051 MN_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00288 MN_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00602 MN_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00045 MN_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00214 MN_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.013 MN_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000067 MN_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000628 MN_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000844 MN_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00396 MN_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00256 MN_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.03093 MN_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000392 MN_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001277 MN_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.005358 MN_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00323 MN_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00178 MN_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01326 MN_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001348 MN_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003298 MN_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.021588 MN_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00177 MN_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00129 MN_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.01332 MN_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002454 MN_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007978 MN_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.01267 MN_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00247 MN_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00092 MN_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.01334 MN_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000883 MN_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.010069 MN_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003956 MN_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00122 MN_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00066 MN_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.01338 MN_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001204 MN_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004018 MN_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002155 MN_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00109 MN_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00045 MN_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.01339 MN_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000486 MN_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001561 MN_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001103 MN_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00097 MN_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00031 MN_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.01341 MN_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000424 MN_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001416 MN_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000999 MN_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00086 MN_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00021 MN_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.01339 MN_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002969 MN_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002058 MN_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001349 MN_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00076 MN_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00014 MN_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.01343 MN_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.003388 MN_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001278 MN_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001242 MN_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00067 MN_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0001 MN_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.01346 MN_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001575 MN_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001437 MN_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002795 MN_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00059 MN_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00006 MN_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.01333 MN_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002 MN_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001077 MN_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000687 MS_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.0007 MS_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00161 MS_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0014 MS_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01207 MS_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00419 MS_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01835 MS_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00489 MS_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01025 MS_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00032 MS_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00225 MS_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00419 MS_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00063 MS_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00169 MS_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00265 MS_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00062 MS_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00159 MS_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00262 MS_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00198 MS_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00427 MS_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0049 MS_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00076 MS_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00452 MS_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00529 MS_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0006 MS_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.002 MS_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00331 MS_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000394 MS_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000438 MS_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00111 MS_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00195 MS_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00409 MS_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000995 MS_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.007637 MS_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00119 MS_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00209 MS_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00265 MS_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000315 MS_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002967 MS_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01435 MS_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0014 MS_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00171 MS_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00212 MS_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.000642 MS_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.004643 MS_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008151 MS_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00298 MS_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00137 MS_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00168 MS_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000574 MS_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0032 MS_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003962 MS_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00126 MS_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00108 MS_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00132 MS_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001944 MS_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001468 MS_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001542 MS_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00102 MS_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00082 MS_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00101 MS_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000739 MS_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001041 MS_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000995 MS_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00082 MS_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00062 MS_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00076 MS_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000587 MS_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002436 MS_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001843 MS_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00066 MS_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00046 MS_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00057 MS_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001056 MS_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.004359 MS_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002854 MS_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00052 MS_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00034 MS_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00043 MS_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001015 MS_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00187 MS_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001402 MS_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00042 MS_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00025 MS_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00032 MS_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001244 MS_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001342 MS_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001526 MS_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00033 MS_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00018 MS_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00023 MS_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00271 MS_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001491 MS_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000911 MO_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00091 MO_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00177 MO_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0001 MO_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0013 MO_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00667 MO_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00022 MO_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00362 MO_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02139 MO_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00024 MO_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00774 MO_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01338 MO_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0004 MO_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.005 MO_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00687 MO_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00146 MO_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0022 MO_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00281 MO_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00092 MO_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00247 MO_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00329 MO_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00134 MO_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00392 MO_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00466 MO_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00064 MO_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0024 MO_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00352 MO_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00037 MO_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00217 MO_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00577 MO_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000216 MO_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000521 MO_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000565 MO_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00156 MO_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00194 MO_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00789 MO_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000241 MO_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001098 MO_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.004321 MO_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00189 MO_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00172 MO_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00389 MO_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000396 MO_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002571 MO_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.015396 MO_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0015 MO_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00152 MO_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00322 MO_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001394 MO_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00583 MO_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.010647 MO_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00213 MO_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00134 MO_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00262 MO_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000907 MO_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006216 MO_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004933 MO_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00097 MO_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00118 MO_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00209 MO_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001325 MO_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00218 MO_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001772 MO_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00056 MO_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00102 MO_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00162 MO_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000629 MO_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001736 MO_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001359 MO_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00032 MO_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00089 MO_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00124 MO_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000361 MO_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002456 MO_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001733 MO_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00018 MO_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00076 MO_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00094 MO_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001273 MO_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002325 MO_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001784 MO_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0001 MO_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00066 MO_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0007 MO_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00187 MO_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001565 MO_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001453 MO_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00006 MO_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00056 MO_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00052 MO_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001339 MO_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001355 MO_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002533 MO_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00003 MO_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00048 MO_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00039 MO_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001898 MO_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00117 MO_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001118 MT_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00123 MT_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00243 MT_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00006 MT_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0018 MT_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00928 MT_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00011 MT_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00432 MT_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0218 MT_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00034 MT_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0085 MT_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01513 MT_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0005 MT_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00414 MT_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00557 MT_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00164 MT_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00246 MT_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00346 MT_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00086 MT_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00138 MT_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00257 MT_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00095 MT_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00171 MT_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00296 MT_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00063 MT_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0028 MT_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00385 MT_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00052 MT_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00212 MT_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00499 MT_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000108 MT_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000754 MT_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001089 MT_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00198 MT_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00216 MT_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00756 MT_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000334 MT_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001385 MT_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.005259 MT_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00226 MT_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00208 MT_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00372 MT_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000501 MT_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003188 MT_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.017192 MT_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00148 MT_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00181 MT_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00312 MT_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001666 MT_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00662 MT_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.010115 MT_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00186 MT_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00156 MT_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00259 MT_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000775 MT_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005285 MT_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003846 MT_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00124 MT_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00132 MT_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0021 MT_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000909 MT_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002206 MT_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001829 MT_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00104 MT_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00109 MT_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00167 MT_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000608 MT_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001535 MT_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001406 MT_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00087 MT_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00089 MT_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00131 MT_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000497 MT_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001042 MT_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001003 MT_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00072 MT_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00072 MT_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00101 MT_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001634 MT_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0018 MT_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001391 MT_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00059 MT_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00057 MT_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00078 MT_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002213 MT_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001637 MT_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001467 MT_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00048 MT_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00045 MT_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00059 MT_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001375 MT_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001478 MT_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002288 MT_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0004 MT_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00036 MT_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00044 MT_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001624 MT_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001438 MT_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001061 NE_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00142 NE_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00261 NE_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00006 NE_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00151 NE_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00988 NE_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00008 NE_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00428 NE_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.03216 NE_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00008 NE_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01209 NE_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01465 NE_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00104 NE_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00521 NE_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00624 NE_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00183 NE_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00293 NE_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00341 NE_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00093 NE_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00256 NE_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00429 NE_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00138 NE_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00336 NE_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00419 NE_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00057 NE_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00297 NE_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00423 NE_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00037 NE_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00238 NE_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00631 NE_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000082 NE_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000976 NE_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001531 NE_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00265 NE_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00189 NE_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01002 NE_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000078 NE_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000941 NE_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.003485 NE_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00229 NE_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00147 NE_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00665 NE_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001038 NE_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002772 NE_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.022555 NE_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00155 NE_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00113 NE_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00628 NE_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00182 NE_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008623 NE_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.011696 NE_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00234 NE_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00087 NE_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00586 NE_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000853 NE_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.007359 NE_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003478 NE_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00095 NE_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00067 NE_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00538 NE_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001323 NE_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002954 NE_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001853 NE_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00062 NE_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0005 NE_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00484 NE_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00056 NE_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002069 NE_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001544 NE_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0004 NE_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00038 NE_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00427 NE_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00036 NE_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001705 NE_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000936 NE_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00026 NE_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00028 NE_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00369 NE_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001945 NE_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002178 NE_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001172 NE_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00016 NE_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00021 NE_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00313 NE_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002416 NE_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00161 NE_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00125 NE_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0001 NE_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00016 NE_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00261 NE_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001364 NE_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001225 NE_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001849 NE_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00007 NE_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00012 NE_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00215 NE_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002105 NE_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000929 NE_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001116 NV_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00075 NV_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00166 NV_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00003 NV_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00186 NV_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01035 NV_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00011 NV_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00385 NV_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02163 NV_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00058 NV_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00926 NV_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01211 NV_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00032 NV_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00576 NV_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00569 NV_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00158 NV_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00406 NV_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00398 NV_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00122 NV_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00342 NV_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00357 NV_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00161 NV_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00446 NV_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00423 NV_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00073 NV_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00418 NV_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00405 NV_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00052 NV_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00332 NV_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00723 NV_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000112 NV_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000315 NV_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000479 NV_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00145 NV_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00315 NV_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01141 NV_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000579 NV_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001464 NV_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006008 NV_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0024 NV_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00164 NV_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00503 NV_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000322 NV_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002624 NV_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01685 NV_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00248 NV_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0011 NV_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00433 NV_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001523 NV_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006755 NV_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008734 NV_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00282 NV_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00074 NV_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00367 NV_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001133 NV_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006952 NV_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004219 NV_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00137 NV_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00049 NV_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00303 NV_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001624 NV_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003508 NV_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002162 NV_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001 NV_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00031 NV_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00244 NV_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000703 NV_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002702 NV_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00162 NV_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00072 NV_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0002 NV_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00192 NV_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0005 NV_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002696 NV_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001544 NV_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00051 NV_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00013 NV_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00149 NV_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001074 NV_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002977 NV_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001654 NV_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00036 NV_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00008 NV_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00114 NV_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002362 NV_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002181 NV_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001733 NV_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00026 NV_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00005 NV_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00086 NV_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002108 NV_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001907 NV_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003047 NV_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00018 NV_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00003 NV_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00065 NV_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002503 NV_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001038 NV_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001259 NH_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00131 NH_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00254 NH_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00005 NH_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00161 NH_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00884 NH_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00012 NH_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00354 NH_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.03253 NH_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0006 NH_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02036 NH_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02024 NH_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0009 NH_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00359 NH_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01476 NH_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00432 NH_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00186 NH_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00477 NH_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00123 NH_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00254 NH_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.01422 NH_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00118 NH_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00284 NH_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00723 NH_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00078 NH_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00353 NH_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.01937 NH_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00045 NH_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00688 NH_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.09664 NH_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000118 NH_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000837 NH_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001245 NH_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00234 NH_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01996 NH_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00796 NH_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000597 NH_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001232 NH_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.004894 NH_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00628 NH_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00423 NH_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02613 NH_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000889 NH_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002716 NH_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.019894 NH_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00238 NH_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00293 NH_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02581 NH_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.004045 NH_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.009508 NH_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.015219 NH_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0017 NH_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00198 NH_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02689 NH_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00112 NH_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.014721 NH_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005095 NH_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00128 NH_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0013 NH_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02475 NH_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001169 NH_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000797 NH_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001975 NH_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00075 NH_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00082 NH_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02809 NH_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000745 NH_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001669 NH_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002742 NH_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00043 NH_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00052 NH_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.02353 NH_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000429 NH_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001527 NH_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000959 NH_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00025 NH_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00032 NH_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.02778 NH_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00199 NH_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002036 NH_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002019 NH_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00014 NH_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0002 NH_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.05263 NH_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.005312 NH_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002288 NH_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.003288 NH_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00008 NH_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00012 NH_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001938 NH_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.007976 NH_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00005 NH_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00007 NH_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001512 NH_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001969 NJ_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00096 NJ_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00192 NJ_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00231 NJ_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00858 NJ_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00596 NJ_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02098 NJ_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00014 NJ_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01346 NJ_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02484 NJ_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00192 NJ_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01226 NJ_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01566 NJ_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00325 NJ_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00821 NJ_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.01012 NJ_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00138 NJ_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00507 NJ_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00591 NJ_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00169 NJ_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00629 NJ_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00653 NJ_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00152 NJ_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00667 NJ_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00974 NJ_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00078 NJ_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00553 NJ_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01929 NJ_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000524 NJ_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000714 NJ_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00557 NJ_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00612 NJ_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.08009 NJ_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000137 NJ_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001474 NJ_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.005103 NJ_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00462 NJ_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00371 NJ_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0249 NJ_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001915 NJ_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.004215 NJ_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.014982 NJ_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00288 NJ_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00268 NJ_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02493 NJ_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.003069 NJ_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.009258 NJ_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.014997 NJ_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00363 NJ_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00189 NJ_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02492 NJ_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001255 NJ_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.011623 NJ_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.008655 NJ_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00281 NJ_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00131 NJ_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02502 NJ_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001586 NJ_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.005624 NJ_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003584 NJ_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002 NJ_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00088 NJ_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02481 NJ_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001379 NJ_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.003805 NJ_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002003 NJ_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00194 NJ_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00058 NJ_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.02496 NJ_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000835 NJ_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002635 NJ_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001406 NJ_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00127 NJ_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00038 NJ_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.02559 NJ_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.004502 NJ_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003292 NJ_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00198 NJ_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00097 NJ_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00025 NJ_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.02239 NJ_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004153 NJ_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002288 NJ_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002085 NJ_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00071 NJ_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00016 NJ_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.024 NJ_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002409 NJ_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002214 NJ_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.004247 NJ_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00051 NJ_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0001 NJ_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.03509 NJ_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00273 NJ_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001424 NJ_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000334 NM_Dose1_jan2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00001 NM_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00143 NM_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00252 NM_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00036 NM_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00356 NM_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01042 NM_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00053 NM_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00736 NM_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02049 NM_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00029 NM_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01216 NM_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02776 NM_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0011 NM_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00788 NM_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01379 NM_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00304 NM_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00511 NM_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00783 NM_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00152 NM_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00563 NM_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0146 NM_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00189 NM_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00484 NM_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.01157 NM_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00075 NM_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00777 NM_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.02303 NM_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00055 NM_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00554 NM_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.06484 NM_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000525 NM_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000574 NM_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000741 NM_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00409 NM_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00959 NM_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.15561 NM_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00029 NM_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002753 NM_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00687 NM_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00436 NM_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00251 NM_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0275 NM_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00109 NM_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.005584 NM_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.015664 NM_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00286 NM_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00181 NM_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02716 NM_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002873 NM_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008702 NM_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.014227 NM_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00411 NM_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0013 NM_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02786 NM_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001397 NM_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.008153 NM_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.007415 NM_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00165 NM_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00091 NM_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02687 NM_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001848 NM_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003853 NM_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002581 NM_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00124 NM_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00062 NM_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02703 NM_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000701 NM_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.003841 NM_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.003269 NM_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00092 NM_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00042 NM_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0303 NM_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000511 NM_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001953 NM_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001529 NM_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00068 NM_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00029 NM_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.02381 NM_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003139 NM_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003904 NM_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002155 NM_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0005 NM_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00019 NM_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.04546 NM_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004173 NM_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002271 NM_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001861 NM_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00036 NM_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00013 NM_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002252 NM_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.004094 NM_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00026 NM_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00008 NM_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.003049 NM_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001162 NY_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00114 NY_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00225 NY_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00003 NY_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00168 NY_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00736 NY_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00016 NY_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00498 NY_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01831 NY_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00039 NY_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01233 NY_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01728 NY_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00112 NY_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0095 NY_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01112 NY_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00258 NY_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00644 NY_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00622 NY_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00128 NY_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00394 NY_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0043 NY_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00152 NY_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00539 NY_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00492 NY_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0014 NY_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00748 NY_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00639 NY_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00146 NY_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00778 NY_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01109 NY_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000159 NY_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000588 NY_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000713 NY_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00398 NY_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00616 NY_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0169 NY_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000392 NY_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00149 NY_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.005239 NY_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00384 NY_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00354 NY_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00122 NY_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001107 NY_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003178 NY_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.012717 NY_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00291 NY_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00247 NY_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00063 NY_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002457 NY_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008767 NY_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.013047 NY_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00342 NY_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00169 NY_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00033 NY_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001271 NY_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.009895 NY_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006989 NY_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00294 NY_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00113 NY_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00018 NY_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001326 NY_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004868 NY_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003108 NY_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00295 NY_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00073 NY_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00009 NY_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001397 NY_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002915 NY_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001811 NY_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00207 NY_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00047 NY_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00005 NY_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001238 NY_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002399 NY_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001398 NY_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00127 NY_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0003 NY_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00002 NY_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003278 NY_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003642 NY_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001849 NY_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00092 NY_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00019 NY_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00001 NY_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.003704 NY_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.003654 NY_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002126 NY_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00064 NY_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00012 NY_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00001 NY_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00226 NY_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002587 NY_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003285 NY_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00043 NY_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00007 NY_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002806 NY_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001362 NY_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000285 NC_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00123 NC_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.01111 NC_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00099 NC_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01922 NC_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00011 NC_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00664 NC_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0171 NC_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00055 NC_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00827 NC_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01148 NC_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0013 NC_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00315 NC_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0046 NC_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00091 NC_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00167 NC_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00106 NC_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00066 NC_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00142 NC_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0022 NC_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00112 NC_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0036 NC_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00376 NC_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00059 NC_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00261 NC_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00261 NC_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00043 NC_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00223 NC_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00304 NC_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000112 NC_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000921 NC_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0025 NC_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0026 NC_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00188 NC_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00724 NC_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000549 NC_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001038 NC_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.02005 NC_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00146 NC_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00157 NC_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00431 NC_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001291 NC_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003896 NC_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.011365 NC_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00136 NC_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0013 NC_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00345 NC_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.000877 NC_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008235 NC_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.005374 NC_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00189 NC_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00108 NC_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00271 NC_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000665 NC_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003147 NC_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.002834 NC_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00101 NC_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00089 NC_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00208 NC_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001061 NC_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002025 NC_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000935 NC_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00074 NC_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00072 NC_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00155 NC_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000573 NC_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001105 NC_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000832 NC_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00054 NC_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00058 NC_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00114 NC_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000412 NC_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002245 NC_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001047 NC_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00039 NC_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00047 NC_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00082 NC_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002362 NC_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001989 NC_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00106 NC_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00028 NC_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00038 NC_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00059 NC_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001351 NC_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00164 NC_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.000903 NC_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0002 NC_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0003 NC_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00042 NC_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001168 NC_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001338 NC_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001332 NC_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00014 NC_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00024 NC_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0003 NC_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001675 NC_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00109 NC_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001069 ND_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00219 ND_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.01022 ND_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00011 ND_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00167 ND_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01921 ND_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00013 ND_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00473 ND_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01833 ND_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00049 ND_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00824 ND_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00922 ND_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00009 ND_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00242 ND_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00341 ND_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00104 ND_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00157 ND_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00191 ND_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00058 ND_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00116 ND_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00135 ND_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00096 ND_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00164 ND_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00202 ND_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00099 ND_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00282 ND_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00318 ND_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00055 ND_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00226 ND_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00784 ND_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000128 ND_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.002063 ND_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.004206 ND_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00144 ND_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00351 ND_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0235 ND_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000488 ND_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001544 ND_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.016604 ND_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0018 ND_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0018 ND_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00734 ND_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000091 ND_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002602 ND_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.012487 ND_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00177 ND_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00149 ND_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00687 ND_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001022 ND_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007523 ND_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.004918 ND_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00229 ND_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00121 ND_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00634 ND_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000566 ND_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00341 ND_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.002444 ND_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00225 ND_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00098 ND_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00572 ND_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000904 ND_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001554 ND_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001062 ND_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00117 ND_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00077 ND_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00504 ND_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000933 ND_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000986 ND_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000557 ND_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00169 ND_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0006 ND_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00432 ND_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000614 ND_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000903 ND_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000623 ND_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00142 ND_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00046 ND_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00365 ND_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001112 ND_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001923 ND_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001147 ND_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00129 ND_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00035 ND_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00299 ND_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001915 ND_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001768 ND_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001465 ND_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00113 ND_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00026 ND_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00239 ND_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001564 ND_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002421 ND_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.005816 ND_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00096 ND_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0002 ND_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00192 ND_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002058 ND_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001322 ND_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001413 OH_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00102 OH_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00196 OH_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00001 OH_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00138 OH_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00906 OH_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00002 OH_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00341 OH_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02484 OH_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00037 OH_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01018 OH_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01302 OH_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00086 OH_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00474 OH_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00631 OH_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00177 OH_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00297 OH_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0043 OH_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00075 OH_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00131 OH_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00218 OH_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0009 OH_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00202 OH_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00277 OH_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00057 OH_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00199 OH_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00264 OH_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00035 OH_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00174 OH_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00347 OH_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000023 OH_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000618 OH_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000739 OH_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00232 OH_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00152 OH_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00396 OH_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000367 OH_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001186 OH_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.005185 OH_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00192 OH_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00131 OH_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00209 OH_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000858 OH_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001998 OH_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01823 OH_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00127 OH_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00112 OH_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00159 OH_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001693 OH_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008053 OH_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.009664 OH_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0014 OH_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00097 OH_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0012 OH_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000701 OH_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005694 OH_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004133 OH_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00086 OH_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00083 OH_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0009 OH_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000892 OH_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002931 OH_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002317 OH_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00054 OH_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0007 OH_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00066 OH_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000566 OH_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001281 OH_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001038 OH_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00033 OH_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00059 OH_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00048 OH_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000347 OH_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00107 OH_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000945 OH_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0002 OH_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0005 OH_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00034 OH_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001797 OH_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001631 OH_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.000999 OH_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00012 OH_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00042 OH_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00025 OH_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002141 OH_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001289 OH_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.000983 OH_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00007 OH_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00035 OH_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00018 OH_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001128 OH_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001092 OH_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001341 OH_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00004 OH_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00029 OH_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00013 OH_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001224 OH_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000924 OH_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000726 OK_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00136 OK_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00272 OK_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00007 OK_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00217 OK_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01279 OK_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00012 OK_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00482 OK_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02572 OK_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00036 OK_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00814 OK_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01253 OK_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00028 OK_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00291 OK_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00465 OK_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00116 OK_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00237 OK_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00329 OK_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00073 OK_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00186 OK_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00405 OK_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0017 OK_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0041 OK_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00502 OK_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0007 OK_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00458 OK_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00959 OK_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00057 OK_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00291 OK_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01442 OK_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00012 OK_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000748 OK_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001009 OK_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00122 OK_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00254 OK_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.04208 OK_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000359 OK_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002012 OK_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.007255 OK_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002 OK_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00097 OK_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01382 OK_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000276 OK_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002807 OK_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.020407 OK_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00166 OK_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00062 OK_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0139 OK_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001154 OK_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00769 OK_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007578 OK_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00298 OK_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0004 OK_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.01395 OK_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000684 OK_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003616 OK_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003343 OK_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0014 OK_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00026 OK_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.01397 OK_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001639 OK_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00164 OK_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001195 OK_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00117 OK_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00016 OK_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.014 OK_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000678 OK_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001916 OK_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001995 OK_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00097 OK_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0001 OK_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.01402 OK_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000552 OK_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002135 OK_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001435 OK_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0008 OK_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00006 OK_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.01399 OK_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.000984 OK_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003628 OK_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002757 OK_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00066 OK_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00004 OK_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.01408 OK_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001959 OK_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00209 OK_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002734 OK_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00054 OK_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00002 OK_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.01399 OK_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001412 OK_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001974 OK_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.005074 OK_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00044 OK_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00001 OK_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.01406 OK_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002674 OK_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00071 OK_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000949 OR_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00104 OR_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00166 OR_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00004 OR_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00278 OR_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00454 OR_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00006 OR_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00287 OR_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02005 OR_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00024 OR_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00903 OR_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02318 OR_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00169 OR_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01144 OR_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00908 OR_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00312 OR_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00572 OR_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00595 OR_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00095 OR_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00273 OR_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0033 OR_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00093 OR_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00281 OR_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00393 OR_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00065 OR_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00522 OR_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00606 OR_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00053 OR_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00307 OR_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00616 OR_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000059 OR_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000459 OR_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000868 OR_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00486 OR_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00208 OR_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00986 OR_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000235 OR_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002193 OR_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002872 OR_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0039 OR_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00044 OR_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00679 OR_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00168 OR_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00279 OR_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.012615 OR_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00182 OR_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00022 OR_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00614 OR_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.003027 OR_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.005397 OR_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.017703 OR_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00201 OR_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00011 OR_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00544 OR_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000734 OR_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.010243 OR_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004881 OR_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00143 OR_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00006 OR_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00471 OR_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00096 OR_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.005879 OR_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003238 OR_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00119 OR_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00003 OR_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00395 OR_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000615 OR_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002466 OR_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001584 OR_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00099 OR_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00001 OR_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00323 OR_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000501 OR_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001379 OR_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000992 OR_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00082 OR_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00001 OR_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00259 OR_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003846 OR_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002743 OR_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001762 OR_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00067 OR_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00203 OR_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.003896 OR_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002081 OR_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001232 OR_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00055 OR_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00156 OR_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001483 OR_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001404 OR_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002096 OR_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00045 OR_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00119 OR_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001596 OR_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000342 OR_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001242 PA_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00102 PA_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00147 PA_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00003 PA_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00206 PA_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00549 PA_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00011 PA_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0044 PA_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02281 PA_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00023 PA_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01056 PA_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.03528 PA_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00128 PA_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01114 PA_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.04391 PA_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00269 PA_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00601 PA_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.07974 PA_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00118 PA_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.004 PA_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00155 PA_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00522 PA_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00147 PA_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00672 PA_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00092 PA_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01117 PA_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000107 PA_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000534 PA_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000862 PA_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00387 PA_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.02394 PA_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00827 PA_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000233 PA_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001676 PA_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002101 PA_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0041 PA_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00762 PA_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02748 PA_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001274 PA_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002784 PA_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01559 PA_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00239 PA_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00575 PA_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02747 PA_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002671 PA_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007443 PA_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.019781 PA_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00351 PA_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00413 PA_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02749 PA_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001029 PA_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.010872 PA_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.013477 PA_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00276 PA_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00283 PA_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02731 PA_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001461 PA_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.005235 PA_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.005112 PA_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00208 PA_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00184 PA_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02804 PA_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001363 PA_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002814 PA_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001105 PA_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00169 PA_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00116 PA_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.02694 PA_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000746 PA_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002388 PA_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00132 PA_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00072 PA_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.02622 PA_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003224 PA_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003551 PA_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00106 PA_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00044 PA_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.02459 PA_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00391 PA_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.003509 PA_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00082 PA_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00027 PA_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.04 PA_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002026 PA_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.007672 PA_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00063 PA_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00016 PA_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.03571 PA_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002723 PA_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002146 PA_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00006 RI_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00128 RI_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.002 RI_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00002 RI_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00178 RI_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0056 RI_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00005 RI_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00446 RI_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.04249 RI_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00016 RI_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01122 RI_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02001 RI_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00237 RI_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01336 RI_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01515 RI_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00324 RI_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00614 RI_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.01038 RI_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00143 RI_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00358 RI_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00838 RI_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00157 RI_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00554 RI_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0143 RI_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00183 RI_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00822 RI_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.03214 RI_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00142 RI_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00842 RI_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.13699 RI_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000053 RI_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000798 RI_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001566 RI_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00651 RI_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00931 RI_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00782 RI_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000155 RI_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001353 RI_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001363 RI_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00461 RI_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00452 RI_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0252 RI_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002347 RI_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002866 RI_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.026396 RI_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0026 RI_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00322 RI_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02541 RI_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.003165 RI_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007743 RI_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.011727 RI_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00345 RI_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00223 RI_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02632 RI_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001137 RI_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.012878 RI_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005342 RI_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00354 RI_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0015 RI_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.025 RI_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001409 RI_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004972 RI_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002498 RI_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0029 RI_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00098 RI_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02759 RI_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001811 RI_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002409 RI_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001292 RI_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00233 RI_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00062 RI_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.02817 RI_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001327 RI_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002474 RI_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001281 RI_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00087 RI_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00039 RI_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.005117 RI_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003728 RI_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001892 RI_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00058 RI_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00025 RI_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.07692 RI_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00416 RI_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.003378 RI_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001588 RI_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00038 RI_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00015 RI_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001998 RI_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003427 RI_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00024 RI_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0001 RI_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002704 RI_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001608 SC_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00069 SC_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.0015 SC_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00002 SC_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00095 SC_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01532 SC_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00009 SC_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00319 SC_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02183 SC_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00033 SC_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00787 SC_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01303 SC_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0004 SC_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00361 SC_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00549 SC_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0011 SC_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00233 SC_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00382 SC_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00081 SC_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00206 SC_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00356 SC_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00128 SC_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00317 SC_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00466 SC_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00083 SC_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00408 SC_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00663 SC_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00059 SC_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00259 SC_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01083 SC_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000091 SC_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00038 SC_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000406 SC_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00138 SC_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00236 SC_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01619 SC_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000328 SC_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000865 SC_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.008559 SC_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00168 SC_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00259 SC_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00928 SC_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000395 SC_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001489 SC_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.018024 SC_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00143 SC_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00222 SC_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00938 SC_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001075 SC_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006714 SC_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007939 SC_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00227 SC_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00187 SC_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00945 SC_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00081 SC_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004781 SC_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004213 SC_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00139 SC_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00153 SC_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0095 SC_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001217 SC_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002349 SC_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001809 SC_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001 SC_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00122 SC_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00955 SC_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000819 SC_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001886 SC_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001696 SC_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00071 SC_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00096 SC_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00958 SC_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000576 SC_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001619 SC_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001124 SC_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0005 SC_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00074 SC_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00961 SC_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001109 SC_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003242 SC_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002064 SC_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00035 SC_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00057 SC_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00962 SC_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001617 SC_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002246 SC_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002352 SC_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00024 SC_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00043 SC_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00964 SC_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001314 SC_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001444 SC_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003048 SC_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00017 SC_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00033 SC_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00965 SC_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002066 SC_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001768 SC_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001402 SD_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00195 SD_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.0034 SD_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00002 SD_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00136 SD_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01028 SD_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00016 SD_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00567 SD_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.04267 SD_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00043 SD_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01134 SD_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01501 SD_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00045 SD_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00361 SD_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00707 SD_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00157 SD_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00227 SD_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00416 SD_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00088 SD_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0017 SD_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00372 SD_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00132 SD_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00287 SD_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00508 SD_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00083 SD_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00378 SD_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00867 SD_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0005 SD_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00279 SD_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.04506 SD_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000159 SD_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00135 SD_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.002002 SD_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00165 SD_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.004 SD_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.3189 SD_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00043 SD_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001174 SD_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.004377 SD_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00235 SD_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00093 SD_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02542 SD_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000443 SD_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.003734 SD_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.028475 SD_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00162 SD_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0006 SD_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02504 SD_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001557 SD_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008905 SD_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007098 SD_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00241 SD_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00039 SD_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02605 SD_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000819 SD_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005456 SD_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003232 SD_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00145 SD_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00025 SD_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02264 SD_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001251 SD_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001859 SD_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001478 SD_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00089 SD_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00016 SD_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.02521 SD_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000813 SD_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001344 SD_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000918 SD_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00054 SD_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0001 SD_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.03509 SD_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00049 SD_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001514 SD_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000995 SD_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00033 SD_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00006 SD_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001266 SD_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002525 SD_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001536 SD_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.0002 SD_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00004 SD_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.16667 SD_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00226 SD_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00198 SD_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002894 SD_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00012 SD_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00002 SD_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001565 SD_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002545 SD_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00007 SD_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00001 SD_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002069 SD_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000761 TN_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00129 TN_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00254 TN_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00001 TN_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0009 TN_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00789 TN_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0001 TN_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00298 TN_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.01971 TN_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.0002 TN_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00723 TN_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01158 TN_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00044 TN_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00404 TN_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00558 TN_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00104 TN_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00209 TN_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00288 TN_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00077 TN_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00196 TN_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00351 TN_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00117 TN_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00343 TN_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00392 TN_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00075 TN_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00305 TN_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.0051 TN_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00043 TN_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00277 TN_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00359 TN_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000103 TN_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000876 TN_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001316 TN_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00128 TN_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00249 TN_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00389 TN_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000199 TN_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000874 TN_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.004363 TN_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00131 TN_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00223 TN_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00116 TN_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000443 TN_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001714 TN_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.015877 TN_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00121 TN_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00197 TN_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00075 TN_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.000991 TN_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006046 TN_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00857 TN_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0019 TN_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00174 TN_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00049 TN_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000744 TN_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004532 TN_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003807 TN_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00107 TN_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00153 TN_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00032 TN_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001161 TN_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002496 TN_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002337 TN_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00062 TN_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00133 TN_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0002 TN_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000752 TN_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00176 TN_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001762 TN_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00035 TN_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00114 TN_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00013 TN_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000428 TN_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00161 TN_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001325 TN_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0002 TN_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00098 TN_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00008 TN_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001079 TN_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00288 TN_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002135 TN_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00011 TN_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00084 TN_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00005 TN_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00131 TN_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00207 TN_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001432 TN_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00006 TN_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00071 TN_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00003 TN_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001086 TN_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001789 TN_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001476 TN_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00003 TN_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0006 TN_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00002 TN_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001736 TN_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001541 TN_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000493 TX_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00113 TX_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00277 TX_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00018 TX_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00168 TX_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00728 TX_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00035 TX_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00398 TX_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02192 TX_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00032 TX_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00895 TX_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.04049 TX_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00014 TX_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00648 TX_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01498 TX_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00222 TX_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.004 TX_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.01506 TX_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00111 TX_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0026 TX_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00838 TX_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00204 TX_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00504 TX_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00501 TX_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00107 TX_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00456 TX_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00426 TX_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00052 TX_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00306 TX_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00355 TX_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000351 TX_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00066 TX_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001491 TX_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00104 TX_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00232 TX_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00289 TX_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000315 TX_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001449 TX_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.004336 TX_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00364 TX_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00144 TX_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00231 TX_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000134 TX_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002508 TX_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.014136 TX_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00192 TX_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00094 TX_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00181 TX_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002138 TX_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007323 TX_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.021222 TX_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00393 TX_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00062 TX_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00142 TX_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001132 TX_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.006671 TX_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.014076 TX_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00181 TX_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0004 TX_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0011 TX_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001871 TX_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.003488 TX_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.007179 TX_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00088 TX_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00026 TX_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00084 TX_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001058 TX_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00224 TX_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.004512 TX_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00042 TX_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00016 TX_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00063 TX_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000504 TX_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00245 TX_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002027 TX_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0002 TX_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0001 TX_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00048 TX_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.000919 TX_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00367 TX_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001537 TX_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00009 TX_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00006 TX_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00036 TX_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.003285 TX_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002035 TX_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00117 TX_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00004 TX_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00004 TX_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00026 TX_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001681 TX_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001398 TX_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00088 TX_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00002 TX_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00002 TX_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0002 TX_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.003147 TX_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000942 TX_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000661 UT_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00123 UT_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00337 UT_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00036 UT_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00107 UT_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0088 UT_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00021 UT_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00492 UT_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0261 UT_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00023 UT_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01034 UT_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01789 UT_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0005 UT_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00684 UT_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00696 UT_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00204 UT_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00389 UT_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00412 UT_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00102 UT_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00322 UT_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.01074 UT_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00142 UT_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00316 UT_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00498 UT_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00083 UT_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00507 UT_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00845 UT_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00066 UT_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00345 UT_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01029 UT_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000213 UT_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000694 UT_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001256 UT_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00245 UT_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00316 UT_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01889 UT_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000232 UT_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001132 UT_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006387 UT_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00278 UT_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00184 UT_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01165 UT_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000497 UT_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.0028 UT_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.017443 UT_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00194 UT_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00128 UT_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.01172 UT_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001939 UT_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007769 UT_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.011846 UT_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00303 UT_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00088 UT_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.01178 UT_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001034 UT_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.008478 UT_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004383 UT_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00176 UT_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0006 UT_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.01182 UT_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00133 UT_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00317 UT_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001769 UT_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00144 UT_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0004 UT_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.01183 UT_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000794 UT_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002083 UT_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001111 UT_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00116 UT_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00026 UT_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.01185 UT_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000627 UT_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002351 UT_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.003511 UT_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00093 UT_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00017 UT_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.01187 UT_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002057 UT_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003062 UT_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001707 UT_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00074 UT_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00011 UT_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.01192 UT_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002277 UT_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002061 UT_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001134 UT_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00059 UT_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00007 UT_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.01183 UT_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002119 UT_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001843 UT_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002353 UT_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00046 UT_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00005 UT_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.01198 UT_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002405 UT_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001107 UT_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000944 VT_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.0017 VT_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00247 VT_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00001 VT_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00125 VT_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00477 VT_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0002 VT_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00292 VT_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.03451 VT_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00026 VT_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01249 VT_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.04216 VT_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00219 VT_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0224 VT_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.03544 VT_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00612 VT_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.01165 VT_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.23011 VT_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0019 VT_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00468 VT_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00197 VT_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00401 VT_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00126 VT_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00452 VT_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0016 VT_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0056 VT_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000197 VT_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001054 VT_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00181 VT_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00817 VT_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0081 VT_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.0078 VT_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000255 VT_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001674 VT_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001861 VT_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00745 VT_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00452 VT_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.02505 VT_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002164 VT_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001813 VT_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.018998 VT_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00311 VT_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0033 VT_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.02503 VT_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.005579 VT_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00721 VT_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.023948 VT_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00395 VT_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00234 VT_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.02676 VT_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001891 VT_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.016304 VT_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00579 VT_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00211 VT_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00162 VT_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.02283 VT_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001636 VT_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.01038 VT_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004561 VT_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00365 VT_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00108 VT_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.03093 VT_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001303 VT_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002904 VT_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00139 VT_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0007 VT_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.02174 VT_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00124 VT_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001567 VT_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00023 VT_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00046 VT_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.03571 VT_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.005451 VT_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001934 VT_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00012 VT_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00029 VT_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.007488 VT_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001831 VT_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00006 VT_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00019 VT_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002468 VT_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002651 VT_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00003 VT_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00012 VT_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002674 VT_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001463 VA_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00097 VA_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00199 VA_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00003 VA_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00261 VA_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0094 VA_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00012 VA_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00401 VA_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0228 VA_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00062 VA_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01203 VA_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.02094 VA_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00128 VA_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00946 VA_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01017 VA_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00305 VA_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00541 VA_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00649 VA_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00134 VA_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00295 VA_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00408 VA_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00129 VA_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00434 VA_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00606 VA_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00148 VA_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00471 VA_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00769 VA_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00111 VA_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0053 VA_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01648 VA_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00012 VA_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000434 VA_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000693 VA_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00401 VA_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00434 VA_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.04319 VA_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000622 VA_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.002047 VA_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.005586 VA_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00462 VA_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00232 VA_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.016 VA_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001259 VA_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002908 VA_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.015722 VA_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00264 VA_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00159 VA_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.01605 VA_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002937 VA_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008472 VA_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.014726 VA_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00302 VA_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00108 VA_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.01609 VA_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001158 VA_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.009395 VA_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.005486 VA_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0031 VA_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00072 VA_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.01611 VA_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001276 VA_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.004512 VA_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002842 VA_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00237 VA_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00047 VA_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.01613 VA_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001411 VA_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002371 VA_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001399 VA_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00139 VA_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0003 VA_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.01614 VA_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001037 VA_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002039 VA_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001302 VA_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00101 VA_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00019 VA_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.01613 VA_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.0031 VA_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002803 VA_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001855 VA_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00073 VA_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00012 VA_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.01614 VA_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004371 VA_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002649 VA_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002047 VA_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00051 VA_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00008 VA_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.01617 VA_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00201 VA_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002264 VA_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.003866 VA_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00035 VA_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00005 VA_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.01609 VA_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0025 VA_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001135 VA_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000737 WA_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00096 WA_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00221 WA_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00001 WA_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0018 WA_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01002 WA_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00008 WA_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00394 WA_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02819 WA_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00011 WA_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01071 WA_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01894 WA_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00161 WA_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.01236 WA_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00926 WA_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00323 WA_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00719 WA_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00778 WA_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00136 WA_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00457 WA_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00726 WA_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00134 WA_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0058 WA_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00726 WA_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00044 WA_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00227 WA_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00444 WA_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00035 WA_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00164 WA_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00389 WA_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000082 WA_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00049 WA_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000651 WA_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00461 WA_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00116 WA_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00335 WA_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000108 WA_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001495 WA_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006307 WA_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00422 WA_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00082 WA_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00285 WA_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001601 WA_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002479 WA_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01861 WA_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00256 WA_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00056 WA_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00237 WA_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.003159 WA_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.007684 WA_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.013178 WA_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.0025 WA_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00039 WA_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00197 WA_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001222 WA_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.010957 WA_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004233 WA_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00098 WA_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00027 WA_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00161 WA_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001257 WA_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.006124 WA_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002842 WA_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0008 WA_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00019 WA_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0013 WA_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000414 WA_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.003382 WA_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.002176 WA_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00064 WA_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00013 WA_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00104 WA_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000329 WA_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.002163 WA_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001089 WA_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00052 WA_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00009 WA_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00083 WA_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.003448 WA_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002619 WA_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00139 WA_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00041 WA_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00006 WA_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00065 WA_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.004352 WA_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00091 WA_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.000667 WA_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00033 WA_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00004 WA_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00051 WA_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001897 WA_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.000625 WA_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.000519 WA_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00026 WA_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00003 WA_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0004 WA_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002105 WA_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00043 WA_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000405 WV_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00215 WV_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.0036 WV_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.0001 WV_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00074 WV_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01023 WV_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00019 WV_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00387 WV_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.0179 WV_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00016 WV_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00647 WV_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00866 WV_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00075 WV_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00234 WV_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00352 WV_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00187 WV_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0025 WV_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00347 WV_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00099 WV_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00256 WV_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00343 WV_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00044 WV_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00062 WV_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00088 WV_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00019 WV_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00084 WV_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00125 WV_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00014 WV_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00076 WV_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00174 WV_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000195 WV_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001538 WV_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.001708 WV_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00213 WV_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00069 WV_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00194 WV_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00016 WV_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000941 WV_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00702 WV_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00222 WV_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00062 WV_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00146 WV_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000743 WV_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002403 WV_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.014758 WV_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00118 WV_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00056 WV_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00116 WV_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001775 WV_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006141 WV_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.006526 WV_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00078 WV_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00051 WV_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00092 WV_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001047 WV_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.002337 WV_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.002161 WV_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.0003 WV_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00046 WV_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00072 WV_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000424 WV_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002489 WV_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002301 WV_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00022 WV_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00041 WV_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00056 WV_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000185 WV_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001594 WV_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001484 WV_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00016 WV_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00037 WV_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00043 WV_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000133 WV_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001374 WV_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001203 WV_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00011 WV_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00033 WV_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00033 WV_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001784 WV_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00068 WV_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.000517 WV_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00008 WV_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00029 WV_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00025 WV_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002193 WV_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.000616 WV_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.000724 WV_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00006 WV_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00026 WV_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00019 WV_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001193 WV_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.000551 WV_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.000884 WV_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00004 WV_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00023 WV_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00014 WV_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000677 WV_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.000493 WV_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00066 WI_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00089 WI_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00164 WI_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00001 WI_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00164 WI_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00999 WI_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00009 WI_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00376 WI_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.03276 WI_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00042 WI_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01204 WI_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.01817 WI_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00105 WI_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00639 WI_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00814 WI_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00217 WI_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.0032 WI_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00479 WI_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00109 WI_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00186 WI_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0036 WI_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.0012 WI_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00255 WI_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00481 WI_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00058 WI_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00314 WI_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00588 WI_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00052 WI_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00229 WI_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.01154 WI_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000087 WI_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000469 WI_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.0006 WI_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00295 WI_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00217 WI_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.01866 WI_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000419 WI_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001448 WI_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.004587 WI_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00291 WI_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00212 WI_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.01073 WI_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.001043 WI_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.002456 WI_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.023077 WI_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00205 WI_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0017 WI_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.0108 WI_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.002139 WI_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.008456 WI_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.011031 WI_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00229 WI_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00135 WI_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.01085 WI_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.001025 WI_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.008039 WI_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.004072 WI_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00136 WI_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00105 WI_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.01088 WI_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001128 WI_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.002797 WI_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001853 WI_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00125 WI_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.0008 WI_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.01091 WI_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000552 WI_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001654 WI_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001165 WI_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00115 WI_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.0006 WI_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.01094 WI_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000495 WI_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001268 WI_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000974 WI_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00105 WI_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00044 WI_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.01094 WI_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002335 WI_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002213 WI_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001314 WI_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00096 WI_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00033 WI_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.01096 WI_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.002898 WI_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001616 WI_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001398 WI_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00087 WI_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00024 WI_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.01097 WI_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001738 WI_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001303 WI_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.002533 WI_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.0008 WI_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00018 WI_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.01097 WI_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.002012 WI_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001287 WI_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00094 WY_Dose1_jan2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00098 WY_Dose1_jan2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-01-01 period_end_date: 2021-01-31 value: distribution: fixed value: 0.00194 WY_Dose1_feb2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00007 WY_Dose1_feb2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.00193 WY_Dose1_feb2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-02-01 period_end_date: 2021-02-28 value: distribution: fixed value: 0.01153 WY_Dose1_mar2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00012 WY_Dose1_mar2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.00403 WY_Dose1_mar2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-03-01 period_end_date: 2021-03-31 value: distribution: fixed value: 0.02291 WY_Dose1_apr2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00016 WY_Dose1_apr2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00621 WY_Dose1_apr2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-04-01 period_end_date: 2021-04-30 value: distribution: fixed value: 0.00771 WY_Dose1_may2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00024 WY_Dose1_may2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.0022 WY_Dose1_may2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-05-01 period_end_date: 2021-05-31 value: distribution: fixed value: 0.00313 WY_Dose1_jun2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00108 WY_Dose1_jun2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00176 WY_Dose1_jun2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-06-01 period_end_date: 2021-06-30 value: distribution: fixed value: 0.00259 WY_Dose1_jul2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00055 WY_Dose1_jul2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.00158 WY_Dose1_jul2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-07-01 period_end_date: 2021-07-31 value: distribution: fixed value: 0.0027 WY_Dose1_aug2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00094 WY_Dose1_aug2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00202 WY_Dose1_aug2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-08-01 period_end_date: 2021-08-31 value: distribution: fixed value: 0.00293 WY_Dose1_sep2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00068 WY_Dose1_sep2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00305 WY_Dose1_sep2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-09-01 period_end_date: 2021-09-30 value: distribution: fixed value: 0.00465 WY_Dose1_oct2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00053 WY_Dose1_oct2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00217 WY_Dose1_oct2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.00497 WY_Dose3_oct2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000115 WY_Dose3_oct2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000449 WY_Dose3_oct2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-10-01 period_end_date: 2021-10-31 value: distribution: fixed value: 0.000564 WY_Dose1_nov2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00127 WY_Dose1_nov2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00194 WY_Dose1_nov2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.00788 WY_Dose3_nov2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.000162 WY_Dose3_nov2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.001965 WY_Dose3_nov2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-11-01 period_end_date: 2021-11-30 value: distribution: fixed value: 0.006589 WY_Dose1_dec2021_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00139 WY_Dose1_dec2021_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00146 WY_Dose1_dec2021_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00293 WY_Dose3_dec2021_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.000236 WY_Dose3_dec2021_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.00241 WY_Dose3_dec2021_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-12-01 period_end_date: 2021-12-31 value: distribution: fixed value: 0.019258 WY_Dose1_jan2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00115 WY_Dose1_jan2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00117 WY_Dose1_jan2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.00239 WY_Dose3_jan2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.001032 WY_Dose3_jan2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.005535 WY_Dose3_jan2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-01-01 period_end_date: 2022-01-31 value: distribution: fixed value: 0.004936 WY_Dose1_feb2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00168 WY_Dose1_feb2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00092 WY_Dose1_feb2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.00192 WY_Dose3_feb2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.000516 WY_Dose3_feb2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.003403 WY_Dose3_feb2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-02-01 period_end_date: 2022-02-28 value: distribution: fixed value: 0.002668 WY_Dose1_mar2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00116 WY_Dose1_mar2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00072 WY_Dose1_mar2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.00153 WY_Dose3_mar2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.000947 WY_Dose3_mar2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001553 WY_Dose3_mar2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-03-01 period_end_date: 2022-03-31 value: distribution: fixed value: 0.001489 WY_Dose1_apr2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00091 WY_Dose1_apr2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00055 WY_Dose1_apr2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.00118 WY_Dose3_apr2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.000667 WY_Dose3_apr2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001376 WY_Dose3_apr2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-04-01 period_end_date: 2022-04-30 value: distribution: fixed value: 0.001366 WY_Dose1_may2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00071 WY_Dose1_may2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00041 WY_Dose1_may2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.00091 WY_Dose3_may2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.000515 WY_Dose3_may2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001113 WY_Dose3_may2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-05-01 period_end_date: 2022-05-31 value: distribution: fixed value: 0.001144 WY_Dose1_jun2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00055 WY_Dose1_jun2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00031 WY_Dose1_jun2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00069 WY_Dose3_jun2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.001126 WY_Dose3_jun2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.00245 WY_Dose3_jun2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-06-01 period_end_date: 2022-06-30 value: distribution: fixed value: 0.002057 WY_Dose1_jul2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00043 WY_Dose1_jul2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00023 WY_Dose1_jul2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.00052 WY_Dose3_jul2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001345 WY_Dose3_jul2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001902 WY_Dose3_jul2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-07-01 period_end_date: 2022-07-31 value: distribution: fixed value: 0.001688 WY_Dose1_aug2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00033 WY_Dose1_aug2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00017 WY_Dose1_aug2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.00039 WY_Dose3_aug2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001075 WY_Dose3_aug2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.001447 WY_Dose3_aug2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-08-01 period_end_date: 2022-08-31 value: distribution: fixed value: 0.0029 WY_Dose1_sep2022_age0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu1age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00025 WY_Dose1_sep2022_age18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu1age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00012 WY_Dose1_sep2022_age65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu1age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.00029 WY_Dose3_sep2022_0to17: - template: Reduce + template: SinglePeriodModifier parameter: nu3age0to17 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001513 WY_Dose3_sep2022_18to64: - template: Reduce + template: SinglePeriodModifier parameter: nu3age18to64 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001191 WY_Dose3_sep2022_65to100: - template: Reduce + template: SinglePeriodModifier parameter: nu3age65to100 - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2022-09-01 period_end_date: 2022-09-03 value: distribution: fixed value: 0.001099 local_variance_chi3: - template: Stacked + template: StackedModifier scenarios: ["local_variance_chi3_NEW"] NPI: - template: Stacked + template: StackedModifier scenarios: ["school_year", "holiday_season2021", "AL_lockdownA", "AL_open_p1A", "AL_open_p2A", "AL_open_p2B", "AL_open_p3A", "AL_open_p4A", "AL_open_p5A", "AK_lockdownA", "AK_open_p1A", "AK_open_p2A", "AK_open_p4A", "AK_open_p3A", "AK_open_p4B", "AZ_lockdownA", "AZ_open_p2A", "AZ_open_p1A", "AZ_open_p2B", "AZ_open_p2C", "AZ_open_p3A", "AZ_open_p4A", "AR_sdA", "AR_open_p1A", "AR_open_p2A", "AR_open_p2B", "AR_open_p2C", "AR_open_p2D", "AR_open_p3A", "AR_open_p4A", "CA_lockdownA", "CA_open_p2A", "CA_open_p2B", "CA_open_p1A", "CA_open_p1B", "CA_lockdownB", "CA_lockdownC", "CA_open_p1C", "CA_open_p2C", "CA_open_p3A", "CA_open_p4A", "CA_open_p5A", "CA_open_p5B", "CO_lockdownA", "CO_open_p2A", "CO_open_p1A", "CO_open_p2B", "CO_open_p1B", "CO_lockdownB", "CO_open_p1C", "CO_open_p3A", "CO_open_p3B", "CO_open_p4A", "CO_open_p5A", "CO_open_p6A", "CO_open_p7A", "CT_lockdownA", "CT_open_p1A", "CT_open_p2A", "CT_open_p3A", "CT_open_p2B", "CT_open_p2C", "CT_open_p4A", "CT_open_p5A", "CT_open_p5B", "CT_open_p6A", "CT_open_p7A", "DE_lockdownA", "DE_open_p1A", "DE_open_p2A", "DE_open_p1B", "DE_open_p1C", "DE_open_p1D", "DE_open_p2B", "DE_open_p2C", "DE_open_p2D", "DE_open_p3A", "DE_open_p4A", "DC_lockdownA", "DC_open_p1A", "DC_open_p2A", "DC_open_p2B", "DC_open_p2C", "DC_open_p1B", "DC_open_p2D", "DC_open_p2E", "DC_open_p3A", "DC_open_p4A", "DC_open_p5A", "DC_open_p6A", "DC_open_p4B", "DC_open_p7A", "FL_lockdownA", "FL_open_p1A", "FL_open_p2A", "FL_open_p3A", "FL_open_p4A", "FL_open_p5A", "FL_open_p6A", "FL_open_p7A", "GA_lockdownA", "GA_open_p1A", "GA_open_p2A", "GA_open_p3A", "GA_open_p3B", "GA_open_p3C", "GA_open_p4A", "GA_open_p5A", "GA_open_p5B", "HI_lockdownA", "HI_open_p1A", "HI_open_p2A", "HI_open_p1B", "HI_open_p2B", "HI_open_p1C", "HI_open_p2C", "HI_open_p2D", "HI_open_p3A", "HI_open_p3B", "HI_open_p3C", "HI_open_p3D", "HI_open_p4A", "HI_open_p5A", "HI_open_p5B", "HI_open_p6A", "HI_open_p6B", "ID_lockdownA", "ID_open_p1A", "ID_open_p2A", "ID_open_p3A", "ID_open_p4A", "ID_open_p3B", "ID_open_p2B", "ID_open_p2C", "ID_open_p3C", "ID_open_p4B", "IL_lockdownA", "IL_open_p3A", "IL_open_p4A", "IL_open_p3B", "IL_open_p3C", "IL_open_p2A", "IL_open_p2B", "IL_open_p3D", "IL_open_p4B", "IL_open_p5A", "IL_open_p6A", "IL_open_p5B", "IL_open_p7A", "IN_lockdownA", "IN_open_p1A", "IN_open_p2A", "IN_open_p3A", "IN_open_p4A", "IN_open_p5A", "IN_open_p2B", "IN_open_p1B", "IN_open_p2C", "IN_open_p3B", "IN_open_p4B", "IN_open_p5B", "IN_open_p5C", "IA_sdA", "IA_open_p1A", "IA_open_p2A", "IA_open_p3A", "IA_open_p2B", "IA_open_p3B", "IA_open_p3C", "IA_open_p3D", "IA_open_p3E", "IA_open_p4A", "KS_lockdownA", "KS_open_p1A", "KS_open_p2A", "KS_open_p3A", "KS_open_p3B", "KS_open_p4A", "KS_open_p4B", "KS_open_p4C", "KY_lockdownA", "KY_open_p1A", "KY_open_p2A", "KY_open_p3A", "KY_open_p2B", "KY_open_p3B", "KY_open_p2C", "KY_open_p3C", "KY_open_p3D", "KY_open_p4A", "KY_open_p4B", "KY_open_p5A", "KY_open_p5B", "KY_open_p6A", "LA_lockdownA", "LA_open_p1A", "LA_open_p2A", "LA_open_p2B", "LA_open_p3A", "LA_open_p2C", "LA_open_p3B", "LA_open_p3C", "LA_open_p4A", "LA_open_p5A", "LA_open_p5B", "LA_open_p4B", "ME_lockdownA", "ME_open_p1A", "ME_open_p2A", "ME_open_p3A", "ME_open_p4A", "ME_open_p3B", "ME_open_p4B", "ME_open_p4C", "ME_open_p5A", "ME_open_p6A", "MD_lockdownA", "MD_open_p1A", "MD_open_p2A", "MD_open_p3A", "MD_open_p2B", "MD_open_p2C", "MD_open_p2D", "MD_open_p4A", "MD_open_p5A", "MD_open_p6A", "MD_open_p7A", "MD_open_p8A", "MA_lockdownA", "MA_open_p1A", "MA_open_p2A", "MA_open_p3A", "MA_open_p3B", "MA_open_p3C", "MA_open_p3D", "MA_open_p2B", "MA_open_p2C", "MA_open_p3E", "MA_open_p4A", "MA_open_p5A", "MA_open_p5B", "MA_open_p6A", "MI_lockdownA", "MI_open_p2A", "MI_open_p1A", "MI_open_p2B", "MI_open_p2C", "MI_open_p1B", "MI_open_p2D", "MI_open_p2E", "MI_open_p2F", "MI_open_p3A", "MI_open_p3B", "MI_open_p4A", "MI_open_p5A", "MI_open_p6A", "MN_lockdownA", "MN_open_p1A", "MN_open_p2A", "MN_open_p3A", "MN_open_p3B", "MN_open_p1B", "MN_open_p2B", "MN_open_p3C", "MN_open_p3D", "MN_open_p4A", "MN_open_p4B", "MN_open_p4C", "MN_open_p5A", "MN_open_p5B", "MS_lockdownA", "MS_open_p1A", "MS_open_p2A", "MS_open_p3A", "MS_open_p4A", "MS_open_p3B", "MS_open_p3C", "MS_open_p5A", "MS_open_p5B", "MS_open_p5C", "MO_lockdownA", "MO_open_p3A", "MO_open_p4A", "MO_open_p5A", "MT_lockdownA", "MT_open_p1A", "MT_open_p2A", "MT_open_p2B", "MT_open_p3A", "MT_open_p4A", "NE_sdA", "NE_open_p1A", "NE_open_p2A", "NE_open_p3A", "NE_open_p4A", "NE_open_p2B", "NE_open_p2C", "NE_open_p2D", "NE_open_p3B", "NE_open_p4B", "NE_open_p4C", "NV_lockdownA", "NV_open_p1A", "NV_open_p3A", "NV_open_p2A", "NV_open_p3B", "NV_open_p2B", "NV_open_p3C", "NV_open_p4A", "NV_open_p4B", "NV_open_p5A", "NV_open_p5B", "NV_open_p6A", "NV_open_p7A", "NV_open_p7B", "NH_lockdownA", "NH_open_p1A", "NH_open_p2A", "NH_open_p3A", "NH_open_p3B", "NH_open_p3C", "NH_open_p3D", "NH_open_p3E", "NH_open_p4A", "NH_open_p4B", "NJ_lockdownA", "NJ_open_p1A", "NJ_open_p2A", "NJ_open_p3A", "NJ_open_p2B", "NJ_open_p2C", "NJ_open_p2D", "NJ_open_p3B", "NJ_open_p3C", "NJ_open_p4A", "NJ_open_p5A", "NJ_open_p6A", "NJ_open_p7A", "NJ_open_p8A", "NJ_open_p9A", "NM_lockdownA", "NM_open_p2A", "NM_open_p1A", "NM_open_p2B", "NM_open_p2C", "NM_lockdownB", "NM_open_p1B", "NM_open_p2D", "NM_open_p3A", "NM_open_p3B", "NM_open_p4A", "NM_open_p5A", "NM_open_p4B", "NM_open_p6A", "NM_open_p6B", "NM_open_p6C", "NM_open_p7A", "NY_lockdownA", "NY_open_p1A", "NY_open_p1B", "NY_open_p2A", "NY_open_p3A", "NY_open_p3B", "NY_open_p2B", "NY_open_p2C", "NY_open_p2D", "NY_open_p3C", "NY_open_p3D", "NY_open_p4A", "NY_open_p5A", "NY_open_p6A", "NY_open_p7A", "NY_open_p7B", "NC_lockdownA", "NC_open_p1A", "NC_open_p2A", "NC_open_p2B", "NC_open_p3A", "NC_open_p2C", "NC_open_p4A", "NC_open_p5A", "NC_open_p5B", "NC_open_p6A", "ND_sdA", "ND_open_p1A", "ND_open_p3A", "ND_open_p2A", "ND_open_p2B", "ND_open_p2C", "ND_open_p2D", "ND_open_p4A", "OH_lockdownA", "OH_open_p1A", "OH_open_p2A", "OH_open_p3A", "OH_open_p3B", "OH_open_p2B", "OH_open_p3C", "OH_open_p4A", "OH_open_p4B", "OH_open_p5A", "OH_open_p5B", "OH_open_p6A", "OH_open_p6B", "OK_sdA", "OK_open_p1A", "OK_open_p2A", "OK_open_p3A", "OK_open_p3B", "OK_open_p2B", "OK_open_p2C", "OK_open_p4A", "OR_lockdownA", "OR_open_p1A", "OR_open_p2A", "OR_open_p2B", "OR_open_p2C", "OR_open_p1B", "OR_open_p1C", "OR_open_p2D", "OR_open_p3A", "OR_open_p4A", "OR_open_p4B", "OR_open_p2E", "OR_open_p5A", "OR_open_p6A", "OR_open_p7A", "OR_open_p7B", "PA_lockdownA", "PA_open_p1A", "PA_open_p2A", "PA_open_p2B", "PA_open_p3A", "PA_open_p3B", "PA_open_p1B", "PA_open_p3C", "PA_open_p4A", "PA_open_p5A", "PA_open_p6A", "PA_open_p6B", "PA_open_p7A", "PA_open_p7B", "RI_lockdownA", "RI_open_p1A", "RI_open_p2A", "RI_open_p3A", "RI_open_p2B", "RI_open_p1B", "RI_open_p2C", "RI_open_p2D", "RI_open_p3B", "RI_open_p4A", "RI_open_p5A", "RI_open_p6A", "RI_open_p5B", "RI_open_p7A", "SC_lockdownA", "SC_open_p1A", "SC_open_p2A", "SC_open_p3A", "SC_open_p3B", "SC_open_p4A", "SC_open_p4B", "SC_open_p5A", "SC_open_p5B", "SD_sdA", "SD_open_p4A", "TN_lockdownA", "TN_open_p1A", "TN_open_p2A", "TN_open_p2B", "TN_open_p2C", "TN_open_p3A", "TN_open_p3B", "TN_open_p4A", "TX_lockdownA", "TX_open_p1A", "TX_open_p2A", "TX_open_p2B", "TX_open_p1B", "TX_open_p2C", "TX_open_p3A", "TX_open_p4A", "UT_lockdownA", "UT_open_p1A", "UT_open_p2A", "UT_open_p3A", "UT_open_p3B", "UT_open_p2B", "UT_open_p3C", "UT_open_p4A", "UT_open_p4B", "UT_open_p5A", "UT_open_p5B", "VT_lockdownA", "VT_open_p1A", "VT_open_p2A", "VT_open_p3A", "VT_open_p3B", "VT_open_p2B", "VT_open_p2C", "VT_open_p4A", "VT_open_p5A", "VT_open_p6A", "VA_lockdownA", "VA_open_p1A", "VA_open_p2A", "VA_open_p3A", "VA_open_p2B", "VA_open_p3B", "VA_open_p3C", "VA_open_p2C", "VA_open_p4A", "VA_open_p4B", "VA_open_p5A", "VA_open_p5B", "WA_lockdownA", "WA_open_p1A", "WA_open_p2A", "WA_open_p2B", "WA_open_p2C", "WA_open_p1B", "WA_open_p2D", "WA_open_p3A", "WA_open_p4A", "WA_open_p5A", "WA_open_p6A", "WA_open_p6B", "WA_open_p7A", "WA_open_p8A", "WA_open_p9A", "WA_open_p9B", "WV_lockdownA", "WV_open_p1A", "WV_open_p2A", "WV_open_p3A", "WV_open_p4A", "WV_open_p2B", "WV_open_p3B", "WV_open_p3C", "WV_open_p3D", "WV_open_p4B", "WV_open_p5A", "WV_open_p6A", "WV_open_p6B", "WV_open_p6C", "WI_lockdownA", "WI_open_p1A", "WI_open_p2A", "WI_open_p2B", "WI_open_p1B", "WI_open_p3A", "WI_open_p3B", "WI_open_p4A", "WI_open_p5A", "WI_open_p5B", "WI_open_p5C", "WY_sdA", "WY_open_p1A", "WY_open_p2A", "WY_open_p3A", "WY_open_p4A", "WY_open_p3B", "WY_open_p2B", "WY_open_p2C", "WY_open_p3C", "WY_open_p5A", "WY_open_p5B", "WY_open_p6A", "WY_open_p6B"] seasonal: - template: Stacked + template: StackedModifier scenarios: ["Seas_jan", "Seas_feb", "Seas_mar", "Seas_may", "Seas_jun", "Seas_jul", "Seas_aug", "Seas_sep", "Seas_oct", "Seas_nov", "Seas_dec"] vaccination: - template: Stacked + template: StackedModifier scenarios: ["AL_Dose1_jan2021_age18to64", "AL_Dose1_jan2021_age65to100", "AL_Dose1_feb2021_age0to17", "AL_Dose1_feb2021_age18to64", "AL_Dose1_feb2021_age65to100", "AL_Dose1_mar2021_age0to17", "AL_Dose1_mar2021_age18to64", "AL_Dose1_mar2021_age65to100", "AL_Dose1_apr2021_age0to17", "AL_Dose1_apr2021_age18to64", "AL_Dose1_apr2021_age65to100", "AL_Dose1_may2021_age0to17", "AL_Dose1_may2021_age18to64", "AL_Dose1_may2021_age65to100", "AL_Dose1_jun2021_age0to17", "AL_Dose1_jun2021_age18to64", "AL_Dose1_jun2021_age65to100", "AL_Dose1_jul2021_age0to17", "AL_Dose1_jul2021_age18to64", "AL_Dose1_jul2021_age65to100", "AL_Dose1_aug2021_age0to17", "AL_Dose1_aug2021_age18to64", "AL_Dose1_aug2021_age65to100", "AL_Dose1_sep2021_age0to17", "AL_Dose1_sep2021_age18to64", "AL_Dose1_sep2021_age65to100", "AL_Dose1_oct2021_age0to17", "AL_Dose1_oct2021_age18to64", "AL_Dose1_oct2021_age65to100", "AL_Dose3_oct2021_0to17", "AL_Dose3_oct2021_18to64", "AL_Dose3_oct2021_65to100", "AL_Dose1_nov2021_age0to17", "AL_Dose1_nov2021_age18to64", "AL_Dose1_nov2021_age65to100", "AL_Dose3_nov2021_0to17", "AL_Dose3_nov2021_18to64", "AL_Dose3_nov2021_65to100", "AL_Dose1_dec2021_age0to17", "AL_Dose1_dec2021_age18to64", "AL_Dose1_dec2021_age65to100", "AL_Dose3_dec2021_0to17", "AL_Dose3_dec2021_18to64", "AL_Dose3_dec2021_65to100", "AL_Dose1_jan2022_age0to17", "AL_Dose1_jan2022_age18to64", "AL_Dose1_jan2022_age65to100", "AL_Dose3_jan2022_0to17", "AL_Dose3_jan2022_18to64", "AL_Dose3_jan2022_65to100", "AL_Dose1_feb2022_age0to17", "AL_Dose1_feb2022_age18to64", "AL_Dose1_feb2022_age65to100", "AL_Dose3_feb2022_0to17", "AL_Dose3_feb2022_18to64", "AL_Dose3_feb2022_65to100", "AL_Dose1_mar2022_age0to17", "AL_Dose1_mar2022_age18to64", "AL_Dose1_mar2022_age65to100", "AL_Dose3_mar2022_0to17", "AL_Dose3_mar2022_18to64", "AL_Dose3_mar2022_65to100", "AL_Dose1_apr2022_age0to17", "AL_Dose1_apr2022_age18to64", "AL_Dose1_apr2022_age65to100", "AL_Dose3_apr2022_0to17", "AL_Dose3_apr2022_18to64", "AL_Dose3_apr2022_65to100", "AL_Dose1_may2022_age0to17", "AL_Dose1_may2022_age18to64", "AL_Dose1_may2022_age65to100", "AL_Dose3_may2022_0to17", "AL_Dose3_may2022_18to64", "AL_Dose3_may2022_65to100", "AL_Dose1_jun2022_age0to17", "AL_Dose1_jun2022_age18to64", "AL_Dose1_jun2022_age65to100", "AL_Dose3_jun2022_0to17", "AL_Dose3_jun2022_18to64", "AL_Dose3_jun2022_65to100", "AL_Dose1_jul2022_age0to17", "AL_Dose1_jul2022_age18to64", "AL_Dose1_jul2022_age65to100", "AL_Dose3_jul2022_0to17", "AL_Dose3_jul2022_18to64", "AL_Dose3_jul2022_65to100", "AL_Dose1_aug2022_age0to17", "AL_Dose1_aug2022_age18to64", "AL_Dose1_aug2022_age65to100", "AL_Dose3_aug2022_0to17", "AL_Dose3_aug2022_18to64", "AL_Dose3_aug2022_65to100", "AL_Dose1_sep2022_age0to17", "AL_Dose1_sep2022_age18to64", "AL_Dose1_sep2022_age65to100", "AL_Dose3_sep2022_0to17", "AL_Dose3_sep2022_18to64", "AL_Dose3_sep2022_65to100", "AK_Dose1_jan2021_age18to64", "AK_Dose1_jan2021_age65to100", "AK_Dose1_feb2021_age0to17", "AK_Dose1_feb2021_age18to64", "AK_Dose1_feb2021_age65to100", "AK_Dose1_mar2021_age0to17", "AK_Dose1_mar2021_age18to64", "AK_Dose1_mar2021_age65to100", "AK_Dose1_apr2021_age0to17", "AK_Dose1_apr2021_age18to64", "AK_Dose1_apr2021_age65to100", "AK_Dose1_may2021_age0to17", "AK_Dose1_may2021_age18to64", "AK_Dose1_may2021_age65to100", "AK_Dose1_jun2021_age0to17", "AK_Dose1_jun2021_age18to64", "AK_Dose1_jun2021_age65to100", "AK_Dose1_jul2021_age0to17", "AK_Dose1_jul2021_age18to64", "AK_Dose1_jul2021_age65to100", "AK_Dose1_aug2021_age0to17", "AK_Dose1_aug2021_age18to64", "AK_Dose1_aug2021_age65to100", "AK_Dose1_sep2021_age0to17", "AK_Dose1_sep2021_age18to64", "AK_Dose1_sep2021_age65to100", "AK_Dose1_oct2021_age0to17", "AK_Dose1_oct2021_age18to64", "AK_Dose1_oct2021_age65to100", "AK_Dose3_oct2021_0to17", "AK_Dose3_oct2021_18to64", "AK_Dose3_oct2021_65to100", "AK_Dose1_nov2021_age0to17", "AK_Dose1_nov2021_age18to64", "AK_Dose1_nov2021_age65to100", "AK_Dose3_nov2021_0to17", "AK_Dose3_nov2021_18to64", "AK_Dose3_nov2021_65to100", "AK_Dose1_dec2021_age0to17", "AK_Dose1_dec2021_age18to64", "AK_Dose1_dec2021_age65to100", "AK_Dose3_dec2021_0to17", "AK_Dose3_dec2021_18to64", "AK_Dose3_dec2021_65to100", "AK_Dose1_jan2022_age0to17", "AK_Dose1_jan2022_age18to64", "AK_Dose1_jan2022_age65to100", "AK_Dose3_jan2022_0to17", "AK_Dose3_jan2022_18to64", "AK_Dose3_jan2022_65to100", "AK_Dose1_feb2022_age0to17", "AK_Dose1_feb2022_age18to64", "AK_Dose1_feb2022_age65to100", "AK_Dose3_feb2022_0to17", "AK_Dose3_feb2022_18to64", "AK_Dose3_feb2022_65to100", "AK_Dose1_mar2022_age0to17", "AK_Dose1_mar2022_age18to64", "AK_Dose1_mar2022_age65to100", "AK_Dose3_mar2022_0to17", "AK_Dose3_mar2022_18to64", "AK_Dose3_mar2022_65to100", "AK_Dose1_apr2022_age0to17", "AK_Dose1_apr2022_age18to64", "AK_Dose1_apr2022_age65to100", "AK_Dose3_apr2022_0to17", "AK_Dose3_apr2022_18to64", "AK_Dose3_apr2022_65to100", "AK_Dose1_may2022_age0to17", "AK_Dose1_may2022_age18to64", "AK_Dose1_may2022_age65to100", "AK_Dose3_may2022_0to17", "AK_Dose3_may2022_18to64", "AK_Dose3_may2022_65to100", "AK_Dose1_jun2022_age0to17", "AK_Dose1_jun2022_age18to64", "AK_Dose1_jun2022_age65to100", "AK_Dose3_jun2022_0to17", "AK_Dose3_jun2022_18to64", "AK_Dose3_jun2022_65to100", "AK_Dose1_jul2022_age0to17", "AK_Dose1_jul2022_age18to64", "AK_Dose1_jul2022_age65to100", "AK_Dose3_jul2022_0to17", "AK_Dose3_jul2022_18to64", "AK_Dose3_jul2022_65to100", "AK_Dose1_aug2022_age0to17", "AK_Dose1_aug2022_age18to64", "AK_Dose1_aug2022_age65to100", "AK_Dose3_aug2022_0to17", "AK_Dose3_aug2022_18to64", "AK_Dose3_aug2022_65to100", "AK_Dose1_sep2022_age0to17", "AK_Dose1_sep2022_age18to64", "AK_Dose1_sep2022_age65to100", "AK_Dose3_sep2022_0to17", "AK_Dose3_sep2022_18to64", "AK_Dose3_sep2022_65to100", "AZ_Dose1_jan2021_age18to64", "AZ_Dose1_jan2021_age65to100", "AZ_Dose1_feb2021_age0to17", "AZ_Dose1_feb2021_age18to64", "AZ_Dose1_feb2021_age65to100", "AZ_Dose1_mar2021_age0to17", "AZ_Dose1_mar2021_age18to64", "AZ_Dose1_mar2021_age65to100", "AZ_Dose1_apr2021_age0to17", "AZ_Dose1_apr2021_age18to64", "AZ_Dose1_apr2021_age65to100", "AZ_Dose1_may2021_age0to17", "AZ_Dose1_may2021_age18to64", "AZ_Dose1_may2021_age65to100", "AZ_Dose1_jun2021_age0to17", "AZ_Dose1_jun2021_age18to64", "AZ_Dose1_jun2021_age65to100", "AZ_Dose1_jul2021_age0to17", "AZ_Dose1_jul2021_age18to64", "AZ_Dose1_jul2021_age65to100", "AZ_Dose1_aug2021_age0to17", "AZ_Dose1_aug2021_age18to64", "AZ_Dose1_aug2021_age65to100", "AZ_Dose1_sep2021_age0to17", "AZ_Dose1_sep2021_age18to64", "AZ_Dose1_sep2021_age65to100", "AZ_Dose1_oct2021_age0to17", "AZ_Dose1_oct2021_age18to64", "AZ_Dose1_oct2021_age65to100", "AZ_Dose3_oct2021_0to17", "AZ_Dose3_oct2021_18to64", "AZ_Dose3_oct2021_65to100", "AZ_Dose1_nov2021_age0to17", "AZ_Dose1_nov2021_age18to64", "AZ_Dose1_nov2021_age65to100", "AZ_Dose3_nov2021_0to17", "AZ_Dose3_nov2021_18to64", "AZ_Dose3_nov2021_65to100", "AZ_Dose1_dec2021_age0to17", "AZ_Dose1_dec2021_age18to64", "AZ_Dose1_dec2021_age65to100", "AZ_Dose3_dec2021_0to17", "AZ_Dose3_dec2021_18to64", "AZ_Dose3_dec2021_65to100", "AZ_Dose1_jan2022_age0to17", "AZ_Dose1_jan2022_age18to64", "AZ_Dose1_jan2022_age65to100", "AZ_Dose3_jan2022_0to17", "AZ_Dose3_jan2022_18to64", "AZ_Dose3_jan2022_65to100", "AZ_Dose1_feb2022_age0to17", "AZ_Dose1_feb2022_age18to64", "AZ_Dose1_feb2022_age65to100", "AZ_Dose3_feb2022_0to17", "AZ_Dose3_feb2022_18to64", "AZ_Dose3_feb2022_65to100", "AZ_Dose1_mar2022_age0to17", "AZ_Dose1_mar2022_age18to64", "AZ_Dose1_mar2022_age65to100", "AZ_Dose3_mar2022_0to17", "AZ_Dose3_mar2022_18to64", "AZ_Dose3_mar2022_65to100", "AZ_Dose1_apr2022_age0to17", "AZ_Dose1_apr2022_age18to64", "AZ_Dose1_apr2022_age65to100", "AZ_Dose3_apr2022_0to17", "AZ_Dose3_apr2022_18to64", "AZ_Dose3_apr2022_65to100", "AZ_Dose1_may2022_age0to17", "AZ_Dose1_may2022_age18to64", "AZ_Dose1_may2022_age65to100", "AZ_Dose3_may2022_0to17", "AZ_Dose3_may2022_18to64", "AZ_Dose3_may2022_65to100", "AZ_Dose1_jun2022_age0to17", "AZ_Dose1_jun2022_age18to64", "AZ_Dose1_jun2022_age65to100", "AZ_Dose3_jun2022_0to17", "AZ_Dose3_jun2022_18to64", "AZ_Dose3_jun2022_65to100", "AZ_Dose1_jul2022_age0to17", "AZ_Dose1_jul2022_age18to64", "AZ_Dose1_jul2022_age65to100", "AZ_Dose3_jul2022_0to17", "AZ_Dose3_jul2022_18to64", "AZ_Dose3_jul2022_65to100", "AZ_Dose1_aug2022_age0to17", "AZ_Dose1_aug2022_age18to64", "AZ_Dose1_aug2022_age65to100", "AZ_Dose3_aug2022_0to17", "AZ_Dose3_aug2022_18to64", "AZ_Dose3_aug2022_65to100", "AZ_Dose1_sep2022_age0to17", "AZ_Dose1_sep2022_age18to64", "AZ_Dose1_sep2022_age65to100", "AZ_Dose3_sep2022_0to17", "AZ_Dose3_sep2022_18to64", "AZ_Dose3_sep2022_65to100", "AR_Dose1_jan2021_age18to64", "AR_Dose1_jan2021_age65to100", "AR_Dose1_feb2021_age0to17", "AR_Dose1_feb2021_age18to64", "AR_Dose1_feb2021_age65to100", "AR_Dose1_mar2021_age0to17", "AR_Dose1_mar2021_age18to64", "AR_Dose1_mar2021_age65to100", "AR_Dose1_apr2021_age0to17", "AR_Dose1_apr2021_age18to64", "AR_Dose1_apr2021_age65to100", "AR_Dose1_may2021_age0to17", "AR_Dose1_may2021_age18to64", "AR_Dose1_may2021_age65to100", "AR_Dose1_jun2021_age0to17", "AR_Dose1_jun2021_age18to64", "AR_Dose1_jun2021_age65to100", "AR_Dose1_jul2021_age0to17", "AR_Dose1_jul2021_age18to64", "AR_Dose1_jul2021_age65to100", "AR_Dose1_aug2021_age0to17", "AR_Dose1_aug2021_age18to64", "AR_Dose1_aug2021_age65to100", "AR_Dose1_sep2021_age0to17", "AR_Dose1_sep2021_age18to64", "AR_Dose1_sep2021_age65to100", "AR_Dose1_oct2021_age0to17", "AR_Dose1_oct2021_age18to64", "AR_Dose1_oct2021_age65to100", "AR_Dose3_oct2021_0to17", "AR_Dose3_oct2021_18to64", "AR_Dose3_oct2021_65to100", "AR_Dose1_nov2021_age0to17", "AR_Dose1_nov2021_age18to64", "AR_Dose1_nov2021_age65to100", "AR_Dose3_nov2021_0to17", "AR_Dose3_nov2021_18to64", "AR_Dose3_nov2021_65to100", "AR_Dose1_dec2021_age0to17", "AR_Dose1_dec2021_age18to64", "AR_Dose1_dec2021_age65to100", "AR_Dose3_dec2021_0to17", "AR_Dose3_dec2021_18to64", "AR_Dose3_dec2021_65to100", "AR_Dose1_jan2022_age0to17", "AR_Dose1_jan2022_age18to64", "AR_Dose1_jan2022_age65to100", "AR_Dose3_jan2022_0to17", "AR_Dose3_jan2022_18to64", "AR_Dose3_jan2022_65to100", "AR_Dose1_feb2022_age0to17", "AR_Dose1_feb2022_age18to64", "AR_Dose1_feb2022_age65to100", "AR_Dose3_feb2022_0to17", "AR_Dose3_feb2022_18to64", "AR_Dose3_feb2022_65to100", "AR_Dose1_mar2022_age0to17", "AR_Dose1_mar2022_age18to64", "AR_Dose1_mar2022_age65to100", "AR_Dose3_mar2022_0to17", "AR_Dose3_mar2022_18to64", "AR_Dose3_mar2022_65to100", "AR_Dose1_apr2022_age0to17", "AR_Dose1_apr2022_age18to64", "AR_Dose1_apr2022_age65to100", "AR_Dose3_apr2022_0to17", "AR_Dose3_apr2022_18to64", "AR_Dose3_apr2022_65to100", "AR_Dose1_may2022_age0to17", "AR_Dose1_may2022_age18to64", "AR_Dose1_may2022_age65to100", "AR_Dose3_may2022_0to17", "AR_Dose3_may2022_18to64", "AR_Dose3_may2022_65to100", "AR_Dose1_jun2022_age0to17", "AR_Dose1_jun2022_age18to64", "AR_Dose1_jun2022_age65to100", "AR_Dose3_jun2022_0to17", "AR_Dose3_jun2022_18to64", "AR_Dose3_jun2022_65to100", "AR_Dose1_jul2022_age0to17", "AR_Dose1_jul2022_age18to64", "AR_Dose1_jul2022_age65to100", "AR_Dose3_jul2022_0to17", "AR_Dose3_jul2022_18to64", "AR_Dose3_jul2022_65to100", "AR_Dose1_aug2022_age0to17", "AR_Dose1_aug2022_age18to64", "AR_Dose1_aug2022_age65to100", "AR_Dose3_aug2022_0to17", "AR_Dose3_aug2022_18to64", "AR_Dose3_aug2022_65to100", "AR_Dose1_sep2022_age0to17", "AR_Dose1_sep2022_age18to64", "AR_Dose1_sep2022_age65to100", "AR_Dose3_sep2022_0to17", "AR_Dose3_sep2022_18to64", "AR_Dose3_sep2022_65to100", "CA_Dose1_jan2021_age18to64", "CA_Dose1_jan2021_age65to100", "CA_Dose1_feb2021_age18to64", "CA_Dose1_feb2021_age65to100", "CA_Dose1_mar2021_age0to17", "CA_Dose1_mar2021_age18to64", "CA_Dose1_mar2021_age65to100", "CA_Dose1_apr2021_age0to17", "CA_Dose1_apr2021_age18to64", "CA_Dose1_apr2021_age65to100", "CA_Dose1_may2021_age0to17", "CA_Dose1_may2021_age18to64", "CA_Dose1_may2021_age65to100", "CA_Dose1_jun2021_age0to17", "CA_Dose1_jun2021_age18to64", "CA_Dose1_jun2021_age65to100", "CA_Dose1_jul2021_age0to17", "CA_Dose1_jul2021_age18to64", "CA_Dose1_jul2021_age65to100", "CA_Dose1_aug2021_age0to17", "CA_Dose1_aug2021_age18to64", "CA_Dose1_aug2021_age65to100", "CA_Dose1_sep2021_age0to17", "CA_Dose1_sep2021_age18to64", "CA_Dose1_sep2021_age65to100", "CA_Dose1_oct2021_age0to17", "CA_Dose1_oct2021_age18to64", "CA_Dose1_oct2021_age65to100", "CA_Dose3_oct2021_0to17", "CA_Dose3_oct2021_18to64", "CA_Dose3_oct2021_65to100", "CA_Dose1_nov2021_age0to17", "CA_Dose1_nov2021_age18to64", "CA_Dose1_nov2021_age65to100", "CA_Dose3_nov2021_0to17", "CA_Dose3_nov2021_18to64", "CA_Dose3_nov2021_65to100", "CA_Dose1_dec2021_age0to17", "CA_Dose1_dec2021_age18to64", "CA_Dose1_dec2021_age65to100", "CA_Dose3_dec2021_0to17", "CA_Dose3_dec2021_18to64", "CA_Dose3_dec2021_65to100", "CA_Dose1_jan2022_age0to17", "CA_Dose1_jan2022_age18to64", "CA_Dose1_jan2022_age65to100", "CA_Dose3_jan2022_0to17", "CA_Dose3_jan2022_18to64", "CA_Dose3_jan2022_65to100", "CA_Dose1_feb2022_age0to17", "CA_Dose1_feb2022_age18to64", "CA_Dose1_feb2022_age65to100", "CA_Dose3_feb2022_0to17", "CA_Dose3_feb2022_18to64", "CA_Dose3_feb2022_65to100", "CA_Dose1_mar2022_age0to17", "CA_Dose1_mar2022_age18to64", "CA_Dose1_mar2022_age65to100", "CA_Dose3_mar2022_0to17", "CA_Dose3_mar2022_18to64", "CA_Dose3_mar2022_65to100", "CA_Dose1_apr2022_age0to17", "CA_Dose1_apr2022_age18to64", "CA_Dose1_apr2022_age65to100", "CA_Dose3_apr2022_0to17", "CA_Dose3_apr2022_18to64", "CA_Dose3_apr2022_65to100", "CA_Dose1_may2022_age0to17", "CA_Dose1_may2022_age18to64", "CA_Dose1_may2022_age65to100", "CA_Dose3_may2022_0to17", "CA_Dose3_may2022_18to64", "CA_Dose3_may2022_65to100", "CA_Dose1_jun2022_age0to17", "CA_Dose1_jun2022_age18to64", "CA_Dose1_jun2022_age65to100", "CA_Dose3_jun2022_0to17", "CA_Dose3_jun2022_18to64", "CA_Dose3_jun2022_65to100", "CA_Dose1_jul2022_age0to17", "CA_Dose1_jul2022_age18to64", "CA_Dose1_jul2022_age65to100", "CA_Dose3_jul2022_0to17", "CA_Dose3_jul2022_18to64", "CA_Dose3_jul2022_65to100", "CA_Dose1_aug2022_age0to17", "CA_Dose1_aug2022_age18to64", "CA_Dose1_aug2022_age65to100", "CA_Dose3_aug2022_0to17", "CA_Dose3_aug2022_18to64", "CA_Dose1_sep2022_age0to17", "CA_Dose1_sep2022_age18to64", "CA_Dose1_sep2022_age65to100", "CA_Dose3_sep2022_0to17", "CA_Dose3_sep2022_18to64", "CA_Dose3_sep2022_65to100", "CO_Dose1_jan2021_age18to64", "CO_Dose1_jan2021_age65to100", "CO_Dose1_feb2021_age0to17", "CO_Dose1_feb2021_age18to64", "CO_Dose1_feb2021_age65to100", "CO_Dose1_mar2021_age0to17", "CO_Dose1_mar2021_age18to64", "CO_Dose1_mar2021_age65to100", "CO_Dose1_apr2021_age0to17", "CO_Dose1_apr2021_age18to64", "CO_Dose1_apr2021_age65to100", "CO_Dose1_may2021_age0to17", "CO_Dose1_may2021_age18to64", "CO_Dose1_may2021_age65to100", "CO_Dose1_jun2021_age0to17", "CO_Dose1_jun2021_age18to64", "CO_Dose1_jun2021_age65to100", "CO_Dose1_jul2021_age0to17", "CO_Dose1_jul2021_age18to64", "CO_Dose1_jul2021_age65to100", "CO_Dose1_aug2021_age0to17", "CO_Dose1_aug2021_age18to64", "CO_Dose1_aug2021_age65to100", "CO_Dose1_sep2021_age0to17", "CO_Dose1_sep2021_age18to64", "CO_Dose1_sep2021_age65to100", "CO_Dose1_oct2021_age0to17", "CO_Dose1_oct2021_age18to64", "CO_Dose1_oct2021_age65to100", "CO_Dose3_oct2021_0to17", "CO_Dose3_oct2021_18to64", "CO_Dose3_oct2021_65to100", "CO_Dose1_nov2021_age0to17", "CO_Dose1_nov2021_age18to64", "CO_Dose1_nov2021_age65to100", "CO_Dose3_nov2021_0to17", "CO_Dose3_nov2021_18to64", "CO_Dose3_nov2021_65to100", "CO_Dose1_dec2021_age0to17", "CO_Dose1_dec2021_age18to64", "CO_Dose1_dec2021_age65to100", "CO_Dose3_dec2021_0to17", "CO_Dose3_dec2021_18to64", "CO_Dose3_dec2021_65to100", "CO_Dose1_jan2022_age0to17", "CO_Dose1_jan2022_age18to64", "CO_Dose1_jan2022_age65to100", "CO_Dose3_jan2022_0to17", "CO_Dose3_jan2022_18to64", "CO_Dose3_jan2022_65to100", "CO_Dose1_feb2022_age0to17", "CO_Dose1_feb2022_age18to64", "CO_Dose1_feb2022_age65to100", "CO_Dose3_feb2022_0to17", "CO_Dose3_feb2022_18to64", "CO_Dose3_feb2022_65to100", "CO_Dose1_mar2022_age0to17", "CO_Dose1_mar2022_age18to64", "CO_Dose1_mar2022_age65to100", "CO_Dose3_mar2022_0to17", "CO_Dose3_mar2022_18to64", "CO_Dose3_mar2022_65to100", "CO_Dose1_apr2022_age0to17", "CO_Dose1_apr2022_age18to64", "CO_Dose1_apr2022_age65to100", "CO_Dose3_apr2022_0to17", "CO_Dose3_apr2022_18to64", "CO_Dose3_apr2022_65to100", "CO_Dose1_may2022_age0to17", "CO_Dose1_may2022_age18to64", "CO_Dose1_may2022_age65to100", "CO_Dose3_may2022_0to17", "CO_Dose3_may2022_18to64", "CO_Dose3_may2022_65to100", "CO_Dose1_jun2022_age0to17", "CO_Dose1_jun2022_age18to64", "CO_Dose1_jun2022_age65to100", "CO_Dose3_jun2022_0to17", "CO_Dose3_jun2022_18to64", "CO_Dose3_jun2022_65to100", "CO_Dose1_jul2022_age0to17", "CO_Dose1_jul2022_age18to64", "CO_Dose1_jul2022_age65to100", "CO_Dose3_jul2022_0to17", "CO_Dose3_jul2022_18to64", "CO_Dose3_jul2022_65to100", "CO_Dose1_aug2022_age0to17", "CO_Dose1_aug2022_age18to64", "CO_Dose1_aug2022_age65to100", "CO_Dose3_aug2022_0to17", "CO_Dose3_aug2022_18to64", "CO_Dose3_aug2022_65to100", "CO_Dose1_sep2022_age0to17", "CO_Dose1_sep2022_age18to64", "CO_Dose1_sep2022_age65to100", "CO_Dose3_sep2022_0to17", "CO_Dose3_sep2022_18to64", "CO_Dose3_sep2022_65to100", "CT_Dose1_jan2021_age18to64", "CT_Dose1_jan2021_age65to100", "CT_Dose1_feb2021_age0to17", "CT_Dose1_feb2021_age18to64", "CT_Dose1_feb2021_age65to100", "CT_Dose1_mar2021_age0to17", "CT_Dose1_mar2021_age18to64", "CT_Dose1_mar2021_age65to100", "CT_Dose1_apr2021_age0to17", "CT_Dose1_apr2021_age18to64", "CT_Dose1_apr2021_age65to100", "CT_Dose1_may2021_age0to17", "CT_Dose1_may2021_age18to64", "CT_Dose1_may2021_age65to100", "CT_Dose1_jun2021_age0to17", "CT_Dose1_jun2021_age18to64", "CT_Dose1_jun2021_age65to100", "CT_Dose1_jul2021_age0to17", "CT_Dose1_jul2021_age18to64", "CT_Dose1_jul2021_age65to100", "CT_Dose1_aug2021_age0to17", "CT_Dose1_aug2021_age18to64", "CT_Dose1_aug2021_age65to100", "CT_Dose1_sep2021_age0to17", "CT_Dose1_sep2021_age18to64", "CT_Dose1_sep2021_age65to100", "CT_Dose1_oct2021_age0to17", "CT_Dose1_oct2021_age18to64", "CT_Dose1_oct2021_age65to100", "CT_Dose3_oct2021_0to17", "CT_Dose3_oct2021_18to64", "CT_Dose3_oct2021_65to100", "CT_Dose1_nov2021_age0to17", "CT_Dose1_nov2021_age18to64", "CT_Dose1_nov2021_age65to100", "CT_Dose3_nov2021_0to17", "CT_Dose3_nov2021_18to64", "CT_Dose3_nov2021_65to100", "CT_Dose1_dec2021_age0to17", "CT_Dose1_dec2021_age18to64", "CT_Dose1_dec2021_age65to100", "CT_Dose3_dec2021_0to17", "CT_Dose3_dec2021_18to64", "CT_Dose3_dec2021_65to100", "CT_Dose1_jan2022_age0to17", "CT_Dose1_jan2022_age18to64", "CT_Dose1_jan2022_age65to100", "CT_Dose3_jan2022_0to17", "CT_Dose3_jan2022_18to64", "CT_Dose3_jan2022_65to100", "CT_Dose1_feb2022_age0to17", "CT_Dose1_feb2022_age18to64", "CT_Dose1_feb2022_age65to100", "CT_Dose3_feb2022_0to17", "CT_Dose3_feb2022_18to64", "CT_Dose3_feb2022_65to100", "CT_Dose1_mar2022_age0to17", "CT_Dose1_mar2022_age18to64", "CT_Dose1_mar2022_age65to100", "CT_Dose3_mar2022_0to17", "CT_Dose3_mar2022_18to64", "CT_Dose3_mar2022_65to100", "CT_Dose1_apr2022_age0to17", "CT_Dose1_apr2022_age18to64", "CT_Dose1_apr2022_age65to100", "CT_Dose3_apr2022_0to17", "CT_Dose3_apr2022_18to64", "CT_Dose3_apr2022_65to100", "CT_Dose1_may2022_age0to17", "CT_Dose1_may2022_age18to64", "CT_Dose1_may2022_age65to100", "CT_Dose3_may2022_0to17", "CT_Dose3_may2022_18to64", "CT_Dose3_may2022_65to100", "CT_Dose1_jun2022_age0to17", "CT_Dose1_jun2022_age18to64", "CT_Dose1_jun2022_age65to100", "CT_Dose3_jun2022_0to17", "CT_Dose3_jun2022_18to64", "CT_Dose3_jun2022_65to100", "CT_Dose1_jul2022_age0to17", "CT_Dose1_jul2022_age18to64", "CT_Dose1_jul2022_age65to100", "CT_Dose3_jul2022_0to17", "CT_Dose3_jul2022_18to64", "CT_Dose3_jul2022_65to100", "CT_Dose1_aug2022_age0to17", "CT_Dose1_aug2022_age18to64", "CT_Dose3_aug2022_0to17", "CT_Dose3_aug2022_18to64", "CT_Dose1_sep2022_age0to17", "CT_Dose1_sep2022_age18to64", "CT_Dose1_sep2022_age65to100", "CT_Dose3_sep2022_0to17", "CT_Dose3_sep2022_18to64", "CT_Dose3_sep2022_65to100", "DE_Dose1_jan2021_age18to64", "DE_Dose1_jan2021_age65to100", "DE_Dose1_feb2021_age18to64", "DE_Dose1_feb2021_age65to100", "DE_Dose1_mar2021_age18to64", "DE_Dose1_mar2021_age65to100", "DE_Dose1_apr2021_age0to17", "DE_Dose1_apr2021_age18to64", "DE_Dose1_apr2021_age65to100", "DE_Dose1_may2021_age0to17", "DE_Dose1_may2021_age18to64", "DE_Dose1_may2021_age65to100", "DE_Dose1_jun2021_age0to17", "DE_Dose1_jun2021_age18to64", "DE_Dose1_jun2021_age65to100", "DE_Dose1_jul2021_age0to17", "DE_Dose1_jul2021_age18to64", "DE_Dose1_jul2021_age65to100", "DE_Dose1_aug2021_age0to17", "DE_Dose1_aug2021_age18to64", "DE_Dose1_aug2021_age65to100", "DE_Dose1_sep2021_age0to17", "DE_Dose1_sep2021_age18to64", "DE_Dose1_sep2021_age65to100", "DE_Dose1_oct2021_age0to17", "DE_Dose1_oct2021_age18to64", "DE_Dose1_oct2021_age65to100", "DE_Dose3_oct2021_18to64", "DE_Dose3_oct2021_65to100", "DE_Dose1_nov2021_age0to17", "DE_Dose1_nov2021_age18to64", "DE_Dose1_nov2021_age65to100", "DE_Dose3_nov2021_0to17", "DE_Dose3_nov2021_18to64", "DE_Dose3_nov2021_65to100", "DE_Dose1_dec2021_age0to17", "DE_Dose1_dec2021_age18to64", "DE_Dose1_dec2021_age65to100", "DE_Dose3_dec2021_0to17", "DE_Dose3_dec2021_18to64", "DE_Dose3_dec2021_65to100", "DE_Dose1_jan2022_age0to17", "DE_Dose1_jan2022_age18to64", "DE_Dose1_jan2022_age65to100", "DE_Dose3_jan2022_0to17", "DE_Dose3_jan2022_18to64", "DE_Dose3_jan2022_65to100", "DE_Dose1_feb2022_age0to17", "DE_Dose1_feb2022_age18to64", "DE_Dose1_feb2022_age65to100", "DE_Dose3_feb2022_0to17", "DE_Dose3_feb2022_18to64", "DE_Dose3_feb2022_65to100", "DE_Dose1_mar2022_age0to17", "DE_Dose1_mar2022_age18to64", "DE_Dose1_mar2022_age65to100", "DE_Dose3_mar2022_0to17", "DE_Dose3_mar2022_18to64", "DE_Dose3_mar2022_65to100", "DE_Dose1_apr2022_age0to17", "DE_Dose1_apr2022_age18to64", "DE_Dose1_apr2022_age65to100", "DE_Dose3_apr2022_0to17", "DE_Dose3_apr2022_18to64", "DE_Dose3_apr2022_65to100", "DE_Dose1_may2022_age0to17", "DE_Dose1_may2022_age18to64", "DE_Dose1_may2022_age65to100", "DE_Dose3_may2022_0to17", "DE_Dose3_may2022_18to64", "DE_Dose3_may2022_65to100", "DE_Dose1_jun2022_age0to17", "DE_Dose1_jun2022_age18to64", "DE_Dose3_jun2022_0to17", "DE_Dose3_jun2022_18to64", "DE_Dose3_jun2022_65to100", "DE_Dose1_jul2022_age0to17", "DE_Dose1_jul2022_age18to64", "DE_Dose1_jul2022_age65to100", "DE_Dose3_jul2022_0to17", "DE_Dose3_jul2022_18to64", "DE_Dose3_jul2022_65to100", "DE_Dose1_aug2022_age0to17", "DE_Dose1_aug2022_age18to64", "DE_Dose3_aug2022_0to17", "DE_Dose3_aug2022_18to64", "DE_Dose1_sep2022_age0to17", "DE_Dose1_sep2022_age18to64", "DE_Dose3_sep2022_0to17", "DE_Dose3_sep2022_18to64", "DC_Dose1_jan2021_age18to64", "DC_Dose1_jan2021_age65to100", "DC_Dose1_feb2021_age0to17", "DC_Dose1_feb2021_age18to64", "DC_Dose1_feb2021_age65to100", "DC_Dose1_mar2021_age0to17", "DC_Dose1_mar2021_age18to64", "DC_Dose1_mar2021_age65to100", "DC_Dose1_apr2021_age0to17", "DC_Dose1_apr2021_age18to64", "DC_Dose1_apr2021_age65to100", "DC_Dose1_may2021_age0to17", "DC_Dose1_may2021_age18to64", "DC_Dose1_may2021_age65to100", "DC_Dose1_jun2021_age0to17", "DC_Dose1_jun2021_age18to64", "DC_Dose1_jun2021_age65to100", "DC_Dose1_jul2021_age0to17", "DC_Dose1_jul2021_age18to64", "DC_Dose1_jul2021_age65to100", "DC_Dose1_aug2021_age0to17", "DC_Dose1_aug2021_age18to64", "DC_Dose1_aug2021_age65to100", "DC_Dose1_sep2021_age0to17", "DC_Dose1_sep2021_age18to64", "DC_Dose1_sep2021_age65to100", "DC_Dose1_oct2021_age0to17", "DC_Dose1_oct2021_age18to64", "DC_Dose1_oct2021_age65to100", "DC_Dose3_oct2021_0to17", "DC_Dose3_oct2021_18to64", "DC_Dose3_oct2021_65to100", "DC_Dose1_nov2021_age0to17", "DC_Dose1_nov2021_age18to64", "DC_Dose1_nov2021_age65to100", "DC_Dose3_nov2021_0to17", "DC_Dose3_nov2021_18to64", "DC_Dose3_nov2021_65to100", "DC_Dose1_dec2021_age0to17", "DC_Dose1_dec2021_age18to64", "DC_Dose1_dec2021_age65to100", "DC_Dose3_dec2021_0to17", "DC_Dose3_dec2021_18to64", "DC_Dose3_dec2021_65to100", "DC_Dose1_jan2022_age0to17", "DC_Dose1_jan2022_age18to64", "DC_Dose1_jan2022_age65to100", "DC_Dose3_jan2022_0to17", "DC_Dose3_jan2022_18to64", "DC_Dose3_jan2022_65to100", "DC_Dose1_feb2022_age0to17", "DC_Dose1_feb2022_age18to64", "DC_Dose1_feb2022_age65to100", "DC_Dose3_feb2022_0to17", "DC_Dose3_feb2022_18to64", "DC_Dose3_feb2022_65to100", "DC_Dose1_mar2022_age0to17", "DC_Dose1_mar2022_age18to64", "DC_Dose1_mar2022_age65to100", "DC_Dose3_mar2022_0to17", "DC_Dose3_mar2022_18to64", "DC_Dose3_mar2022_65to100", "DC_Dose1_apr2022_age0to17", "DC_Dose1_apr2022_age18to64", "DC_Dose1_apr2022_age65to100", "DC_Dose3_apr2022_0to17", "DC_Dose3_apr2022_18to64", "DC_Dose3_apr2022_65to100", "DC_Dose1_may2022_age0to17", "DC_Dose1_may2022_age18to64", "DC_Dose1_may2022_age65to100", "DC_Dose3_may2022_0to17", "DC_Dose3_may2022_18to64", "DC_Dose3_may2022_65to100", "DC_Dose1_jun2022_age0to17", "DC_Dose1_jun2022_age18to64", "DC_Dose3_jun2022_0to17", "DC_Dose3_jun2022_18to64", "DC_Dose1_jul2022_age0to17", "DC_Dose1_jul2022_age18to64", "DC_Dose3_jul2022_0to17", "DC_Dose3_jul2022_18to64", "DC_Dose1_aug2022_age0to17", "DC_Dose1_aug2022_age18to64", "DC_Dose3_aug2022_0to17", "DC_Dose3_aug2022_18to64", "DC_Dose1_sep2022_age0to17", "DC_Dose3_sep2022_0to17", "DC_Dose3_sep2022_18to64", "FL_Dose1_jan2021_age18to64", "FL_Dose1_jan2021_age65to100", "FL_Dose1_feb2021_age0to17", "FL_Dose1_feb2021_age18to64", "FL_Dose1_feb2021_age65to100", "FL_Dose1_mar2021_age0to17", "FL_Dose1_mar2021_age18to64", "FL_Dose1_mar2021_age65to100", "FL_Dose1_apr2021_age0to17", "FL_Dose1_apr2021_age18to64", "FL_Dose1_apr2021_age65to100", "FL_Dose1_may2021_age0to17", "FL_Dose1_may2021_age18to64", "FL_Dose1_may2021_age65to100", "FL_Dose1_jun2021_age0to17", "FL_Dose1_jun2021_age18to64", "FL_Dose1_jun2021_age65to100", "FL_Dose1_jul2021_age0to17", "FL_Dose1_jul2021_age18to64", "FL_Dose1_jul2021_age65to100", "FL_Dose1_aug2021_age0to17", "FL_Dose1_aug2021_age18to64", "FL_Dose1_aug2021_age65to100", "FL_Dose1_sep2021_age0to17", "FL_Dose1_sep2021_age18to64", "FL_Dose1_sep2021_age65to100", "FL_Dose1_oct2021_age0to17", "FL_Dose1_oct2021_age18to64", "FL_Dose1_oct2021_age65to100", "FL_Dose3_oct2021_0to17", "FL_Dose3_oct2021_18to64", "FL_Dose3_oct2021_65to100", "FL_Dose1_nov2021_age0to17", "FL_Dose1_nov2021_age18to64", "FL_Dose1_nov2021_age65to100", "FL_Dose3_nov2021_0to17", "FL_Dose3_nov2021_18to64", "FL_Dose3_nov2021_65to100", "FL_Dose1_dec2021_age0to17", "FL_Dose1_dec2021_age18to64", "FL_Dose1_dec2021_age65to100", "FL_Dose3_dec2021_0to17", "FL_Dose3_dec2021_18to64", "FL_Dose3_dec2021_65to100", "FL_Dose1_jan2022_age0to17", "FL_Dose1_jan2022_age18to64", "FL_Dose1_jan2022_age65to100", "FL_Dose3_jan2022_0to17", "FL_Dose3_jan2022_18to64", "FL_Dose3_jan2022_65to100", "FL_Dose1_feb2022_age0to17", "FL_Dose1_feb2022_age18to64", "FL_Dose1_feb2022_age65to100", "FL_Dose3_feb2022_0to17", "FL_Dose3_feb2022_18to64", "FL_Dose3_feb2022_65to100", "FL_Dose1_mar2022_age0to17", "FL_Dose1_mar2022_age18to64", "FL_Dose1_mar2022_age65to100", "FL_Dose3_mar2022_0to17", "FL_Dose3_mar2022_18to64", "FL_Dose3_mar2022_65to100", "FL_Dose1_apr2022_age0to17", "FL_Dose1_apr2022_age18to64", "FL_Dose1_apr2022_age65to100", "FL_Dose3_apr2022_0to17", "FL_Dose3_apr2022_18to64", "FL_Dose3_apr2022_65to100", "FL_Dose1_may2022_age0to17", "FL_Dose1_may2022_age18to64", "FL_Dose1_may2022_age65to100", "FL_Dose3_may2022_0to17", "FL_Dose3_may2022_18to64", "FL_Dose3_may2022_65to100", "FL_Dose1_jun2022_age0to17", "FL_Dose1_jun2022_age18to64", "FL_Dose1_jun2022_age65to100", "FL_Dose3_jun2022_0to17", "FL_Dose3_jun2022_18to64", "FL_Dose3_jun2022_65to100", "FL_Dose1_jul2022_age0to17", "FL_Dose1_jul2022_age65to100", "FL_Dose3_jul2022_0to17", "FL_Dose3_jul2022_18to64", "FL_Dose3_jul2022_65to100", "FL_Dose1_aug2022_age0to17", "FL_Dose1_aug2022_age65to100", "FL_Dose3_aug2022_0to17", "FL_Dose3_aug2022_18to64", "FL_Dose3_aug2022_65to100", "FL_Dose1_sep2022_age0to17", "FL_Dose1_sep2022_age65to100", "FL_Dose3_sep2022_0to17", "FL_Dose3_sep2022_18to64", "FL_Dose3_sep2022_65to100", "GA_Dose1_jan2021_age18to64", "GA_Dose1_jan2021_age65to100", "GA_Dose1_feb2021_age18to64", "GA_Dose1_feb2021_age65to100", "GA_Dose1_mar2021_age0to17", "GA_Dose1_mar2021_age18to64", "GA_Dose1_mar2021_age65to100", "GA_Dose1_apr2021_age0to17", "GA_Dose1_apr2021_age18to64", "GA_Dose1_apr2021_age65to100", "GA_Dose1_may2021_age0to17", "GA_Dose1_may2021_age18to64", "GA_Dose1_may2021_age65to100", "GA_Dose1_jun2021_age0to17", "GA_Dose1_jun2021_age18to64", "GA_Dose1_jun2021_age65to100", "GA_Dose1_jul2021_age0to17", "GA_Dose1_jul2021_age18to64", "GA_Dose1_jul2021_age65to100", "GA_Dose1_aug2021_age0to17", "GA_Dose1_aug2021_age18to64", "GA_Dose1_aug2021_age65to100", "GA_Dose1_sep2021_age0to17", "GA_Dose1_sep2021_age18to64", "GA_Dose1_sep2021_age65to100", "GA_Dose1_oct2021_age0to17", "GA_Dose1_oct2021_age18to64", "GA_Dose1_oct2021_age65to100", "GA_Dose3_oct2021_0to17", "GA_Dose3_oct2021_18to64", "GA_Dose3_oct2021_65to100", "GA_Dose1_nov2021_age0to17", "GA_Dose1_nov2021_age18to64", "GA_Dose1_nov2021_age65to100", "GA_Dose3_nov2021_0to17", "GA_Dose3_nov2021_18to64", "GA_Dose3_nov2021_65to100", "GA_Dose1_dec2021_age0to17", "GA_Dose1_dec2021_age18to64", "GA_Dose1_dec2021_age65to100", "GA_Dose3_dec2021_0to17", "GA_Dose3_dec2021_18to64", "GA_Dose3_dec2021_65to100", "GA_Dose1_jan2022_age0to17", "GA_Dose1_jan2022_age18to64", "GA_Dose1_jan2022_age65to100", "GA_Dose3_jan2022_0to17", "GA_Dose3_jan2022_18to64", "GA_Dose3_jan2022_65to100", "GA_Dose1_feb2022_age0to17", "GA_Dose1_feb2022_age18to64", "GA_Dose1_feb2022_age65to100", "GA_Dose3_feb2022_0to17", "GA_Dose3_feb2022_18to64", "GA_Dose3_feb2022_65to100", "GA_Dose1_mar2022_age0to17", "GA_Dose1_mar2022_age18to64", "GA_Dose1_mar2022_age65to100", "GA_Dose3_mar2022_0to17", "GA_Dose3_mar2022_18to64", "GA_Dose3_mar2022_65to100", "GA_Dose1_apr2022_age0to17", "GA_Dose1_apr2022_age18to64", "GA_Dose1_apr2022_age65to100", "GA_Dose3_apr2022_0to17", "GA_Dose3_apr2022_18to64", "GA_Dose3_apr2022_65to100", "GA_Dose1_may2022_age0to17", "GA_Dose1_may2022_age18to64", "GA_Dose1_may2022_age65to100", "GA_Dose3_may2022_0to17", "GA_Dose3_may2022_18to64", "GA_Dose3_may2022_65to100", "GA_Dose1_jun2022_age0to17", "GA_Dose1_jun2022_age18to64", "GA_Dose1_jun2022_age65to100", "GA_Dose3_jun2022_0to17", "GA_Dose3_jun2022_18to64", "GA_Dose3_jun2022_65to100", "GA_Dose1_jul2022_age0to17", "GA_Dose1_jul2022_age18to64", "GA_Dose1_jul2022_age65to100", "GA_Dose3_jul2022_0to17", "GA_Dose3_jul2022_18to64", "GA_Dose3_jul2022_65to100", "GA_Dose1_aug2022_age0to17", "GA_Dose1_aug2022_age18to64", "GA_Dose1_aug2022_age65to100", "GA_Dose3_aug2022_0to17", "GA_Dose3_aug2022_18to64", "GA_Dose3_aug2022_65to100", "GA_Dose1_sep2022_age0to17", "GA_Dose1_sep2022_age18to64", "GA_Dose1_sep2022_age65to100", "GA_Dose3_sep2022_0to17", "GA_Dose3_sep2022_18to64", "GA_Dose3_sep2022_65to100", "HI_Dose1_jan2021_age18to64", "HI_Dose1_jan2021_age65to100", "HI_Dose1_feb2021_age18to64", "HI_Dose1_feb2021_age65to100", "HI_Dose1_mar2021_age18to64", "HI_Dose1_mar2021_age65to100", "HI_Dose1_apr2021_age18to64", "HI_Dose1_apr2021_age65to100", "HI_Dose1_may2021_age0to17", "HI_Dose1_may2021_age18to64", "HI_Dose1_may2021_age65to100", "HI_Dose1_jun2021_age0to17", "HI_Dose1_jun2021_age18to64", "HI_Dose1_jun2021_age65to100", "HI_Dose1_jul2021_age0to17", "HI_Dose1_jul2021_age18to64", "HI_Dose1_jul2021_age65to100", "HI_Dose1_aug2021_age0to17", "HI_Dose1_aug2021_age18to64", "HI_Dose1_sep2021_age0to17", "HI_Dose1_sep2021_age18to64", "HI_Dose1_oct2021_age0to17", "HI_Dose1_oct2021_age18to64", "HI_Dose3_oct2021_18to64", "HI_Dose3_oct2021_65to100", "HI_Dose1_nov2021_age0to17", "HI_Dose1_nov2021_age18to64", "HI_Dose1_nov2021_age65to100", "HI_Dose3_nov2021_18to64", "HI_Dose3_nov2021_65to100", "HI_Dose1_dec2021_age0to17", "HI_Dose1_dec2021_age18to64", "HI_Dose1_dec2021_age65to100", "HI_Dose3_dec2021_0to17", "HI_Dose3_dec2021_18to64", "HI_Dose3_dec2021_65to100", "HI_Dose1_jan2022_age0to17", "HI_Dose1_jan2022_age18to64", "HI_Dose1_jan2022_age65to100", "HI_Dose3_jan2022_0to17", "HI_Dose3_jan2022_18to64", "HI_Dose3_jan2022_65to100", "HI_Dose1_feb2022_age0to17", "HI_Dose1_feb2022_age18to64", "HI_Dose1_feb2022_age65to100", "HI_Dose3_feb2022_0to17", "HI_Dose3_feb2022_18to64", "HI_Dose3_feb2022_65to100", "HI_Dose1_mar2022_age0to17", "HI_Dose1_mar2022_age18to64", "HI_Dose1_mar2022_age65to100", "HI_Dose3_mar2022_0to17", "HI_Dose3_mar2022_18to64", "HI_Dose3_mar2022_65to100", "HI_Dose1_apr2022_age0to17", "HI_Dose1_apr2022_age18to64", "HI_Dose1_apr2022_age65to100", "HI_Dose3_apr2022_0to17", "HI_Dose3_apr2022_18to64", "HI_Dose3_apr2022_65to100", "HI_Dose1_may2022_age0to17", "HI_Dose1_may2022_age18to64", "HI_Dose1_may2022_age65to100", "HI_Dose3_may2022_0to17", "HI_Dose3_may2022_18to64", "HI_Dose1_jun2022_age0to17", "HI_Dose1_jun2022_age18to64", "HI_Dose1_jun2022_age65to100", "HI_Dose3_jun2022_0to17", "HI_Dose3_jun2022_18to64", "HI_Dose1_jul2022_age0to17", "HI_Dose1_jul2022_age18to64", "HI_Dose3_jul2022_0to17", "HI_Dose3_jul2022_18to64", "HI_Dose1_aug2022_age0to17", "HI_Dose1_aug2022_age18to64", "HI_Dose3_aug2022_0to17", "HI_Dose3_aug2022_18to64", "HI_Dose1_sep2022_age0to17", "HI_Dose1_sep2022_age18to64", "HI_Dose3_sep2022_0to17", "HI_Dose3_sep2022_18to64", "ID_Dose1_jan2021_age18to64", "ID_Dose1_jan2021_age65to100", "ID_Dose1_feb2021_age0to17", "ID_Dose1_feb2021_age18to64", "ID_Dose1_feb2021_age65to100", "ID_Dose1_mar2021_age0to17", "ID_Dose1_mar2021_age18to64", "ID_Dose1_mar2021_age65to100", "ID_Dose1_apr2021_age0to17", "ID_Dose1_apr2021_age18to64", "ID_Dose1_apr2021_age65to100", "ID_Dose1_may2021_age0to17", "ID_Dose1_may2021_age18to64", "ID_Dose1_may2021_age65to100", "ID_Dose1_jun2021_age0to17", "ID_Dose1_jun2021_age18to64", "ID_Dose1_jun2021_age65to100", "ID_Dose1_jul2021_age0to17", "ID_Dose1_jul2021_age18to64", "ID_Dose1_jul2021_age65to100", "ID_Dose1_aug2021_age0to17", "ID_Dose1_aug2021_age18to64", "ID_Dose1_aug2021_age65to100", "ID_Dose1_sep2021_age0to17", "ID_Dose1_sep2021_age18to64", "ID_Dose1_sep2021_age65to100", "ID_Dose1_oct2021_age0to17", "ID_Dose1_oct2021_age18to64", "ID_Dose1_oct2021_age65to100", "ID_Dose3_oct2021_0to17", "ID_Dose3_oct2021_18to64", "ID_Dose3_oct2021_65to100", "ID_Dose1_nov2021_age0to17", "ID_Dose1_nov2021_age18to64", "ID_Dose1_nov2021_age65to100", "ID_Dose3_nov2021_0to17", "ID_Dose3_nov2021_18to64", "ID_Dose3_nov2021_65to100", "ID_Dose1_dec2021_age0to17", "ID_Dose1_dec2021_age18to64", "ID_Dose1_dec2021_age65to100", "ID_Dose3_dec2021_0to17", "ID_Dose3_dec2021_18to64", "ID_Dose3_dec2021_65to100", "ID_Dose1_jan2022_age0to17", "ID_Dose1_jan2022_age18to64", "ID_Dose1_jan2022_age65to100", "ID_Dose3_jan2022_0to17", "ID_Dose3_jan2022_18to64", "ID_Dose3_jan2022_65to100", "ID_Dose1_feb2022_age0to17", "ID_Dose1_feb2022_age18to64", "ID_Dose1_feb2022_age65to100", "ID_Dose3_feb2022_0to17", "ID_Dose3_feb2022_18to64", "ID_Dose3_feb2022_65to100", "ID_Dose1_mar2022_age0to17", "ID_Dose1_mar2022_age18to64", "ID_Dose1_mar2022_age65to100", "ID_Dose3_mar2022_0to17", "ID_Dose3_mar2022_18to64", "ID_Dose3_mar2022_65to100", "ID_Dose1_apr2022_age0to17", "ID_Dose1_apr2022_age18to64", "ID_Dose1_apr2022_age65to100", "ID_Dose3_apr2022_0to17", "ID_Dose3_apr2022_18to64", "ID_Dose3_apr2022_65to100", "ID_Dose1_may2022_age0to17", "ID_Dose1_may2022_age18to64", "ID_Dose1_may2022_age65to100", "ID_Dose3_may2022_0to17", "ID_Dose3_may2022_18to64", "ID_Dose3_may2022_65to100", "ID_Dose1_jun2022_age0to17", "ID_Dose1_jun2022_age18to64", "ID_Dose1_jun2022_age65to100", "ID_Dose3_jun2022_0to17", "ID_Dose3_jun2022_18to64", "ID_Dose3_jun2022_65to100", "ID_Dose1_jul2022_age0to17", "ID_Dose1_jul2022_age18to64", "ID_Dose1_jul2022_age65to100", "ID_Dose3_jul2022_0to17", "ID_Dose3_jul2022_18to64", "ID_Dose3_jul2022_65to100", "ID_Dose1_aug2022_age0to17", "ID_Dose1_aug2022_age18to64", "ID_Dose1_aug2022_age65to100", "ID_Dose3_aug2022_0to17", "ID_Dose3_aug2022_18to64", "ID_Dose3_aug2022_65to100", "ID_Dose1_sep2022_age0to17", "ID_Dose1_sep2022_age18to64", "ID_Dose1_sep2022_age65to100", "ID_Dose3_sep2022_0to17", "ID_Dose3_sep2022_18to64", "ID_Dose3_sep2022_65to100", "IL_Dose1_jan2021_age0to17", "IL_Dose1_jan2021_age18to64", "IL_Dose1_jan2021_age65to100", "IL_Dose1_feb2021_age0to17", "IL_Dose1_feb2021_age18to64", "IL_Dose1_feb2021_age65to100", "IL_Dose1_mar2021_age0to17", "IL_Dose1_mar2021_age18to64", "IL_Dose1_mar2021_age65to100", "IL_Dose1_apr2021_age0to17", "IL_Dose1_apr2021_age18to64", "IL_Dose1_apr2021_age65to100", "IL_Dose1_may2021_age0to17", "IL_Dose1_may2021_age18to64", "IL_Dose1_may2021_age65to100", "IL_Dose1_jun2021_age0to17", "IL_Dose1_jun2021_age18to64", "IL_Dose1_jun2021_age65to100", "IL_Dose1_jul2021_age0to17", "IL_Dose1_jul2021_age18to64", "IL_Dose1_jul2021_age65to100", "IL_Dose1_aug2021_age0to17", "IL_Dose1_aug2021_age18to64", "IL_Dose1_aug2021_age65to100", "IL_Dose1_sep2021_age0to17", "IL_Dose1_sep2021_age18to64", "IL_Dose1_sep2021_age65to100", "IL_Dose1_oct2021_age0to17", "IL_Dose1_oct2021_age18to64", "IL_Dose1_oct2021_age65to100", "IL_Dose3_oct2021_0to17", "IL_Dose3_oct2021_18to64", "IL_Dose3_oct2021_65to100", "IL_Dose1_nov2021_age0to17", "IL_Dose1_nov2021_age18to64", "IL_Dose1_nov2021_age65to100", "IL_Dose3_nov2021_0to17", "IL_Dose3_nov2021_18to64", "IL_Dose3_nov2021_65to100", "IL_Dose1_dec2021_age0to17", "IL_Dose1_dec2021_age18to64", "IL_Dose1_dec2021_age65to100", "IL_Dose3_dec2021_0to17", "IL_Dose3_dec2021_18to64", "IL_Dose3_dec2021_65to100", "IL_Dose1_jan2022_age0to17", "IL_Dose1_jan2022_age18to64", "IL_Dose1_jan2022_age65to100", "IL_Dose3_jan2022_0to17", "IL_Dose3_jan2022_18to64", "IL_Dose3_jan2022_65to100", "IL_Dose1_feb2022_age0to17", "IL_Dose1_feb2022_age18to64", "IL_Dose1_feb2022_age65to100", "IL_Dose3_feb2022_0to17", "IL_Dose3_feb2022_18to64", "IL_Dose3_feb2022_65to100", "IL_Dose1_mar2022_age0to17", "IL_Dose1_mar2022_age18to64", "IL_Dose1_mar2022_age65to100", "IL_Dose3_mar2022_0to17", "IL_Dose3_mar2022_18to64", "IL_Dose3_mar2022_65to100", "IL_Dose1_apr2022_age0to17", "IL_Dose1_apr2022_age18to64", "IL_Dose1_apr2022_age65to100", "IL_Dose3_apr2022_0to17", "IL_Dose3_apr2022_18to64", "IL_Dose3_apr2022_65to100", "IL_Dose1_may2022_age0to17", "IL_Dose1_may2022_age18to64", "IL_Dose1_may2022_age65to100", "IL_Dose3_may2022_0to17", "IL_Dose3_may2022_18to64", "IL_Dose3_may2022_65to100", "IL_Dose1_jun2022_age0to17", "IL_Dose1_jun2022_age18to64", "IL_Dose1_jun2022_age65to100", "IL_Dose3_jun2022_0to17", "IL_Dose3_jun2022_18to64", "IL_Dose3_jun2022_65to100", "IL_Dose1_jul2022_age0to17", "IL_Dose1_jul2022_age18to64", "IL_Dose1_jul2022_age65to100", "IL_Dose3_jul2022_0to17", "IL_Dose3_jul2022_18to64", "IL_Dose3_jul2022_65to100", "IL_Dose1_aug2022_age0to17", "IL_Dose1_aug2022_age18to64", "IL_Dose1_aug2022_age65to100", "IL_Dose3_aug2022_0to17", "IL_Dose3_aug2022_18to64", "IL_Dose3_aug2022_65to100", "IL_Dose1_sep2022_age0to17", "IL_Dose1_sep2022_age18to64", "IL_Dose1_sep2022_age65to100", "IL_Dose3_sep2022_0to17", "IL_Dose3_sep2022_18to64", "IL_Dose3_sep2022_65to100", "IN_Dose1_jan2021_age18to64", "IN_Dose1_jan2021_age65to100", "IN_Dose1_feb2021_age18to64", "IN_Dose1_feb2021_age65to100", "IN_Dose1_mar2021_age0to17", "IN_Dose1_mar2021_age18to64", "IN_Dose1_mar2021_age65to100", "IN_Dose1_apr2021_age0to17", "IN_Dose1_apr2021_age18to64", "IN_Dose1_apr2021_age65to100", "IN_Dose1_may2021_age0to17", "IN_Dose1_may2021_age18to64", "IN_Dose1_may2021_age65to100", "IN_Dose1_jun2021_age0to17", "IN_Dose1_jun2021_age18to64", "IN_Dose1_jun2021_age65to100", "IN_Dose1_jul2021_age0to17", "IN_Dose1_jul2021_age18to64", "IN_Dose1_jul2021_age65to100", "IN_Dose1_aug2021_age0to17", "IN_Dose1_aug2021_age18to64", "IN_Dose1_aug2021_age65to100", "IN_Dose1_sep2021_age0to17", "IN_Dose1_sep2021_age18to64", "IN_Dose1_sep2021_age65to100", "IN_Dose1_oct2021_age0to17", "IN_Dose1_oct2021_age18to64", "IN_Dose1_oct2021_age65to100", "IN_Dose3_oct2021_0to17", "IN_Dose3_oct2021_18to64", "IN_Dose3_oct2021_65to100", "IN_Dose1_nov2021_age0to17", "IN_Dose1_nov2021_age18to64", "IN_Dose1_nov2021_age65to100", "IN_Dose3_nov2021_0to17", "IN_Dose3_nov2021_18to64", "IN_Dose3_nov2021_65to100", "IN_Dose1_dec2021_age0to17", "IN_Dose1_dec2021_age18to64", "IN_Dose1_dec2021_age65to100", "IN_Dose3_dec2021_0to17", "IN_Dose3_dec2021_18to64", "IN_Dose3_dec2021_65to100", "IN_Dose1_jan2022_age0to17", "IN_Dose1_jan2022_age18to64", "IN_Dose1_jan2022_age65to100", "IN_Dose3_jan2022_0to17", "IN_Dose3_jan2022_18to64", "IN_Dose3_jan2022_65to100", "IN_Dose1_feb2022_age0to17", "IN_Dose1_feb2022_age18to64", "IN_Dose1_feb2022_age65to100", "IN_Dose3_feb2022_0to17", "IN_Dose3_feb2022_18to64", "IN_Dose3_feb2022_65to100", "IN_Dose1_mar2022_age0to17", "IN_Dose1_mar2022_age18to64", "IN_Dose1_mar2022_age65to100", "IN_Dose3_mar2022_0to17", "IN_Dose3_mar2022_18to64", "IN_Dose3_mar2022_65to100", "IN_Dose1_apr2022_age0to17", "IN_Dose1_apr2022_age18to64", "IN_Dose1_apr2022_age65to100", "IN_Dose3_apr2022_0to17", "IN_Dose3_apr2022_18to64", "IN_Dose3_apr2022_65to100", "IN_Dose1_may2022_age0to17", "IN_Dose1_may2022_age18to64", "IN_Dose1_may2022_age65to100", "IN_Dose3_may2022_0to17", "IN_Dose3_may2022_18to64", "IN_Dose3_may2022_65to100", "IN_Dose1_jun2022_age0to17", "IN_Dose1_jun2022_age18to64", "IN_Dose1_jun2022_age65to100", "IN_Dose3_jun2022_0to17", "IN_Dose3_jun2022_18to64", "IN_Dose3_jun2022_65to100", "IN_Dose1_jul2022_age0to17", "IN_Dose1_jul2022_age18to64", "IN_Dose1_jul2022_age65to100", "IN_Dose3_jul2022_0to17", "IN_Dose3_jul2022_18to64", "IN_Dose3_jul2022_65to100", "IN_Dose1_aug2022_age0to17", "IN_Dose1_aug2022_age18to64", "IN_Dose1_aug2022_age65to100", "IN_Dose3_aug2022_0to17", "IN_Dose3_aug2022_18to64", "IN_Dose3_aug2022_65to100", "IN_Dose1_sep2022_age0to17", "IN_Dose1_sep2022_age18to64", "IN_Dose1_sep2022_age65to100", "IN_Dose3_sep2022_0to17", "IN_Dose3_sep2022_18to64", "IN_Dose3_sep2022_65to100", "IA_Dose1_jan2021_age18to64", "IA_Dose1_jan2021_age65to100", "IA_Dose1_feb2021_age0to17", "IA_Dose1_feb2021_age18to64", "IA_Dose1_feb2021_age65to100", "IA_Dose1_mar2021_age0to17", "IA_Dose1_mar2021_age18to64", "IA_Dose1_mar2021_age65to100", "IA_Dose1_apr2021_age0to17", "IA_Dose1_apr2021_age18to64", "IA_Dose1_apr2021_age65to100", "IA_Dose1_may2021_age0to17", "IA_Dose1_may2021_age18to64", "IA_Dose1_may2021_age65to100", "IA_Dose1_jun2021_age0to17", "IA_Dose1_jun2021_age18to64", "IA_Dose1_jun2021_age65to100", "IA_Dose1_jul2021_age0to17", "IA_Dose1_jul2021_age18to64", "IA_Dose1_jul2021_age65to100", "IA_Dose1_aug2021_age0to17", "IA_Dose1_aug2021_age18to64", "IA_Dose1_aug2021_age65to100", "IA_Dose1_sep2021_age0to17", "IA_Dose1_sep2021_age18to64", "IA_Dose1_sep2021_age65to100", "IA_Dose1_oct2021_age0to17", "IA_Dose1_oct2021_age18to64", "IA_Dose1_oct2021_age65to100", "IA_Dose3_oct2021_0to17", "IA_Dose3_oct2021_18to64", "IA_Dose3_oct2021_65to100", "IA_Dose1_nov2021_age0to17", "IA_Dose1_nov2021_age18to64", "IA_Dose1_nov2021_age65to100", "IA_Dose3_nov2021_0to17", "IA_Dose3_nov2021_18to64", "IA_Dose3_nov2021_65to100", "IA_Dose1_dec2021_age0to17", "IA_Dose1_dec2021_age18to64", "IA_Dose1_dec2021_age65to100", "IA_Dose3_dec2021_0to17", "IA_Dose3_dec2021_18to64", "IA_Dose3_dec2021_65to100", "IA_Dose1_jan2022_age0to17", "IA_Dose1_jan2022_age18to64", "IA_Dose1_jan2022_age65to100", "IA_Dose3_jan2022_0to17", "IA_Dose3_jan2022_18to64", "IA_Dose3_jan2022_65to100", "IA_Dose1_feb2022_age0to17", "IA_Dose1_feb2022_age18to64", "IA_Dose1_feb2022_age65to100", "IA_Dose3_feb2022_0to17", "IA_Dose3_feb2022_18to64", "IA_Dose3_feb2022_65to100", "IA_Dose1_mar2022_age0to17", "IA_Dose1_mar2022_age18to64", "IA_Dose1_mar2022_age65to100", "IA_Dose3_mar2022_0to17", "IA_Dose3_mar2022_18to64", "IA_Dose3_mar2022_65to100", "IA_Dose1_apr2022_age0to17", "IA_Dose1_apr2022_age18to64", "IA_Dose1_apr2022_age65to100", "IA_Dose3_apr2022_0to17", "IA_Dose3_apr2022_18to64", "IA_Dose3_apr2022_65to100", "IA_Dose1_may2022_age0to17", "IA_Dose1_may2022_age18to64", "IA_Dose1_may2022_age65to100", "IA_Dose3_may2022_0to17", "IA_Dose3_may2022_18to64", "IA_Dose3_may2022_65to100", "IA_Dose1_jun2022_age0to17", "IA_Dose1_jun2022_age18to64", "IA_Dose1_jun2022_age65to100", "IA_Dose3_jun2022_0to17", "IA_Dose3_jun2022_18to64", "IA_Dose3_jun2022_65to100", "IA_Dose1_jul2022_age0to17", "IA_Dose1_jul2022_age18to64", "IA_Dose1_jul2022_age65to100", "IA_Dose3_jul2022_0to17", "IA_Dose3_jul2022_18to64", "IA_Dose3_jul2022_65to100", "IA_Dose1_aug2022_age0to17", "IA_Dose1_aug2022_age18to64", "IA_Dose1_aug2022_age65to100", "IA_Dose3_aug2022_0to17", "IA_Dose3_aug2022_18to64", "IA_Dose3_aug2022_65to100", "IA_Dose1_sep2022_age0to17", "IA_Dose1_sep2022_age18to64", "IA_Dose1_sep2022_age65to100", "IA_Dose3_sep2022_0to17", "IA_Dose3_sep2022_18to64", "IA_Dose3_sep2022_65to100", "KS_Dose1_jan2021_age18to64", "KS_Dose1_jan2021_age65to100", "KS_Dose1_feb2021_age18to64", "KS_Dose1_feb2021_age65to100", "KS_Dose1_mar2021_age0to17", "KS_Dose1_mar2021_age18to64", "KS_Dose1_mar2021_age65to100", "KS_Dose1_apr2021_age0to17", "KS_Dose1_apr2021_age18to64", "KS_Dose1_apr2021_age65to100", "KS_Dose1_may2021_age0to17", "KS_Dose1_may2021_age18to64", "KS_Dose1_may2021_age65to100", "KS_Dose1_jun2021_age0to17", "KS_Dose1_jun2021_age18to64", "KS_Dose1_jun2021_age65to100", "KS_Dose1_jul2021_age0to17", "KS_Dose1_jul2021_age18to64", "KS_Dose1_jul2021_age65to100", "KS_Dose1_aug2021_age0to17", "KS_Dose1_aug2021_age18to64", "KS_Dose1_aug2021_age65to100", "KS_Dose1_sep2021_age0to17", "KS_Dose1_sep2021_age18to64", "KS_Dose1_sep2021_age65to100", "KS_Dose1_oct2021_age0to17", "KS_Dose1_oct2021_age18to64", "KS_Dose1_oct2021_age65to100", "KS_Dose3_oct2021_0to17", "KS_Dose3_oct2021_18to64", "KS_Dose3_oct2021_65to100", "KS_Dose1_nov2021_age0to17", "KS_Dose1_nov2021_age18to64", "KS_Dose1_nov2021_age65to100", "KS_Dose3_nov2021_0to17", "KS_Dose3_nov2021_18to64", "KS_Dose3_nov2021_65to100", "KS_Dose1_dec2021_age0to17", "KS_Dose1_dec2021_age18to64", "KS_Dose1_dec2021_age65to100", "KS_Dose3_dec2021_0to17", "KS_Dose3_dec2021_18to64", "KS_Dose3_dec2021_65to100", "KS_Dose1_jan2022_age0to17", "KS_Dose1_jan2022_age18to64", "KS_Dose1_jan2022_age65to100", "KS_Dose3_jan2022_0to17", "KS_Dose3_jan2022_18to64", "KS_Dose3_jan2022_65to100", "KS_Dose1_feb2022_age0to17", "KS_Dose1_feb2022_age18to64", "KS_Dose1_feb2022_age65to100", "KS_Dose3_feb2022_0to17", "KS_Dose3_feb2022_18to64", "KS_Dose3_feb2022_65to100", "KS_Dose1_mar2022_age0to17", "KS_Dose1_mar2022_age18to64", "KS_Dose1_mar2022_age65to100", "KS_Dose3_mar2022_0to17", "KS_Dose3_mar2022_18to64", "KS_Dose3_mar2022_65to100", "KS_Dose1_apr2022_age0to17", "KS_Dose1_apr2022_age18to64", "KS_Dose1_apr2022_age65to100", "KS_Dose3_apr2022_0to17", "KS_Dose3_apr2022_18to64", "KS_Dose3_apr2022_65to100", "KS_Dose1_may2022_age0to17", "KS_Dose1_may2022_age18to64", "KS_Dose1_may2022_age65to100", "KS_Dose3_may2022_0to17", "KS_Dose3_may2022_18to64", "KS_Dose3_may2022_65to100", "KS_Dose1_jun2022_age0to17", "KS_Dose1_jun2022_age18to64", "KS_Dose1_jun2022_age65to100", "KS_Dose3_jun2022_0to17", "KS_Dose3_jun2022_18to64", "KS_Dose3_jun2022_65to100", "KS_Dose1_jul2022_age0to17", "KS_Dose1_jul2022_age18to64", "KS_Dose3_jul2022_0to17", "KS_Dose3_jul2022_18to64", "KS_Dose3_jul2022_65to100", "KS_Dose1_aug2022_age0to17", "KS_Dose1_aug2022_age18to64", "KS_Dose1_aug2022_age65to100", "KS_Dose3_aug2022_0to17", "KS_Dose3_aug2022_18to64", "KS_Dose3_aug2022_65to100", "KS_Dose1_sep2022_age0to17", "KS_Dose1_sep2022_age18to64", "KS_Dose3_sep2022_0to17", "KS_Dose3_sep2022_18to64", "KY_Dose1_jan2021_age18to64", "KY_Dose1_jan2021_age65to100", "KY_Dose1_feb2021_age0to17", "KY_Dose1_feb2021_age18to64", "KY_Dose1_feb2021_age65to100", "KY_Dose1_mar2021_age0to17", "KY_Dose1_mar2021_age18to64", "KY_Dose1_mar2021_age65to100", "KY_Dose1_apr2021_age0to17", "KY_Dose1_apr2021_age18to64", "KY_Dose1_apr2021_age65to100", "KY_Dose1_may2021_age0to17", "KY_Dose1_may2021_age18to64", "KY_Dose1_may2021_age65to100", "KY_Dose1_jun2021_age0to17", "KY_Dose1_jun2021_age18to64", "KY_Dose1_jun2021_age65to100", "KY_Dose1_jul2021_age0to17", "KY_Dose1_jul2021_age18to64", "KY_Dose1_jul2021_age65to100", "KY_Dose1_aug2021_age0to17", "KY_Dose1_aug2021_age18to64", "KY_Dose1_aug2021_age65to100", "KY_Dose1_sep2021_age0to17", "KY_Dose1_sep2021_age18to64", "KY_Dose1_sep2021_age65to100", "KY_Dose1_oct2021_age0to17", "KY_Dose1_oct2021_age18to64", "KY_Dose1_oct2021_age65to100", "KY_Dose3_oct2021_0to17", "KY_Dose3_oct2021_18to64", "KY_Dose3_oct2021_65to100", "KY_Dose1_nov2021_age0to17", "KY_Dose1_nov2021_age18to64", "KY_Dose1_nov2021_age65to100", "KY_Dose3_nov2021_0to17", "KY_Dose3_nov2021_18to64", "KY_Dose3_nov2021_65to100", "KY_Dose1_dec2021_age0to17", "KY_Dose1_dec2021_age18to64", "KY_Dose1_dec2021_age65to100", "KY_Dose3_dec2021_0to17", "KY_Dose3_dec2021_18to64", "KY_Dose3_dec2021_65to100", "KY_Dose1_jan2022_age0to17", "KY_Dose1_jan2022_age18to64", "KY_Dose1_jan2022_age65to100", "KY_Dose3_jan2022_0to17", "KY_Dose3_jan2022_18to64", "KY_Dose3_jan2022_65to100", "KY_Dose1_feb2022_age0to17", "KY_Dose1_feb2022_age18to64", "KY_Dose1_feb2022_age65to100", "KY_Dose3_feb2022_0to17", "KY_Dose3_feb2022_18to64", "KY_Dose3_feb2022_65to100", "KY_Dose1_mar2022_age0to17", "KY_Dose1_mar2022_age18to64", "KY_Dose1_mar2022_age65to100", "KY_Dose3_mar2022_0to17", "KY_Dose3_mar2022_18to64", "KY_Dose3_mar2022_65to100", "KY_Dose1_apr2022_age0to17", "KY_Dose1_apr2022_age18to64", "KY_Dose1_apr2022_age65to100", "KY_Dose3_apr2022_0to17", "KY_Dose3_apr2022_18to64", "KY_Dose3_apr2022_65to100", "KY_Dose1_may2022_age0to17", "KY_Dose1_may2022_age18to64", "KY_Dose1_may2022_age65to100", "KY_Dose3_may2022_0to17", "KY_Dose3_may2022_18to64", "KY_Dose3_may2022_65to100", "KY_Dose1_jun2022_age0to17", "KY_Dose1_jun2022_age18to64", "KY_Dose1_jun2022_age65to100", "KY_Dose3_jun2022_0to17", "KY_Dose3_jun2022_18to64", "KY_Dose3_jun2022_65to100", "KY_Dose1_jul2022_age0to17", "KY_Dose1_jul2022_age18to64", "KY_Dose1_jul2022_age65to100", "KY_Dose3_jul2022_0to17", "KY_Dose3_jul2022_18to64", "KY_Dose3_jul2022_65to100", "KY_Dose1_aug2022_age0to17", "KY_Dose1_aug2022_age18to64", "KY_Dose1_aug2022_age65to100", "KY_Dose3_aug2022_0to17", "KY_Dose3_aug2022_18to64", "KY_Dose3_aug2022_65to100", "KY_Dose1_sep2022_age0to17", "KY_Dose1_sep2022_age18to64", "KY_Dose1_sep2022_age65to100", "KY_Dose3_sep2022_0to17", "KY_Dose3_sep2022_18to64", "KY_Dose3_sep2022_65to100", "LA_Dose1_jan2021_age18to64", "LA_Dose1_jan2021_age65to100", "LA_Dose1_feb2021_age18to64", "LA_Dose1_feb2021_age65to100", "LA_Dose1_mar2021_age0to17", "LA_Dose1_mar2021_age18to64", "LA_Dose1_mar2021_age65to100", "LA_Dose1_apr2021_age0to17", "LA_Dose1_apr2021_age18to64", "LA_Dose1_apr2021_age65to100", "LA_Dose1_may2021_age0to17", "LA_Dose1_may2021_age18to64", "LA_Dose1_may2021_age65to100", "LA_Dose1_jun2021_age0to17", "LA_Dose1_jun2021_age18to64", "LA_Dose1_jun2021_age65to100", "LA_Dose1_jul2021_age0to17", "LA_Dose1_jul2021_age18to64", "LA_Dose1_jul2021_age65to100", "LA_Dose1_aug2021_age0to17", "LA_Dose1_aug2021_age18to64", "LA_Dose1_aug2021_age65to100", "LA_Dose1_sep2021_age0to17", "LA_Dose1_sep2021_age18to64", "LA_Dose1_sep2021_age65to100", "LA_Dose1_oct2021_age0to17", "LA_Dose1_oct2021_age18to64", "LA_Dose1_oct2021_age65to100", "LA_Dose3_oct2021_0to17", "LA_Dose3_oct2021_18to64", "LA_Dose3_oct2021_65to100", "LA_Dose1_nov2021_age0to17", "LA_Dose1_nov2021_age18to64", "LA_Dose1_nov2021_age65to100", "LA_Dose3_nov2021_0to17", "LA_Dose3_nov2021_18to64", "LA_Dose3_nov2021_65to100", "LA_Dose1_dec2021_age0to17", "LA_Dose1_dec2021_age18to64", "LA_Dose1_dec2021_age65to100", "LA_Dose3_dec2021_0to17", "LA_Dose3_dec2021_18to64", "LA_Dose3_dec2021_65to100", "LA_Dose1_jan2022_age0to17", "LA_Dose1_jan2022_age18to64", "LA_Dose1_jan2022_age65to100", "LA_Dose3_jan2022_0to17", "LA_Dose3_jan2022_18to64", "LA_Dose3_jan2022_65to100", "LA_Dose1_feb2022_age0to17", "LA_Dose1_feb2022_age18to64", "LA_Dose1_feb2022_age65to100", "LA_Dose3_feb2022_0to17", "LA_Dose3_feb2022_18to64", "LA_Dose3_feb2022_65to100", "LA_Dose1_mar2022_age0to17", "LA_Dose1_mar2022_age18to64", "LA_Dose1_mar2022_age65to100", "LA_Dose3_mar2022_0to17", "LA_Dose3_mar2022_18to64", "LA_Dose3_mar2022_65to100", "LA_Dose1_apr2022_age0to17", "LA_Dose1_apr2022_age18to64", "LA_Dose1_apr2022_age65to100", "LA_Dose3_apr2022_0to17", "LA_Dose3_apr2022_18to64", "LA_Dose3_apr2022_65to100", "LA_Dose1_may2022_age0to17", "LA_Dose1_may2022_age18to64", "LA_Dose1_may2022_age65to100", "LA_Dose3_may2022_0to17", "LA_Dose3_may2022_18to64", "LA_Dose3_may2022_65to100", "LA_Dose1_jun2022_age0to17", "LA_Dose1_jun2022_age18to64", "LA_Dose1_jun2022_age65to100", "LA_Dose3_jun2022_0to17", "LA_Dose3_jun2022_18to64", "LA_Dose3_jun2022_65to100", "LA_Dose1_jul2022_age0to17", "LA_Dose1_jul2022_age18to64", "LA_Dose1_jul2022_age65to100", "LA_Dose3_jul2022_0to17", "LA_Dose3_jul2022_18to64", "LA_Dose3_jul2022_65to100", "LA_Dose1_aug2022_age0to17", "LA_Dose1_aug2022_age18to64", "LA_Dose1_aug2022_age65to100", "LA_Dose3_aug2022_0to17", "LA_Dose3_aug2022_18to64", "LA_Dose3_aug2022_65to100", "LA_Dose1_sep2022_age0to17", "LA_Dose1_sep2022_age18to64", "LA_Dose1_sep2022_age65to100", "LA_Dose3_sep2022_0to17", "LA_Dose3_sep2022_18to64", "LA_Dose3_sep2022_65to100", "ME_Dose1_jan2021_age18to64", "ME_Dose1_jan2021_age65to100", "ME_Dose1_feb2021_age0to17", "ME_Dose1_feb2021_age18to64", "ME_Dose1_feb2021_age65to100", "ME_Dose1_mar2021_age0to17", "ME_Dose1_mar2021_age18to64", "ME_Dose1_mar2021_age65to100", "ME_Dose1_apr2021_age0to17", "ME_Dose1_apr2021_age18to64", "ME_Dose1_apr2021_age65to100", "ME_Dose1_may2021_age0to17", "ME_Dose1_may2021_age18to64", "ME_Dose1_may2021_age65to100", "ME_Dose1_jun2021_age0to17", "ME_Dose1_jun2021_age18to64", "ME_Dose1_jun2021_age65to100", "ME_Dose1_jul2021_age0to17", "ME_Dose1_jul2021_age18to64", "ME_Dose1_jul2021_age65to100", "ME_Dose1_aug2021_age0to17", "ME_Dose1_aug2021_age18to64", "ME_Dose1_aug2021_age65to100", "ME_Dose1_sep2021_age0to17", "ME_Dose1_sep2021_age18to64", "ME_Dose1_sep2021_age65to100", "ME_Dose1_oct2021_age0to17", "ME_Dose1_oct2021_age18to64", "ME_Dose1_oct2021_age65to100", "ME_Dose3_oct2021_0to17", "ME_Dose3_oct2021_18to64", "ME_Dose3_oct2021_65to100", "ME_Dose1_nov2021_age0to17", "ME_Dose1_nov2021_age18to64", "ME_Dose1_nov2021_age65to100", "ME_Dose3_nov2021_0to17", "ME_Dose3_nov2021_18to64", "ME_Dose3_nov2021_65to100", "ME_Dose1_dec2021_age0to17", "ME_Dose1_dec2021_age18to64", "ME_Dose1_dec2021_age65to100", "ME_Dose3_dec2021_0to17", "ME_Dose3_dec2021_18to64", "ME_Dose3_dec2021_65to100", "ME_Dose1_jan2022_age0to17", "ME_Dose1_jan2022_age18to64", "ME_Dose1_jan2022_age65to100", "ME_Dose3_jan2022_0to17", "ME_Dose3_jan2022_18to64", "ME_Dose3_jan2022_65to100", "ME_Dose1_feb2022_age0to17", "ME_Dose1_feb2022_age18to64", "ME_Dose1_feb2022_age65to100", "ME_Dose3_feb2022_0to17", "ME_Dose3_feb2022_18to64", "ME_Dose3_feb2022_65to100", "ME_Dose1_mar2022_age0to17", "ME_Dose1_mar2022_age18to64", "ME_Dose1_mar2022_age65to100", "ME_Dose3_mar2022_0to17", "ME_Dose3_mar2022_18to64", "ME_Dose3_mar2022_65to100", "ME_Dose1_apr2022_age0to17", "ME_Dose1_apr2022_age18to64", "ME_Dose1_apr2022_age65to100", "ME_Dose3_apr2022_0to17", "ME_Dose3_apr2022_18to64", "ME_Dose3_apr2022_65to100", "ME_Dose1_may2022_age0to17", "ME_Dose1_may2022_age18to64", "ME_Dose1_may2022_age65to100", "ME_Dose3_may2022_0to17", "ME_Dose3_may2022_18to64", "ME_Dose3_may2022_65to100", "ME_Dose1_jun2022_age0to17", "ME_Dose1_jun2022_age18to64", "ME_Dose1_jun2022_age65to100", "ME_Dose3_jun2022_0to17", "ME_Dose3_jun2022_18to64", "ME_Dose3_jun2022_65to100", "ME_Dose1_jul2022_age0to17", "ME_Dose1_jul2022_age18to64", "ME_Dose1_jul2022_age65to100", "ME_Dose3_jul2022_0to17", "ME_Dose3_jul2022_18to64", "ME_Dose3_jul2022_65to100", "ME_Dose1_aug2022_age0to17", "ME_Dose1_aug2022_age18to64", "ME_Dose3_aug2022_0to17", "ME_Dose3_aug2022_18to64", "ME_Dose1_sep2022_age0to17", "ME_Dose1_sep2022_age18to64", "ME_Dose3_sep2022_0to17", "ME_Dose3_sep2022_18to64", "MD_Dose1_jan2021_age18to64", "MD_Dose1_jan2021_age65to100", "MD_Dose1_feb2021_age0to17", "MD_Dose1_feb2021_age18to64", "MD_Dose1_feb2021_age65to100", "MD_Dose1_mar2021_age0to17", "MD_Dose1_mar2021_age18to64", "MD_Dose1_mar2021_age65to100", "MD_Dose1_apr2021_age0to17", "MD_Dose1_apr2021_age18to64", "MD_Dose1_apr2021_age65to100", "MD_Dose1_may2021_age0to17", "MD_Dose1_may2021_age18to64", "MD_Dose1_may2021_age65to100", "MD_Dose1_jun2021_age0to17", "MD_Dose1_jun2021_age18to64", "MD_Dose1_jun2021_age65to100", "MD_Dose1_jul2021_age0to17", "MD_Dose1_jul2021_age18to64", "MD_Dose1_jul2021_age65to100", "MD_Dose1_aug2021_age0to17", "MD_Dose1_aug2021_age18to64", "MD_Dose1_aug2021_age65to100", "MD_Dose1_sep2021_age0to17", "MD_Dose1_sep2021_age18to64", "MD_Dose1_sep2021_age65to100", "MD_Dose1_oct2021_age0to17", "MD_Dose1_oct2021_age18to64", "MD_Dose1_oct2021_age65to100", "MD_Dose3_oct2021_0to17", "MD_Dose3_oct2021_18to64", "MD_Dose3_oct2021_65to100", "MD_Dose1_nov2021_age0to17", "MD_Dose1_nov2021_age18to64", "MD_Dose1_nov2021_age65to100", "MD_Dose3_nov2021_0to17", "MD_Dose3_nov2021_18to64", "MD_Dose3_nov2021_65to100", "MD_Dose1_dec2021_age0to17", "MD_Dose1_dec2021_age18to64", "MD_Dose1_dec2021_age65to100", "MD_Dose3_dec2021_0to17", "MD_Dose3_dec2021_18to64", "MD_Dose3_dec2021_65to100", "MD_Dose1_jan2022_age0to17", "MD_Dose1_jan2022_age18to64", "MD_Dose1_jan2022_age65to100", "MD_Dose3_jan2022_0to17", "MD_Dose3_jan2022_18to64", "MD_Dose3_jan2022_65to100", "MD_Dose1_feb2022_age0to17", "MD_Dose1_feb2022_age18to64", "MD_Dose1_feb2022_age65to100", "MD_Dose3_feb2022_0to17", "MD_Dose3_feb2022_18to64", "MD_Dose3_feb2022_65to100", "MD_Dose1_mar2022_age0to17", "MD_Dose1_mar2022_age18to64", "MD_Dose1_mar2022_age65to100", "MD_Dose3_mar2022_0to17", "MD_Dose3_mar2022_18to64", "MD_Dose3_mar2022_65to100", "MD_Dose1_apr2022_age0to17", "MD_Dose1_apr2022_age18to64", "MD_Dose1_apr2022_age65to100", "MD_Dose3_apr2022_0to17", "MD_Dose3_apr2022_18to64", "MD_Dose3_apr2022_65to100", "MD_Dose1_may2022_age0to17", "MD_Dose1_may2022_age18to64", "MD_Dose1_may2022_age65to100", "MD_Dose3_may2022_0to17", "MD_Dose3_may2022_18to64", "MD_Dose3_may2022_65to100", "MD_Dose1_jun2022_age0to17", "MD_Dose1_jun2022_age18to64", "MD_Dose1_jun2022_age65to100", "MD_Dose3_jun2022_0to17", "MD_Dose3_jun2022_18to64", "MD_Dose3_jun2022_65to100", "MD_Dose1_jul2022_age0to17", "MD_Dose1_jul2022_age18to64", "MD_Dose1_jul2022_age65to100", "MD_Dose3_jul2022_0to17", "MD_Dose3_jul2022_18to64", "MD_Dose3_jul2022_65to100", "MD_Dose1_aug2022_age0to17", "MD_Dose1_aug2022_age18to64", "MD_Dose1_aug2022_age65to100", "MD_Dose3_aug2022_0to17", "MD_Dose3_aug2022_18to64", "MD_Dose3_aug2022_65to100", "MD_Dose1_sep2022_age0to17", "MD_Dose1_sep2022_age18to64", "MD_Dose1_sep2022_age65to100", "MD_Dose3_sep2022_0to17", "MD_Dose3_sep2022_18to64", "MD_Dose3_sep2022_65to100", "MA_Dose1_jan2021_age18to64", "MA_Dose1_jan2021_age65to100", "MA_Dose1_feb2021_age0to17", "MA_Dose1_feb2021_age18to64", "MA_Dose1_feb2021_age65to100", "MA_Dose1_mar2021_age0to17", "MA_Dose1_mar2021_age18to64", "MA_Dose1_mar2021_age65to100", "MA_Dose1_apr2021_age0to17", "MA_Dose1_apr2021_age18to64", "MA_Dose1_apr2021_age65to100", "MA_Dose1_may2021_age0to17", "MA_Dose1_may2021_age18to64", "MA_Dose1_may2021_age65to100", "MA_Dose1_jun2021_age0to17", "MA_Dose1_jun2021_age18to64", "MA_Dose1_jun2021_age65to100", "MA_Dose1_jul2021_age0to17", "MA_Dose1_jul2021_age18to64", "MA_Dose1_jul2021_age65to100", "MA_Dose1_aug2021_age0to17", "MA_Dose1_aug2021_age18to64", "MA_Dose1_aug2021_age65to100", "MA_Dose1_sep2021_age0to17", "MA_Dose1_sep2021_age18to64", "MA_Dose1_sep2021_age65to100", "MA_Dose1_oct2021_age0to17", "MA_Dose1_oct2021_age18to64", "MA_Dose1_oct2021_age65to100", "MA_Dose3_oct2021_0to17", "MA_Dose3_oct2021_18to64", "MA_Dose3_oct2021_65to100", "MA_Dose1_nov2021_age0to17", "MA_Dose1_nov2021_age18to64", "MA_Dose1_nov2021_age65to100", "MA_Dose3_nov2021_0to17", "MA_Dose3_nov2021_18to64", "MA_Dose3_nov2021_65to100", "MA_Dose1_dec2021_age0to17", "MA_Dose1_dec2021_age18to64", "MA_Dose1_dec2021_age65to100", "MA_Dose3_dec2021_0to17", "MA_Dose3_dec2021_18to64", "MA_Dose3_dec2021_65to100", "MA_Dose1_jan2022_age0to17", "MA_Dose1_jan2022_age18to64", "MA_Dose1_jan2022_age65to100", "MA_Dose3_jan2022_0to17", "MA_Dose3_jan2022_18to64", "MA_Dose3_jan2022_65to100", "MA_Dose1_feb2022_age0to17", "MA_Dose1_feb2022_age18to64", "MA_Dose1_feb2022_age65to100", "MA_Dose3_feb2022_0to17", "MA_Dose3_feb2022_18to64", "MA_Dose3_feb2022_65to100", "MA_Dose1_mar2022_age0to17", "MA_Dose1_mar2022_age18to64", "MA_Dose1_mar2022_age65to100", "MA_Dose3_mar2022_0to17", "MA_Dose3_mar2022_18to64", "MA_Dose3_mar2022_65to100", "MA_Dose1_apr2022_age0to17", "MA_Dose1_apr2022_age18to64", "MA_Dose1_apr2022_age65to100", "MA_Dose3_apr2022_0to17", "MA_Dose3_apr2022_18to64", "MA_Dose3_apr2022_65to100", "MA_Dose1_may2022_age0to17", "MA_Dose1_may2022_age18to64", "MA_Dose1_may2022_age65to100", "MA_Dose3_may2022_0to17", "MA_Dose3_may2022_18to64", "MA_Dose3_may2022_65to100", "MA_Dose1_jun2022_age0to17", "MA_Dose1_jun2022_age18to64", "MA_Dose1_jun2022_age65to100", "MA_Dose3_jun2022_0to17", "MA_Dose3_jun2022_18to64", "MA_Dose3_jun2022_65to100", "MA_Dose1_jul2022_age0to17", "MA_Dose1_jul2022_age18to64", "MA_Dose1_jul2022_age65to100", "MA_Dose3_jul2022_0to17", "MA_Dose3_jul2022_18to64", "MA_Dose3_jul2022_65to100", "MA_Dose1_aug2022_age0to17", "MA_Dose1_aug2022_age18to64", "MA_Dose1_aug2022_age65to100", "MA_Dose3_aug2022_0to17", "MA_Dose3_aug2022_18to64", "MA_Dose1_sep2022_age0to17", "MA_Dose1_sep2022_age18to64", "MA_Dose1_sep2022_age65to100", "MA_Dose3_sep2022_0to17", "MA_Dose3_sep2022_18to64", "MA_Dose3_sep2022_65to100", "MI_Dose1_jan2021_age18to64", "MI_Dose1_jan2021_age65to100", "MI_Dose1_feb2021_age0to17", "MI_Dose1_feb2021_age18to64", "MI_Dose1_feb2021_age65to100", "MI_Dose1_mar2021_age0to17", "MI_Dose1_mar2021_age18to64", "MI_Dose1_mar2021_age65to100", "MI_Dose1_apr2021_age0to17", "MI_Dose1_apr2021_age18to64", "MI_Dose1_apr2021_age65to100", "MI_Dose1_may2021_age0to17", "MI_Dose1_may2021_age18to64", "MI_Dose1_may2021_age65to100", "MI_Dose1_jun2021_age0to17", "MI_Dose1_jun2021_age18to64", "MI_Dose1_jun2021_age65to100", "MI_Dose1_jul2021_age0to17", "MI_Dose1_jul2021_age18to64", "MI_Dose1_jul2021_age65to100", "MI_Dose1_aug2021_age0to17", "MI_Dose1_aug2021_age18to64", "MI_Dose1_aug2021_age65to100", "MI_Dose1_sep2021_age0to17", "MI_Dose1_sep2021_age18to64", "MI_Dose1_sep2021_age65to100", "MI_Dose1_oct2021_age0to17", "MI_Dose1_oct2021_age18to64", "MI_Dose1_oct2021_age65to100", "MI_Dose3_oct2021_0to17", "MI_Dose3_oct2021_18to64", "MI_Dose3_oct2021_65to100", "MI_Dose1_nov2021_age0to17", "MI_Dose1_nov2021_age18to64", "MI_Dose1_nov2021_age65to100", "MI_Dose3_nov2021_0to17", "MI_Dose3_nov2021_18to64", "MI_Dose3_nov2021_65to100", "MI_Dose1_dec2021_age0to17", "MI_Dose1_dec2021_age18to64", "MI_Dose1_dec2021_age65to100", "MI_Dose3_dec2021_0to17", "MI_Dose3_dec2021_18to64", "MI_Dose3_dec2021_65to100", "MI_Dose1_jan2022_age0to17", "MI_Dose1_jan2022_age18to64", "MI_Dose1_jan2022_age65to100", "MI_Dose3_jan2022_0to17", "MI_Dose3_jan2022_18to64", "MI_Dose3_jan2022_65to100", "MI_Dose1_feb2022_age0to17", "MI_Dose1_feb2022_age18to64", "MI_Dose1_feb2022_age65to100", "MI_Dose3_feb2022_0to17", "MI_Dose3_feb2022_18to64", "MI_Dose3_feb2022_65to100", "MI_Dose1_mar2022_age0to17", "MI_Dose1_mar2022_age18to64", "MI_Dose1_mar2022_age65to100", "MI_Dose3_mar2022_0to17", "MI_Dose3_mar2022_18to64", "MI_Dose3_mar2022_65to100", "MI_Dose1_apr2022_age0to17", "MI_Dose1_apr2022_age18to64", "MI_Dose1_apr2022_age65to100", "MI_Dose3_apr2022_0to17", "MI_Dose3_apr2022_18to64", "MI_Dose3_apr2022_65to100", "MI_Dose1_may2022_age0to17", "MI_Dose1_may2022_age18to64", "MI_Dose1_may2022_age65to100", "MI_Dose3_may2022_0to17", "MI_Dose3_may2022_18to64", "MI_Dose3_may2022_65to100", "MI_Dose1_jun2022_age0to17", "MI_Dose1_jun2022_age18to64", "MI_Dose1_jun2022_age65to100", "MI_Dose3_jun2022_0to17", "MI_Dose3_jun2022_18to64", "MI_Dose3_jun2022_65to100", "MI_Dose1_jul2022_age0to17", "MI_Dose1_jul2022_age18to64", "MI_Dose1_jul2022_age65to100", "MI_Dose3_jul2022_0to17", "MI_Dose3_jul2022_18to64", "MI_Dose3_jul2022_65to100", "MI_Dose1_aug2022_age0to17", "MI_Dose1_aug2022_age18to64", "MI_Dose1_aug2022_age65to100", "MI_Dose3_aug2022_0to17", "MI_Dose3_aug2022_18to64", "MI_Dose3_aug2022_65to100", "MI_Dose1_sep2022_age0to17", "MI_Dose1_sep2022_age18to64", "MI_Dose1_sep2022_age65to100", "MI_Dose3_sep2022_0to17", "MI_Dose3_sep2022_18to64", "MI_Dose3_sep2022_65to100", "MN_Dose1_jan2021_age18to64", "MN_Dose1_jan2021_age65to100", "MN_Dose1_feb2021_age0to17", "MN_Dose1_feb2021_age18to64", "MN_Dose1_feb2021_age65to100", "MN_Dose1_mar2021_age0to17", "MN_Dose1_mar2021_age18to64", "MN_Dose1_mar2021_age65to100", "MN_Dose1_apr2021_age0to17", "MN_Dose1_apr2021_age18to64", "MN_Dose1_apr2021_age65to100", "MN_Dose1_may2021_age0to17", "MN_Dose1_may2021_age18to64", "MN_Dose1_may2021_age65to100", "MN_Dose1_jun2021_age0to17", "MN_Dose1_jun2021_age18to64", "MN_Dose1_jun2021_age65to100", "MN_Dose1_jul2021_age0to17", "MN_Dose1_jul2021_age18to64", "MN_Dose1_jul2021_age65to100", "MN_Dose1_aug2021_age0to17", "MN_Dose1_aug2021_age18to64", "MN_Dose1_aug2021_age65to100", "MN_Dose1_sep2021_age0to17", "MN_Dose1_sep2021_age18to64", "MN_Dose1_sep2021_age65to100", "MN_Dose1_oct2021_age0to17", "MN_Dose1_oct2021_age18to64", "MN_Dose1_oct2021_age65to100", "MN_Dose3_oct2021_0to17", "MN_Dose3_oct2021_18to64", "MN_Dose3_oct2021_65to100", "MN_Dose1_nov2021_age0to17", "MN_Dose1_nov2021_age18to64", "MN_Dose1_nov2021_age65to100", "MN_Dose3_nov2021_0to17", "MN_Dose3_nov2021_18to64", "MN_Dose3_nov2021_65to100", "MN_Dose1_dec2021_age0to17", "MN_Dose1_dec2021_age18to64", "MN_Dose1_dec2021_age65to100", "MN_Dose3_dec2021_0to17", "MN_Dose3_dec2021_18to64", "MN_Dose3_dec2021_65to100", "MN_Dose1_jan2022_age0to17", "MN_Dose1_jan2022_age18to64", "MN_Dose1_jan2022_age65to100", "MN_Dose3_jan2022_0to17", "MN_Dose3_jan2022_18to64", "MN_Dose3_jan2022_65to100", "MN_Dose1_feb2022_age0to17", "MN_Dose1_feb2022_age18to64", "MN_Dose1_feb2022_age65to100", "MN_Dose3_feb2022_0to17", "MN_Dose3_feb2022_18to64", "MN_Dose3_feb2022_65to100", "MN_Dose1_mar2022_age0to17", "MN_Dose1_mar2022_age18to64", "MN_Dose1_mar2022_age65to100", "MN_Dose3_mar2022_0to17", "MN_Dose3_mar2022_18to64", "MN_Dose3_mar2022_65to100", "MN_Dose1_apr2022_age0to17", "MN_Dose1_apr2022_age18to64", "MN_Dose1_apr2022_age65to100", "MN_Dose3_apr2022_0to17", "MN_Dose3_apr2022_18to64", "MN_Dose3_apr2022_65to100", "MN_Dose1_may2022_age0to17", "MN_Dose1_may2022_age18to64", "MN_Dose1_may2022_age65to100", "MN_Dose3_may2022_0to17", "MN_Dose3_may2022_18to64", "MN_Dose3_may2022_65to100", "MN_Dose1_jun2022_age0to17", "MN_Dose1_jun2022_age18to64", "MN_Dose1_jun2022_age65to100", "MN_Dose3_jun2022_0to17", "MN_Dose3_jun2022_18to64", "MN_Dose3_jun2022_65to100", "MN_Dose1_jul2022_age0to17", "MN_Dose1_jul2022_age18to64", "MN_Dose1_jul2022_age65to100", "MN_Dose3_jul2022_0to17", "MN_Dose3_jul2022_18to64", "MN_Dose3_jul2022_65to100", "MN_Dose1_aug2022_age0to17", "MN_Dose1_aug2022_age18to64", "MN_Dose1_aug2022_age65to100", "MN_Dose3_aug2022_0to17", "MN_Dose3_aug2022_18to64", "MN_Dose3_aug2022_65to100", "MN_Dose1_sep2022_age0to17", "MN_Dose1_sep2022_age18to64", "MN_Dose1_sep2022_age65to100", "MN_Dose3_sep2022_0to17", "MN_Dose3_sep2022_18to64", "MN_Dose3_sep2022_65to100", "MS_Dose1_jan2021_age18to64", "MS_Dose1_jan2021_age65to100", "MS_Dose1_feb2021_age18to64", "MS_Dose1_feb2021_age65to100", "MS_Dose1_mar2021_age18to64", "MS_Dose1_mar2021_age65to100", "MS_Dose1_apr2021_age18to64", "MS_Dose1_apr2021_age65to100", "MS_Dose1_may2021_age0to17", "MS_Dose1_may2021_age18to64", "MS_Dose1_may2021_age65to100", "MS_Dose1_jun2021_age0to17", "MS_Dose1_jun2021_age18to64", "MS_Dose1_jun2021_age65to100", "MS_Dose1_jul2021_age0to17", "MS_Dose1_jul2021_age18to64", "MS_Dose1_jul2021_age65to100", "MS_Dose1_aug2021_age0to17", "MS_Dose1_aug2021_age18to64", "MS_Dose1_aug2021_age65to100", "MS_Dose1_sep2021_age0to17", "MS_Dose1_sep2021_age18to64", "MS_Dose1_sep2021_age65to100", "MS_Dose1_oct2021_age0to17", "MS_Dose1_oct2021_age18to64", "MS_Dose1_oct2021_age65to100", "MS_Dose3_oct2021_18to64", "MS_Dose3_oct2021_65to100", "MS_Dose1_nov2021_age0to17", "MS_Dose1_nov2021_age18to64", "MS_Dose1_nov2021_age65to100", "MS_Dose3_nov2021_18to64", "MS_Dose3_nov2021_65to100", "MS_Dose1_dec2021_age0to17", "MS_Dose1_dec2021_age18to64", "MS_Dose1_dec2021_age65to100", "MS_Dose3_dec2021_0to17", "MS_Dose3_dec2021_18to64", "MS_Dose3_dec2021_65to100", "MS_Dose1_jan2022_age0to17", "MS_Dose1_jan2022_age18to64", "MS_Dose1_jan2022_age65to100", "MS_Dose3_jan2022_0to17", "MS_Dose3_jan2022_18to64", "MS_Dose3_jan2022_65to100", "MS_Dose1_feb2022_age0to17", "MS_Dose1_feb2022_age18to64", "MS_Dose1_feb2022_age65to100", "MS_Dose3_feb2022_0to17", "MS_Dose3_feb2022_18to64", "MS_Dose3_feb2022_65to100", "MS_Dose1_mar2022_age0to17", "MS_Dose1_mar2022_age18to64", "MS_Dose1_mar2022_age65to100", "MS_Dose3_mar2022_0to17", "MS_Dose3_mar2022_18to64", "MS_Dose3_mar2022_65to100", "MS_Dose1_apr2022_age0to17", "MS_Dose1_apr2022_age18to64", "MS_Dose1_apr2022_age65to100", "MS_Dose3_apr2022_0to17", "MS_Dose3_apr2022_18to64", "MS_Dose3_apr2022_65to100", "MS_Dose1_may2022_age0to17", "MS_Dose1_may2022_age18to64", "MS_Dose1_may2022_age65to100", "MS_Dose3_may2022_0to17", "MS_Dose3_may2022_18to64", "MS_Dose3_may2022_65to100", "MS_Dose1_jun2022_age0to17", "MS_Dose1_jun2022_age18to64", "MS_Dose1_jun2022_age65to100", "MS_Dose3_jun2022_0to17", "MS_Dose3_jun2022_18to64", "MS_Dose3_jun2022_65to100", "MS_Dose1_jul2022_age0to17", "MS_Dose1_jul2022_age18to64", "MS_Dose1_jul2022_age65to100", "MS_Dose3_jul2022_0to17", "MS_Dose3_jul2022_18to64", "MS_Dose3_jul2022_65to100", "MS_Dose1_aug2022_age0to17", "MS_Dose1_aug2022_age18to64", "MS_Dose1_aug2022_age65to100", "MS_Dose3_aug2022_0to17", "MS_Dose3_aug2022_18to64", "MS_Dose3_aug2022_65to100", "MS_Dose1_sep2022_age0to17", "MS_Dose1_sep2022_age18to64", "MS_Dose1_sep2022_age65to100", "MS_Dose3_sep2022_0to17", "MS_Dose3_sep2022_18to64", "MS_Dose3_sep2022_65to100", "MO_Dose1_jan2021_age18to64", "MO_Dose1_jan2021_age65to100", "MO_Dose1_feb2021_age0to17", "MO_Dose1_feb2021_age18to64", "MO_Dose1_feb2021_age65to100", "MO_Dose1_mar2021_age0to17", "MO_Dose1_mar2021_age18to64", "MO_Dose1_mar2021_age65to100", "MO_Dose1_apr2021_age0to17", "MO_Dose1_apr2021_age18to64", "MO_Dose1_apr2021_age65to100", "MO_Dose1_may2021_age0to17", "MO_Dose1_may2021_age18to64", "MO_Dose1_may2021_age65to100", "MO_Dose1_jun2021_age0to17", "MO_Dose1_jun2021_age18to64", "MO_Dose1_jun2021_age65to100", "MO_Dose1_jul2021_age0to17", "MO_Dose1_jul2021_age18to64", "MO_Dose1_jul2021_age65to100", "MO_Dose1_aug2021_age0to17", "MO_Dose1_aug2021_age18to64", "MO_Dose1_aug2021_age65to100", "MO_Dose1_sep2021_age0to17", "MO_Dose1_sep2021_age18to64", "MO_Dose1_sep2021_age65to100", "MO_Dose1_oct2021_age0to17", "MO_Dose1_oct2021_age18to64", "MO_Dose1_oct2021_age65to100", "MO_Dose3_oct2021_0to17", "MO_Dose3_oct2021_18to64", "MO_Dose3_oct2021_65to100", "MO_Dose1_nov2021_age0to17", "MO_Dose1_nov2021_age18to64", "MO_Dose1_nov2021_age65to100", "MO_Dose3_nov2021_0to17", "MO_Dose3_nov2021_18to64", "MO_Dose3_nov2021_65to100", "MO_Dose1_dec2021_age0to17", "MO_Dose1_dec2021_age18to64", "MO_Dose1_dec2021_age65to100", "MO_Dose3_dec2021_0to17", "MO_Dose3_dec2021_18to64", "MO_Dose3_dec2021_65to100", "MO_Dose1_jan2022_age0to17", "MO_Dose1_jan2022_age18to64", "MO_Dose1_jan2022_age65to100", "MO_Dose3_jan2022_0to17", "MO_Dose3_jan2022_18to64", "MO_Dose3_jan2022_65to100", "MO_Dose1_feb2022_age0to17", "MO_Dose1_feb2022_age18to64", "MO_Dose1_feb2022_age65to100", "MO_Dose3_feb2022_0to17", "MO_Dose3_feb2022_18to64", "MO_Dose3_feb2022_65to100", "MO_Dose1_mar2022_age0to17", "MO_Dose1_mar2022_age18to64", "MO_Dose1_mar2022_age65to100", "MO_Dose3_mar2022_0to17", "MO_Dose3_mar2022_18to64", "MO_Dose3_mar2022_65to100", "MO_Dose1_apr2022_age0to17", "MO_Dose1_apr2022_age18to64", "MO_Dose1_apr2022_age65to100", "MO_Dose3_apr2022_0to17", "MO_Dose3_apr2022_18to64", "MO_Dose3_apr2022_65to100", "MO_Dose1_may2022_age0to17", "MO_Dose1_may2022_age18to64", "MO_Dose1_may2022_age65to100", "MO_Dose3_may2022_0to17", "MO_Dose3_may2022_18to64", "MO_Dose3_may2022_65to100", "MO_Dose1_jun2022_age0to17", "MO_Dose1_jun2022_age18to64", "MO_Dose1_jun2022_age65to100", "MO_Dose3_jun2022_0to17", "MO_Dose3_jun2022_18to64", "MO_Dose3_jun2022_65to100", "MO_Dose1_jul2022_age0to17", "MO_Dose1_jul2022_age18to64", "MO_Dose1_jul2022_age65to100", "MO_Dose3_jul2022_0to17", "MO_Dose3_jul2022_18to64", "MO_Dose3_jul2022_65to100", "MO_Dose1_aug2022_age0to17", "MO_Dose1_aug2022_age18to64", "MO_Dose1_aug2022_age65to100", "MO_Dose3_aug2022_0to17", "MO_Dose3_aug2022_18to64", "MO_Dose3_aug2022_65to100", "MO_Dose1_sep2022_age0to17", "MO_Dose1_sep2022_age18to64", "MO_Dose1_sep2022_age65to100", "MO_Dose3_sep2022_0to17", "MO_Dose3_sep2022_18to64", "MO_Dose3_sep2022_65to100", "MT_Dose1_jan2021_age18to64", "MT_Dose1_jan2021_age65to100", "MT_Dose1_feb2021_age0to17", "MT_Dose1_feb2021_age18to64", "MT_Dose1_feb2021_age65to100", "MT_Dose1_mar2021_age0to17", "MT_Dose1_mar2021_age18to64", "MT_Dose1_mar2021_age65to100", "MT_Dose1_apr2021_age0to17", "MT_Dose1_apr2021_age18to64", "MT_Dose1_apr2021_age65to100", "MT_Dose1_may2021_age0to17", "MT_Dose1_may2021_age18to64", "MT_Dose1_may2021_age65to100", "MT_Dose1_jun2021_age0to17", "MT_Dose1_jun2021_age18to64", "MT_Dose1_jun2021_age65to100", "MT_Dose1_jul2021_age0to17", "MT_Dose1_jul2021_age18to64", "MT_Dose1_jul2021_age65to100", "MT_Dose1_aug2021_age0to17", "MT_Dose1_aug2021_age18to64", "MT_Dose1_aug2021_age65to100", "MT_Dose1_sep2021_age0to17", "MT_Dose1_sep2021_age18to64", "MT_Dose1_sep2021_age65to100", "MT_Dose1_oct2021_age0to17", "MT_Dose1_oct2021_age18to64", "MT_Dose1_oct2021_age65to100", "MT_Dose3_oct2021_0to17", "MT_Dose3_oct2021_18to64", "MT_Dose3_oct2021_65to100", "MT_Dose1_nov2021_age0to17", "MT_Dose1_nov2021_age18to64", "MT_Dose1_nov2021_age65to100", "MT_Dose3_nov2021_0to17", "MT_Dose3_nov2021_18to64", "MT_Dose3_nov2021_65to100", "MT_Dose1_dec2021_age0to17", "MT_Dose1_dec2021_age18to64", "MT_Dose1_dec2021_age65to100", "MT_Dose3_dec2021_0to17", "MT_Dose3_dec2021_18to64", "MT_Dose3_dec2021_65to100", "MT_Dose1_jan2022_age0to17", "MT_Dose1_jan2022_age18to64", "MT_Dose1_jan2022_age65to100", "MT_Dose3_jan2022_0to17", "MT_Dose3_jan2022_18to64", "MT_Dose3_jan2022_65to100", "MT_Dose1_feb2022_age0to17", "MT_Dose1_feb2022_age18to64", "MT_Dose1_feb2022_age65to100", "MT_Dose3_feb2022_0to17", "MT_Dose3_feb2022_18to64", "MT_Dose3_feb2022_65to100", "MT_Dose1_mar2022_age0to17", "MT_Dose1_mar2022_age18to64", "MT_Dose1_mar2022_age65to100", "MT_Dose3_mar2022_0to17", "MT_Dose3_mar2022_18to64", "MT_Dose3_mar2022_65to100", "MT_Dose1_apr2022_age0to17", "MT_Dose1_apr2022_age18to64", "MT_Dose1_apr2022_age65to100", "MT_Dose3_apr2022_0to17", "MT_Dose3_apr2022_18to64", "MT_Dose3_apr2022_65to100", "MT_Dose1_may2022_age0to17", "MT_Dose1_may2022_age18to64", "MT_Dose1_may2022_age65to100", "MT_Dose3_may2022_0to17", "MT_Dose3_may2022_18to64", "MT_Dose3_may2022_65to100", "MT_Dose1_jun2022_age0to17", "MT_Dose1_jun2022_age18to64", "MT_Dose1_jun2022_age65to100", "MT_Dose3_jun2022_0to17", "MT_Dose3_jun2022_18to64", "MT_Dose3_jun2022_65to100", "MT_Dose1_jul2022_age0to17", "MT_Dose1_jul2022_age18to64", "MT_Dose1_jul2022_age65to100", "MT_Dose3_jul2022_0to17", "MT_Dose3_jul2022_18to64", "MT_Dose3_jul2022_65to100", "MT_Dose1_aug2022_age0to17", "MT_Dose1_aug2022_age18to64", "MT_Dose1_aug2022_age65to100", "MT_Dose3_aug2022_0to17", "MT_Dose3_aug2022_18to64", "MT_Dose3_aug2022_65to100", "MT_Dose1_sep2022_age0to17", "MT_Dose1_sep2022_age18to64", "MT_Dose1_sep2022_age65to100", "MT_Dose3_sep2022_0to17", "MT_Dose3_sep2022_18to64", "MT_Dose3_sep2022_65to100", "NE_Dose1_jan2021_age18to64", "NE_Dose1_jan2021_age65to100", "NE_Dose1_feb2021_age0to17", "NE_Dose1_feb2021_age18to64", "NE_Dose1_feb2021_age65to100", "NE_Dose1_mar2021_age0to17", "NE_Dose1_mar2021_age18to64", "NE_Dose1_mar2021_age65to100", "NE_Dose1_apr2021_age0to17", "NE_Dose1_apr2021_age18to64", "NE_Dose1_apr2021_age65to100", "NE_Dose1_may2021_age0to17", "NE_Dose1_may2021_age18to64", "NE_Dose1_may2021_age65to100", "NE_Dose1_jun2021_age0to17", "NE_Dose1_jun2021_age18to64", "NE_Dose1_jun2021_age65to100", "NE_Dose1_jul2021_age0to17", "NE_Dose1_jul2021_age18to64", "NE_Dose1_jul2021_age65to100", "NE_Dose1_aug2021_age0to17", "NE_Dose1_aug2021_age18to64", "NE_Dose1_aug2021_age65to100", "NE_Dose1_sep2021_age0to17", "NE_Dose1_sep2021_age18to64", "NE_Dose1_sep2021_age65to100", "NE_Dose1_oct2021_age0to17", "NE_Dose1_oct2021_age18to64", "NE_Dose1_oct2021_age65to100", "NE_Dose3_oct2021_0to17", "NE_Dose3_oct2021_18to64", "NE_Dose3_oct2021_65to100", "NE_Dose1_nov2021_age0to17", "NE_Dose1_nov2021_age18to64", "NE_Dose1_nov2021_age65to100", "NE_Dose3_nov2021_0to17", "NE_Dose3_nov2021_18to64", "NE_Dose3_nov2021_65to100", "NE_Dose1_dec2021_age0to17", "NE_Dose1_dec2021_age18to64", "NE_Dose1_dec2021_age65to100", "NE_Dose3_dec2021_0to17", "NE_Dose3_dec2021_18to64", "NE_Dose3_dec2021_65to100", "NE_Dose1_jan2022_age0to17", "NE_Dose1_jan2022_age18to64", "NE_Dose1_jan2022_age65to100", "NE_Dose3_jan2022_0to17", "NE_Dose3_jan2022_18to64", "NE_Dose3_jan2022_65to100", "NE_Dose1_feb2022_age0to17", "NE_Dose1_feb2022_age18to64", "NE_Dose1_feb2022_age65to100", "NE_Dose3_feb2022_0to17", "NE_Dose3_feb2022_18to64", "NE_Dose3_feb2022_65to100", "NE_Dose1_mar2022_age0to17", "NE_Dose1_mar2022_age18to64", "NE_Dose1_mar2022_age65to100", "NE_Dose3_mar2022_0to17", "NE_Dose3_mar2022_18to64", "NE_Dose3_mar2022_65to100", "NE_Dose1_apr2022_age0to17", "NE_Dose1_apr2022_age18to64", "NE_Dose1_apr2022_age65to100", "NE_Dose3_apr2022_0to17", "NE_Dose3_apr2022_18to64", "NE_Dose3_apr2022_65to100", "NE_Dose1_may2022_age0to17", "NE_Dose1_may2022_age18to64", "NE_Dose1_may2022_age65to100", "NE_Dose3_may2022_0to17", "NE_Dose3_may2022_18to64", "NE_Dose3_may2022_65to100", "NE_Dose1_jun2022_age0to17", "NE_Dose1_jun2022_age18to64", "NE_Dose1_jun2022_age65to100", "NE_Dose3_jun2022_0to17", "NE_Dose3_jun2022_18to64", "NE_Dose3_jun2022_65to100", "NE_Dose1_jul2022_age0to17", "NE_Dose1_jul2022_age18to64", "NE_Dose1_jul2022_age65to100", "NE_Dose3_jul2022_0to17", "NE_Dose3_jul2022_18to64", "NE_Dose3_jul2022_65to100", "NE_Dose1_aug2022_age0to17", "NE_Dose1_aug2022_age18to64", "NE_Dose1_aug2022_age65to100", "NE_Dose3_aug2022_0to17", "NE_Dose3_aug2022_18to64", "NE_Dose3_aug2022_65to100", "NE_Dose1_sep2022_age0to17", "NE_Dose1_sep2022_age18to64", "NE_Dose1_sep2022_age65to100", "NE_Dose3_sep2022_0to17", "NE_Dose3_sep2022_18to64", "NE_Dose3_sep2022_65to100", "NV_Dose1_jan2021_age18to64", "NV_Dose1_jan2021_age65to100", "NV_Dose1_feb2021_age0to17", "NV_Dose1_feb2021_age18to64", "NV_Dose1_feb2021_age65to100", "NV_Dose1_mar2021_age0to17", "NV_Dose1_mar2021_age18to64", "NV_Dose1_mar2021_age65to100", "NV_Dose1_apr2021_age0to17", "NV_Dose1_apr2021_age18to64", "NV_Dose1_apr2021_age65to100", "NV_Dose1_may2021_age0to17", "NV_Dose1_may2021_age18to64", "NV_Dose1_may2021_age65to100", "NV_Dose1_jun2021_age0to17", "NV_Dose1_jun2021_age18to64", "NV_Dose1_jun2021_age65to100", "NV_Dose1_jul2021_age0to17", "NV_Dose1_jul2021_age18to64", "NV_Dose1_jul2021_age65to100", "NV_Dose1_aug2021_age0to17", "NV_Dose1_aug2021_age18to64", "NV_Dose1_aug2021_age65to100", "NV_Dose1_sep2021_age0to17", "NV_Dose1_sep2021_age18to64", "NV_Dose1_sep2021_age65to100", "NV_Dose1_oct2021_age0to17", "NV_Dose1_oct2021_age18to64", "NV_Dose1_oct2021_age65to100", "NV_Dose3_oct2021_0to17", "NV_Dose3_oct2021_18to64", "NV_Dose3_oct2021_65to100", "NV_Dose1_nov2021_age0to17", "NV_Dose1_nov2021_age18to64", "NV_Dose1_nov2021_age65to100", "NV_Dose3_nov2021_0to17", "NV_Dose3_nov2021_18to64", "NV_Dose3_nov2021_65to100", "NV_Dose1_dec2021_age0to17", "NV_Dose1_dec2021_age18to64", "NV_Dose1_dec2021_age65to100", "NV_Dose3_dec2021_0to17", "NV_Dose3_dec2021_18to64", "NV_Dose3_dec2021_65to100", "NV_Dose1_jan2022_age0to17", "NV_Dose1_jan2022_age18to64", "NV_Dose1_jan2022_age65to100", "NV_Dose3_jan2022_0to17", "NV_Dose3_jan2022_18to64", "NV_Dose3_jan2022_65to100", "NV_Dose1_feb2022_age0to17", "NV_Dose1_feb2022_age18to64", "NV_Dose1_feb2022_age65to100", "NV_Dose3_feb2022_0to17", "NV_Dose3_feb2022_18to64", "NV_Dose3_feb2022_65to100", "NV_Dose1_mar2022_age0to17", "NV_Dose1_mar2022_age18to64", "NV_Dose1_mar2022_age65to100", "NV_Dose3_mar2022_0to17", "NV_Dose3_mar2022_18to64", "NV_Dose3_mar2022_65to100", "NV_Dose1_apr2022_age0to17", "NV_Dose1_apr2022_age18to64", "NV_Dose1_apr2022_age65to100", "NV_Dose3_apr2022_0to17", "NV_Dose3_apr2022_18to64", "NV_Dose3_apr2022_65to100", "NV_Dose1_may2022_age0to17", "NV_Dose1_may2022_age18to64", "NV_Dose1_may2022_age65to100", "NV_Dose3_may2022_0to17", "NV_Dose3_may2022_18to64", "NV_Dose3_may2022_65to100", "NV_Dose1_jun2022_age0to17", "NV_Dose1_jun2022_age18to64", "NV_Dose1_jun2022_age65to100", "NV_Dose3_jun2022_0to17", "NV_Dose3_jun2022_18to64", "NV_Dose3_jun2022_65to100", "NV_Dose1_jul2022_age0to17", "NV_Dose1_jul2022_age18to64", "NV_Dose1_jul2022_age65to100", "NV_Dose3_jul2022_0to17", "NV_Dose3_jul2022_18to64", "NV_Dose3_jul2022_65to100", "NV_Dose1_aug2022_age0to17", "NV_Dose1_aug2022_age18to64", "NV_Dose1_aug2022_age65to100", "NV_Dose3_aug2022_0to17", "NV_Dose3_aug2022_18to64", "NV_Dose3_aug2022_65to100", "NV_Dose1_sep2022_age0to17", "NV_Dose1_sep2022_age18to64", "NV_Dose1_sep2022_age65to100", "NV_Dose3_sep2022_0to17", "NV_Dose3_sep2022_18to64", "NV_Dose3_sep2022_65to100", "NH_Dose1_jan2021_age18to64", "NH_Dose1_jan2021_age65to100", "NH_Dose1_feb2021_age0to17", "NH_Dose1_feb2021_age18to64", "NH_Dose1_feb2021_age65to100", "NH_Dose1_mar2021_age0to17", "NH_Dose1_mar2021_age18to64", "NH_Dose1_mar2021_age65to100", "NH_Dose1_apr2021_age0to17", "NH_Dose1_apr2021_age18to64", "NH_Dose1_apr2021_age65to100", "NH_Dose1_may2021_age0to17", "NH_Dose1_may2021_age18to64", "NH_Dose1_may2021_age65to100", "NH_Dose1_jun2021_age0to17", "NH_Dose1_jun2021_age18to64", "NH_Dose1_jun2021_age65to100", "NH_Dose1_jul2021_age0to17", "NH_Dose1_jul2021_age18to64", "NH_Dose1_jul2021_age65to100", "NH_Dose1_aug2021_age0to17", "NH_Dose1_aug2021_age18to64", "NH_Dose1_aug2021_age65to100", "NH_Dose1_sep2021_age0to17", "NH_Dose1_sep2021_age18to64", "NH_Dose1_sep2021_age65to100", "NH_Dose1_oct2021_age0to17", "NH_Dose1_oct2021_age18to64", "NH_Dose1_oct2021_age65to100", "NH_Dose3_oct2021_0to17", "NH_Dose3_oct2021_18to64", "NH_Dose3_oct2021_65to100", "NH_Dose1_nov2021_age0to17", "NH_Dose1_nov2021_age18to64", "NH_Dose1_nov2021_age65to100", "NH_Dose3_nov2021_0to17", "NH_Dose3_nov2021_18to64", "NH_Dose3_nov2021_65to100", "NH_Dose1_dec2021_age0to17", "NH_Dose1_dec2021_age18to64", "NH_Dose1_dec2021_age65to100", "NH_Dose3_dec2021_0to17", "NH_Dose3_dec2021_18to64", "NH_Dose3_dec2021_65to100", "NH_Dose1_jan2022_age0to17", "NH_Dose1_jan2022_age18to64", "NH_Dose1_jan2022_age65to100", "NH_Dose3_jan2022_0to17", "NH_Dose3_jan2022_18to64", "NH_Dose3_jan2022_65to100", "NH_Dose1_feb2022_age0to17", "NH_Dose1_feb2022_age18to64", "NH_Dose1_feb2022_age65to100", "NH_Dose3_feb2022_0to17", "NH_Dose3_feb2022_18to64", "NH_Dose3_feb2022_65to100", "NH_Dose1_mar2022_age0to17", "NH_Dose1_mar2022_age18to64", "NH_Dose1_mar2022_age65to100", "NH_Dose3_mar2022_0to17", "NH_Dose3_mar2022_18to64", "NH_Dose3_mar2022_65to100", "NH_Dose1_apr2022_age0to17", "NH_Dose1_apr2022_age18to64", "NH_Dose1_apr2022_age65to100", "NH_Dose3_apr2022_0to17", "NH_Dose3_apr2022_18to64", "NH_Dose3_apr2022_65to100", "NH_Dose1_may2022_age0to17", "NH_Dose1_may2022_age18to64", "NH_Dose1_may2022_age65to100", "NH_Dose3_may2022_0to17", "NH_Dose3_may2022_18to64", "NH_Dose3_may2022_65to100", "NH_Dose1_jun2022_age0to17", "NH_Dose1_jun2022_age18to64", "NH_Dose1_jun2022_age65to100", "NH_Dose3_jun2022_0to17", "NH_Dose3_jun2022_18to64", "NH_Dose3_jun2022_65to100", "NH_Dose1_jul2022_age0to17", "NH_Dose1_jul2022_age18to64", "NH_Dose1_jul2022_age65to100", "NH_Dose3_jul2022_0to17", "NH_Dose3_jul2022_18to64", "NH_Dose3_jul2022_65to100", "NH_Dose1_aug2022_age0to17", "NH_Dose1_aug2022_age18to64", "NH_Dose3_aug2022_0to17", "NH_Dose3_aug2022_18to64", "NH_Dose1_sep2022_age0to17", "NH_Dose1_sep2022_age18to64", "NH_Dose3_sep2022_0to17", "NH_Dose3_sep2022_18to64", "NJ_Dose1_jan2021_age18to64", "NJ_Dose1_jan2021_age65to100", "NJ_Dose1_feb2021_age18to64", "NJ_Dose1_feb2021_age65to100", "NJ_Dose1_mar2021_age18to64", "NJ_Dose1_mar2021_age65to100", "NJ_Dose1_apr2021_age0to17", "NJ_Dose1_apr2021_age18to64", "NJ_Dose1_apr2021_age65to100", "NJ_Dose1_may2021_age0to17", "NJ_Dose1_may2021_age18to64", "NJ_Dose1_may2021_age65to100", "NJ_Dose1_jun2021_age0to17", "NJ_Dose1_jun2021_age18to64", "NJ_Dose1_jun2021_age65to100", "NJ_Dose1_jul2021_age0to17", "NJ_Dose1_jul2021_age18to64", "NJ_Dose1_jul2021_age65to100", "NJ_Dose1_aug2021_age0to17", "NJ_Dose1_aug2021_age18to64", "NJ_Dose1_aug2021_age65to100", "NJ_Dose1_sep2021_age0to17", "NJ_Dose1_sep2021_age18to64", "NJ_Dose1_sep2021_age65to100", "NJ_Dose1_oct2021_age0to17", "NJ_Dose1_oct2021_age18to64", "NJ_Dose1_oct2021_age65to100", "NJ_Dose3_oct2021_18to64", "NJ_Dose3_oct2021_65to100", "NJ_Dose1_nov2021_age0to17", "NJ_Dose1_nov2021_age18to64", "NJ_Dose1_nov2021_age65to100", "NJ_Dose3_nov2021_0to17", "NJ_Dose3_nov2021_18to64", "NJ_Dose3_nov2021_65to100", "NJ_Dose1_dec2021_age0to17", "NJ_Dose1_dec2021_age18to64", "NJ_Dose1_dec2021_age65to100", "NJ_Dose3_dec2021_0to17", "NJ_Dose3_dec2021_18to64", "NJ_Dose3_dec2021_65to100", "NJ_Dose1_jan2022_age0to17", "NJ_Dose1_jan2022_age18to64", "NJ_Dose1_jan2022_age65to100", "NJ_Dose3_jan2022_0to17", "NJ_Dose3_jan2022_18to64", "NJ_Dose3_jan2022_65to100", "NJ_Dose1_feb2022_age0to17", "NJ_Dose1_feb2022_age18to64", "NJ_Dose1_feb2022_age65to100", "NJ_Dose3_feb2022_0to17", "NJ_Dose3_feb2022_18to64", "NJ_Dose3_feb2022_65to100", "NJ_Dose1_mar2022_age0to17", "NJ_Dose1_mar2022_age18to64", "NJ_Dose1_mar2022_age65to100", "NJ_Dose3_mar2022_0to17", "NJ_Dose3_mar2022_18to64", "NJ_Dose3_mar2022_65to100", "NJ_Dose1_apr2022_age0to17", "NJ_Dose1_apr2022_age18to64", "NJ_Dose1_apr2022_age65to100", "NJ_Dose3_apr2022_0to17", "NJ_Dose3_apr2022_18to64", "NJ_Dose3_apr2022_65to100", "NJ_Dose1_may2022_age0to17", "NJ_Dose1_may2022_age18to64", "NJ_Dose1_may2022_age65to100", "NJ_Dose3_may2022_0to17", "NJ_Dose3_may2022_18to64", "NJ_Dose3_may2022_65to100", "NJ_Dose1_jun2022_age0to17", "NJ_Dose1_jun2022_age18to64", "NJ_Dose1_jun2022_age65to100", "NJ_Dose3_jun2022_0to17", "NJ_Dose3_jun2022_18to64", "NJ_Dose3_jun2022_65to100", "NJ_Dose1_jul2022_age0to17", "NJ_Dose1_jul2022_age18to64", "NJ_Dose1_jul2022_age65to100", "NJ_Dose3_jul2022_0to17", "NJ_Dose3_jul2022_18to64", "NJ_Dose3_jul2022_65to100", "NJ_Dose1_aug2022_age0to17", "NJ_Dose1_aug2022_age18to64", "NJ_Dose1_aug2022_age65to100", "NJ_Dose3_aug2022_0to17", "NJ_Dose3_aug2022_18to64", "NJ_Dose3_aug2022_65to100", "NJ_Dose1_sep2022_age0to17", "NJ_Dose1_sep2022_age18to64", "NJ_Dose1_sep2022_age65to100", "NJ_Dose3_sep2022_0to17", "NJ_Dose3_sep2022_18to64", "NJ_Dose3_sep2022_65to100", "NM_Dose1_jan2021_age0to17", "NM_Dose1_jan2021_age18to64", "NM_Dose1_jan2021_age65to100", "NM_Dose1_feb2021_age0to17", "NM_Dose1_feb2021_age18to64", "NM_Dose1_feb2021_age65to100", "NM_Dose1_mar2021_age0to17", "NM_Dose1_mar2021_age18to64", "NM_Dose1_mar2021_age65to100", "NM_Dose1_apr2021_age0to17", "NM_Dose1_apr2021_age18to64", "NM_Dose1_apr2021_age65to100", "NM_Dose1_may2021_age0to17", "NM_Dose1_may2021_age18to64", "NM_Dose1_may2021_age65to100", "NM_Dose1_jun2021_age0to17", "NM_Dose1_jun2021_age18to64", "NM_Dose1_jun2021_age65to100", "NM_Dose1_jul2021_age0to17", "NM_Dose1_jul2021_age18to64", "NM_Dose1_jul2021_age65to100", "NM_Dose1_aug2021_age0to17", "NM_Dose1_aug2021_age18to64", "NM_Dose1_aug2021_age65to100", "NM_Dose1_sep2021_age0to17", "NM_Dose1_sep2021_age18to64", "NM_Dose1_sep2021_age65to100", "NM_Dose1_oct2021_age0to17", "NM_Dose1_oct2021_age18to64", "NM_Dose1_oct2021_age65to100", "NM_Dose3_oct2021_0to17", "NM_Dose3_oct2021_18to64", "NM_Dose3_oct2021_65to100", "NM_Dose1_nov2021_age0to17", "NM_Dose1_nov2021_age18to64", "NM_Dose1_nov2021_age65to100", "NM_Dose3_nov2021_0to17", "NM_Dose3_nov2021_18to64", "NM_Dose3_nov2021_65to100", "NM_Dose1_dec2021_age0to17", "NM_Dose1_dec2021_age18to64", "NM_Dose1_dec2021_age65to100", "NM_Dose3_dec2021_0to17", "NM_Dose3_dec2021_18to64", "NM_Dose3_dec2021_65to100", "NM_Dose1_jan2022_age0to17", "NM_Dose1_jan2022_age18to64", "NM_Dose1_jan2022_age65to100", "NM_Dose3_jan2022_0to17", "NM_Dose3_jan2022_18to64", "NM_Dose3_jan2022_65to100", "NM_Dose1_feb2022_age0to17", "NM_Dose1_feb2022_age18to64", "NM_Dose1_feb2022_age65to100", "NM_Dose3_feb2022_0to17", "NM_Dose3_feb2022_18to64", "NM_Dose3_feb2022_65to100", "NM_Dose1_mar2022_age0to17", "NM_Dose1_mar2022_age18to64", "NM_Dose1_mar2022_age65to100", "NM_Dose3_mar2022_0to17", "NM_Dose3_mar2022_18to64", "NM_Dose3_mar2022_65to100", "NM_Dose1_apr2022_age0to17", "NM_Dose1_apr2022_age18to64", "NM_Dose1_apr2022_age65to100", "NM_Dose3_apr2022_0to17", "NM_Dose3_apr2022_18to64", "NM_Dose3_apr2022_65to100", "NM_Dose1_may2022_age0to17", "NM_Dose1_may2022_age18to64", "NM_Dose1_may2022_age65to100", "NM_Dose3_may2022_0to17", "NM_Dose3_may2022_18to64", "NM_Dose3_may2022_65to100", "NM_Dose1_jun2022_age0to17", "NM_Dose1_jun2022_age18to64", "NM_Dose1_jun2022_age65to100", "NM_Dose3_jun2022_0to17", "NM_Dose3_jun2022_18to64", "NM_Dose3_jun2022_65to100", "NM_Dose1_jul2022_age0to17", "NM_Dose1_jul2022_age18to64", "NM_Dose1_jul2022_age65to100", "NM_Dose3_jul2022_0to17", "NM_Dose3_jul2022_18to64", "NM_Dose3_jul2022_65to100", "NM_Dose1_aug2022_age0to17", "NM_Dose1_aug2022_age18to64", "NM_Dose3_aug2022_0to17", "NM_Dose3_aug2022_18to64", "NM_Dose1_sep2022_age0to17", "NM_Dose1_sep2022_age18to64", "NM_Dose3_sep2022_0to17", "NM_Dose3_sep2022_18to64", "NY_Dose1_jan2021_age18to64", "NY_Dose1_jan2021_age65to100", "NY_Dose1_feb2021_age0to17", "NY_Dose1_feb2021_age18to64", "NY_Dose1_feb2021_age65to100", "NY_Dose1_mar2021_age0to17", "NY_Dose1_mar2021_age18to64", "NY_Dose1_mar2021_age65to100", "NY_Dose1_apr2021_age0to17", "NY_Dose1_apr2021_age18to64", "NY_Dose1_apr2021_age65to100", "NY_Dose1_may2021_age0to17", "NY_Dose1_may2021_age18to64", "NY_Dose1_may2021_age65to100", "NY_Dose1_jun2021_age0to17", "NY_Dose1_jun2021_age18to64", "NY_Dose1_jun2021_age65to100", "NY_Dose1_jul2021_age0to17", "NY_Dose1_jul2021_age18to64", "NY_Dose1_jul2021_age65to100", "NY_Dose1_aug2021_age0to17", "NY_Dose1_aug2021_age18to64", "NY_Dose1_aug2021_age65to100", "NY_Dose1_sep2021_age0to17", "NY_Dose1_sep2021_age18to64", "NY_Dose1_sep2021_age65to100", "NY_Dose1_oct2021_age0to17", "NY_Dose1_oct2021_age18to64", "NY_Dose1_oct2021_age65to100", "NY_Dose3_oct2021_0to17", "NY_Dose3_oct2021_18to64", "NY_Dose3_oct2021_65to100", "NY_Dose1_nov2021_age0to17", "NY_Dose1_nov2021_age18to64", "NY_Dose1_nov2021_age65to100", "NY_Dose3_nov2021_0to17", "NY_Dose3_nov2021_18to64", "NY_Dose3_nov2021_65to100", "NY_Dose1_dec2021_age0to17", "NY_Dose1_dec2021_age18to64", "NY_Dose1_dec2021_age65to100", "NY_Dose3_dec2021_0to17", "NY_Dose3_dec2021_18to64", "NY_Dose3_dec2021_65to100", "NY_Dose1_jan2022_age0to17", "NY_Dose1_jan2022_age18to64", "NY_Dose1_jan2022_age65to100", "NY_Dose3_jan2022_0to17", "NY_Dose3_jan2022_18to64", "NY_Dose3_jan2022_65to100", "NY_Dose1_feb2022_age0to17", "NY_Dose1_feb2022_age18to64", "NY_Dose1_feb2022_age65to100", "NY_Dose3_feb2022_0to17", "NY_Dose3_feb2022_18to64", "NY_Dose3_feb2022_65to100", "NY_Dose1_mar2022_age0to17", "NY_Dose1_mar2022_age18to64", "NY_Dose1_mar2022_age65to100", "NY_Dose3_mar2022_0to17", "NY_Dose3_mar2022_18to64", "NY_Dose3_mar2022_65to100", "NY_Dose1_apr2022_age0to17", "NY_Dose1_apr2022_age18to64", "NY_Dose1_apr2022_age65to100", "NY_Dose3_apr2022_0to17", "NY_Dose3_apr2022_18to64", "NY_Dose3_apr2022_65to100", "NY_Dose1_may2022_age0to17", "NY_Dose1_may2022_age18to64", "NY_Dose1_may2022_age65to100", "NY_Dose3_may2022_0to17", "NY_Dose3_may2022_18to64", "NY_Dose3_may2022_65to100", "NY_Dose1_jun2022_age0to17", "NY_Dose1_jun2022_age18to64", "NY_Dose1_jun2022_age65to100", "NY_Dose3_jun2022_0to17", "NY_Dose3_jun2022_18to64", "NY_Dose3_jun2022_65to100", "NY_Dose1_jul2022_age0to17", "NY_Dose1_jul2022_age18to64", "NY_Dose1_jul2022_age65to100", "NY_Dose3_jul2022_0to17", "NY_Dose3_jul2022_18to64", "NY_Dose3_jul2022_65to100", "NY_Dose1_aug2022_age0to17", "NY_Dose1_aug2022_age18to64", "NY_Dose1_aug2022_age65to100", "NY_Dose3_aug2022_0to17", "NY_Dose3_aug2022_18to64", "NY_Dose3_aug2022_65to100", "NY_Dose1_sep2022_age0to17", "NY_Dose1_sep2022_age18to64", "NY_Dose3_sep2022_0to17", "NY_Dose3_sep2022_18to64", "NY_Dose3_sep2022_65to100", "NC_Dose1_jan2021_age18to64", "NC_Dose1_jan2021_age65to100", "NC_Dose1_feb2021_age18to64", "NC_Dose1_feb2021_age65to100", "NC_Dose1_mar2021_age0to17", "NC_Dose1_mar2021_age18to64", "NC_Dose1_mar2021_age65to100", "NC_Dose1_apr2021_age0to17", "NC_Dose1_apr2021_age18to64", "NC_Dose1_apr2021_age65to100", "NC_Dose1_may2021_age0to17", "NC_Dose1_may2021_age18to64", "NC_Dose1_may2021_age65to100", "NC_Dose1_jun2021_age0to17", "NC_Dose1_jun2021_age18to64", "NC_Dose1_jun2021_age65to100", "NC_Dose1_jul2021_age0to17", "NC_Dose1_jul2021_age18to64", "NC_Dose1_jul2021_age65to100", "NC_Dose1_aug2021_age0to17", "NC_Dose1_aug2021_age18to64", "NC_Dose1_aug2021_age65to100", "NC_Dose1_sep2021_age0to17", "NC_Dose1_sep2021_age18to64", "NC_Dose1_sep2021_age65to100", "NC_Dose1_oct2021_age0to17", "NC_Dose1_oct2021_age18to64", "NC_Dose1_oct2021_age65to100", "NC_Dose3_oct2021_0to17", "NC_Dose3_oct2021_18to64", "NC_Dose3_oct2021_65to100", "NC_Dose1_nov2021_age0to17", "NC_Dose1_nov2021_age18to64", "NC_Dose1_nov2021_age65to100", "NC_Dose3_nov2021_0to17", "NC_Dose3_nov2021_18to64", "NC_Dose3_nov2021_65to100", "NC_Dose1_dec2021_age0to17", "NC_Dose1_dec2021_age18to64", "NC_Dose1_dec2021_age65to100", "NC_Dose3_dec2021_0to17", "NC_Dose3_dec2021_18to64", "NC_Dose3_dec2021_65to100", "NC_Dose1_jan2022_age0to17", "NC_Dose1_jan2022_age18to64", "NC_Dose1_jan2022_age65to100", "NC_Dose3_jan2022_0to17", "NC_Dose3_jan2022_18to64", "NC_Dose3_jan2022_65to100", "NC_Dose1_feb2022_age0to17", "NC_Dose1_feb2022_age18to64", "NC_Dose1_feb2022_age65to100", "NC_Dose3_feb2022_0to17", "NC_Dose3_feb2022_18to64", "NC_Dose3_feb2022_65to100", "NC_Dose1_mar2022_age0to17", "NC_Dose1_mar2022_age18to64", "NC_Dose1_mar2022_age65to100", "NC_Dose3_mar2022_0to17", "NC_Dose3_mar2022_18to64", "NC_Dose3_mar2022_65to100", "NC_Dose1_apr2022_age0to17", "NC_Dose1_apr2022_age18to64", "NC_Dose1_apr2022_age65to100", "NC_Dose3_apr2022_0to17", "NC_Dose3_apr2022_18to64", "NC_Dose3_apr2022_65to100", "NC_Dose1_may2022_age0to17", "NC_Dose1_may2022_age18to64", "NC_Dose1_may2022_age65to100", "NC_Dose3_may2022_0to17", "NC_Dose3_may2022_18to64", "NC_Dose3_may2022_65to100", "NC_Dose1_jun2022_age0to17", "NC_Dose1_jun2022_age18to64", "NC_Dose1_jun2022_age65to100", "NC_Dose3_jun2022_0to17", "NC_Dose3_jun2022_18to64", "NC_Dose3_jun2022_65to100", "NC_Dose1_jul2022_age0to17", "NC_Dose1_jul2022_age18to64", "NC_Dose1_jul2022_age65to100", "NC_Dose3_jul2022_0to17", "NC_Dose3_jul2022_18to64", "NC_Dose3_jul2022_65to100", "NC_Dose1_aug2022_age0to17", "NC_Dose1_aug2022_age18to64", "NC_Dose1_aug2022_age65to100", "NC_Dose3_aug2022_0to17", "NC_Dose3_aug2022_18to64", "NC_Dose3_aug2022_65to100", "NC_Dose1_sep2022_age0to17", "NC_Dose1_sep2022_age18to64", "NC_Dose1_sep2022_age65to100", "NC_Dose3_sep2022_0to17", "NC_Dose3_sep2022_18to64", "NC_Dose3_sep2022_65to100", "ND_Dose1_jan2021_age18to64", "ND_Dose1_jan2021_age65to100", "ND_Dose1_feb2021_age0to17", "ND_Dose1_feb2021_age18to64", "ND_Dose1_feb2021_age65to100", "ND_Dose1_mar2021_age0to17", "ND_Dose1_mar2021_age18to64", "ND_Dose1_mar2021_age65to100", "ND_Dose1_apr2021_age0to17", "ND_Dose1_apr2021_age18to64", "ND_Dose1_apr2021_age65to100", "ND_Dose1_may2021_age0to17", "ND_Dose1_may2021_age18to64", "ND_Dose1_may2021_age65to100", "ND_Dose1_jun2021_age0to17", "ND_Dose1_jun2021_age18to64", "ND_Dose1_jun2021_age65to100", "ND_Dose1_jul2021_age0to17", "ND_Dose1_jul2021_age18to64", "ND_Dose1_jul2021_age65to100", "ND_Dose1_aug2021_age0to17", "ND_Dose1_aug2021_age18to64", "ND_Dose1_aug2021_age65to100", "ND_Dose1_sep2021_age0to17", "ND_Dose1_sep2021_age18to64", "ND_Dose1_sep2021_age65to100", "ND_Dose1_oct2021_age0to17", "ND_Dose1_oct2021_age18to64", "ND_Dose1_oct2021_age65to100", "ND_Dose3_oct2021_0to17", "ND_Dose3_oct2021_18to64", "ND_Dose3_oct2021_65to100", "ND_Dose1_nov2021_age0to17", "ND_Dose1_nov2021_age18to64", "ND_Dose1_nov2021_age65to100", "ND_Dose3_nov2021_0to17", "ND_Dose3_nov2021_18to64", "ND_Dose3_nov2021_65to100", "ND_Dose1_dec2021_age0to17", "ND_Dose1_dec2021_age18to64", "ND_Dose1_dec2021_age65to100", "ND_Dose3_dec2021_0to17", "ND_Dose3_dec2021_18to64", "ND_Dose3_dec2021_65to100", "ND_Dose1_jan2022_age0to17", "ND_Dose1_jan2022_age18to64", "ND_Dose1_jan2022_age65to100", "ND_Dose3_jan2022_0to17", "ND_Dose3_jan2022_18to64", "ND_Dose3_jan2022_65to100", "ND_Dose1_feb2022_age0to17", "ND_Dose1_feb2022_age18to64", "ND_Dose1_feb2022_age65to100", "ND_Dose3_feb2022_0to17", "ND_Dose3_feb2022_18to64", "ND_Dose3_feb2022_65to100", "ND_Dose1_mar2022_age0to17", "ND_Dose1_mar2022_age18to64", "ND_Dose1_mar2022_age65to100", "ND_Dose3_mar2022_0to17", "ND_Dose3_mar2022_18to64", "ND_Dose3_mar2022_65to100", "ND_Dose1_apr2022_age0to17", "ND_Dose1_apr2022_age18to64", "ND_Dose1_apr2022_age65to100", "ND_Dose3_apr2022_0to17", "ND_Dose3_apr2022_18to64", "ND_Dose3_apr2022_65to100", "ND_Dose1_may2022_age0to17", "ND_Dose1_may2022_age18to64", "ND_Dose1_may2022_age65to100", "ND_Dose3_may2022_0to17", "ND_Dose3_may2022_18to64", "ND_Dose3_may2022_65to100", "ND_Dose1_jun2022_age0to17", "ND_Dose1_jun2022_age18to64", "ND_Dose1_jun2022_age65to100", "ND_Dose3_jun2022_0to17", "ND_Dose3_jun2022_18to64", "ND_Dose3_jun2022_65to100", "ND_Dose1_jul2022_age0to17", "ND_Dose1_jul2022_age18to64", "ND_Dose1_jul2022_age65to100", "ND_Dose3_jul2022_0to17", "ND_Dose3_jul2022_18to64", "ND_Dose3_jul2022_65to100", "ND_Dose1_aug2022_age0to17", "ND_Dose1_aug2022_age18to64", "ND_Dose1_aug2022_age65to100", "ND_Dose3_aug2022_0to17", "ND_Dose3_aug2022_18to64", "ND_Dose3_aug2022_65to100", "ND_Dose1_sep2022_age0to17", "ND_Dose1_sep2022_age18to64", "ND_Dose1_sep2022_age65to100", "ND_Dose3_sep2022_0to17", "ND_Dose3_sep2022_18to64", "ND_Dose3_sep2022_65to100", "OH_Dose1_jan2021_age18to64", "OH_Dose1_jan2021_age65to100", "OH_Dose1_feb2021_age0to17", "OH_Dose1_feb2021_age18to64", "OH_Dose1_feb2021_age65to100", "OH_Dose1_mar2021_age0to17", "OH_Dose1_mar2021_age18to64", "OH_Dose1_mar2021_age65to100", "OH_Dose1_apr2021_age0to17", "OH_Dose1_apr2021_age18to64", "OH_Dose1_apr2021_age65to100", "OH_Dose1_may2021_age0to17", "OH_Dose1_may2021_age18to64", "OH_Dose1_may2021_age65to100", "OH_Dose1_jun2021_age0to17", "OH_Dose1_jun2021_age18to64", "OH_Dose1_jun2021_age65to100", "OH_Dose1_jul2021_age0to17", "OH_Dose1_jul2021_age18to64", "OH_Dose1_jul2021_age65to100", "OH_Dose1_aug2021_age0to17", "OH_Dose1_aug2021_age18to64", "OH_Dose1_aug2021_age65to100", "OH_Dose1_sep2021_age0to17", "OH_Dose1_sep2021_age18to64", "OH_Dose1_sep2021_age65to100", "OH_Dose1_oct2021_age0to17", "OH_Dose1_oct2021_age18to64", "OH_Dose1_oct2021_age65to100", "OH_Dose3_oct2021_0to17", "OH_Dose3_oct2021_18to64", "OH_Dose3_oct2021_65to100", "OH_Dose1_nov2021_age0to17", "OH_Dose1_nov2021_age18to64", "OH_Dose1_nov2021_age65to100", "OH_Dose3_nov2021_0to17", "OH_Dose3_nov2021_18to64", "OH_Dose3_nov2021_65to100", "OH_Dose1_dec2021_age0to17", "OH_Dose1_dec2021_age18to64", "OH_Dose1_dec2021_age65to100", "OH_Dose3_dec2021_0to17", "OH_Dose3_dec2021_18to64", "OH_Dose3_dec2021_65to100", "OH_Dose1_jan2022_age0to17", "OH_Dose1_jan2022_age18to64", "OH_Dose1_jan2022_age65to100", "OH_Dose3_jan2022_0to17", "OH_Dose3_jan2022_18to64", "OH_Dose3_jan2022_65to100", "OH_Dose1_feb2022_age0to17", "OH_Dose1_feb2022_age18to64", "OH_Dose1_feb2022_age65to100", "OH_Dose3_feb2022_0to17", "OH_Dose3_feb2022_18to64", "OH_Dose3_feb2022_65to100", "OH_Dose1_mar2022_age0to17", "OH_Dose1_mar2022_age18to64", "OH_Dose1_mar2022_age65to100", "OH_Dose3_mar2022_0to17", "OH_Dose3_mar2022_18to64", "OH_Dose3_mar2022_65to100", "OH_Dose1_apr2022_age0to17", "OH_Dose1_apr2022_age18to64", "OH_Dose1_apr2022_age65to100", "OH_Dose3_apr2022_0to17", "OH_Dose3_apr2022_18to64", "OH_Dose3_apr2022_65to100", "OH_Dose1_may2022_age0to17", "OH_Dose1_may2022_age18to64", "OH_Dose1_may2022_age65to100", "OH_Dose3_may2022_0to17", "OH_Dose3_may2022_18to64", "OH_Dose3_may2022_65to100", "OH_Dose1_jun2022_age0to17", "OH_Dose1_jun2022_age18to64", "OH_Dose1_jun2022_age65to100", "OH_Dose3_jun2022_0to17", "OH_Dose3_jun2022_18to64", "OH_Dose3_jun2022_65to100", "OH_Dose1_jul2022_age0to17", "OH_Dose1_jul2022_age18to64", "OH_Dose1_jul2022_age65to100", "OH_Dose3_jul2022_0to17", "OH_Dose3_jul2022_18to64", "OH_Dose3_jul2022_65to100", "OH_Dose1_aug2022_age0to17", "OH_Dose1_aug2022_age18to64", "OH_Dose1_aug2022_age65to100", "OH_Dose3_aug2022_0to17", "OH_Dose3_aug2022_18to64", "OH_Dose3_aug2022_65to100", "OH_Dose1_sep2022_age0to17", "OH_Dose1_sep2022_age18to64", "OH_Dose1_sep2022_age65to100", "OH_Dose3_sep2022_0to17", "OH_Dose3_sep2022_18to64", "OH_Dose3_sep2022_65to100", "OK_Dose1_jan2021_age18to64", "OK_Dose1_jan2021_age65to100", "OK_Dose1_feb2021_age0to17", "OK_Dose1_feb2021_age18to64", "OK_Dose1_feb2021_age65to100", "OK_Dose1_mar2021_age0to17", "OK_Dose1_mar2021_age18to64", "OK_Dose1_mar2021_age65to100", "OK_Dose1_apr2021_age0to17", "OK_Dose1_apr2021_age18to64", "OK_Dose1_apr2021_age65to100", "OK_Dose1_may2021_age0to17", "OK_Dose1_may2021_age18to64", "OK_Dose1_may2021_age65to100", "OK_Dose1_jun2021_age0to17", "OK_Dose1_jun2021_age18to64", "OK_Dose1_jun2021_age65to100", "OK_Dose1_jul2021_age0to17", "OK_Dose1_jul2021_age18to64", "OK_Dose1_jul2021_age65to100", "OK_Dose1_aug2021_age0to17", "OK_Dose1_aug2021_age18to64", "OK_Dose1_aug2021_age65to100", "OK_Dose1_sep2021_age0to17", "OK_Dose1_sep2021_age18to64", "OK_Dose1_sep2021_age65to100", "OK_Dose1_oct2021_age0to17", "OK_Dose1_oct2021_age18to64", "OK_Dose1_oct2021_age65to100", "OK_Dose3_oct2021_0to17", "OK_Dose3_oct2021_18to64", "OK_Dose3_oct2021_65to100", "OK_Dose1_nov2021_age0to17", "OK_Dose1_nov2021_age18to64", "OK_Dose1_nov2021_age65to100", "OK_Dose3_nov2021_0to17", "OK_Dose3_nov2021_18to64", "OK_Dose3_nov2021_65to100", "OK_Dose1_dec2021_age0to17", "OK_Dose1_dec2021_age18to64", "OK_Dose1_dec2021_age65to100", "OK_Dose3_dec2021_0to17", "OK_Dose3_dec2021_18to64", "OK_Dose3_dec2021_65to100", "OK_Dose1_jan2022_age0to17", "OK_Dose1_jan2022_age18to64", "OK_Dose1_jan2022_age65to100", "OK_Dose3_jan2022_0to17", "OK_Dose3_jan2022_18to64", "OK_Dose3_jan2022_65to100", "OK_Dose1_feb2022_age0to17", "OK_Dose1_feb2022_age18to64", "OK_Dose1_feb2022_age65to100", "OK_Dose3_feb2022_0to17", "OK_Dose3_feb2022_18to64", "OK_Dose3_feb2022_65to100", "OK_Dose1_mar2022_age0to17", "OK_Dose1_mar2022_age18to64", "OK_Dose1_mar2022_age65to100", "OK_Dose3_mar2022_0to17", "OK_Dose3_mar2022_18to64", "OK_Dose3_mar2022_65to100", "OK_Dose1_apr2022_age0to17", "OK_Dose1_apr2022_age18to64", "OK_Dose1_apr2022_age65to100", "OK_Dose3_apr2022_0to17", "OK_Dose3_apr2022_18to64", "OK_Dose3_apr2022_65to100", "OK_Dose1_may2022_age0to17", "OK_Dose1_may2022_age18to64", "OK_Dose1_may2022_age65to100", "OK_Dose3_may2022_0to17", "OK_Dose3_may2022_18to64", "OK_Dose3_may2022_65to100", "OK_Dose1_jun2022_age0to17", "OK_Dose1_jun2022_age18to64", "OK_Dose1_jun2022_age65to100", "OK_Dose3_jun2022_0to17", "OK_Dose3_jun2022_18to64", "OK_Dose3_jun2022_65to100", "OK_Dose1_jul2022_age0to17", "OK_Dose1_jul2022_age18to64", "OK_Dose1_jul2022_age65to100", "OK_Dose3_jul2022_0to17", "OK_Dose3_jul2022_18to64", "OK_Dose3_jul2022_65to100", "OK_Dose1_aug2022_age0to17", "OK_Dose1_aug2022_age18to64", "OK_Dose1_aug2022_age65to100", "OK_Dose3_aug2022_0to17", "OK_Dose3_aug2022_18to64", "OK_Dose3_aug2022_65to100", "OK_Dose1_sep2022_age0to17", "OK_Dose1_sep2022_age18to64", "OK_Dose1_sep2022_age65to100", "OK_Dose3_sep2022_0to17", "OK_Dose3_sep2022_18to64", "OK_Dose3_sep2022_65to100", "OR_Dose1_jan2021_age18to64", "OR_Dose1_jan2021_age65to100", "OR_Dose1_feb2021_age0to17", "OR_Dose1_feb2021_age18to64", "OR_Dose1_feb2021_age65to100", "OR_Dose1_mar2021_age0to17", "OR_Dose1_mar2021_age18to64", "OR_Dose1_mar2021_age65to100", "OR_Dose1_apr2021_age0to17", "OR_Dose1_apr2021_age18to64", "OR_Dose1_apr2021_age65to100", "OR_Dose1_may2021_age0to17", "OR_Dose1_may2021_age18to64", "OR_Dose1_may2021_age65to100", "OR_Dose1_jun2021_age0to17", "OR_Dose1_jun2021_age18to64", "OR_Dose1_jun2021_age65to100", "OR_Dose1_jul2021_age0to17", "OR_Dose1_jul2021_age18to64", "OR_Dose1_jul2021_age65to100", "OR_Dose1_aug2021_age0to17", "OR_Dose1_aug2021_age18to64", "OR_Dose1_aug2021_age65to100", "OR_Dose1_sep2021_age0to17", "OR_Dose1_sep2021_age18to64", "OR_Dose1_sep2021_age65to100", "OR_Dose1_oct2021_age0to17", "OR_Dose1_oct2021_age18to64", "OR_Dose1_oct2021_age65to100", "OR_Dose3_oct2021_0to17", "OR_Dose3_oct2021_18to64", "OR_Dose3_oct2021_65to100", "OR_Dose1_nov2021_age0to17", "OR_Dose1_nov2021_age18to64", "OR_Dose1_nov2021_age65to100", "OR_Dose3_nov2021_0to17", "OR_Dose3_nov2021_18to64", "OR_Dose3_nov2021_65to100", "OR_Dose1_dec2021_age0to17", "OR_Dose1_dec2021_age18to64", "OR_Dose1_dec2021_age65to100", "OR_Dose3_dec2021_0to17", "OR_Dose3_dec2021_18to64", "OR_Dose3_dec2021_65to100", "OR_Dose1_jan2022_age0to17", "OR_Dose1_jan2022_age18to64", "OR_Dose1_jan2022_age65to100", "OR_Dose3_jan2022_0to17", "OR_Dose3_jan2022_18to64", "OR_Dose3_jan2022_65to100", "OR_Dose1_feb2022_age0to17", "OR_Dose1_feb2022_age18to64", "OR_Dose1_feb2022_age65to100", "OR_Dose3_feb2022_0to17", "OR_Dose3_feb2022_18to64", "OR_Dose3_feb2022_65to100", "OR_Dose1_mar2022_age0to17", "OR_Dose1_mar2022_age18to64", "OR_Dose1_mar2022_age65to100", "OR_Dose3_mar2022_0to17", "OR_Dose3_mar2022_18to64", "OR_Dose3_mar2022_65to100", "OR_Dose1_apr2022_age0to17", "OR_Dose1_apr2022_age18to64", "OR_Dose1_apr2022_age65to100", "OR_Dose3_apr2022_0to17", "OR_Dose3_apr2022_18to64", "OR_Dose3_apr2022_65to100", "OR_Dose1_may2022_age0to17", "OR_Dose1_may2022_age18to64", "OR_Dose1_may2022_age65to100", "OR_Dose3_may2022_0to17", "OR_Dose3_may2022_18to64", "OR_Dose3_may2022_65to100", "OR_Dose1_jun2022_age0to17", "OR_Dose1_jun2022_age18to64", "OR_Dose1_jun2022_age65to100", "OR_Dose3_jun2022_0to17", "OR_Dose3_jun2022_18to64", "OR_Dose3_jun2022_65to100", "OR_Dose1_jul2022_age0to17", "OR_Dose1_jul2022_age65to100", "OR_Dose3_jul2022_0to17", "OR_Dose3_jul2022_18to64", "OR_Dose3_jul2022_65to100", "OR_Dose1_aug2022_age0to17", "OR_Dose1_aug2022_age65to100", "OR_Dose3_aug2022_0to17", "OR_Dose3_aug2022_18to64", "OR_Dose3_aug2022_65to100", "OR_Dose1_sep2022_age0to17", "OR_Dose1_sep2022_age65to100", "OR_Dose3_sep2022_0to17", "OR_Dose3_sep2022_18to64", "OR_Dose3_sep2022_65to100", "PA_Dose1_jan2021_age18to64", "PA_Dose1_jan2021_age65to100", "PA_Dose1_feb2021_age0to17", "PA_Dose1_feb2021_age18to64", "PA_Dose1_feb2021_age65to100", "PA_Dose1_mar2021_age0to17", "PA_Dose1_mar2021_age18to64", "PA_Dose1_mar2021_age65to100", "PA_Dose1_apr2021_age0to17", "PA_Dose1_apr2021_age18to64", "PA_Dose1_apr2021_age65to100", "PA_Dose1_may2021_age0to17", "PA_Dose1_may2021_age18to64", "PA_Dose1_may2021_age65to100", "PA_Dose1_jun2021_age0to17", "PA_Dose1_jun2021_age18to64", "PA_Dose1_jun2021_age65to100", "PA_Dose1_jul2021_age0to17", "PA_Dose1_jul2021_age18to64", "PA_Dose1_aug2021_age0to17", "PA_Dose1_aug2021_age18to64", "PA_Dose1_sep2021_age0to17", "PA_Dose1_sep2021_age18to64", "PA_Dose1_oct2021_age0to17", "PA_Dose1_oct2021_age18to64", "PA_Dose3_oct2021_0to17", "PA_Dose3_oct2021_18to64", "PA_Dose3_oct2021_65to100", "PA_Dose1_nov2021_age0to17", "PA_Dose1_nov2021_age18to64", "PA_Dose1_nov2021_age65to100", "PA_Dose3_nov2021_0to17", "PA_Dose3_nov2021_18to64", "PA_Dose3_nov2021_65to100", "PA_Dose1_dec2021_age0to17", "PA_Dose1_dec2021_age18to64", "PA_Dose1_dec2021_age65to100", "PA_Dose3_dec2021_0to17", "PA_Dose3_dec2021_18to64", "PA_Dose3_dec2021_65to100", "PA_Dose1_jan2022_age0to17", "PA_Dose1_jan2022_age18to64", "PA_Dose1_jan2022_age65to100", "PA_Dose3_jan2022_0to17", "PA_Dose3_jan2022_18to64", "PA_Dose3_jan2022_65to100", "PA_Dose1_feb2022_age0to17", "PA_Dose1_feb2022_age18to64", "PA_Dose1_feb2022_age65to100", "PA_Dose3_feb2022_0to17", "PA_Dose3_feb2022_18to64", "PA_Dose3_feb2022_65to100", "PA_Dose1_mar2022_age0to17", "PA_Dose1_mar2022_age18to64", "PA_Dose1_mar2022_age65to100", "PA_Dose3_mar2022_0to17", "PA_Dose3_mar2022_18to64", "PA_Dose3_mar2022_65to100", "PA_Dose1_apr2022_age0to17", "PA_Dose1_apr2022_age18to64", "PA_Dose1_apr2022_age65to100", "PA_Dose3_apr2022_0to17", "PA_Dose3_apr2022_18to64", "PA_Dose3_apr2022_65to100", "PA_Dose1_may2022_age0to17", "PA_Dose1_may2022_age18to64", "PA_Dose1_may2022_age65to100", "PA_Dose3_may2022_0to17", "PA_Dose3_may2022_18to64", "PA_Dose1_jun2022_age0to17", "PA_Dose1_jun2022_age18to64", "PA_Dose1_jun2022_age65to100", "PA_Dose3_jun2022_0to17", "PA_Dose3_jun2022_18to64", "PA_Dose1_jul2022_age0to17", "PA_Dose1_jul2022_age18to64", "PA_Dose1_jul2022_age65to100", "PA_Dose3_jul2022_0to17", "PA_Dose3_jul2022_18to64", "PA_Dose1_aug2022_age0to17", "PA_Dose1_aug2022_age18to64", "PA_Dose1_aug2022_age65to100", "PA_Dose3_aug2022_0to17", "PA_Dose3_aug2022_18to64", "PA_Dose1_sep2022_age0to17", "PA_Dose1_sep2022_age18to64", "PA_Dose1_sep2022_age65to100", "PA_Dose3_sep2022_0to17", "PA_Dose3_sep2022_18to64", "PA_Dose3_sep2022_65to100", "RI_Dose1_jan2021_age18to64", "RI_Dose1_jan2021_age65to100", "RI_Dose1_feb2021_age0to17", "RI_Dose1_feb2021_age18to64", "RI_Dose1_feb2021_age65to100", "RI_Dose1_mar2021_age0to17", "RI_Dose1_mar2021_age18to64", "RI_Dose1_mar2021_age65to100", "RI_Dose1_apr2021_age0to17", "RI_Dose1_apr2021_age18to64", "RI_Dose1_apr2021_age65to100", "RI_Dose1_may2021_age0to17", "RI_Dose1_may2021_age18to64", "RI_Dose1_may2021_age65to100", "RI_Dose1_jun2021_age0to17", "RI_Dose1_jun2021_age18to64", "RI_Dose1_jun2021_age65to100", "RI_Dose1_jul2021_age0to17", "RI_Dose1_jul2021_age18to64", "RI_Dose1_jul2021_age65to100", "RI_Dose1_aug2021_age0to17", "RI_Dose1_aug2021_age18to64", "RI_Dose1_aug2021_age65to100", "RI_Dose1_sep2021_age0to17", "RI_Dose1_sep2021_age18to64", "RI_Dose1_sep2021_age65to100", "RI_Dose1_oct2021_age0to17", "RI_Dose1_oct2021_age18to64", "RI_Dose1_oct2021_age65to100", "RI_Dose3_oct2021_0to17", "RI_Dose3_oct2021_18to64", "RI_Dose3_oct2021_65to100", "RI_Dose1_nov2021_age0to17", "RI_Dose1_nov2021_age18to64", "RI_Dose1_nov2021_age65to100", "RI_Dose3_nov2021_0to17", "RI_Dose3_nov2021_18to64", "RI_Dose3_nov2021_65to100", "RI_Dose1_dec2021_age0to17", "RI_Dose1_dec2021_age18to64", "RI_Dose1_dec2021_age65to100", "RI_Dose3_dec2021_0to17", "RI_Dose3_dec2021_18to64", "RI_Dose3_dec2021_65to100", "RI_Dose1_jan2022_age0to17", "RI_Dose1_jan2022_age18to64", "RI_Dose1_jan2022_age65to100", "RI_Dose3_jan2022_0to17", "RI_Dose3_jan2022_18to64", "RI_Dose3_jan2022_65to100", "RI_Dose1_feb2022_age0to17", "RI_Dose1_feb2022_age18to64", "RI_Dose1_feb2022_age65to100", "RI_Dose3_feb2022_0to17", "RI_Dose3_feb2022_18to64", "RI_Dose3_feb2022_65to100", "RI_Dose1_mar2022_age0to17", "RI_Dose1_mar2022_age18to64", "RI_Dose1_mar2022_age65to100", "RI_Dose3_mar2022_0to17", "RI_Dose3_mar2022_18to64", "RI_Dose3_mar2022_65to100", "RI_Dose1_apr2022_age0to17", "RI_Dose1_apr2022_age18to64", "RI_Dose1_apr2022_age65to100", "RI_Dose3_apr2022_0to17", "RI_Dose3_apr2022_18to64", "RI_Dose3_apr2022_65to100", "RI_Dose1_may2022_age0to17", "RI_Dose1_may2022_age18to64", "RI_Dose1_may2022_age65to100", "RI_Dose3_may2022_0to17", "RI_Dose3_may2022_18to64", "RI_Dose3_may2022_65to100", "RI_Dose1_jun2022_age0to17", "RI_Dose1_jun2022_age18to64", "RI_Dose3_jun2022_0to17", "RI_Dose3_jun2022_18to64", "RI_Dose3_jun2022_65to100", "RI_Dose1_jul2022_age0to17", "RI_Dose1_jul2022_age18to64", "RI_Dose1_jul2022_age65to100", "RI_Dose3_jul2022_0to17", "RI_Dose3_jul2022_18to64", "RI_Dose3_jul2022_65to100", "RI_Dose1_aug2022_age0to17", "RI_Dose1_aug2022_age18to64", "RI_Dose3_aug2022_0to17", "RI_Dose3_aug2022_18to64", "RI_Dose1_sep2022_age0to17", "RI_Dose1_sep2022_age18to64", "RI_Dose3_sep2022_0to17", "RI_Dose3_sep2022_18to64", "SC_Dose1_jan2021_age18to64", "SC_Dose1_jan2021_age65to100", "SC_Dose1_feb2021_age0to17", "SC_Dose1_feb2021_age18to64", "SC_Dose1_feb2021_age65to100", "SC_Dose1_mar2021_age0to17", "SC_Dose1_mar2021_age18to64", "SC_Dose1_mar2021_age65to100", "SC_Dose1_apr2021_age0to17", "SC_Dose1_apr2021_age18to64", "SC_Dose1_apr2021_age65to100", "SC_Dose1_may2021_age0to17", "SC_Dose1_may2021_age18to64", "SC_Dose1_may2021_age65to100", "SC_Dose1_jun2021_age0to17", "SC_Dose1_jun2021_age18to64", "SC_Dose1_jun2021_age65to100", "SC_Dose1_jul2021_age0to17", "SC_Dose1_jul2021_age18to64", "SC_Dose1_jul2021_age65to100", "SC_Dose1_aug2021_age0to17", "SC_Dose1_aug2021_age18to64", "SC_Dose1_aug2021_age65to100", "SC_Dose1_sep2021_age0to17", "SC_Dose1_sep2021_age18to64", "SC_Dose1_sep2021_age65to100", "SC_Dose1_oct2021_age0to17", "SC_Dose1_oct2021_age18to64", "SC_Dose1_oct2021_age65to100", "SC_Dose3_oct2021_0to17", "SC_Dose3_oct2021_18to64", "SC_Dose3_oct2021_65to100", "SC_Dose1_nov2021_age0to17", "SC_Dose1_nov2021_age18to64", "SC_Dose1_nov2021_age65to100", "SC_Dose3_nov2021_0to17", "SC_Dose3_nov2021_18to64", "SC_Dose3_nov2021_65to100", "SC_Dose1_dec2021_age0to17", "SC_Dose1_dec2021_age18to64", "SC_Dose1_dec2021_age65to100", "SC_Dose3_dec2021_0to17", "SC_Dose3_dec2021_18to64", "SC_Dose3_dec2021_65to100", "SC_Dose1_jan2022_age0to17", "SC_Dose1_jan2022_age18to64", "SC_Dose1_jan2022_age65to100", "SC_Dose3_jan2022_0to17", "SC_Dose3_jan2022_18to64", "SC_Dose3_jan2022_65to100", "SC_Dose1_feb2022_age0to17", "SC_Dose1_feb2022_age18to64", "SC_Dose1_feb2022_age65to100", "SC_Dose3_feb2022_0to17", "SC_Dose3_feb2022_18to64", "SC_Dose3_feb2022_65to100", "SC_Dose1_mar2022_age0to17", "SC_Dose1_mar2022_age18to64", "SC_Dose1_mar2022_age65to100", "SC_Dose3_mar2022_0to17", "SC_Dose3_mar2022_18to64", "SC_Dose3_mar2022_65to100", "SC_Dose1_apr2022_age0to17", "SC_Dose1_apr2022_age18to64", "SC_Dose1_apr2022_age65to100", "SC_Dose3_apr2022_0to17", "SC_Dose3_apr2022_18to64", "SC_Dose3_apr2022_65to100", "SC_Dose1_may2022_age0to17", "SC_Dose1_may2022_age18to64", "SC_Dose1_may2022_age65to100", "SC_Dose3_may2022_0to17", "SC_Dose3_may2022_18to64", "SC_Dose3_may2022_65to100", "SC_Dose1_jun2022_age0to17", "SC_Dose1_jun2022_age18to64", "SC_Dose1_jun2022_age65to100", "SC_Dose3_jun2022_0to17", "SC_Dose3_jun2022_18to64", "SC_Dose3_jun2022_65to100", "SC_Dose1_jul2022_age0to17", "SC_Dose1_jul2022_age18to64", "SC_Dose1_jul2022_age65to100", "SC_Dose3_jul2022_0to17", "SC_Dose3_jul2022_18to64", "SC_Dose3_jul2022_65to100", "SC_Dose1_aug2022_age0to17", "SC_Dose1_aug2022_age18to64", "SC_Dose1_aug2022_age65to100", "SC_Dose3_aug2022_0to17", "SC_Dose3_aug2022_18to64", "SC_Dose3_aug2022_65to100", "SC_Dose1_sep2022_age0to17", "SC_Dose1_sep2022_age18to64", "SC_Dose1_sep2022_age65to100", "SC_Dose3_sep2022_0to17", "SC_Dose3_sep2022_18to64", "SC_Dose3_sep2022_65to100", "SD_Dose1_jan2021_age18to64", "SD_Dose1_jan2021_age65to100", "SD_Dose1_feb2021_age0to17", "SD_Dose1_feb2021_age18to64", "SD_Dose1_feb2021_age65to100", "SD_Dose1_mar2021_age0to17", "SD_Dose1_mar2021_age18to64", "SD_Dose1_mar2021_age65to100", "SD_Dose1_apr2021_age0to17", "SD_Dose1_apr2021_age18to64", "SD_Dose1_apr2021_age65to100", "SD_Dose1_may2021_age0to17", "SD_Dose1_may2021_age18to64", "SD_Dose1_may2021_age65to100", "SD_Dose1_jun2021_age0to17", "SD_Dose1_jun2021_age18to64", "SD_Dose1_jun2021_age65to100", "SD_Dose1_jul2021_age0to17", "SD_Dose1_jul2021_age18to64", "SD_Dose1_jul2021_age65to100", "SD_Dose1_aug2021_age0to17", "SD_Dose1_aug2021_age18to64", "SD_Dose1_aug2021_age65to100", "SD_Dose1_sep2021_age0to17", "SD_Dose1_sep2021_age18to64", "SD_Dose1_sep2021_age65to100", "SD_Dose1_oct2021_age0to17", "SD_Dose1_oct2021_age18to64", "SD_Dose1_oct2021_age65to100", "SD_Dose3_oct2021_0to17", "SD_Dose3_oct2021_18to64", "SD_Dose3_oct2021_65to100", "SD_Dose1_nov2021_age0to17", "SD_Dose1_nov2021_age18to64", "SD_Dose1_nov2021_age65to100", "SD_Dose3_nov2021_0to17", "SD_Dose3_nov2021_18to64", "SD_Dose3_nov2021_65to100", "SD_Dose1_dec2021_age0to17", "SD_Dose1_dec2021_age18to64", "SD_Dose1_dec2021_age65to100", "SD_Dose3_dec2021_0to17", "SD_Dose3_dec2021_18to64", "SD_Dose3_dec2021_65to100", "SD_Dose1_jan2022_age0to17", "SD_Dose1_jan2022_age18to64", "SD_Dose1_jan2022_age65to100", "SD_Dose3_jan2022_0to17", "SD_Dose3_jan2022_18to64", "SD_Dose3_jan2022_65to100", "SD_Dose1_feb2022_age0to17", "SD_Dose1_feb2022_age18to64", "SD_Dose1_feb2022_age65to100", "SD_Dose3_feb2022_0to17", "SD_Dose3_feb2022_18to64", "SD_Dose3_feb2022_65to100", "SD_Dose1_mar2022_age0to17", "SD_Dose1_mar2022_age18to64", "SD_Dose1_mar2022_age65to100", "SD_Dose3_mar2022_0to17", "SD_Dose3_mar2022_18to64", "SD_Dose3_mar2022_65to100", "SD_Dose1_apr2022_age0to17", "SD_Dose1_apr2022_age18to64", "SD_Dose1_apr2022_age65to100", "SD_Dose3_apr2022_0to17", "SD_Dose3_apr2022_18to64", "SD_Dose3_apr2022_65to100", "SD_Dose1_may2022_age0to17", "SD_Dose1_may2022_age18to64", "SD_Dose1_may2022_age65to100", "SD_Dose3_may2022_0to17", "SD_Dose3_may2022_18to64", "SD_Dose3_may2022_65to100", "SD_Dose1_jun2022_age0to17", "SD_Dose1_jun2022_age18to64", "SD_Dose3_jun2022_0to17", "SD_Dose3_jun2022_18to64", "SD_Dose3_jun2022_65to100", "SD_Dose1_jul2022_age0to17", "SD_Dose1_jul2022_age18to64", "SD_Dose1_jul2022_age65to100", "SD_Dose3_jul2022_0to17", "SD_Dose3_jul2022_18to64", "SD_Dose3_jul2022_65to100", "SD_Dose1_aug2022_age0to17", "SD_Dose1_aug2022_age18to64", "SD_Dose3_aug2022_0to17", "SD_Dose3_aug2022_18to64", "SD_Dose1_sep2022_age0to17", "SD_Dose1_sep2022_age18to64", "SD_Dose3_sep2022_0to17", "SD_Dose3_sep2022_18to64", "TN_Dose1_jan2021_age18to64", "TN_Dose1_jan2021_age65to100", "TN_Dose1_feb2021_age0to17", "TN_Dose1_feb2021_age18to64", "TN_Dose1_feb2021_age65to100", "TN_Dose1_mar2021_age0to17", "TN_Dose1_mar2021_age18to64", "TN_Dose1_mar2021_age65to100", "TN_Dose1_apr2021_age0to17", "TN_Dose1_apr2021_age18to64", "TN_Dose1_apr2021_age65to100", "TN_Dose1_may2021_age0to17", "TN_Dose1_may2021_age18to64", "TN_Dose1_may2021_age65to100", "TN_Dose1_jun2021_age0to17", "TN_Dose1_jun2021_age18to64", "TN_Dose1_jun2021_age65to100", "TN_Dose1_jul2021_age0to17", "TN_Dose1_jul2021_age18to64", "TN_Dose1_jul2021_age65to100", "TN_Dose1_aug2021_age0to17", "TN_Dose1_aug2021_age18to64", "TN_Dose1_aug2021_age65to100", "TN_Dose1_sep2021_age0to17", "TN_Dose1_sep2021_age18to64", "TN_Dose1_sep2021_age65to100", "TN_Dose1_oct2021_age0to17", "TN_Dose1_oct2021_age18to64", "TN_Dose1_oct2021_age65to100", "TN_Dose3_oct2021_0to17", "TN_Dose3_oct2021_18to64", "TN_Dose3_oct2021_65to100", "TN_Dose1_nov2021_age0to17", "TN_Dose1_nov2021_age18to64", "TN_Dose1_nov2021_age65to100", "TN_Dose3_nov2021_0to17", "TN_Dose3_nov2021_18to64", "TN_Dose3_nov2021_65to100", "TN_Dose1_dec2021_age0to17", "TN_Dose1_dec2021_age18to64", "TN_Dose1_dec2021_age65to100", "TN_Dose3_dec2021_0to17", "TN_Dose3_dec2021_18to64", "TN_Dose3_dec2021_65to100", "TN_Dose1_jan2022_age0to17", "TN_Dose1_jan2022_age18to64", "TN_Dose1_jan2022_age65to100", "TN_Dose3_jan2022_0to17", "TN_Dose3_jan2022_18to64", "TN_Dose3_jan2022_65to100", "TN_Dose1_feb2022_age0to17", "TN_Dose1_feb2022_age18to64", "TN_Dose1_feb2022_age65to100", "TN_Dose3_feb2022_0to17", "TN_Dose3_feb2022_18to64", "TN_Dose3_feb2022_65to100", "TN_Dose1_mar2022_age0to17", "TN_Dose1_mar2022_age18to64", "TN_Dose1_mar2022_age65to100", "TN_Dose3_mar2022_0to17", "TN_Dose3_mar2022_18to64", "TN_Dose3_mar2022_65to100", "TN_Dose1_apr2022_age0to17", "TN_Dose1_apr2022_age18to64", "TN_Dose1_apr2022_age65to100", "TN_Dose3_apr2022_0to17", "TN_Dose3_apr2022_18to64", "TN_Dose3_apr2022_65to100", "TN_Dose1_may2022_age0to17", "TN_Dose1_may2022_age18to64", "TN_Dose1_may2022_age65to100", "TN_Dose3_may2022_0to17", "TN_Dose3_may2022_18to64", "TN_Dose3_may2022_65to100", "TN_Dose1_jun2022_age0to17", "TN_Dose1_jun2022_age18to64", "TN_Dose1_jun2022_age65to100", "TN_Dose3_jun2022_0to17", "TN_Dose3_jun2022_18to64", "TN_Dose3_jun2022_65to100", "TN_Dose1_jul2022_age0to17", "TN_Dose1_jul2022_age18to64", "TN_Dose1_jul2022_age65to100", "TN_Dose3_jul2022_0to17", "TN_Dose3_jul2022_18to64", "TN_Dose3_jul2022_65to100", "TN_Dose1_aug2022_age0to17", "TN_Dose1_aug2022_age18to64", "TN_Dose1_aug2022_age65to100", "TN_Dose3_aug2022_0to17", "TN_Dose3_aug2022_18to64", "TN_Dose3_aug2022_65to100", "TN_Dose1_sep2022_age0to17", "TN_Dose1_sep2022_age18to64", "TN_Dose1_sep2022_age65to100", "TN_Dose3_sep2022_0to17", "TN_Dose3_sep2022_18to64", "TN_Dose3_sep2022_65to100", "TX_Dose1_jan2021_age18to64", "TX_Dose1_jan2021_age65to100", "TX_Dose1_feb2021_age0to17", "TX_Dose1_feb2021_age18to64", "TX_Dose1_feb2021_age65to100", "TX_Dose1_mar2021_age0to17", "TX_Dose1_mar2021_age18to64", "TX_Dose1_mar2021_age65to100", "TX_Dose1_apr2021_age0to17", "TX_Dose1_apr2021_age18to64", "TX_Dose1_apr2021_age65to100", "TX_Dose1_may2021_age0to17", "TX_Dose1_may2021_age18to64", "TX_Dose1_may2021_age65to100", "TX_Dose1_jun2021_age0to17", "TX_Dose1_jun2021_age18to64", "TX_Dose1_jun2021_age65to100", "TX_Dose1_jul2021_age0to17", "TX_Dose1_jul2021_age18to64", "TX_Dose1_jul2021_age65to100", "TX_Dose1_aug2021_age0to17", "TX_Dose1_aug2021_age18to64", "TX_Dose1_aug2021_age65to100", "TX_Dose1_sep2021_age0to17", "TX_Dose1_sep2021_age18to64", "TX_Dose1_sep2021_age65to100", "TX_Dose1_oct2021_age0to17", "TX_Dose1_oct2021_age18to64", "TX_Dose1_oct2021_age65to100", "TX_Dose3_oct2021_0to17", "TX_Dose3_oct2021_18to64", "TX_Dose3_oct2021_65to100", "TX_Dose1_nov2021_age0to17", "TX_Dose1_nov2021_age18to64", "TX_Dose1_nov2021_age65to100", "TX_Dose3_nov2021_0to17", "TX_Dose3_nov2021_18to64", "TX_Dose3_nov2021_65to100", "TX_Dose1_dec2021_age0to17", "TX_Dose1_dec2021_age18to64", "TX_Dose1_dec2021_age65to100", "TX_Dose3_dec2021_0to17", "TX_Dose3_dec2021_18to64", "TX_Dose3_dec2021_65to100", "TX_Dose1_jan2022_age0to17", "TX_Dose1_jan2022_age18to64", "TX_Dose1_jan2022_age65to100", "TX_Dose3_jan2022_0to17", "TX_Dose3_jan2022_18to64", "TX_Dose3_jan2022_65to100", "TX_Dose1_feb2022_age0to17", "TX_Dose1_feb2022_age18to64", "TX_Dose1_feb2022_age65to100", "TX_Dose3_feb2022_0to17", "TX_Dose3_feb2022_18to64", "TX_Dose3_feb2022_65to100", "TX_Dose1_mar2022_age0to17", "TX_Dose1_mar2022_age18to64", "TX_Dose1_mar2022_age65to100", "TX_Dose3_mar2022_0to17", "TX_Dose3_mar2022_18to64", "TX_Dose3_mar2022_65to100", "TX_Dose1_apr2022_age0to17", "TX_Dose1_apr2022_age18to64", "TX_Dose1_apr2022_age65to100", "TX_Dose3_apr2022_0to17", "TX_Dose3_apr2022_18to64", "TX_Dose3_apr2022_65to100", "TX_Dose1_may2022_age0to17", "TX_Dose1_may2022_age18to64", "TX_Dose1_may2022_age65to100", "TX_Dose3_may2022_0to17", "TX_Dose3_may2022_18to64", "TX_Dose3_may2022_65to100", "TX_Dose1_jun2022_age0to17", "TX_Dose1_jun2022_age18to64", "TX_Dose1_jun2022_age65to100", "TX_Dose3_jun2022_0to17", "TX_Dose3_jun2022_18to64", "TX_Dose3_jun2022_65to100", "TX_Dose1_jul2022_age0to17", "TX_Dose1_jul2022_age18to64", "TX_Dose1_jul2022_age65to100", "TX_Dose3_jul2022_0to17", "TX_Dose3_jul2022_18to64", "TX_Dose3_jul2022_65to100", "TX_Dose1_aug2022_age0to17", "TX_Dose1_aug2022_age18to64", "TX_Dose1_aug2022_age65to100", "TX_Dose3_aug2022_0to17", "TX_Dose3_aug2022_18to64", "TX_Dose3_aug2022_65to100", "TX_Dose1_sep2022_age0to17", "TX_Dose1_sep2022_age18to64", "TX_Dose1_sep2022_age65to100", "TX_Dose3_sep2022_0to17", "TX_Dose3_sep2022_18to64", "TX_Dose3_sep2022_65to100", "UT_Dose1_jan2021_age18to64", "UT_Dose1_jan2021_age65to100", "UT_Dose1_feb2021_age0to17", "UT_Dose1_feb2021_age18to64", "UT_Dose1_feb2021_age65to100", "UT_Dose1_mar2021_age0to17", "UT_Dose1_mar2021_age18to64", "UT_Dose1_mar2021_age65to100", "UT_Dose1_apr2021_age0to17", "UT_Dose1_apr2021_age18to64", "UT_Dose1_apr2021_age65to100", "UT_Dose1_may2021_age0to17", "UT_Dose1_may2021_age18to64", "UT_Dose1_may2021_age65to100", "UT_Dose1_jun2021_age0to17", "UT_Dose1_jun2021_age18to64", "UT_Dose1_jun2021_age65to100", "UT_Dose1_jul2021_age0to17", "UT_Dose1_jul2021_age18to64", "UT_Dose1_jul2021_age65to100", "UT_Dose1_aug2021_age0to17", "UT_Dose1_aug2021_age18to64", "UT_Dose1_aug2021_age65to100", "UT_Dose1_sep2021_age0to17", "UT_Dose1_sep2021_age18to64", "UT_Dose1_sep2021_age65to100", "UT_Dose1_oct2021_age0to17", "UT_Dose1_oct2021_age18to64", "UT_Dose1_oct2021_age65to100", "UT_Dose3_oct2021_0to17", "UT_Dose3_oct2021_18to64", "UT_Dose3_oct2021_65to100", "UT_Dose1_nov2021_age0to17", "UT_Dose1_nov2021_age18to64", "UT_Dose1_nov2021_age65to100", "UT_Dose3_nov2021_0to17", "UT_Dose3_nov2021_18to64", "UT_Dose3_nov2021_65to100", "UT_Dose1_dec2021_age0to17", "UT_Dose1_dec2021_age18to64", "UT_Dose1_dec2021_age65to100", "UT_Dose3_dec2021_0to17", "UT_Dose3_dec2021_18to64", "UT_Dose3_dec2021_65to100", "UT_Dose1_jan2022_age0to17", "UT_Dose1_jan2022_age18to64", "UT_Dose1_jan2022_age65to100", "UT_Dose3_jan2022_0to17", "UT_Dose3_jan2022_18to64", "UT_Dose3_jan2022_65to100", "UT_Dose1_feb2022_age0to17", "UT_Dose1_feb2022_age18to64", "UT_Dose1_feb2022_age65to100", "UT_Dose3_feb2022_0to17", "UT_Dose3_feb2022_18to64", "UT_Dose3_feb2022_65to100", "UT_Dose1_mar2022_age0to17", "UT_Dose1_mar2022_age18to64", "UT_Dose1_mar2022_age65to100", "UT_Dose3_mar2022_0to17", "UT_Dose3_mar2022_18to64", "UT_Dose3_mar2022_65to100", "UT_Dose1_apr2022_age0to17", "UT_Dose1_apr2022_age18to64", "UT_Dose1_apr2022_age65to100", "UT_Dose3_apr2022_0to17", "UT_Dose3_apr2022_18to64", "UT_Dose3_apr2022_65to100", "UT_Dose1_may2022_age0to17", "UT_Dose1_may2022_age18to64", "UT_Dose1_may2022_age65to100", "UT_Dose3_may2022_0to17", "UT_Dose3_may2022_18to64", "UT_Dose3_may2022_65to100", "UT_Dose1_jun2022_age0to17", "UT_Dose1_jun2022_age18to64", "UT_Dose1_jun2022_age65to100", "UT_Dose3_jun2022_0to17", "UT_Dose3_jun2022_18to64", "UT_Dose3_jun2022_65to100", "UT_Dose1_jul2022_age0to17", "UT_Dose1_jul2022_age18to64", "UT_Dose1_jul2022_age65to100", "UT_Dose3_jul2022_0to17", "UT_Dose3_jul2022_18to64", "UT_Dose3_jul2022_65to100", "UT_Dose1_aug2022_age0to17", "UT_Dose1_aug2022_age18to64", "UT_Dose1_aug2022_age65to100", "UT_Dose3_aug2022_0to17", "UT_Dose3_aug2022_18to64", "UT_Dose3_aug2022_65to100", "UT_Dose1_sep2022_age0to17", "UT_Dose1_sep2022_age18to64", "UT_Dose1_sep2022_age65to100", "UT_Dose3_sep2022_0to17", "UT_Dose3_sep2022_18to64", "UT_Dose3_sep2022_65to100", "VT_Dose1_jan2021_age18to64", "VT_Dose1_jan2021_age65to100", "VT_Dose1_feb2021_age0to17", "VT_Dose1_feb2021_age18to64", "VT_Dose1_feb2021_age65to100", "VT_Dose1_mar2021_age0to17", "VT_Dose1_mar2021_age18to64", "VT_Dose1_mar2021_age65to100", "VT_Dose1_apr2021_age0to17", "VT_Dose1_apr2021_age18to64", "VT_Dose1_apr2021_age65to100", "VT_Dose1_may2021_age0to17", "VT_Dose1_may2021_age18to64", "VT_Dose1_may2021_age65to100", "VT_Dose1_jun2021_age0to17", "VT_Dose1_jun2021_age18to64", "VT_Dose1_jun2021_age65to100", "VT_Dose1_jul2021_age0to17", "VT_Dose1_jul2021_age18to64", "VT_Dose1_aug2021_age0to17", "VT_Dose1_aug2021_age18to64", "VT_Dose1_sep2021_age0to17", "VT_Dose1_sep2021_age18to64", "VT_Dose1_oct2021_age0to17", "VT_Dose1_oct2021_age18to64", "VT_Dose3_oct2021_0to17", "VT_Dose3_oct2021_18to64", "VT_Dose3_oct2021_65to100", "VT_Dose1_nov2021_age0to17", "VT_Dose1_nov2021_age18to64", "VT_Dose1_nov2021_age65to100", "VT_Dose3_nov2021_0to17", "VT_Dose3_nov2021_18to64", "VT_Dose3_nov2021_65to100", "VT_Dose1_dec2021_age0to17", "VT_Dose1_dec2021_age18to64", "VT_Dose1_dec2021_age65to100", "VT_Dose3_dec2021_0to17", "VT_Dose3_dec2021_18to64", "VT_Dose3_dec2021_65to100", "VT_Dose1_jan2022_age0to17", "VT_Dose1_jan2022_age18to64", "VT_Dose1_jan2022_age65to100", "VT_Dose3_jan2022_0to17", "VT_Dose3_jan2022_18to64", "VT_Dose3_jan2022_65to100", "VT_Dose1_feb2022_age0to17", "VT_Dose1_feb2022_age18to64", "VT_Dose1_feb2022_age65to100", "VT_Dose3_feb2022_0to17", "VT_Dose3_feb2022_18to64", "VT_Dose3_feb2022_65to100", "VT_Dose1_mar2022_age0to17", "VT_Dose1_mar2022_age18to64", "VT_Dose1_mar2022_age65to100", "VT_Dose3_mar2022_0to17", "VT_Dose3_mar2022_18to64", "VT_Dose3_mar2022_65to100", "VT_Dose1_apr2022_age0to17", "VT_Dose1_apr2022_age18to64", "VT_Dose1_apr2022_age65to100", "VT_Dose3_apr2022_0to17", "VT_Dose3_apr2022_18to64", "VT_Dose1_may2022_age0to17", "VT_Dose1_may2022_age18to64", "VT_Dose1_may2022_age65to100", "VT_Dose3_may2022_0to17", "VT_Dose3_may2022_18to64", "VT_Dose1_jun2022_age0to17", "VT_Dose1_jun2022_age18to64", "VT_Dose1_jun2022_age65to100", "VT_Dose3_jun2022_0to17", "VT_Dose3_jun2022_18to64", "VT_Dose1_jul2022_age0to17", "VT_Dose1_jul2022_age18to64", "VT_Dose3_jul2022_0to17", "VT_Dose3_jul2022_18to64", "VT_Dose1_aug2022_age0to17", "VT_Dose1_aug2022_age18to64", "VT_Dose3_aug2022_0to17", "VT_Dose3_aug2022_18to64", "VT_Dose1_sep2022_age0to17", "VT_Dose1_sep2022_age18to64", "VT_Dose3_sep2022_0to17", "VT_Dose3_sep2022_18to64", "VA_Dose1_jan2021_age18to64", "VA_Dose1_jan2021_age65to100", "VA_Dose1_feb2021_age0to17", "VA_Dose1_feb2021_age18to64", "VA_Dose1_feb2021_age65to100", "VA_Dose1_mar2021_age0to17", "VA_Dose1_mar2021_age18to64", "VA_Dose1_mar2021_age65to100", "VA_Dose1_apr2021_age0to17", "VA_Dose1_apr2021_age18to64", "VA_Dose1_apr2021_age65to100", "VA_Dose1_may2021_age0to17", "VA_Dose1_may2021_age18to64", "VA_Dose1_may2021_age65to100", "VA_Dose1_jun2021_age0to17", "VA_Dose1_jun2021_age18to64", "VA_Dose1_jun2021_age65to100", "VA_Dose1_jul2021_age0to17", "VA_Dose1_jul2021_age18to64", "VA_Dose1_jul2021_age65to100", "VA_Dose1_aug2021_age0to17", "VA_Dose1_aug2021_age18to64", "VA_Dose1_aug2021_age65to100", "VA_Dose1_sep2021_age0to17", "VA_Dose1_sep2021_age18to64", "VA_Dose1_sep2021_age65to100", "VA_Dose1_oct2021_age0to17", "VA_Dose1_oct2021_age18to64", "VA_Dose1_oct2021_age65to100", "VA_Dose3_oct2021_0to17", "VA_Dose3_oct2021_18to64", "VA_Dose3_oct2021_65to100", "VA_Dose1_nov2021_age0to17", "VA_Dose1_nov2021_age18to64", "VA_Dose1_nov2021_age65to100", "VA_Dose3_nov2021_0to17", "VA_Dose3_nov2021_18to64", "VA_Dose3_nov2021_65to100", "VA_Dose1_dec2021_age0to17", "VA_Dose1_dec2021_age18to64", "VA_Dose1_dec2021_age65to100", "VA_Dose3_dec2021_0to17", "VA_Dose3_dec2021_18to64", "VA_Dose3_dec2021_65to100", "VA_Dose1_jan2022_age0to17", "VA_Dose1_jan2022_age18to64", "VA_Dose1_jan2022_age65to100", "VA_Dose3_jan2022_0to17", "VA_Dose3_jan2022_18to64", "VA_Dose3_jan2022_65to100", "VA_Dose1_feb2022_age0to17", "VA_Dose1_feb2022_age18to64", "VA_Dose1_feb2022_age65to100", "VA_Dose3_feb2022_0to17", "VA_Dose3_feb2022_18to64", "VA_Dose3_feb2022_65to100", "VA_Dose1_mar2022_age0to17", "VA_Dose1_mar2022_age18to64", "VA_Dose1_mar2022_age65to100", "VA_Dose3_mar2022_0to17", "VA_Dose3_mar2022_18to64", "VA_Dose3_mar2022_65to100", "VA_Dose1_apr2022_age0to17", "VA_Dose1_apr2022_age18to64", "VA_Dose1_apr2022_age65to100", "VA_Dose3_apr2022_0to17", "VA_Dose3_apr2022_18to64", "VA_Dose3_apr2022_65to100", "VA_Dose1_may2022_age0to17", "VA_Dose1_may2022_age18to64", "VA_Dose1_may2022_age65to100", "VA_Dose3_may2022_0to17", "VA_Dose3_may2022_18to64", "VA_Dose3_may2022_65to100", "VA_Dose1_jun2022_age0to17", "VA_Dose1_jun2022_age18to64", "VA_Dose1_jun2022_age65to100", "VA_Dose3_jun2022_0to17", "VA_Dose3_jun2022_18to64", "VA_Dose3_jun2022_65to100", "VA_Dose1_jul2022_age0to17", "VA_Dose1_jul2022_age18to64", "VA_Dose1_jul2022_age65to100", "VA_Dose3_jul2022_0to17", "VA_Dose3_jul2022_18to64", "VA_Dose3_jul2022_65to100", "VA_Dose1_aug2022_age0to17", "VA_Dose1_aug2022_age18to64", "VA_Dose1_aug2022_age65to100", "VA_Dose3_aug2022_0to17", "VA_Dose3_aug2022_18to64", "VA_Dose3_aug2022_65to100", "VA_Dose1_sep2022_age0to17", "VA_Dose1_sep2022_age18to64", "VA_Dose1_sep2022_age65to100", "VA_Dose3_sep2022_0to17", "VA_Dose3_sep2022_18to64", "VA_Dose3_sep2022_65to100", "WA_Dose1_jan2021_age18to64", "WA_Dose1_jan2021_age65to100", "WA_Dose1_feb2021_age0to17", "WA_Dose1_feb2021_age18to64", "WA_Dose1_feb2021_age65to100", "WA_Dose1_mar2021_age0to17", "WA_Dose1_mar2021_age18to64", "WA_Dose1_mar2021_age65to100", "WA_Dose1_apr2021_age0to17", "WA_Dose1_apr2021_age18to64", "WA_Dose1_apr2021_age65to100", "WA_Dose1_may2021_age0to17", "WA_Dose1_may2021_age18to64", "WA_Dose1_may2021_age65to100", "WA_Dose1_jun2021_age0to17", "WA_Dose1_jun2021_age18to64", "WA_Dose1_jun2021_age65to100", "WA_Dose1_jul2021_age0to17", "WA_Dose1_jul2021_age18to64", "WA_Dose1_jul2021_age65to100", "WA_Dose1_aug2021_age0to17", "WA_Dose1_aug2021_age18to64", "WA_Dose1_aug2021_age65to100", "WA_Dose1_sep2021_age0to17", "WA_Dose1_sep2021_age18to64", "WA_Dose1_sep2021_age65to100", "WA_Dose1_oct2021_age0to17", "WA_Dose1_oct2021_age18to64", "WA_Dose1_oct2021_age65to100", "WA_Dose3_oct2021_0to17", "WA_Dose3_oct2021_18to64", "WA_Dose3_oct2021_65to100", "WA_Dose1_nov2021_age0to17", "WA_Dose1_nov2021_age18to64", "WA_Dose1_nov2021_age65to100", "WA_Dose3_nov2021_0to17", "WA_Dose3_nov2021_18to64", "WA_Dose3_nov2021_65to100", "WA_Dose1_dec2021_age0to17", "WA_Dose1_dec2021_age18to64", "WA_Dose1_dec2021_age65to100", "WA_Dose3_dec2021_0to17", "WA_Dose3_dec2021_18to64", "WA_Dose3_dec2021_65to100", "WA_Dose1_jan2022_age0to17", "WA_Dose1_jan2022_age18to64", "WA_Dose1_jan2022_age65to100", "WA_Dose3_jan2022_0to17", "WA_Dose3_jan2022_18to64", "WA_Dose3_jan2022_65to100", "WA_Dose1_feb2022_age0to17", "WA_Dose1_feb2022_age18to64", "WA_Dose1_feb2022_age65to100", "WA_Dose3_feb2022_0to17", "WA_Dose3_feb2022_18to64", "WA_Dose3_feb2022_65to100", "WA_Dose1_mar2022_age0to17", "WA_Dose1_mar2022_age18to64", "WA_Dose1_mar2022_age65to100", "WA_Dose3_mar2022_0to17", "WA_Dose3_mar2022_18to64", "WA_Dose3_mar2022_65to100", "WA_Dose1_apr2022_age0to17", "WA_Dose1_apr2022_age18to64", "WA_Dose1_apr2022_age65to100", "WA_Dose3_apr2022_0to17", "WA_Dose3_apr2022_18to64", "WA_Dose3_apr2022_65to100", "WA_Dose1_may2022_age0to17", "WA_Dose1_may2022_age18to64", "WA_Dose1_may2022_age65to100", "WA_Dose3_may2022_0to17", "WA_Dose3_may2022_18to64", "WA_Dose3_may2022_65to100", "WA_Dose1_jun2022_age0to17", "WA_Dose1_jun2022_age18to64", "WA_Dose1_jun2022_age65to100", "WA_Dose3_jun2022_0to17", "WA_Dose3_jun2022_18to64", "WA_Dose3_jun2022_65to100", "WA_Dose1_jul2022_age0to17", "WA_Dose1_jul2022_age18to64", "WA_Dose1_jul2022_age65to100", "WA_Dose3_jul2022_0to17", "WA_Dose3_jul2022_18to64", "WA_Dose3_jul2022_65to100", "WA_Dose1_aug2022_age0to17", "WA_Dose1_aug2022_age18to64", "WA_Dose1_aug2022_age65to100", "WA_Dose3_aug2022_0to17", "WA_Dose3_aug2022_18to64", "WA_Dose3_aug2022_65to100", "WA_Dose1_sep2022_age0to17", "WA_Dose1_sep2022_age18to64", "WA_Dose1_sep2022_age65to100", "WA_Dose3_sep2022_0to17", "WA_Dose3_sep2022_18to64", "WA_Dose3_sep2022_65to100", "WV_Dose1_jan2021_age18to64", "WV_Dose1_jan2021_age65to100", "WV_Dose1_feb2021_age0to17", "WV_Dose1_feb2021_age18to64", "WV_Dose1_feb2021_age65to100", "WV_Dose1_mar2021_age0to17", "WV_Dose1_mar2021_age18to64", "WV_Dose1_mar2021_age65to100", "WV_Dose1_apr2021_age0to17", "WV_Dose1_apr2021_age18to64", "WV_Dose1_apr2021_age65to100", "WV_Dose1_may2021_age0to17", "WV_Dose1_may2021_age18to64", "WV_Dose1_may2021_age65to100", "WV_Dose1_jun2021_age0to17", "WV_Dose1_jun2021_age18to64", "WV_Dose1_jun2021_age65to100", "WV_Dose1_jul2021_age0to17", "WV_Dose1_jul2021_age18to64", "WV_Dose1_jul2021_age65to100", "WV_Dose1_aug2021_age0to17", "WV_Dose1_aug2021_age18to64", "WV_Dose1_aug2021_age65to100", "WV_Dose1_sep2021_age0to17", "WV_Dose1_sep2021_age18to64", "WV_Dose1_sep2021_age65to100", "WV_Dose1_oct2021_age0to17", "WV_Dose1_oct2021_age18to64", "WV_Dose1_oct2021_age65to100", "WV_Dose3_oct2021_0to17", "WV_Dose3_oct2021_18to64", "WV_Dose3_oct2021_65to100", "WV_Dose1_nov2021_age0to17", "WV_Dose1_nov2021_age18to64", "WV_Dose1_nov2021_age65to100", "WV_Dose3_nov2021_0to17", "WV_Dose3_nov2021_18to64", "WV_Dose3_nov2021_65to100", "WV_Dose1_dec2021_age0to17", "WV_Dose1_dec2021_age18to64", "WV_Dose1_dec2021_age65to100", "WV_Dose3_dec2021_0to17", "WV_Dose3_dec2021_18to64", "WV_Dose3_dec2021_65to100", "WV_Dose1_jan2022_age0to17", "WV_Dose1_jan2022_age18to64", "WV_Dose1_jan2022_age65to100", "WV_Dose3_jan2022_0to17", "WV_Dose3_jan2022_18to64", "WV_Dose3_jan2022_65to100", "WV_Dose1_feb2022_age0to17", "WV_Dose1_feb2022_age18to64", "WV_Dose1_feb2022_age65to100", "WV_Dose3_feb2022_0to17", "WV_Dose3_feb2022_18to64", "WV_Dose3_feb2022_65to100", "WV_Dose1_mar2022_age0to17", "WV_Dose1_mar2022_age18to64", "WV_Dose1_mar2022_age65to100", "WV_Dose3_mar2022_0to17", "WV_Dose3_mar2022_18to64", "WV_Dose3_mar2022_65to100", "WV_Dose1_apr2022_age0to17", "WV_Dose1_apr2022_age18to64", "WV_Dose1_apr2022_age65to100", "WV_Dose3_apr2022_0to17", "WV_Dose3_apr2022_18to64", "WV_Dose3_apr2022_65to100", "WV_Dose1_may2022_age0to17", "WV_Dose1_may2022_age18to64", "WV_Dose1_may2022_age65to100", "WV_Dose3_may2022_0to17", "WV_Dose3_may2022_18to64", "WV_Dose3_may2022_65to100", "WV_Dose1_jun2022_age0to17", "WV_Dose1_jun2022_age18to64", "WV_Dose1_jun2022_age65to100", "WV_Dose3_jun2022_0to17", "WV_Dose3_jun2022_18to64", "WV_Dose3_jun2022_65to100", "WV_Dose1_jul2022_age0to17", "WV_Dose1_jul2022_age18to64", "WV_Dose1_jul2022_age65to100", "WV_Dose3_jul2022_0to17", "WV_Dose3_jul2022_18to64", "WV_Dose3_jul2022_65to100", "WV_Dose1_aug2022_age0to17", "WV_Dose1_aug2022_age18to64", "WV_Dose1_aug2022_age65to100", "WV_Dose3_aug2022_0to17", "WV_Dose3_aug2022_18to64", "WV_Dose3_aug2022_65to100", "WV_Dose1_sep2022_age0to17", "WV_Dose1_sep2022_age18to64", "WV_Dose1_sep2022_age65to100", "WV_Dose3_sep2022_0to17", "WV_Dose3_sep2022_18to64", "WV_Dose3_sep2022_65to100", "WI_Dose1_jan2021_age18to64", "WI_Dose1_jan2021_age65to100", "WI_Dose1_feb2021_age0to17", "WI_Dose1_feb2021_age18to64", "WI_Dose1_feb2021_age65to100", "WI_Dose1_mar2021_age0to17", "WI_Dose1_mar2021_age18to64", "WI_Dose1_mar2021_age65to100", "WI_Dose1_apr2021_age0to17", "WI_Dose1_apr2021_age18to64", "WI_Dose1_apr2021_age65to100", "WI_Dose1_may2021_age0to17", "WI_Dose1_may2021_age18to64", "WI_Dose1_may2021_age65to100", "WI_Dose1_jun2021_age0to17", "WI_Dose1_jun2021_age18to64", "WI_Dose1_jun2021_age65to100", "WI_Dose1_jul2021_age0to17", "WI_Dose1_jul2021_age18to64", "WI_Dose1_jul2021_age65to100", "WI_Dose1_aug2021_age0to17", "WI_Dose1_aug2021_age18to64", "WI_Dose1_aug2021_age65to100", "WI_Dose1_sep2021_age0to17", "WI_Dose1_sep2021_age18to64", "WI_Dose1_sep2021_age65to100", "WI_Dose1_oct2021_age0to17", "WI_Dose1_oct2021_age18to64", "WI_Dose1_oct2021_age65to100", "WI_Dose3_oct2021_0to17", "WI_Dose3_oct2021_18to64", "WI_Dose3_oct2021_65to100", "WI_Dose1_nov2021_age0to17", "WI_Dose1_nov2021_age18to64", "WI_Dose1_nov2021_age65to100", "WI_Dose3_nov2021_0to17", "WI_Dose3_nov2021_18to64", "WI_Dose3_nov2021_65to100", "WI_Dose1_dec2021_age0to17", "WI_Dose1_dec2021_age18to64", "WI_Dose1_dec2021_age65to100", "WI_Dose3_dec2021_0to17", "WI_Dose3_dec2021_18to64", "WI_Dose3_dec2021_65to100", "WI_Dose1_jan2022_age0to17", "WI_Dose1_jan2022_age18to64", "WI_Dose1_jan2022_age65to100", "WI_Dose3_jan2022_0to17", "WI_Dose3_jan2022_18to64", "WI_Dose3_jan2022_65to100", "WI_Dose1_feb2022_age0to17", "WI_Dose1_feb2022_age18to64", "WI_Dose1_feb2022_age65to100", "WI_Dose3_feb2022_0to17", "WI_Dose3_feb2022_18to64", "WI_Dose3_feb2022_65to100", "WI_Dose1_mar2022_age0to17", "WI_Dose1_mar2022_age18to64", "WI_Dose1_mar2022_age65to100", "WI_Dose3_mar2022_0to17", "WI_Dose3_mar2022_18to64", "WI_Dose3_mar2022_65to100", "WI_Dose1_apr2022_age0to17", "WI_Dose1_apr2022_age18to64", "WI_Dose1_apr2022_age65to100", "WI_Dose3_apr2022_0to17", "WI_Dose3_apr2022_18to64", "WI_Dose3_apr2022_65to100", "WI_Dose1_may2022_age0to17", "WI_Dose1_may2022_age18to64", "WI_Dose1_may2022_age65to100", "WI_Dose3_may2022_0to17", "WI_Dose3_may2022_18to64", "WI_Dose3_may2022_65to100", "WI_Dose1_jun2022_age0to17", "WI_Dose1_jun2022_age18to64", "WI_Dose1_jun2022_age65to100", "WI_Dose3_jun2022_0to17", "WI_Dose3_jun2022_18to64", "WI_Dose3_jun2022_65to100", "WI_Dose1_jul2022_age0to17", "WI_Dose1_jul2022_age18to64", "WI_Dose1_jul2022_age65to100", "WI_Dose3_jul2022_0to17", "WI_Dose3_jul2022_18to64", "WI_Dose3_jul2022_65to100", "WI_Dose1_aug2022_age0to17", "WI_Dose1_aug2022_age18to64", "WI_Dose1_aug2022_age65to100", "WI_Dose3_aug2022_0to17", "WI_Dose3_aug2022_18to64", "WI_Dose3_aug2022_65to100", "WI_Dose1_sep2022_age0to17", "WI_Dose1_sep2022_age18to64", "WI_Dose1_sep2022_age65to100", "WI_Dose3_sep2022_0to17", "WI_Dose3_sep2022_18to64", "WI_Dose3_sep2022_65to100", "WY_Dose1_jan2021_age18to64", "WY_Dose1_jan2021_age65to100", "WY_Dose1_feb2021_age0to17", "WY_Dose1_feb2021_age18to64", "WY_Dose1_feb2021_age65to100", "WY_Dose1_mar2021_age0to17", "WY_Dose1_mar2021_age18to64", "WY_Dose1_mar2021_age65to100", "WY_Dose1_apr2021_age0to17", "WY_Dose1_apr2021_age18to64", "WY_Dose1_apr2021_age65to100", "WY_Dose1_may2021_age0to17", "WY_Dose1_may2021_age18to64", "WY_Dose1_may2021_age65to100", "WY_Dose1_jun2021_age0to17", "WY_Dose1_jun2021_age18to64", "WY_Dose1_jun2021_age65to100", "WY_Dose1_jul2021_age0to17", "WY_Dose1_jul2021_age18to64", "WY_Dose1_jul2021_age65to100", "WY_Dose1_aug2021_age0to17", "WY_Dose1_aug2021_age18to64", "WY_Dose1_aug2021_age65to100", "WY_Dose1_sep2021_age0to17", "WY_Dose1_sep2021_age18to64", "WY_Dose1_sep2021_age65to100", "WY_Dose1_oct2021_age0to17", "WY_Dose1_oct2021_age18to64", "WY_Dose1_oct2021_age65to100", "WY_Dose3_oct2021_0to17", "WY_Dose3_oct2021_18to64", "WY_Dose3_oct2021_65to100", "WY_Dose1_nov2021_age0to17", "WY_Dose1_nov2021_age18to64", "WY_Dose1_nov2021_age65to100", "WY_Dose3_nov2021_0to17", "WY_Dose3_nov2021_18to64", "WY_Dose3_nov2021_65to100", "WY_Dose1_dec2021_age0to17", "WY_Dose1_dec2021_age18to64", "WY_Dose1_dec2021_age65to100", "WY_Dose3_dec2021_0to17", "WY_Dose3_dec2021_18to64", "WY_Dose3_dec2021_65to100", "WY_Dose1_jan2022_age0to17", "WY_Dose1_jan2022_age18to64", "WY_Dose1_jan2022_age65to100", "WY_Dose3_jan2022_0to17", "WY_Dose3_jan2022_18to64", "WY_Dose3_jan2022_65to100", "WY_Dose1_feb2022_age0to17", "WY_Dose1_feb2022_age18to64", "WY_Dose1_feb2022_age65to100", "WY_Dose3_feb2022_0to17", "WY_Dose3_feb2022_18to64", "WY_Dose3_feb2022_65to100", "WY_Dose1_mar2022_age0to17", "WY_Dose1_mar2022_age18to64", "WY_Dose1_mar2022_age65to100", "WY_Dose3_mar2022_0to17", "WY_Dose3_mar2022_18to64", "WY_Dose3_mar2022_65to100", "WY_Dose1_apr2022_age0to17", "WY_Dose1_apr2022_age18to64", "WY_Dose1_apr2022_age65to100", "WY_Dose3_apr2022_0to17", "WY_Dose3_apr2022_18to64", "WY_Dose3_apr2022_65to100", "WY_Dose1_may2022_age0to17", "WY_Dose1_may2022_age18to64", "WY_Dose1_may2022_age65to100", "WY_Dose3_may2022_0to17", "WY_Dose3_may2022_18to64", "WY_Dose3_may2022_65to100", "WY_Dose1_jun2022_age0to17", "WY_Dose1_jun2022_age18to64", "WY_Dose1_jun2022_age65to100", "WY_Dose3_jun2022_0to17", "WY_Dose3_jun2022_18to64", "WY_Dose3_jun2022_65to100", "WY_Dose1_jul2022_age0to17", "WY_Dose1_jul2022_age18to64", "WY_Dose1_jul2022_age65to100", "WY_Dose3_jul2022_0to17", "WY_Dose3_jul2022_18to64", "WY_Dose3_jul2022_65to100", "WY_Dose1_aug2022_age0to17", "WY_Dose1_aug2022_age18to64", "WY_Dose1_aug2022_age65to100", "WY_Dose3_aug2022_0to17", "WY_Dose3_aug2022_18to64", "WY_Dose3_aug2022_65to100", "WY_Dose1_sep2022_age0to17", "WY_Dose1_sep2022_age18to64", "WY_Dose1_sep2022_age65to100", "WY_Dose3_sep2022_0to17", "WY_Dose3_sep2022_18to64", "WY_Dose3_sep2022_65to100"] inference: - template: Stacked + template: StackedModifier scenarios: ["local_variance", "local_variance_chi3", "NPI", "seasonal", "vaccination"] incidCshift: - template: Stacked + template: StackedModifier scenarios: ["AL_incidCshift1_NEW", "AL_incidCshift2_NEW", "AL_incidCshiftOm_NEW", "AK_incidCshift_NEW", "AK_incidCshiftOm_NEW", "AZ_incidCshift1_NEW", "AZ_incidCshift2_NEW", "AZ_incidCshiftOm_NEW", "AR_incidCshift_NEW", "AR_incidCshiftOm_NEW", "CA_incidCshift1_NEW", "CA_incidCshift2_NEW", "CA_incidCshiftOm_NEW", "CO_incidCshift1_NEW", "CO_incidCshift2_NEW", "CO_incidCshiftOm_NEW", "CT_incidCshift1_NEW", "CT_incidCshift2_NEW", "CT_incidCshiftOm_NEW", "DE_incidCshift1_NEW", "DE_incidCshift2_NEW", "DE_incidCshiftOm_NEW", "DC_incidCshift1_NEW", "DC_incidCshift2_NEW", "DC_incidCshiftOm_NEW", "FL_incidCshift1_NEW", "FL_incidCshift2_NEW", "FL_incidCshiftOm_NEW", "GA_incidCshift1_NEW", "GA_incidCshift2_NEW", "GA_incidCshiftOm_NEW", "HI_incidCshift_NEW", "HI_incidCshiftOm_NEW", "ID_incidCshift_NEW", "ID_incidCshiftOm_NEW", "IL_incidCshift1_NEW", "IL_incidCshift2_NEW", "IL_incidCshiftOm_NEW", "IN_incidCshift1_NEW", "IN_incidCshift2_NEW", "IN_incidCshiftOm_NEW", "IA_incidCshift1_NEW", "IA_incidCshift2_NEW", "IA_incidCshiftOm_NEW", "KS_incidCshift_NEW", "KS_incidCshiftOm_NEW", "KY_incidCshift1_NEW", "KY_incidCshift2_NEW", "KY_incidCshiftOm_NEW", "LA_incidCshift1_NEW", "LA_incidCshift2_NEW", "LA_incidCshiftOm_NEW", "ME_incidCshift1_NEW", "ME_incidCshift2_NEW", "ME_incidCshiftOm_NEW", "MD_incidCshift1_NEW", "MD_incidCshift2_NEW", "MD_incidCshiftOm_NEW", "MA_incidCshift1_NEW", "MA_incidCshift2_NEW", "MA_incidCshiftOm_NEW", "MI_incidCshift1_NEW", "MI_incidCshift2_NEW", "MI_incidCshiftOm_NEW", "MN_incidCshift1_NEW", "MN_incidCshift2_NEW", "MN_incidCshiftOm_NEW", "MS_incidCshift1_NEW", "MS_incidCshift2_NEW", "MS_incidCshiftOm_NEW", "MO_incidCshift1_NEW", "MO_incidCshift2_NEW", "MO_incidCshiftOm_NEW", "MT_incidCshift_NEW", "MT_incidCshiftOm_NEW", "NE_incidCshift1_NEW", "NE_incidCshift2_NEW", "NE_incidCshiftOm_NEW", "NV_incidCshift1_NEW", "NV_incidCshift2_NEW", "NV_incidCshiftOm_NEW", "NH_incidCshift1_NEW", "NH_incidCshift2_NEW", "NH_incidCshiftOm_NEW", "NJ_incidCshift1_NEW", "NJ_incidCshift2_NEW", "NJ_incidCshiftOm_NEW", "NM_incidCshift1_NEW", "NM_incidCshift2_NEW", "NM_incidCshiftOm_NEW", "NY_incidCshift1_NEW", "NY_incidCshift2_NEW", "NY_incidCshiftOm_NEW", "NC_incidCshift1_NEW", "NC_incidCshift2_NEW", "NC_incidCshiftOm_NEW", "ND_incidCshift1_NEW", "ND_incidCshift2_NEW", "ND_incidCshiftOm_NEW", "OH_incidCshift1_NEW", "OH_incidCshift2_NEW", "OH_incidCshiftOm_NEW", "OK_incidCshift1_NEW", "OK_incidCshift2_NEW", "OK_incidCshiftOm_NEW", "OR_incidCshift1_NEW", "OR_incidCshift2_NEW", "OR_incidCshiftOm_NEW", "PA_incidCshift1_NEW", "PA_incidCshift2_NEW", "PA_incidCshiftOm_NEW", "RI_incidCshift1_NEW", "RI_incidCshift2_NEW", "RI_incidCshiftOm_NEW", "SC_incidCshift1_NEW", "SC_incidCshift2_NEW", "SC_incidCshiftOm_NEW", "SD_incidCshift1_NEW", "SD_incidCshift2_NEW", "SD_incidCshiftOm_NEW", "TN_incidCshift_NEW", "TN_incidCshiftOm_NEW", "TX_incidCshift_NEW", "TX_incidCshiftOm_NEW", "UT_incidCshift_NEW", "UT_incidCshiftOm_NEW", "VT_incidCshift_NEW", "VT_incidCshiftOm_NEW", "VA_incidCshift1_NEW", "VA_incidCshift2_NEW", "VA_incidCshiftOm_NEW", "WA_incidCshift1_NEW", "WA_incidCshift2_NEW", "WA_incidCshiftOm_NEW", "WV_incidCshift_NEW", "WV_incidCshiftOm_NEW", "WI_incidCshift1_NEW", "WI_incidCshift2_NEW", "WI_incidCshiftOm_NEW", "WY_incidCshift_NEW", "WY_incidCshiftOm_NEW"] outcome_interventions: - template: Stacked + template: StackedModifier scenarios: ["incidCshift"] AL_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2020-01-01 period_end_date: 2020-05-14 value: @@ -55871,9 +55869,9 @@ interventions: a: -1 b: 1 AL_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2020-05-15 period_end_date: 2021-11-30 value: @@ -55889,9 +55887,9 @@ interventions: a: -1 b: 1 AL_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["01000"] + subpop: ["01000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -55907,9 +55905,9 @@ interventions: a: -1 b: 1 AK_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -55925,9 +55923,9 @@ interventions: a: -1 b: 1 AK_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["02000"] + subpop: ["02000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -55943,9 +55941,9 @@ interventions: a: -1 b: 1 AZ_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -55961,9 +55959,9 @@ interventions: a: -1 b: 1 AZ_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -55979,9 +55977,9 @@ interventions: a: -1 b: 1 AZ_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["04000"] + subpop: ["04000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -55997,9 +55995,9 @@ interventions: a: -1 b: 1 AR_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -56015,9 +56013,9 @@ interventions: a: -1 b: 1 AR_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["05000"] + subpop: ["05000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56033,9 +56031,9 @@ interventions: a: -1 b: 1 CA_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -56051,9 +56049,9 @@ interventions: a: -1 b: 1 CA_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -56069,9 +56067,9 @@ interventions: a: -1 b: 1 CA_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["06000"] + subpop: ["06000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56087,9 +56085,9 @@ interventions: a: -1 b: 1 CO_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -56105,9 +56103,9 @@ interventions: a: -1 b: 1 CO_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -56123,9 +56121,9 @@ interventions: a: -1 b: 1 CO_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["08000"] + subpop: ["08000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56141,9 +56139,9 @@ interventions: a: -1 b: 1 CT_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2020-01-01 period_end_date: 2020-07-14 value: @@ -56159,9 +56157,9 @@ interventions: a: -1 b: 1 CT_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2020-07-15 period_end_date: 2021-11-30 value: @@ -56177,9 +56175,9 @@ interventions: a: -1 b: 1 CT_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["09000"] + subpop: ["09000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56195,9 +56193,9 @@ interventions: a: -1 b: 1 DE_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -56213,9 +56211,9 @@ interventions: a: -1 b: 1 DE_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -56231,9 +56229,9 @@ interventions: a: -1 b: 1 DE_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["10000"] + subpop: ["10000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56249,9 +56247,9 @@ interventions: a: -1 b: 1 DC_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2020-01-01 period_end_date: 2020-07-14 value: @@ -56267,9 +56265,9 @@ interventions: a: -1 b: 1 DC_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2020-07-15 period_end_date: 2021-11-30 value: @@ -56285,9 +56283,9 @@ interventions: a: -1 b: 1 DC_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["11000"] + subpop: ["11000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56303,9 +56301,9 @@ interventions: a: -1 b: 1 FL_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2020-01-01 period_end_date: 2020-10-10 value: @@ -56321,9 +56319,9 @@ interventions: a: -1 b: 1 FL_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2020-10-11 period_end_date: 2021-11-30 value: @@ -56339,9 +56337,9 @@ interventions: a: -1 b: 1 FL_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["12000"] + subpop: ["12000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56357,9 +56355,9 @@ interventions: a: -1 b: 1 GA_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -56375,9 +56373,9 @@ interventions: a: -1 b: 1 GA_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -56393,9 +56391,9 @@ interventions: a: -1 b: 1 GA_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["13000"] + subpop: ["13000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56411,9 +56409,9 @@ interventions: a: -1 b: 1 HI_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -56429,9 +56427,9 @@ interventions: a: -1 b: 1 HI_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["15000"] + subpop: ["15000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56447,9 +56445,9 @@ interventions: a: -1 b: 1 ID_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -56465,9 +56463,9 @@ interventions: a: -1 b: 1 ID_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["16000"] + subpop: ["16000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56483,9 +56481,9 @@ interventions: a: -1 b: 1 IL_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2020-01-01 period_end_date: 2020-06-30 value: @@ -56501,9 +56499,9 @@ interventions: a: -1 b: 1 IL_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2020-07-01 period_end_date: 2021-11-30 value: @@ -56519,9 +56517,9 @@ interventions: a: -1 b: 1 IL_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["17000"] + subpop: ["17000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56537,9 +56535,9 @@ interventions: a: -1 b: 1 IN_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -56555,9 +56553,9 @@ interventions: a: -1 b: 1 IN_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -56573,9 +56571,9 @@ interventions: a: -1 b: 1 IN_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["18000"] + subpop: ["18000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56591,9 +56589,9 @@ interventions: a: -1 b: 1 IA_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -56609,9 +56607,9 @@ interventions: a: -1 b: 1 IA_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -56627,9 +56625,9 @@ interventions: a: -1 b: 1 IA_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["19000"] + subpop: ["19000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56645,9 +56643,9 @@ interventions: a: -1 b: 1 KS_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -56663,9 +56661,9 @@ interventions: a: -1 b: 1 KS_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["20000"] + subpop: ["20000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56681,9 +56679,9 @@ interventions: a: -1 b: 1 KY_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-01-01 period_end_date: 2020-06-30 value: @@ -56699,9 +56697,9 @@ interventions: a: -1 b: 1 KY_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2020-07-01 period_end_date: 2021-11-30 value: @@ -56717,9 +56715,9 @@ interventions: a: -1 b: 1 KY_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["21000"] + subpop: ["21000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56735,9 +56733,9 @@ interventions: a: -1 b: 1 LA_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -56753,9 +56751,9 @@ interventions: a: -1 b: 1 LA_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -56771,9 +56769,9 @@ interventions: a: -1 b: 1 LA_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["22000"] + subpop: ["22000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56789,9 +56787,9 @@ interventions: a: -1 b: 1 ME_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -56807,9 +56805,9 @@ interventions: a: -1 b: 1 ME_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -56825,9 +56823,9 @@ interventions: a: -1 b: 1 ME_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["23000"] + subpop: ["23000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56843,9 +56841,9 @@ interventions: a: -1 b: 1 MD_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2020-01-01 period_end_date: 2020-06-30 value: @@ -56861,9 +56859,9 @@ interventions: a: -1 b: 1 MD_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2020-07-01 period_end_date: 2021-11-30 value: @@ -56879,9 +56877,9 @@ interventions: a: -1 b: 1 MD_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["24000"] + subpop: ["24000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56897,9 +56895,9 @@ interventions: a: -1 b: 1 MA_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-01-01 period_end_date: 2020-09-14 value: @@ -56915,9 +56913,9 @@ interventions: a: -1 b: 1 MA_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2020-09-15 period_end_date: 2021-11-30 value: @@ -56933,9 +56931,9 @@ interventions: a: -1 b: 1 MA_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["25000"] + subpop: ["25000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -56951,9 +56949,9 @@ interventions: a: -1 b: 1 MI_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -56969,9 +56967,9 @@ interventions: a: -1 b: 1 MI_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -56987,9 +56985,9 @@ interventions: a: -1 b: 1 MI_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["26000"] + subpop: ["26000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57005,9 +57003,9 @@ interventions: a: -1 b: 1 MN_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -57023,9 +57021,9 @@ interventions: a: -1 b: 1 MN_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -57041,9 +57039,9 @@ interventions: a: -1 b: 1 MN_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["27000"] + subpop: ["27000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57059,9 +57057,9 @@ interventions: a: -1 b: 1 MS_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -57077,9 +57075,9 @@ interventions: a: -1 b: 1 MS_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -57095,9 +57093,9 @@ interventions: a: -1 b: 1 MS_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["28000"] + subpop: ["28000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57113,9 +57111,9 @@ interventions: a: -1 b: 1 MO_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -57131,9 +57129,9 @@ interventions: a: -1 b: 1 MO_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -57149,9 +57147,9 @@ interventions: a: -1 b: 1 MO_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["29000"] + subpop: ["29000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57167,9 +57165,9 @@ interventions: a: -1 b: 1 MT_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -57185,9 +57183,9 @@ interventions: a: -1 b: 1 MT_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["30000"] + subpop: ["30000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57203,9 +57201,9 @@ interventions: a: -1 b: 1 NE_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -57221,9 +57219,9 @@ interventions: a: -1 b: 1 NE_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -57239,9 +57237,9 @@ interventions: a: -1 b: 1 NE_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["31000"] + subpop: ["31000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57257,9 +57255,9 @@ interventions: a: -1 b: 1 NV_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -57275,9 +57273,9 @@ interventions: a: -1 b: 1 NV_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -57293,9 +57291,9 @@ interventions: a: -1 b: 1 NV_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["32000"] + subpop: ["32000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57311,9 +57309,9 @@ interventions: a: -1 b: 1 NH_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2020-01-01 period_end_date: 2020-07-14 value: @@ -57329,9 +57327,9 @@ interventions: a: -1 b: 1 NH_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2020-07-15 period_end_date: 2021-11-30 value: @@ -57347,9 +57345,9 @@ interventions: a: -1 b: 1 NH_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["33000"] + subpop: ["33000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57365,9 +57363,9 @@ interventions: a: -1 b: 1 NJ_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2020-01-01 period_end_date: 2020-06-30 value: @@ -57383,9 +57381,9 @@ interventions: a: -1 b: 1 NJ_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2020-07-01 period_end_date: 2021-11-30 value: @@ -57401,9 +57399,9 @@ interventions: a: -1 b: 1 NJ_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["34000"] + subpop: ["34000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57419,9 +57417,9 @@ interventions: a: -1 b: 1 NM_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -57437,9 +57435,9 @@ interventions: a: -1 b: 1 NM_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -57455,9 +57453,9 @@ interventions: a: -1 b: 1 NM_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["35000"] + subpop: ["35000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57473,9 +57471,9 @@ interventions: a: -1 b: 1 NY_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-01-01 period_end_date: 2020-06-30 value: @@ -57491,9 +57489,9 @@ interventions: a: -1 b: 1 NY_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2020-07-01 period_end_date: 2021-11-30 value: @@ -57509,9 +57507,9 @@ interventions: a: -1 b: 1 NY_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["36000"] + subpop: ["36000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57527,9 +57525,9 @@ interventions: a: -1 b: 1 NC_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2020-01-01 period_end_date: 2020-05-14 value: @@ -57545,9 +57543,9 @@ interventions: a: -1 b: 1 NC_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2020-05-15 period_end_date: 2021-11-30 value: @@ -57563,9 +57561,9 @@ interventions: a: -1 b: 1 NC_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["37000"] + subpop: ["37000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57581,9 +57579,9 @@ interventions: a: -1 b: 1 ND_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -57599,9 +57597,9 @@ interventions: a: -1 b: 1 ND_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -57617,9 +57615,9 @@ interventions: a: -1 b: 1 ND_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["38000"] + subpop: ["38000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57635,9 +57633,9 @@ interventions: a: -1 b: 1 OH_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -57653,9 +57651,9 @@ interventions: a: -1 b: 1 OH_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -57671,9 +57669,9 @@ interventions: a: -1 b: 1 OH_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["39000"] + subpop: ["39000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57689,9 +57687,9 @@ interventions: a: -1 b: 1 OK_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -57707,9 +57705,9 @@ interventions: a: -1 b: 1 OK_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -57725,9 +57723,9 @@ interventions: a: -1 b: 1 OK_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["40000"] + subpop: ["40000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57743,9 +57741,9 @@ interventions: a: -1 b: 1 OR_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -57761,9 +57759,9 @@ interventions: a: -1 b: 1 OR_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -57779,9 +57777,9 @@ interventions: a: -1 b: 1 OR_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["41000"] + subpop: ["41000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57797,9 +57795,9 @@ interventions: a: -1 b: 1 PA_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -57815,9 +57813,9 @@ interventions: a: -1 b: 1 PA_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -57833,9 +57831,9 @@ interventions: a: -1 b: 1 PA_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["42000"] + subpop: ["42000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57851,9 +57849,9 @@ interventions: a: -1 b: 1 RI_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2020-01-01 period_end_date: 2020-06-14 value: @@ -57869,9 +57867,9 @@ interventions: a: -1 b: 1 RI_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2020-06-15 period_end_date: 2021-11-30 value: @@ -57887,9 +57885,9 @@ interventions: a: -1 b: 1 RI_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["44000"] + subpop: ["44000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57905,9 +57903,9 @@ interventions: a: -1 b: 1 SC_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -57923,9 +57921,9 @@ interventions: a: -1 b: 1 SC_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -57941,9 +57939,9 @@ interventions: a: -1 b: 1 SC_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["45000"] + subpop: ["45000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -57959,9 +57957,9 @@ interventions: a: -1 b: 1 SD_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2020-01-01 period_end_date: 2020-07-31 value: @@ -57977,9 +57975,9 @@ interventions: a: -1 b: 1 SD_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2020-08-01 period_end_date: 2021-11-30 value: @@ -57995,9 +57993,9 @@ interventions: a: -1 b: 1 SD_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["46000"] + subpop: ["46000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58013,9 +58011,9 @@ interventions: a: -1 b: 1 TN_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -58031,9 +58029,9 @@ interventions: a: -1 b: 1 TN_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["47000"] + subpop: ["47000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58049,9 +58047,9 @@ interventions: a: -1 b: 1 TX_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -58067,9 +58065,9 @@ interventions: a: -1 b: 1 TX_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["48000"] + subpop: ["48000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58085,9 +58083,9 @@ interventions: a: -1 b: 1 UT_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -58103,9 +58101,9 @@ interventions: a: -1 b: 1 UT_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["49000"] + subpop: ["49000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58121,9 +58119,9 @@ interventions: a: -1 b: 1 VT_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -58139,9 +58137,9 @@ interventions: a: -1 b: 1 VT_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["50000"] + subpop: ["50000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58157,9 +58155,9 @@ interventions: a: -1 b: 1 VA_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -58175,9 +58173,9 @@ interventions: a: -1 b: 1 VA_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -58193,9 +58191,9 @@ interventions: a: -1 b: 1 VA_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["51000"] + subpop: ["51000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58211,9 +58209,9 @@ interventions: a: -1 b: 1 WA_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -58229,9 +58227,9 @@ interventions: a: -1 b: 1 WA_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -58247,9 +58245,9 @@ interventions: a: -1 b: 1 WA_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["53000"] + subpop: ["53000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58265,9 +58263,9 @@ interventions: a: -1 b: 1 WV_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -58283,9 +58281,9 @@ interventions: a: -1 b: 1 WV_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["54000"] + subpop: ["54000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58301,9 +58299,9 @@ interventions: a: -1 b: 1 WI_incidCshift1_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2020-01-01 period_end_date: 2020-05-31 value: @@ -58319,9 +58317,9 @@ interventions: a: -1 b: 1 WI_incidCshift2_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2020-06-01 period_end_date: 2021-11-30 value: @@ -58337,9 +58335,9 @@ interventions: a: -1 b: 1 WI_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["55000"] + subpop: ["55000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58355,9 +58353,9 @@ interventions: a: -1 b: 1 WY_incidCshift_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2020-01-01 period_end_date: 2021-11-30 value: @@ -58373,9 +58371,9 @@ interventions: a: -1 b: 1 WY_incidCshiftOm_NEW: - template: Reduce + template: SinglePeriodModifier parameter: incidItoC_all - affected_geoids: ["56000"] + subpop: ["56000"] period_start_date: 2021-12-01 period_end_date: 2022-09-03 value: @@ -58394,7 +58392,7 @@ interventions: outcomes: method: delayframe param_from_file: FALSE - param_place_file: "usa-geoid-params-output_statelevel_agestrat_R12.parquet" + param_subpop_file: "usa-subpop-params-output_statelevel_agestrat_R12.parquet" scenarios: - med settings: @@ -61458,7 +61456,7 @@ outcomes: interventions: settings: med: - template: Stacked + template: StackedModifier scenarios: ["outcome_interventions"] inference: diff --git a/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml b/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml index 1af1d9754..afb989120 100644 --- a/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml +++ b/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml @@ -16,8 +16,6 @@ compartments: spatial_setup: geodata: geodata_2019_statelevel.csv mobility: mobility_2011-2015_statelevel.csv - popnodes: pop2019est - nodenames: geoid include_in_report: include_in_report state_level: TRUE @@ -54,9 +52,9 @@ interventions: - inference settings: all_independent: - template: Reduce + template: SinglePeriodModifier parameter: r1 - affected_geoids: "all" + subpop: "all" period_start_date: 2020-01-01 period_end_date: 2022-09-03 value: @@ -66,9 +64,9 @@ interventions: a: -1 b: 1 all_together: - template: Reduce + template: SinglePeriodModifier parameter: r2 - affected_geoids: "all" + subpop: "all" spatial_groups: "all" period_start_date: 2020-01-01 period_end_date: 2022-09-03 @@ -79,9 +77,9 @@ interventions: a: -1 b: 1 two_groups: - template: Reduce + template: SinglePeriodModifier parameter: r3 - affected_geoids: "all" + subpop: "all" spatial_groups: - ["01000", "02000"] - ["04000", "06000"] @@ -100,9 +98,9 @@ interventions: a: -1 b: 1 one_group: - template: Reduce + template: SinglePeriodModifier parameter: r4 - affected_geoids: ["01000", "02000", "04000", "06000"] + subpop: ["01000", "02000", "04000", "06000"] spatial_groups: - ["01000", "02000"] period_start_date: 2020-04-04 @@ -115,17 +113,17 @@ interventions: b: 0.9 mt_reduce: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r5 groups: - - affected_geoids: ["09000", "10000"] + - subpop: ["09000", "10000"] spatial_groups: ["09000", "10000"] periods: - start_date: 2020-12-01 end_date: 2020-12-31 - start_date: 2021-12-01 end_date: 2021-12-31 - - affected_geoids: ["01000", "02000", "04000", "06000"] + - subpop: ["01000", "02000", "04000", "06000"] spatial_groups: ["01000","04000"] periods: - start_date: 2020-10-01 @@ -140,17 +138,17 @@ interventions: b: 1 scn_error: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r1 groups: - - affected_geoids: ["09000", "10000"] + - subpop: ["09000", "10000"] spatial_groups: ["09000", "10000"] periods: - start_date: 2020-12-01 end_date: 2020-12-31 - start_date: 2021-12-01 end_date: 2021-12-31 - - affected_geoids: ["01000", "02000", "04000", "06000"] + - subpop: ["01000", "02000", "04000", "06000"] spatial_groups: ["10000"] periods: - start_date: 2021-08-16 @@ -165,8 +163,8 @@ interventions: b: 1 inference: - template: Stacked + template: StackedModifier scenarios: ["all_independent", "all_together", "two_groups", "one_group", "mt_reduce"] error: - template: Stacked + template: StackedModifier scenarios: ["scn_error"] diff --git a/flepimop/gempyor_pkg/tests/npi/data/geodata.csv b/flepimop/gempyor_pkg/tests/npi/data/geodata.csv index f4fa78f6a..2fc052a06 100644 --- a/flepimop/gempyor_pkg/tests/npi/data/geodata.csv +++ b/flepimop/gempyor_pkg/tests/npi/data/geodata.csv @@ -1,4 +1,4 @@ -"geoid","USPS","population" +"subpop","USPS","population" "15005","HI",75 "15007","HI",71377 "15009","HI",165281 diff --git a/flepimop/gempyor_pkg/tests/npi/data/geodata_2019_statelevel.csv b/flepimop/gempyor_pkg/tests/npi/data/geodata_2019_statelevel.csv index f0bbbd8f7..7d053e317 100644 --- a/flepimop/gempyor_pkg/tests/npi/data/geodata_2019_statelevel.csv +++ b/flepimop/gempyor_pkg/tests/npi/data/geodata_2019_statelevel.csv @@ -1,4 +1,4 @@ -USPS,geoid,pop2019est +USPS,subpop,population WY,56000,581024 VT,50000,624313 DC,11000,692683 diff --git a/flepimop/gempyor_pkg/tests/npi/test_npis.py b/flepimop/gempyor_pkg/tests/npi/test_npis.py index 8c8398427..2cdb165e1 100644 --- a/flepimop/gempyor_pkg/tests/npi/test_npis.py +++ b/flepimop/gempyor_pkg/tests/npi/test_npis.py @@ -26,7 +26,7 @@ def test_full_npis_read_write(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi.yml", run_id=105, prefix="", @@ -57,7 +57,7 @@ def test_full_npis_read_write(): random.seed(10) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi.yml", run_id=105, prefix="", @@ -81,7 +81,7 @@ def test_full_npis_read_write(): assert (hnpi_read == hnpi_wrote).all().all() # runs with the new, random NPI - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi.yml", run_id=106, prefix="", @@ -105,7 +105,7 @@ def test_full_npis_read_write(): def test_spatial_groups(): - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_test_spatial_group_npi.yml", run_id=105, prefix="", @@ -155,38 +155,38 @@ def test_spatial_groups(): # all independent: r1 df = npi_df[npi_df["npi_name"] == "all_independent"] assert len(df) == inference_simulator.s.nnodes - for g in df["geoid"]: + for g in df["subpop"]: assert "," not in g # all the same: r2 df = npi_df[npi_df["npi_name"] == "all_together"] assert len(df) == 1 - assert set(df["geoid"].iloc[0].split(",")) == set(inference_simulator.s.spatset.nodenames) - assert len(df["geoid"].iloc[0].split(",")) == inference_simulator.s.nnodes + assert set(df["subpop"].iloc[0].split(",")) == set(inference_simulator.s.subpop_struct.subpop_names) + assert len(df["subpop"].iloc[0].split(",")) == inference_simulator.s.nnodes # two groups: r3 df = npi_df[npi_df["npi_name"] == "two_groups"] assert len(df) == inference_simulator.s.nnodes - 2 for g in ["01000", "02000", "04000", "06000"]: - assert g not in df["geoid"] - assert len(df[df["geoid"] == "01000,02000"]) == 1 - assert len(df[df["geoid"] == "04000,06000"]) == 1 + assert g not in df["subpop"] + assert len(df[df["subpop"] == "01000,02000"]) == 1 + assert len(df[df["subpop"] == "04000,06000"]) == 1 # mtr group: r5 df = npi_df[npi_df["npi_name"] == "mt_reduce"] assert len(df) == 4 - assert df.geoid.to_list() == ["09000,10000", "02000", "06000", "01000,04000"] - assert df[df["geoid"] == "09000,10000"]["start_date"].iloc[0] == "2020-12-01,2021-12-01" + assert df.subpop.to_list() == ["09000,10000", "02000", "06000", "01000,04000"] + assert df[df["subpop"] == "09000,10000"]["start_date"].iloc[0] == "2020-12-01,2021-12-01" assert ( - df[df["geoid"] == "01000,04000"]["start_date"].iloc[0] - == df[df["geoid"] == "06000"]["start_date"].iloc[0] + df[df["subpop"] == "01000,04000"]["start_date"].iloc[0] + == df[df["subpop"] == "06000"]["start_date"].iloc[0] == "2020-10-01,2021-10-01" ) def test_spatial_groups(): - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_test_spatial_group_npi.yml", run_id=105, prefix="", @@ -208,7 +208,7 @@ def test_spatial_groups(): out_snpi = pa.Table.from_pandas(snpi_read, preserve_index=False) pa.parquet.write_table(out_snpi, file_paths.create_file_name(106, "", 1, "snpi", "parquet")) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_test_spatial_group_npi.yml", run_id=106, prefix="", @@ -225,9 +225,9 @@ def test_spatial_groups(): snpi_read = pq.read_table(f"{config_path_prefix}model_output/snpi/000000001.106.snpi.parquet").to_pandas() snpi_wrote = pq.read_table(f"{config_path_prefix}model_output/snpi/000000001.107.snpi.parquet").to_pandas() - # now the order can change, so we need to sort by geoid and start_date - snpi_wrote = snpi_wrote.sort_values(by=["geoid", "start_date"]).reset_index(drop=True) - snpi_read = snpi_read.sort_values(by=["geoid", "start_date"]).reset_index(drop=True) + # now the order can change, so we need to sort by subpop and start_date + snpi_wrote = snpi_wrote.sort_values(by=["subpop", "start_date"]).reset_index(drop=True) + snpi_read = snpi_read.sort_values(by=["subpop", "start_date"]).reset_index(drop=True) assert (snpi_read == snpi_wrote).all().all() npi_read = seir.build_npi_SEIR( diff --git a/flepimop/gempyor_pkg/tests/outcomes/config.yml b/flepimop/gempyor_pkg/tests/outcomes/config.yml index 89a277b26..72cf3b3a9 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config.yml @@ -8,8 +8,6 @@ nslots: 1 spatial_setup: geodata: geodata.csv mobility: mobility.csv - popnodes: population - nodenames: geoid census_year: 2018 modeled_states: - HI diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_load.yml b/flepimop/gempyor_pkg/tests/outcomes/config_load.yml index ece1eb9e8..cdd0d15fb 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_load.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_load.yml @@ -8,8 +8,6 @@ nslots: 1 spatial_setup: geodata: geodata.csv mobility: mobility.csv - popnodes: population - nodenames: geoid census_year: 2018 modeled_states: - HI @@ -18,7 +16,7 @@ spatial_setup: outcomes: method: delayframe param_from_file: True - param_place_file: test_rel.parquet + param_subpop_file: test_rel.parquet scenarios: - high_death_rate settings: diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml b/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml index f9a42b040..5b72523e0 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml @@ -8,8 +8,6 @@ nslots: 1 spatial_setup: geodata: geodata.csv mobility: mobility.csv - popnodes: population - nodenames: geoid census_year: 2018 modeled_states: - HI @@ -18,7 +16,7 @@ spatial_setup: outcomes: method: delayframe param_from_file: True - param_place_file: test_rel_subclasses.parquet + param_subpop_file: test_rel_subclasses.parquet subclasses: ['_A', '_B'] scenarios: - high_death_rate diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml b/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml index eee7713b3..5a8d5b949 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml @@ -8,8 +8,6 @@ nslots: 1 spatial_setup: geodata: geodata.csv mobility: mobility.csv - popnodes: population - nodenames: geoid census_year: 2018 modeled_states: - HI @@ -19,69 +17,69 @@ interventions: - None settings: None: - template: ReduceR0 + template: SinglePeriodModifierR0 value: distribution: fixed value: 0 Hduration: - template: Reduce + template: SinglePeriodModifier parameter: "incidH_duration" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 Hdelay: - template: Reduce + template: SinglePeriodModifier parameter: "incidH_delay" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 Hprobability: - template: Reduce + template: SinglePeriodModifier parameter: "incidH_probability" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: 0.5 Ddelay: - template: Reduce + template: SinglePeriodModifier parameter: "incidD_delay" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 Dprobability: - template: Reduce + template: SinglePeriodModifier parameter: "incidD_probability" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 ICUprobability: - template: Reduce + template: SinglePeriodModifier parameter: "incidICU_probability" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 times2D: - template: Stacked + template: StackedModifier scenarios: ["Ddelay", "Dprobability"] times2H: - template: Stacked + template: StackedModifier scenarios: ["Hdelay", "Hprobability", "Hduration"] outcomes: @@ -268,7 +266,7 @@ outcomes: interventions: settings: high_death_rate: - template: Stacked + template: StackedModifier scenarios: ["times2H", "ICUprobability", "times2D"] diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml b/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml index 6f0d5649e..c6bfcc830 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml @@ -8,8 +8,6 @@ nslots: 1 spatial_setup: geodata: geodata.csv mobility: mobility.csv - popnodes: population - nodenames: geoid census_year: 2018 modeled_states: - HI @@ -19,69 +17,69 @@ interventions: - None settings: None: - template: ReduceR0 + template: SinglePeriodModifierR0 value: distribution: fixed value: 0 Hduration: - template: Reduce + template: SinglePeriodModifier parameter: "incidH::duration" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 Hdelay: - template: Reduce + template: SinglePeriodModifier parameter: "incidH::delay" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 Hprobability: - template: Reduce + template: SinglePeriodModifier parameter: "incidH::probability" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: 0.5 Ddelay: - template: Reduce + template: SinglePeriodModifier parameter: "incidD::delay" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 Dprobability: - template: Reduce + template: SinglePeriodModifier parameter: "incidD::probability" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 ICUprobability: - template: Reduce + template: SinglePeriodModifier parameter: "incidICU::probability" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 times2D: - template: Stacked + template: StackedModifier scenarios: ["Ddelay", "Dprobability"] times2H: - template: Stacked + template: StackedModifier scenarios: ["Hdelay", "Hprobability", "Hduration"] @@ -131,5 +129,5 @@ outcomes: interventions: settings: high_death_rate: - template: Stacked + template: StackedModifier scenarios: ["times2H", "ICUprobability", "times2D"] diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml b/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml index 83e1910df..ffbae9ca3 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml @@ -8,8 +8,6 @@ nslots: 1 spatial_setup: geodata: geodata.csv mobility: mobility.csv - popnodes: population - nodenames: geoid census_year: 2018 modeled_states: - HI @@ -19,69 +17,69 @@ interventions: - None settings: None: - template: ReduceR0 + template: SinglePeriodModifierR0 value: distribution: fixed value: 0 Hduration: - template: Reduce + template: SinglePeriodModifier parameter: "hosp_paraM_duRr" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 Hdelay: - template: Reduce + template: SinglePeriodModifier parameter: "hosp_paraM_deLay" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 Hprobability: - template: Reduce + template: SinglePeriodModifier parameter: "hosp_paraM_PROB" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: 0.5 Ddelay: - template: Reduce + template: SinglePeriodModifier parameter: "death_param_DELAY" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 Dprobability: - template: Reduce + template: SinglePeriodModifier parameter: "death_param_prob" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 ICUprobability: - template: Reduce + template: SinglePeriodModifier parameter: "icu_param_PROB" - affected_geoids: "all" + subpop: "all" period_start_date: 2020-04-01 period_end_date: 2020-05-15 value: distribution: fixed value: .5 times2D: - template: Stacked + template: StackedModifier scenarios: ["Ddelay", "Dprobability"] times2H: - template: Stacked + template: StackedModifier scenarios: ["Hdelay", "Hprobability", "Hduration"] @@ -137,5 +135,5 @@ outcomes: interventions: settings: high_death_rate: - template: Stacked + template: StackedModifier scenarios: ["times2H", "ICUprobability", "times2D"] diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml b/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml index 0eccee718..81abe0ba0 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml @@ -8,8 +8,6 @@ nslots: 1 spatial_setup: geodata: geodata.csv mobility: mobility.csv - popnodes: population - nodenames: geoid census_year: 2018 modeled_states: - HI diff --git a/flepimop/gempyor_pkg/tests/outcomes/data/geodata.csv b/flepimop/gempyor_pkg/tests/outcomes/data/geodata.csv index f4fa78f6a..2fc052a06 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/data/geodata.csv +++ b/flepimop/gempyor_pkg/tests/outcomes/data/geodata.csv @@ -1,4 +1,4 @@ -"geoid","USPS","population" +"subpop","USPS","population" "15005","HI",75 "15007","HI",71377 "15009","HI",165281 diff --git a/flepimop/gempyor_pkg/tests/outcomes/data/usa-geoid-params-output.parquet b/flepimop/gempyor_pkg/tests/outcomes/data/usa-geoid-params-output.parquet index ccadc92e18e4ccb80e6931ab74dac039ac8814d0..d08a4fc58f7c327f2d2e9a89d9e52a250bea8d2a 100644 GIT binary patch delta 1204 zcmb_cPfXKL7=JBLU|Dnr-m;RaXta?CW1GVaPktS25C^P{bD5F|bjyUmItSz5g^Mx9 zn>1z~G|>wuE{YMa7(t0w4jwsplamKShzGw{${?Y7@}+(6d#~U3`~ALOo36jEd-<%c zDG6GT*3#{b8oIZ}CFr{lC2yKe`#I0*MgNcUZVwSepDC^7q!S2&M3pA6sK|Hw%4T0 zTy7XE=wsQwXv!y8Q7>_1DNrpzUC6SRj37%;jWjN8+AI}!oD+p78@&ADllfHjIqMA2 zaDwuP@Lp|2gdH{3xUyvpWP@c0WafB0+;YQYPR5_Xmay1OhS=x&yh)g^6fi}S1v zN!-2G#$OeeL|xc$Wd)_wKmXYvKl;j7h9$18!wE~A=p^W@em^%kLS2NqFY$*)SNt(< z_=NR~CsE}8?Xp}ol)d+Qqdct}llFV7oQ-q!$1Ii{^!&|Dr`&%S=FqD5yLpOzJ#vHh z?UJjB5K;2ELDL4)*AG1Oy{hS8V*wNZQ1NEtCcrExd58hzA)2?&6in!6Q52w$t++p2 zahC#Egl-F9f<28}Rbdt~WQg5DmIwwt-92ot%(B@ESzrNx63V3Kf_GGiGh!5gt2Ls~ zSFMjZ*XNNRl(}p=R?fyJ0y#^H5@yX!C2?YWYRWo2Ks{{M))MauX5#}hqv;eFEWc|U zCrhwRXftz%pVf(ntP$^9l0r>z*R{Wt{YVe&Fe-$9L_e=pQfc_YwY3aH=7< z6=~xh)5ODkr@>r4dlfLzLmtXPt*56xBOyB*+J4?=llD>^-))U-!_l7re>4tax zgXK`bN9rV7Bm;0hR6aK4155wLr&-T)>stAR=^t-y8CqFS$baiQZ{*i+H$DL;4pxjz z6iF}G{$4%=SkJJ`^qpH{ll9Z=^Zv~rypdnNU%$vw&)VdE+w_z7HvL8No<#bt{lwnB z?eSf|GV57AH2v4*z$_WSBwx>YLi;ZN`DEnM9q-1~SxmT65Hoh z^8rzAi|>P5Q`@|8G_kvkE`=srI}2&IR#)bYb{B}9537pM<+~$HvNPhl-Sz&xAq z($=vw7Nw3xV`1oktu}HgsVJz!7l_~tV%a6`xN{eSAMbw^KchwlAq$m}^PEH|f#?Qe z5Ne=w!xqwL;MNbY5RAt9<#O8D!`t>^>+=YVXoTPwJ6Tx7Kd?urn1J*2Yk5sI>)A@8 z8ZY$)D_1cDeNkCbXra0?Xyi2zVwsxi2pX%(*~+iKxzU=6^O034QO(~nfZQI^EwsS?!KCz(*#JJiQ6nsnagJLTaFSd|^n>DXn+gBl8uNKbnT*|ba zv@+&mIx)=aF}S!j_|oGZScLT{_%7fV((o&5-}_^DY2R~Z0j3MyW)@%wfY2TeFgGR- z%o$MC5N$bw2G0r@JP3``2&;4k4=GsCG;2G+$PNHrAUcNicmko^q$lte6}Jg6wo@2L z@JtAtwDmbGw1llrFE7*{4!DrVdSDKK<9iLfz$;{;fhQ+8w1LVKmKi3CQS7w12*9`m z5hhf1vXgbD6F%!aCr%JSnCRWJrfeJ$JDs`lSf8V!$tZPXrG%DOa!YT9-kv20_lNi_ JKoIy}=)aWSOWFVc diff --git a/flepimop/gempyor_pkg/tests/outcomes/make_seir_test_file.py b/flepimop/gempyor_pkg/tests/outcomes/make_seir_test_file.py index 8551774d2..56df652cf 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/make_seir_test_file.py +++ b/flepimop/gempyor_pkg/tests/outcomes/make_seir_test_file.py @@ -50,11 +50,11 @@ b = b[(b["date"] >= "2020-04-01") & (b["date"] <= "2020-05-15")] -geoid = ["15005", "15007", "15009", "15001", "15003"] +subpop = ["15005", "15007", "15009", "15001", "15003"] diffI = np.arange(5) * 2 date_data = datetime.date(2020, 4, 15) for i in range(5): - b.loc[(b["mc_value_type"] == "incidence") & (b["date"] == str(date_data)), geoid[i]] = diffI[i] + b.loc[(b["mc_value_type"] == "incidence") & (b["date"] == str(date_data)), subpop[i]] = diffI[i] pa_df = pa.Table.from_pandas(b, preserve_index=False) pa.parquet.write_table(pa_df, "new_test_no_vacc.parquet") @@ -75,7 +75,7 @@ (b["mc_value_type"] == "incidence") & (b["date"] == str(date_data)) & (b["mc_vaccination_stage"] == "first_dose"), - geoid[i], + subpop[i], ] = ( diffI[i] * 3 ) diff --git a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py index 9cc7cc090..543c32e6e 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py +++ b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py @@ -22,7 +22,7 @@ ### To generate files for this test, see notebook Test Outcomes playbook.ipynb in COVID19_Maryland -geoid = ["15005", "15007", "15009", "15001", "15003"] +subpop = ["15005", "15007", "15009", "15001", "15003"] diffI = np.arange(5) * 2 date_data = datetime.date(2020, 4, 15) subclasses = ["_A", "_B"] @@ -32,7 +32,7 @@ def test_outcome_scenario(): os.chdir(os.path.dirname(__file__)) ## this is redundant but necessary. Why ? - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config.yml", run_id=1, prefix="", @@ -45,33 +45,33 @@ def test_outcome_scenario(): hosp = pq.read_table(f"{config_path_prefix}model_output/hosp/000000001.1.hosp.parquet").to_pandas() hosp.set_index("time", drop=True, inplace=True) - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): for dt in hosp.index: if dt.date() == date_data: - assert hosp[hosp["geoid"] == place]["incidI"][dt] == diffI[i] - assert hosp[hosp["geoid"] == place]["incidH"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 - assert hosp[hosp["geoid"] == place]["incidD"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 - assert hosp[hosp["geoid"] == place]["incidICU"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 * 0.4 + assert hosp[hosp["subpop"] == place]["incidI"][dt] == diffI[i] + assert hosp[hosp["subpop"] == place]["incidH"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 + assert hosp[hosp["subpop"] == place]["incidD"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 + assert hosp[hosp["subpop"] == place]["incidICU"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 * 0.4 for j in range(7): - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7 + j)] == diffI[i] * 0.1 - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7 + 8)] == 0 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7 + j)] == diffI[i] * 0.1 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7 + 8)] == 0 elif dt.date() < date_data: - assert hosp[hosp["geoid"] == place]["incidH"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["incidI"][dt] == 0 - assert hosp[hosp["geoid"] == place]["incidD"][dt + datetime.timedelta(2)] == 0 - assert hosp[hosp["geoid"] == place]["incidICU"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidH"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidI"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidD"][dt + datetime.timedelta(2)] == 0 + assert hosp[hosp["subpop"] == place]["incidICU"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7)] == 0 elif dt.date() > (date_data + datetime.timedelta(7)): - assert hosp[hosp["geoid"] == place]["incidH"][dt] == 0 - assert hosp[hosp["geoid"] == place]["incidI"][dt - datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["incidD"][dt - datetime.timedelta(4)] == 0 - assert hosp[hosp["geoid"] == place]["incidICU"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidH"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidI"][dt - datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidD"][dt - datetime.timedelta(4)] == 0 + assert hosp[hosp["subpop"] == place]["incidICU"][dt] == 0 hpar = pq.read_table(f"{config_path_prefix}model_output/hpar/000000001.1.hpar.parquet").to_pandas() - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "probability")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "probability")][ "value" ] ) @@ -79,13 +79,13 @@ def test_outcome_scenario(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "delay")]["value"] + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "delay")]["value"] ) == 7 ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "duration")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "duration")][ "value" ] ) @@ -93,7 +93,7 @@ def test_outcome_scenario(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "probability")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "probability")][ "value" ] ) @@ -101,13 +101,13 @@ def test_outcome_scenario(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "delay")]["value"] + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "delay")]["value"] ) == 2 ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "probability")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "probability")][ "value" ] ) @@ -115,7 +115,7 @@ def test_outcome_scenario(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "delay")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "delay")][ "value" ] ) @@ -125,7 +125,7 @@ def test_outcome_scenario(): def test_outcome_scenario_with_load(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_load.yml", run_id=2, prefix="", @@ -140,9 +140,9 @@ def test_outcome_scenario_with_load(): hpar_rel = pq.read_table(f"{config_path_prefix}model_output/hpar/000000001.2.hpar.parquet").to_pandas() for out in ["incidH", "incidD", "incidICU"]: - for i, place in enumerate(geoid): - a = hpar_rel[(hpar_rel["outcome"] == out) & (hpar_rel["geoid"] == place)] - b = hpar_config[(hpar_rel["outcome"] == out) & (hpar_config["geoid"] == place)] + for i, place in enumerate(subpop): + a = hpar_rel[(hpar_rel["outcome"] == out) & (hpar_rel["subpop"] == place)] + b = hpar_config[(hpar_rel["outcome"] == out) & (hpar_config["subpop"] == place)] assert len(a) == len(b) for j in range(len(a)): if b.iloc[j]["quantity"] in ["delay", "duration"]: @@ -161,7 +161,7 @@ def test_outcomes_read_write_hpar(): config.clear() config.read(user=False) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_load.yml", run_id=2, prefix="", @@ -186,7 +186,7 @@ def test_outcomes_read_write_hpar(): def test_outcome_scenario_subclasses(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_subclasses.yml", run_id=1, prefix="", @@ -201,71 +201,71 @@ def test_outcome_scenario_subclasses(): hosp = pq.read_table(f"{config_path_prefix}model_output/hosp/000000001.10.hosp.parquet").to_pandas() hosp.set_index("time", drop=True, inplace=True) - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): for dt in hosp.index: if dt.date() == date_data: - assert hosp[hosp["geoid"] == place]["incidI"][dt] == diffI[i] - assert hosp[hosp["geoid"] == place]["incidH"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 * len( + assert hosp[hosp["subpop"] == place]["incidI"][dt] == diffI[i] + assert hosp[hosp["subpop"] == place]["incidH"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 * len( subclasses ) - assert hosp[hosp["geoid"] == place]["incidD"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 * len( + assert hosp[hosp["subpop"] == place]["incidD"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 * len( subclasses ) - assert hosp[hosp["geoid"] == place]["incidICU"][dt + datetime.timedelta(7)] == diffI[ + assert hosp[hosp["subpop"] == place]["incidICU"][dt + datetime.timedelta(7)] == diffI[ i ] * 0.1 * 0.4 * len(subclasses) for j in range(7): - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7 + j)] == diffI[ + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7 + j)] == diffI[ i ] * 0.1 * len(subclasses) - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7 + 8)] == 0 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7 + 8)] == 0 elif dt.date() < date_data: - assert hosp[hosp["geoid"] == place]["incidH"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["incidI"][dt] == 0 - assert hosp[hosp["geoid"] == place]["incidD"][dt + datetime.timedelta(2)] == 0 - assert hosp[hosp["geoid"] == place]["incidICU"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidH"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidI"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidD"][dt + datetime.timedelta(2)] == 0 + assert hosp[hosp["subpop"] == place]["incidICU"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7)] == 0 elif dt.date() > (date_data + datetime.timedelta(7)): - assert hosp[hosp["geoid"] == place]["incidH"][dt] == 0 - assert hosp[hosp["geoid"] == place]["incidI"][dt - datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["incidD"][dt - datetime.timedelta(4)] == 0 - assert hosp[hosp["geoid"] == place]["incidICU"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidH"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidI"][dt - datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidD"][dt - datetime.timedelta(4)] == 0 + assert hosp[hosp["subpop"] == place]["incidICU"][dt] == 0 for cl in subclasses: - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): for dt in hosp.index: if dt.date() == date_data: - assert hosp[hosp["geoid"] == place][f"incidH{cl}"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 - assert hosp[hosp["geoid"] == place][f"incidD{cl}"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 + assert hosp[hosp["subpop"] == place][f"incidH{cl}"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 + assert hosp[hosp["subpop"] == place][f"incidD{cl}"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 assert ( - hosp[hosp["geoid"] == place][f"incidICU{cl}"][dt + datetime.timedelta(7)] + hosp[hosp["subpop"] == place][f"incidICU{cl}"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 * 0.4 ) for j in range(7): assert ( - hosp[hosp["geoid"] == place][f"hosp_curr{cl}"][dt + datetime.timedelta(7 + j)] + hosp[hosp["subpop"] == place][f"hosp_curr{cl}"][dt + datetime.timedelta(7 + j)] == diffI[i] * 0.1 ) - assert hosp[hosp["geoid"] == place][f"hosp_curr{cl}"][dt + datetime.timedelta(7 + 8)] == 0 + assert hosp[hosp["subpop"] == place][f"hosp_curr{cl}"][dt + datetime.timedelta(7 + 8)] == 0 elif dt.date() < date_data: - assert hosp[hosp["geoid"] == place][f"incidH{cl}"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place][f"incidD{cl}"][dt + datetime.timedelta(2)] == 0 - assert hosp[hosp["geoid"] == place][f"incidICU{cl}"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place][f"hosp_curr{cl}"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place][f"incidH{cl}"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place][f"incidD{cl}"][dt + datetime.timedelta(2)] == 0 + assert hosp[hosp["subpop"] == place][f"incidICU{cl}"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place][f"hosp_curr{cl}"][dt + datetime.timedelta(7)] == 0 elif dt.date() > (date_data + datetime.timedelta(7)): - assert hosp[hosp["geoid"] == place][f"incidH{cl}"][dt] == 0 - assert hosp[hosp["geoid"] == place][f"incidD{cl}"][dt - datetime.timedelta(4)] == 0 - assert hosp[hosp["geoid"] == place][f"incidICU{cl}"][dt] == 0 + assert hosp[hosp["subpop"] == place][f"incidH{cl}"][dt] == 0 + assert hosp[hosp["subpop"] == place][f"incidD{cl}"][dt - datetime.timedelta(4)] == 0 + assert hosp[hosp["subpop"] == place][f"incidICU{cl}"][dt] == 0 hpar = pq.read_table(f"{config_path_prefix}model_output/hpar/000000001.10.hpar.parquet").to_pandas() for cl in subclasses: - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidH{cl}") & (hpar["quantity"] == "probability") ]["value"] @@ -274,16 +274,18 @@ def test_outcome_scenario_subclasses(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == f"incidH{cl}") & (hpar["quantity"] == "delay")][ - "value" - ] + hpar[ + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidH{cl}") & (hpar["quantity"] == "delay") + ]["value"] ) == 7 ) assert ( float( hpar[ - (hpar["geoid"] == place) & (hpar["outcome"] == f"incidH{cl}") & (hpar["quantity"] == "duration") + (hpar["subpop"] == place) + & (hpar["outcome"] == f"incidH{cl}") + & (hpar["quantity"] == "duration") ]["value"] ) == 7 @@ -291,7 +293,7 @@ def test_outcome_scenario_subclasses(): assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidD{cl}") & (hpar["quantity"] == "probability") ]["value"] @@ -300,16 +302,16 @@ def test_outcome_scenario_subclasses(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == f"incidD{cl}") & (hpar["quantity"] == "delay")][ - "value" - ] + hpar[ + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidD{cl}") & (hpar["quantity"] == "delay") + ]["value"] ) == 2 ) assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidICU{cl}") & (hpar["quantity"] == "probability") ]["value"] @@ -319,19 +321,19 @@ def test_outcome_scenario_subclasses(): assert ( float( hpar[ - (hpar["geoid"] == place) & (hpar["outcome"] == f"incidICU{cl}") & (hpar["quantity"] == "delay") + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidICU{cl}") & (hpar["quantity"] == "delay") ]["value"] ) == 0 ) - # assert((hpar[(hpar['geoid']== place) & (hpar['outcome']== f'incidICU{cl}')]['source'] == f'incidH{cl}').all()) - # assert((hpar[(hpar['geoid']== place) & (hpar['outcome']== f'incidH{cl}')]['source'] == f'incidI').all()) + # assert((hpar[(hpar['subpop']== place) & (hpar['outcome']== f'incidICU{cl}')]['source'] == f'incidH{cl}').all()) + # assert((hpar[(hpar['subpop']== place) & (hpar['outcome']== f'incidH{cl}')]['source'] == f'incidI').all()) def test_outcome_scenario_with_load_subclasses(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_load_subclasses.yml", run_id=1, prefix="", @@ -347,9 +349,9 @@ def test_outcome_scenario_with_load_subclasses(): hpar_rel = pq.read_table(f"{config_path_prefix}model_output/hpar/000000001.11.hpar.parquet").to_pandas() for cl in subclasses: for out in [f"incidH{cl}", f"incidD{cl}", f"incidICU{cl}"]: - for i, place in enumerate(geoid): - a = hpar_rel[(hpar_rel["outcome"] == out) & (hpar_rel["geoid"] == place)] - b = hpar_config[(hpar_rel["outcome"] == out) & (hpar_config["geoid"] == place)] + for i, place in enumerate(subpop): + a = hpar_rel[(hpar_rel["outcome"] == out) & (hpar_rel["subpop"] == place)] + b = hpar_config[(hpar_rel["outcome"] == out) & (hpar_config["subpop"] == place)] assert len(a) == len(b) for j in range(len(a)): if b.iloc[j]["quantity"] in ["delay", "duration"]: @@ -374,7 +376,7 @@ def test_outcome_scenario_with_load_subclasses(): def test_outcomes_read_write_hpar_subclasses(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_load.yml", run_id=1, prefix="", @@ -386,7 +388,7 @@ def test_outcomes_read_write_hpar_subclasses(): outcomes.onerun_delayframe_outcomes(sim_id2write=1, s=inference_simulator.s) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_load.yml", run_id=12, prefix="", @@ -445,7 +447,7 @@ def test_multishift_notstochdelays(): def test_outcomes_npi(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi.yml", run_id=1, prefix="", @@ -459,34 +461,34 @@ def test_outcomes_npi(): hosp = pq.read_table(f"{config_path_prefix}model_output/hosp/000000001.105.hosp.parquet").to_pandas() hosp.set_index("time", drop=True, inplace=True) # same as config.yaml (doubled, then NPI halve it) - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): for dt in hosp.index: if dt.date() == date_data: - assert hosp[hosp["geoid"] == place]["incidI"][dt] == diffI[i] - assert hosp[hosp["geoid"] == place]["incidH"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 - assert hosp[hosp["geoid"] == place]["incidD"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 - assert hosp[hosp["geoid"] == place]["incidICU"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 * 0.4 + assert hosp[hosp["subpop"] == place]["incidI"][dt] == diffI[i] + assert hosp[hosp["subpop"] == place]["incidH"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 + assert hosp[hosp["subpop"] == place]["incidD"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 + assert hosp[hosp["subpop"] == place]["incidICU"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 * 0.4 for j in range(7): - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7 + j)] == diffI[i] * 0.1 - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7 + 8)] == 0 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7 + j)] == diffI[i] * 0.1 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7 + 8)] == 0 elif dt.date() < date_data: - assert hosp[hosp["geoid"] == place]["incidH"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["incidI"][dt] == 0 - assert hosp[hosp["geoid"] == place]["incidD"][dt + datetime.timedelta(2)] == 0 - assert hosp[hosp["geoid"] == place]["incidICU"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidH"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidI"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidD"][dt + datetime.timedelta(2)] == 0 + assert hosp[hosp["subpop"] == place]["incidICU"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7)] == 0 elif dt.date() > (date_data + datetime.timedelta(7)): - assert hosp[hosp["geoid"] == place]["incidH"][dt] == 0 - assert hosp[hosp["geoid"] == place]["incidI"][dt - datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["incidD"][dt - datetime.timedelta(4)] == 0 - assert hosp[hosp["geoid"] == place]["incidICU"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidH"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidI"][dt - datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidD"][dt - datetime.timedelta(4)] == 0 + assert hosp[hosp["subpop"] == place]["incidICU"][dt] == 0 hpar = pq.read_table(f"{config_path_prefix}model_output/hpar/000000001.105.hpar.parquet").to_pandas() # Doubled everything from previous config.yaml - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "probability")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "probability")][ "value" ] ) @@ -494,13 +496,13 @@ def test_outcomes_npi(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "delay")]["value"] + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "delay")]["value"] ) == 7 * 2 ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "duration")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "duration")][ "value" ] ) @@ -508,7 +510,7 @@ def test_outcomes_npi(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "probability")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "probability")][ "value" ] ) @@ -516,13 +518,13 @@ def test_outcomes_npi(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "delay")]["value"] + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "delay")]["value"] ) == 2 * 2 ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "probability")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "probability")][ "value" ] ) @@ -530,7 +532,7 @@ def test_outcomes_npi(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "delay")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "delay")][ "value" ] ) @@ -541,7 +543,7 @@ def test_outcomes_npi(): def test_outcomes_read_write_hnpi(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi.yml", run_id=105, prefix="", @@ -568,7 +570,7 @@ def test_outcomes_read_write_hnpi(): def test_outcomes_read_write_hnpi2(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi.yml", run_id=105, prefix="", @@ -592,7 +594,7 @@ def test_outcomes_read_write_hnpi2(): assert (hnpi_read == hnpi_wrote).all().all() # runs with the new, random NPI - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi.yml", run_id=106, prefix="", @@ -617,7 +619,7 @@ def test_outcomes_read_write_hnpi2(): def test_outcomes_npi_custom_pname(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi_custom_pnames.yml", run_id=1, prefix="", @@ -631,34 +633,34 @@ def test_outcomes_npi_custom_pname(): hosp = pq.read_table(f"{config_path_prefix}model_output/hosp/000000001.105.hosp.parquet").to_pandas() hosp.set_index("time", drop=True, inplace=True) # same as config.yaml (doubled, then NPI halve it) - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): for dt in hosp.index: if dt.date() == date_data: - assert hosp[hosp["geoid"] == place]["incidI"][dt] == diffI[i] - assert hosp[hosp["geoid"] == place]["incidH"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 - assert hosp[hosp["geoid"] == place]["incidD"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 - assert hosp[hosp["geoid"] == place]["incidICU"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 * 0.4 + assert hosp[hosp["subpop"] == place]["incidI"][dt] == diffI[i] + assert hosp[hosp["subpop"] == place]["incidH"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 + assert hosp[hosp["subpop"] == place]["incidD"][dt + datetime.timedelta(2)] == diffI[i] * 0.01 + assert hosp[hosp["subpop"] == place]["incidICU"][dt + datetime.timedelta(7)] == diffI[i] * 0.1 * 0.4 for j in range(7): - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7 + j)] == diffI[i] * 0.1 - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7 + 8)] == 0 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7 + j)] == diffI[i] * 0.1 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7 + 8)] == 0 elif dt.date() < date_data: - assert hosp[hosp["geoid"] == place]["incidH"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["incidI"][dt] == 0 - assert hosp[hosp["geoid"] == place]["incidD"][dt + datetime.timedelta(2)] == 0 - assert hosp[hosp["geoid"] == place]["incidICU"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["hosp_curr"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidH"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidI"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidD"][dt + datetime.timedelta(2)] == 0 + assert hosp[hosp["subpop"] == place]["incidICU"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["hosp_curr"][dt + datetime.timedelta(7)] == 0 elif dt.date() > (date_data + datetime.timedelta(7)): - assert hosp[hosp["geoid"] == place]["incidH"][dt] == 0 - assert hosp[hosp["geoid"] == place]["incidI"][dt - datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place]["incidD"][dt - datetime.timedelta(4)] == 0 - assert hosp[hosp["geoid"] == place]["incidICU"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidH"][dt] == 0 + assert hosp[hosp["subpop"] == place]["incidI"][dt - datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place]["incidD"][dt - datetime.timedelta(4)] == 0 + assert hosp[hosp["subpop"] == place]["incidICU"][dt] == 0 hpar = pq.read_table(f"{config_path_prefix}model_output/hpar/000000001.105.hpar.parquet").to_pandas() # Doubled everything from previous config.yaml - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "probability")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "probability")][ "value" ] ) @@ -666,13 +668,13 @@ def test_outcomes_npi_custom_pname(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "delay")]["value"] + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "delay")]["value"] ) == 7 * 2 ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "duration")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidH") & (hpar["quantity"] == "duration")][ "value" ] ) @@ -680,7 +682,7 @@ def test_outcomes_npi_custom_pname(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "probability")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "probability")][ "value" ] ) @@ -688,13 +690,13 @@ def test_outcomes_npi_custom_pname(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "delay")]["value"] + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidD") & (hpar["quantity"] == "delay")]["value"] ) == 2 * 2 ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "probability")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "probability")][ "value" ] ) @@ -702,7 +704,7 @@ def test_outcomes_npi_custom_pname(): ) assert ( float( - hpar[(hpar["geoid"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "delay")][ + hpar[(hpar["subpop"] == place) & (hpar["outcome"] == "incidICU") & (hpar["quantity"] == "delay")][ "value" ] ) @@ -713,7 +715,7 @@ def test_outcomes_npi_custom_pname(): def test_outcomes_read_write_hnpi_custom_pname(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi_custom_pnames.yml", run_id=105, prefix="", @@ -749,7 +751,7 @@ def test_outcomes_read_write_hnpi2_custom_pname(): random.seed(10) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi_custom_pnames.yml", run_id=105, prefix="", @@ -766,7 +768,7 @@ def test_outcomes_read_write_hnpi2_custom_pname(): assert (hnpi_read == hnpi_wrote).all().all() # runs with the new, random NPI - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_npi_custom_pnames.yml", run_id=106, prefix="", @@ -793,7 +795,7 @@ def test_outcomes_pcomp(): os.chdir(os.path.dirname(__file__)) prefix = "" - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_mc_selection.yml", run_id=110, prefix="", @@ -807,7 +809,7 @@ def test_outcomes_pcomp(): seir = pq.read_table(f"{config_path_prefix}model_output/seir/000000001.105.seir.parquet").to_pandas() seir2 = seir.copy() seir2["mc_vaccination_stage"] = "first_dose" - for pl in geoid: + for pl in subpop: seir2[pl] = seir2[pl] * p_compmult[1] new_seir = pd.concat([seir, seir2]) out_df = pa.Table.from_pandas(new_seir, preserve_index=False) @@ -819,54 +821,54 @@ def test_outcomes_pcomp(): # same as config.yaml (doubled, then NPI halve it) for k, p_comp in enumerate(["0dose", "1dose"]): hosp = hosp_f - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): for dt in hosp.index: if dt.date() == date_data: - assert hosp[hosp["geoid"] == place][f"incidI_{p_comp}"][dt] == diffI[i] * p_compmult[k] + assert hosp[hosp["subpop"] == place][f"incidI_{p_comp}"][dt] == diffI[i] * p_compmult[k] assert ( - hosp[hosp["geoid"] == place][f"incidH_{p_comp}"][dt + datetime.timedelta(7)] + hosp[hosp["subpop"] == place][f"incidH_{p_comp}"][dt + datetime.timedelta(7)] - diffI[i] * 0.1 * p_compmult[k] < 1e-8 ) assert ( - hosp[hosp["geoid"] == place][f"incidD_{p_comp}"][dt + datetime.timedelta(2)] + hosp[hosp["subpop"] == place][f"incidD_{p_comp}"][dt + datetime.timedelta(2)] - diffI[i] * 0.01 * p_compmult[k] < 1e-8 ) assert ( - hosp[hosp["geoid"] == place][f"incidICU_{p_comp}"][dt + datetime.timedelta(7)] + hosp[hosp["subpop"] == place][f"incidICU_{p_comp}"][dt + datetime.timedelta(7)] - diffI[i] * 0.1 * 0.4 * p_compmult[k] < 1e-8 ) for j in range(7): assert ( - hosp[hosp["geoid"] == place][f"incidH_{p_comp}_curr"][dt + datetime.timedelta(7 + j)] + hosp[hosp["subpop"] == place][f"incidH_{p_comp}_curr"][dt + datetime.timedelta(7 + j)] - diffI[i] * 0.1 * p_compmult[k] < 1e-8 ) - assert hosp[hosp["geoid"] == place][f"incidH_{p_comp}_curr"][dt + datetime.timedelta(7 + 8)] == 0 + assert hosp[hosp["subpop"] == place][f"incidH_{p_comp}_curr"][dt + datetime.timedelta(7 + 8)] == 0 elif dt.date() < date_data: - assert hosp[hosp["geoid"] == place][f"incidH_{p_comp}"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place][f"incidI_{p_comp}"][dt] == 0 - assert hosp[hosp["geoid"] == place][f"incidD_{p_comp}"][dt + datetime.timedelta(2)] == 0 - assert hosp[hosp["geoid"] == place][f"incidICU_{p_comp}"][dt + datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place][f"incidH_{p_comp}_curr"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place][f"incidH_{p_comp}"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place][f"incidI_{p_comp}"][dt] == 0 + assert hosp[hosp["subpop"] == place][f"incidD_{p_comp}"][dt + datetime.timedelta(2)] == 0 + assert hosp[hosp["subpop"] == place][f"incidICU_{p_comp}"][dt + datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place][f"incidH_{p_comp}_curr"][dt + datetime.timedelta(7)] == 0 elif dt.date() > (date_data + datetime.timedelta(7)): - assert hosp[hosp["geoid"] == place][f"incidH_{p_comp}"][dt] == 0 - assert hosp[hosp["geoid"] == place][f"incidI_{p_comp}"][dt - datetime.timedelta(7)] == 0 - assert hosp[hosp["geoid"] == place][f"incidD_{p_comp}"][dt - datetime.timedelta(4)] == 0 - assert hosp[hosp["geoid"] == place][f"incidICU_{p_comp}"][dt] == 0 + assert hosp[hosp["subpop"] == place][f"incidH_{p_comp}"][dt] == 0 + assert hosp[hosp["subpop"] == place][f"incidI_{p_comp}"][dt - datetime.timedelta(7)] == 0 + assert hosp[hosp["subpop"] == place][f"incidD_{p_comp}"][dt - datetime.timedelta(4)] == 0 + assert hosp[hosp["subpop"] == place][f"incidICU_{p_comp}"][dt] == 0 hpar_f = pq.read_table(f"{config_path_prefix}model_output/hpar/000000001.111.hpar.parquet").to_pandas() # Doubled everything from previous config.yaml # for k, p_comp in enumerate(["unvaccinated", "first_dose"]): for k, p_comp in enumerate(["0dose", "1dose"]): hpar = hpar_f - for i, place in enumerate(geoid): + for i, place in enumerate(subpop): assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidH_{p_comp}") & (hpar["quantity"] == "probability") ]["value"] @@ -876,7 +878,7 @@ def test_outcomes_pcomp(): assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidH_{p_comp}") & (hpar["quantity"] == "delay") ]["value"] @@ -886,7 +888,7 @@ def test_outcomes_pcomp(): assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidH_{p_comp}") & (hpar["quantity"] == "duration") ]["value"] @@ -896,7 +898,7 @@ def test_outcomes_pcomp(): assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidD_{p_comp}") & (hpar["quantity"] == "probability") ]["value"] @@ -906,7 +908,7 @@ def test_outcomes_pcomp(): assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidD_{p_comp}") & (hpar["quantity"] == "delay") ]["value"] @@ -916,7 +918,7 @@ def test_outcomes_pcomp(): assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidICU_{p_comp}") & (hpar["quantity"] == "probability") ]["value"] @@ -926,7 +928,7 @@ def test_outcomes_pcomp(): assert ( float( hpar[ - (hpar["geoid"] == place) + (hpar["subpop"] == place) & (hpar["outcome"] == f"incidICU_{p_comp}") & (hpar["quantity"] == "delay") ]["value"] @@ -938,7 +940,7 @@ def test_outcomes_pcomp(): def test_outcomes_pcomp_read_write(): os.chdir(os.path.dirname(__file__)) - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config_mc_selection.yml", run_id=111, prefix="", diff --git a/flepimop/gempyor_pkg/tests/outcomes/test_rel.parquet b/flepimop/gempyor_pkg/tests/outcomes/test_rel.parquet index 4eaaed969ef4c71a49577022bdb26f68c6465972..3be65e0542d761bcecd17e58ce096ae883b8a215 100644 GIT binary patch literal 1996 zcmchY%}*0S6u@VfcG=cqfOIxnv#E`N4T%M}&?;~#vn_?jqO=jQ1f$#1V71UvS`hTW z!2<{5fp~#y{ z!6Pwj$EXvbUXK+axPy9zoX* z141y@us?=*hAGcFL08P=j8b+bbFWa$r;JoKmo2Sf7h?Om0Fwm!Y9ZrSUE!g9V`Oq+na zob-lM-`dneRwaK%X^M9rCt}#a@HETLHph9t1)n(g$9}9o3;G8*&hj&8lhMaEvFj)Z z9IOHHvAUMUoo(8Vf-=1g+BPKA(?km^^@<Op`7q!Jl1i{`0z!_C?99iqb0)ejZ(l>>!E6&FNvYOyt)sS7=)&Iw2$u zA8pqOSta^Bi4ZbRLi0?ggTVxqLWD%=2=nR)vnlw(%>NNx9Al!NiZn2Z+=5L8K^P5> z(z(7$dnQuB^w;~7(~o^KaWY2th5cbV5qOB25zq<`+;Sg+FxF# zsnG>J!QxOOlZQ>oI32)8OZE?yX5yhVwf9XzNAcoQED2^*I~tZh#EbbqO>ZSQF`eqgk{)*Jp&B(hu^S*w+dGqE8 zuc0E(j4>i}E6+?YW0xrETF6UL6d&g}{^B@w9iI5b@yqiAVS=HUAQPHpX28wI_<{@6 zRWG(qu;jyo^ZPLmyl3ch-p3E0T>O4K@-rP|Ca2?Lly92#R<(w%GM>Op;5Rz(ijJre z|4Bh0JjcZHjEAsd?@mF;mS#w{-qE(2t%fYgx}n=W;B$!y9O5%|k{x@Z6oQV2T(Bt7V9NT)Yzd4fXI;`B@7f1aIP&EDkoWn9V=E0)BeY-9fgkC} zOJC#{FQ$D`C?I#0na#rolbgy9xg5-Lz-o$N53zE&2Df z$0h&N6L{>2JiQS4aw7Pz02t4-5vN#RTd8TL#7t1kXaYwgJgLCUba49aTV1*TtNi~{dA@xmo%tySUibqukXiUbH=3SheND+yr8fJ6 zcR#FKs7=$yHHzp zuSv`uOII4Ih8--&Z1xTm4Y{rop>_!XDbw6zAa!YFU za0NAcQmfVI;&2_U)z%vpmU46a!WM}xT9UeSBMkt1oRg^}kic(b~OQP7FHWUJUzvpXcNl1W2u z(tG9kVq5_(*hUrN%}O+}13d8F0E_Qxr4jCCLYK@^U3K?vi{)YsVsI6lmrR_OGrNg= z3g>-@E6)S}XaeW%lzb(4H3Me>JaInW6)z>4;1#oAoSLsu{X08Hu?BT|Dks%Ux79b~ zNi=smmGXMD;GWM3=O?!1Xqqe3-%wj6xBeBg1T~lF;hKh8YfHjPuTox#lNz^@ahUhy zd4-&rYLH@)BHr5R#^Vd(6Rr{sO8B?lbNn{RW|a z4ndY$#;pk^$z+lEV_-Kvo}eU$^~670=&0qDx(H^iH4x(Vv%X3AEfHJdPi7X;E7%`= ziqJ=R0~PLo6XBbNrUzrt-^c=?RiY`w)_q5_uPM!DsNc#%{9JsFzqV08Ya7|ycc$;c56aO$>fr=M Jt--%~{{VV2-~Ipq diff --git a/flepimop/gempyor_pkg/tests/outcomes/test_rel_subclasses.parquet b/flepimop/gempyor_pkg/tests/outcomes/test_rel_subclasses.parquet index a35809d72d54d9b6431b92254eb173c7920f055a..f07bd920f7a322a1e5559bbd758d7fcd6bb83be7 100644 GIT binary patch literal 2111 zcmcgu&2JM&6rWi;&f3_;jxx(`LIFBsZy&p%_)aodf@;ZIdDTlAqtmDR22dQ5^DJ)`eru%h*%Ctp(F3SnYZt~ z`Tgd-xAFu_g^80)kuMU&Lr@z+y`dI_P&lINk$@Y02G3By-4(7W`w1f5q^E~OiJ!QL zEBGnuZsFELst{ptZcj)sN3p}bF7-MdbUr?MxyvchKXH(FwTK_NG}X0SohubfL{g&4 zORVf*dXdU+$I^NL93m2e$qxb{*z05~hCvfb~u<{zy+Yb6d;^=LIz2gX5ZX1}) zCWu#%OALAdM`1BnxHuk5&zN%HBRM|9`Z^F|A9rYUa13-ci?JDIlNnFLTb0Ec0)R_X zhJOCxlIhF;`t47r5#5vf=oc4nIV?_GQdv!QX=p6al(FYUM?8|DHatrH2cct{-Z^b}bjH<(!3j2P@l{ z{^Ftc+&npNN3%tIACpa-AgaJT>)iYe)+`V#RZbtq8$*?A@fFl% z+T!g51c6RH;KcbOH-E%ihY(#q93-B-#%fu~E>tc0-#e7o68+0Zx4gmkILhu)w1o(Q zp3Pm#U(FH^BHm+Ct%Z-FL=fN!RlPTwm9;`@*6n4frt&~I3pi4uT2Pxlm~X}Z)wc)U zHwRhKAG|u0U5^r_vht4`zQtNl^|Dmz+~nt0v8Y>)lYFc(lQEWrhmSLituk|-jW9OP zV)H_0g27q7iZM3MCG2Ywc4>Ix!v6|?IVzR|e8~f|k@IlKAS{OC!+dY9@>wkT!tyu! zGLzqgr;==xp9|-M6eGsQ>;5B_zW~+bp8-R2ZLa^TYneX4GREzXFLP@Ag_#m@xRHfN zY}ptW;G<{yhALCZSdQC=Ct%|6l4(Ig7}c*v@Q3&#;ml-2&t6DHM5wcu!D%qb%p|`b zz@1}p{sPF?LB1m%@Pv3@hBJ%iO0MowO9f*{{iKvFFIDrE-dw5Fn=O}%tD%*AdAU$r Y3=N&oPw3h-ba?X*wK)-*fWHp^0X`SbasU7T literal 3682 zcmcgv%WoS+7~gdq*GZGAsj|kdg5+AM)k6|??KrKg6f?HtM{wN4Y5XF{-B;{&cGs?7 zi4#=z(@A>;4 z^C@0NDULBSdFHhQGt8JzQPi|^kfJEg$Fjb$A?iFl{;{D+u1oYX6myQ5nquZb&B9nF z=BRUnSlVwV9}bkq6DD}i(*r~AnWhK6KXczzo-~`>KhYD+h{I>5EDrl%QLZQwW3tWL z9@4gZv|Dmp4>AQ#SY|fCmnlv6GnTWu|r)zET7QK)dVv_f=OH$ z2EU3fDpEYORtQ?hPFTYQtrUMsEEaY+kpxp0o0T8M&3(>Elkft7wT1S2i z6gOyk$_4gy?3TJ%k~N+grkIhlrp}E!OC=@%4WaC{c0aM(7yYzO5xS&dY>nWgZ1au@$NGP| z+5guqd+siOp8h-XTH5{^vdu$&;R~bBF=e+@d0pb`_U{IFU5YNr+Xb>qxIPta{FEOF^<-wF|YPJ?9q?bAGwG7 z-R+T|^0uK?_{Q8UR(P_8eT=7zNV=*f^NmUk>bmPv6`{u0+PH(NZN65kY+-XPxmH&y zI;OHS+}sT7g6g|E?)#YB46t3-DfgR7^BItDZ%PS${3~yqE@Z$)Sf(XGE8woGr51bK7%z}LId|XqT`Dl7J z>q)kRSh^wTOUh*>C}dZ+igB$&Q~gyzOQ~`+y%R52iW!cr$3u%{!L!W?8J|J())hgE zH1ezQIpFE}jK7)>#j%{mXVUe2#NW(iI2G&1HAxjb>SkO4A9}C^wo4-CXXR|r;Opro zpGmgz(KRIzLW-cL8)8h|kYegq$9^lPRn?q##o%YsY%Y^3Nznz2y(wk3>l=VyZZGzH z>JcuN@v(e15`zQs#0u|*cGD@$W3G?>rMGYz=CC@ zjIWyW_%{IujtzWqTXMP&yXIGTEnSw3*cXp>sv+k#glHIuY-TlAA-Hz)lT-Y2u!7b?F&0KZ~_G|Ej z@e8T=6(vLB0^XAQ9SOrw!N-L#Tz(*up@3)1-h%l8tQ?**#v=0up-v8g7Fxig2{yrC zis)m498`M6nb}3Z9qUMMTJ%q$X<2q%Ies zOP44+O!3;arrekot5s)blsmZ@-wZdsnncU1vCCH+>+o-7{~vV&e%&m?ugiY`agPbS diff --git a/flepimop/gempyor_pkg/tests/seir/data/config.yml b/flepimop/gempyor_pkg/tests/seir/data/config.yml index d5bafdb0e..6c4cb47fd 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config.yml @@ -9,8 +9,6 @@ nslots: 15 spatial_setup: geodata: geodata.csv mobility: mobility.txt - popnodes: population - nodenames: geoid seeding: method: FolderDraw @@ -83,7 +81,7 @@ interventions: - Scenario2 settings: None: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-15 @@ -91,7 +89,7 @@ interventions: distribution: fixed value: 0 Wuhan: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-15 @@ -100,24 +98,24 @@ interventions: low: .14 high: .33 KansasCity: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - periods: - start_date: 2020-04-01 end_date: 2020-05-15 - affected_geoids: "all" + subpop: "all" value: distribution: uniform low: .04 high: .23 Scenario1: - template: Stacked + template: StackedModifier scenarios: - KansasCity - Wuhan - None Scenario2: - template: Stacked + template: StackedModifier scenarios: - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml index b1188208d..932fa382a 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml @@ -8,8 +8,6 @@ nslots: 15 spatial_setup: geodata: geodata.csv mobility: mobility.txt - popnodes: population - nodenames: geoid compartments: infection_stage: ["S", "E", "I1", "I2", "I3", "R"] diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format_with_covariates.yml b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format_with_covariates.yml index ca413a484..9afd97a54 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format_with_covariates.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format_with_covariates.yml @@ -8,8 +8,6 @@ nslots: 15 spatial_setup: geodata: geodata.csv mobility: mobility.txt - popnodes: population - nodenames: geoid compartments: infection_stage: ["S", "E", "I1", "I2", "I3", "R"] diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml index 065fee13d..b884d8a54 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml @@ -8,8 +8,6 @@ nslots: 15 spatial_setup: geodata: geodata.csv mobility: mobility.txt - popnodes: population - nodenames: geoid seeding: method: FolderDraw @@ -116,7 +114,7 @@ interventions: - Scenario2 settings: None: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-15 @@ -124,7 +122,7 @@ interventions: distribution: fixed value: 0 Wuhan: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-15 @@ -133,24 +131,24 @@ interventions: low: .14 high: .33 KansasCity: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - periods: - start_date: 2020-04-01 end_date: 2020-05-15 - affected_geoids: "all" + subpop: "all" value: distribution: uniform low: .04 high: .23 Scenario1: - template: Stacked + template: StackedModifier scenarios: - KansasCity - Wuhan - None Scenario2: - template: Stacked + template: StackedModifier scenarios: - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml b/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml index 16922d6d9..3dea2721c 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml @@ -9,8 +9,6 @@ spatial_setup: base_path: data geodata: geodata.csv mobility: mobility.txt - popnodes: population - nodenames: geoid initial_conditions: method: InitialConditionsFolderDraw @@ -82,7 +80,7 @@ interventions: - Scenario2 settings: None: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-16 @@ -90,7 +88,7 @@ interventions: distribution: fixed value: 0 Wuhan: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-16 @@ -99,7 +97,7 @@ interventions: low: .14 high: .33 KansasCity: - template: ReduceR0 + template: SinglePeriodModifierR0 parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-16 @@ -108,11 +106,11 @@ interventions: low: .04 high: .23 Scenario1: - template: Stacked + template: StackedModifier scenarios: - Wuhan - None Scenario2: - template: Stacked + template: StackedModifier scenarios: - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml b/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml index a9a5de805..e11cdf53e 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml @@ -9,8 +9,6 @@ spatial_setup: base_path: data geodata: geodata.csv mobility: mobility.txt - popnodes: population - nodenames: geoid initial_conditions: method: InitialConditionsFolderDraw @@ -82,7 +80,7 @@ interventions: - Scenario2 settings: None: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-02 period_end_date: 2020-05-16 @@ -90,49 +88,49 @@ interventions: distribution: fixed value: 0 Wuhan: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - periods: - start_date: 2020-04-02 end_date: 2020-05-16 - affected_geoids: "all" + subpop: "all" value: distribution: uniform low: .14 high: .33 KansasCity: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - periods: - start_date: 2020-04-02 end_date: 2020-05-16 - affected_geoids: "all" + subpop: "all" value: distribution: uniform low: .04 high: .23 BrandNew: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - periods: - start_date: 2020-04-02 end_date: 2020-05-16 - affected_geoids: "all" + subpop: "all" value: distribution: uniform low: .2 high: .25 Scenario1: - template: Stacked + template: StackedModifier scenarios: - BrandNew - KansasCity - Wuhan - None Scenario2: - template: Stacked + template: StackedModifier scenarios: - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml b/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml index 2fde529a4..c496f2cba 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml @@ -9,8 +9,6 @@ spatial_setup: base_path: data geodata: geodata.csv mobility: mobility.csv - popnodes: population - nodenames: geoid census_year: 2018 modeled_states: - HI @@ -101,22 +99,22 @@ interventions: - Scenario2 settings: None: - template: ReduceR0 + template: SinglePeriodModifierR0 value: distribution: fixed value: 0 Place1: - template: Reduce + template: SinglePeriodModifier parameter: r0 value: distribution: uniform low: .14 high: .33 Place2: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - - affected_geoids: "all" + - subpop: "all" periods: - start_date: "2020-04-01" end_date: "2020-04-15" @@ -127,7 +125,7 @@ interventions: low: .14 high: .33 Dose1: - template: Reduce + template: SinglePeriodModifier parameter: "transition_rate0" period_start_date: 2020-04-10 period_end_date: 2020-04-10 @@ -135,7 +133,7 @@ interventions: distribution: fixed value: 0.9 Dose2: - template: Reduce + template: SinglePeriodModifier parameter: "transition_rate1" period_start_date: 2020-04-11 period_end_date: 2020-04-11 @@ -143,18 +141,18 @@ interventions: distribution: fixed value: 0.9 vaccination: - template: Stacked + template: StackedModifier scenarios: - Dose1 - Dose2 Scenario_vacc: - template: Stacked + template: StackedModifier scenarios: - Place1 - Place2 - vaccination Scenario_novacc: - template: Stacked + template: StackedModifier scenarios: - Place1 - Place2 diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_resume.yml b/flepimop/gempyor_pkg/tests/seir/data/config_resume.yml index 81f748153..ed111ed0e 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_resume.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_resume.yml @@ -10,8 +10,6 @@ spatial_setup: base_path: data geodata: geodata.csv mobility: mobility.txt - popnodes: population - nodenames: geoid seeding: method: InitialConditionsFolderDraw @@ -82,7 +80,7 @@ interventions: - Scenario2 settings: None: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-16 @@ -90,7 +88,7 @@ interventions: distribution: fixed value: 0 Wuhan: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-16 @@ -99,7 +97,7 @@ interventions: low: .14 high: .33 KansasCity: - template: ReduceR0 + template: SinglePeriodModifierR0 parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-16 @@ -108,11 +106,11 @@ interventions: low: .04 high: .23 Scenario1: - template: Stacked + template: StackedModifier scenarios: - Wuhan - None Scenario2: - template: Stacked + template: StackedModifier scenarios: - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/geodata.csv b/flepimop/gempyor_pkg/tests/seir/data/geodata.csv index 3021e87ac..9566ab0a3 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/geodata.csv +++ b/flepimop/gempyor_pkg/tests/seir/data/geodata.csv @@ -1,3 +1,3 @@ -geoid,population,include_in_report +subpop,population,include_in_report 10001,1000,TRUE 20002,2000,FALSE diff --git a/flepimop/gempyor_pkg/tests/seir/dev_new_test.py b/flepimop/gempyor_pkg/tests/seir/dev_new_test.py index 4b56fed95..fc724d598 100644 --- a/flepimop/gempyor_pkg/tests/seir/dev_new_test.py +++ b/flepimop/gempyor_pkg/tests/seir/dev_new_test.py @@ -24,7 +24,7 @@ config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_compartmental_model_format_with_covariates.yml") - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{DATA_DIR}/config_compartmental_model_format_with_covariates.yml", run_id=1, prefix="", @@ -34,7 +34,7 @@ ) # p = parameters.Parameters( - # parameter_config=config["seir"]["parameters"], config_version="v2") + # parameter_config=config["seir"]["parameters"]) p = inference_simulator.s.parameters p_draw = p.parameters_quick_draw(n_days=inference_simulator.s.n_days, nnodes=inference_simulator.s.nnodes) @@ -51,7 +51,7 @@ assert (p_draw[p.pnames2pindex["R0s"]] == initial_df.values).all() - ### test what happen when the order of geoids is not respected (expected: reput them in order) + ### test what happen when the order of subpops is not respected (expected: reput them in order) ### test what happens with incomplete data (expected: fail) diff --git a/flepimop/gempyor_pkg/tests/seir/interface.ipynb b/flepimop/gempyor_pkg/tests/seir/interface.ipynb index 738f1d50d..1ecaf0a17 100644 --- a/flepimop/gempyor_pkg/tests/seir/interface.ipynb +++ b/flepimop/gempyor_pkg/tests/seir/interface.ipynb @@ -46,7 +46,7 @@ ], "source": [ "config_filepath = \"../tests/npi/config_npi.yml\"\n", - "gempyor_simulator = gempyor.InferenceSimulator(\n", + "gempyor_simulator = gempyor.GempyorSimulator(\n", " config_path=config_filepath,\n", " run_id=\"test_run_id\",\n", " prefix=\"test_prefix/\",\n", diff --git a/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test.seed.csv b/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test.seed.csv index ca8adac5d..f5c136e11 100644 --- a/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test.seed.csv +++ b/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test.seed.csv @@ -1,3 +1,3 @@ -date,place,amount,source_infection_stage,source_vaccination_stage,source_variant_type,destination_infection_stage,destination_vaccination_stage, destination_variant_type +date,subpop,amount,source_infection_stage,source_vaccination_stage,source_variant_type,destination_infection_stage,destination_vaccination_stage, destination_variant_type 2020-01-31,10001,40,S,unvaccinated,var0,E,unvaccinated,var0 2020-01-31,20002,10,S,unvaccinated,var0,E,unvaccinated,var0 diff --git a/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test_SeedOneNode.seed.csv b/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test_SeedOneNode.seed.csv index 0a39d5981..a17e58c5e 100644 --- a/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test_SeedOneNode.seed.csv +++ b/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test_SeedOneNode.seed.csv @@ -1,3 +1,3 @@ -date,place,amount,source_infection_stage,source_vaccination_stage,source_variant_type,destination_infection_stage,destination_vaccination_stage, destination_variant_type +date,subpop,amount,source_infection_stage,source_vaccination_stage,source_variant_type,destination_infection_stage,destination_vaccination_stage, destination_variant_type 2020-01-31,10001,10,S,unvaccinated,var0,E,unvaccinated,var0 2020-02-01,10001,50,S,unvaccinated,var0,E,unvaccinated,var0 diff --git a/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test_parallel.seed.csv b/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test_parallel.seed.csv index 58c31a7ab..48399be91 100644 --- a/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test_parallel.seed.csv +++ b/flepimop/gempyor_pkg/tests/seir/model_output/seed/000000100.test_parallel.seed.csv @@ -1,3 +1,3 @@ -date,place,amount,source_infection_stage,source_vaccination_stage,destination_infection_stage,destination_vaccination_stage +date,subpop,amount,source_infection_stage,source_vaccination_stage,destination_infection_stage,destination_vaccination_stage 2020-04-01,10001,10,S,unvaccinated,E,unvaccinated 2020-04-02,10001,50,S,unvaccinated,E,unvaccinated diff --git a/flepimop/gempyor_pkg/tests/seir/test_compartments.py b/flepimop/gempyor_pkg/tests/seir/test_compartments.py index c5034a00f..4a2f86d61 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_compartments.py +++ b/flepimop/gempyor_pkg/tests/seir/test_compartments.py @@ -10,7 +10,7 @@ import pyarrow.parquet as pq import filecmp -from gempyor import compartments, seir, NPI, file_paths, setup +from gempyor import compartments, seir, NPI, file_paths, setup, subpopulation_structure from gempyor.utils import config @@ -65,12 +65,12 @@ def test_Setup_has_compartments_component(): config.read(user=False) config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_values", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( @@ -78,7 +78,6 @@ def test_Setup_has_compartments_component(): spatial_setup=ss, nslots=1, npi_scenario="None", - config_version="v3", npi_config_seir=config["interventions"]["settings"]["None"], parameters_config=config["seir"]["parameters"], seir_config=config["seir"], @@ -100,7 +99,6 @@ def test_Setup_has_compartments_component(): spatial_setup=ss, nslots=1, npi_scenario="None", - config_version="v3", npi_config_seir=config["interventions"]["settings"]["None"], parameters_config=config["seir"]["parameters"], seir_config=config["seir"], diff --git a/flepimop/gempyor_pkg/tests/seir/test_new_seir.py b/flepimop/gempyor_pkg/tests/seir/test_new_seir.py index b1755b211..f6880b71a 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_new_seir.py +++ b/flepimop/gempyor_pkg/tests/seir/test_new_seir.py @@ -8,7 +8,7 @@ import pyarrow.parquet as pq from functools import reduce -from gempyor import setup, seir, NPI, file_paths, compartments +from gempyor import setup, seir, NPI, file_paths, compartments, subpopulation_structure from gempyor.utils import config @@ -19,12 +19,12 @@ def test_constant_population(): config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( @@ -47,7 +47,7 @@ def test_constant_population(): initial_conditions = s.seedingAndIC.draw_ic(sim_id=0, setup=s) seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) parameters = s.parameters.parameters_quick_draw(n_days=s.n_days, nnodes=s.nnodes) parameter_names = [x for x in s.parameters.pnames] diff --git a/flepimop/gempyor_pkg/tests/seir/test_parameters.py b/flepimop/gempyor_pkg/tests/seir/test_parameters.py index 1310aef64..c10ce34bd 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_parameters.py +++ b/flepimop/gempyor_pkg/tests/seir/test_parameters.py @@ -10,7 +10,7 @@ import pyarrow.parquet as pq import filecmp -from gempyor import setup, seir, NPI, file_paths, parameters +from gempyor import setup, seir, NPI, file_paths, parameters, subpopulation_structure from gempyor.utils import config, write_df, read_df @@ -23,12 +23,12 @@ def test_parameters_from_config_plus_read_write(): config.read(user=False) config.set_file(f"{DATA_DIR}/config_compartmental_model_format.yml") # Would be better to build a setup - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) index = 1 @@ -39,7 +39,6 @@ def test_parameters_from_config_plus_read_write(): spatial_setup=ss, nslots=1, npi_scenario="None", - config_version="v3", npi_config_seir=config["interventions"]["settings"]["None"], parameters_config=config["seir"]["parameters"], seeding_config=config["seeding"], @@ -59,8 +58,7 @@ def test_parameters_from_config_plus_read_write(): parameter_config=config["seir"]["parameters"], ti=s.ti, tf=s.tf, - nodenames=s.spatset.nodenames, - config_version="v3", + subpop_names=s.subpop_struct.subpop_names, ) n_days = 10 nnodes = 5 @@ -69,8 +67,7 @@ def test_parameters_from_config_plus_read_write(): parameter_config=config["seir"]["parameters"], ti=s.ti, tf=s.tf, - nodenames=s.spatset.nodenames, - config_version="v3", + subpop_names=s.subpop_struct.subpop_names, ) p_draw = p.parameters_quick_draw(n_days=10, nnodes=5) # test shape @@ -82,8 +79,7 @@ def test_parameters_from_config_plus_read_write(): parameter_config=config["seir"]["parameters"], ti=s.ti, tf=s.tf, - nodenames=s.spatset.nodenames, - config_version="v3", + subpop_names=s.subpop_struct.subpop_names, ) p_load = rhs.parameters_load(param_df=read_df("test_pwrite.parquet"), n_days=n_days, nnodes=nnodes) @@ -95,12 +91,12 @@ def test_parameters_quick_draw_old(): config.read(user=False) config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) index = 1 run_id = "test_parameter" @@ -115,7 +111,6 @@ def test_parameters_quick_draw_old(): seeding_config=config["seeding"], ti=config["start_date"].as_date(), tf=config["end_date"].as_date(), - config_version="v3", interactive=True, write_csv=False, first_sim_index=index, @@ -130,8 +125,7 @@ def test_parameters_quick_draw_old(): parameter_config=config["seir"]["parameters"], ti=s.ti, tf=s.tf, - nodenames=s.spatset.nodenames, - config_version="v3", + subpop_names=s.subpop_struct.subpop_names, ) ### Check that the object is well constructed: @@ -169,12 +163,12 @@ def test_parameters_from_timeserie_file(): config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_compartmental_model_format.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) index = 1 run_id = "test_parameter" @@ -184,7 +178,6 @@ def test_parameters_from_timeserie_file(): spatial_setup=ss, nslots=1, npi_scenario="None", - config_version="v3", npi_config_seir=config["interventions"]["settings"]["None"], parameters_config=config["seir"]["parameters"], seeding_config=config["seeding"], @@ -204,8 +197,7 @@ def test_parameters_from_timeserie_file(): parameter_config=config["seir"]["parameters"], ti=s.ti, tf=s.tf, - nodenames=s.spatset.nodenames, - config_version="v3", + subpop_names=s.subpop_struct.subpop_names, ) n_days = 10 nnodes = 5 @@ -214,8 +206,7 @@ def test_parameters_from_timeserie_file(): parameter_config=config["seir"]["parameters"], ti=s.ti, tf=s.tf, - nodenames=s.spatset.nodenames, - config_version="v3", + subpop_names=s.subpop_struct.subpop_names, ) p_draw = p.parameters_quick_draw(n_days=10, nnodes=5) # test shape @@ -227,8 +218,7 @@ def test_parameters_from_timeserie_file(): parameter_config=config["seir"]["parameters"], ti=s.ti, tf=s.tf, - nodenames=s.spatset.nodenames, - config_version="v3", + subpop_names=s.subpop_struct.subpop_names, ) p_load = rhs.parameters_load(param_df=read_df("test_pwrite.parquet"), n_days=n_days, nnodes=nnodes) diff --git a/flepimop/gempyor_pkg/tests/seir/test_seir.py b/flepimop/gempyor_pkg/tests/seir/test_seir.py index 4402e8051..22f86d5ea 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_seir.py +++ b/flepimop/gempyor_pkg/tests/seir/test_seir.py @@ -8,7 +8,7 @@ import pyarrow as pa import pyarrow.parquet as pq -from gempyor import setup, seir, NPI, file_paths +from gempyor import setup, seir, NPI, file_paths, subpopulation_structure from gempyor.utils import config @@ -20,12 +20,12 @@ def test_check_values(): os.chdir(os.path.dirname(__file__)) config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_values", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( @@ -73,12 +73,12 @@ def test_check_values(): def test_constant_population_legacy_integration(): config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) first_sim_index = 1 @@ -108,7 +108,7 @@ def test_constant_population_legacy_integration(): seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) params = s.parameters.parameters_reduce(params, npi) @@ -285,12 +285,12 @@ def test_steps_SEIR_nb_simple_spread_with_txt_matrices(): print("test mobility with txt matrices") config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) first_sim_index = 1 @@ -319,7 +319,7 @@ def test_steps_SEIR_nb_simple_spread_with_txt_matrices(): seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) params = s.parameters.parameters_reduce(params, npi) @@ -370,12 +370,12 @@ def test_steps_SEIR_nb_simple_spread_with_csv_matrices(): config.set_file(f"{DATA_DIR}/config.yml") print("test mobility with csv matrices") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) first_sim_index = 1 @@ -405,7 +405,7 @@ def test_steps_SEIR_nb_simple_spread_with_csv_matrices(): seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) params = s.parameters.parameters_reduce(params, npi) @@ -440,12 +440,12 @@ def test_steps_SEIR_no_spread(): print("test mobility with no spread") config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) first_sim_index = 1 @@ -476,7 +476,7 @@ def test_steps_SEIR_no_spread(): s.mobility.data = s.mobility.data * 0 - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) params = s.parameters.parameters_reduce(params, npi) @@ -541,12 +541,12 @@ def test_continuation_resume(): spatial_base_path = pathlib.Path(config["data_path"].get()) s = setup.Setup( setup_name=config["name"].get() + "_" + str(npi_scenario), - spatial_setup=setup.SpatialSetup( + spatial_setup=subpopulation_structure.SubpopulationStructure( setup_name=config["setup_name"].get(), geodata_file=spatial_base_path / spatial_config["geodata"].get(), mobility_file=spatial_base_path / spatial_config["mobility"].get(), - popnodes_key=spatial_config["popnodes"].get(), - nodenames_key=spatial_config["nodenames"].get(), + popnodes_key="population", + subpop_names_key="subpop", ), nslots=nslots, npi_scenario=npi_scenario, @@ -591,12 +591,12 @@ def test_continuation_resume(): spatial_base_path = pathlib.Path(config["data_path"].get()) s = setup.Setup( setup_name=config["name"].get() + "_" + str(npi_scenario), - spatial_setup=setup.SpatialSetup( + spatial_setup=subpopulation_structure.SubpopulationStructure( setup_name=config["setup_name"].get(), geodata_file=spatial_base_path / spatial_config["geodata"].get(), mobility_file=spatial_base_path / spatial_config["mobility"].get(), - popnodes_key=spatial_config["popnodes"].get(), - nodenames_key=spatial_config["nodenames"].get(), + popnodes_key="population", + subpop_names_key="subpop", ), nslots=nslots, npi_scenario=npi_scenario, @@ -659,12 +659,12 @@ def test_inference_resume(): spatial_base_path = pathlib.Path(config["data_path"].get()) s = setup.Setup( setup_name=config["name"].get() + "_" + str(npi_scenario), - spatial_setup=setup.SpatialSetup( + spatial_setup=subpopulation_structure.SubpopulationStructure( setup_name=config["setup_name"].get(), geodata_file=spatial_base_path / spatial_config["geodata"].get(), mobility_file=spatial_base_path / spatial_config["mobility"].get(), - popnodes_key=spatial_config["popnodes"].get(), - nodenames_key=spatial_config["nodenames"].get(), + popnodes_key="population", + subpop_names_key="subpop", ), nslots=nslots, npi_scenario=npi_scenario, @@ -704,12 +704,12 @@ def test_inference_resume(): spatial_base_path = pathlib.Path(config["data_path"].get()) s = setup.Setup( setup_name=config["name"].get() + "_" + str(npi_scenario), - spatial_setup=setup.SpatialSetup( + spatial_setup=subpopulation_structure.SubpopulationStructure( setup_name=config["setup_name"].get(), geodata_file=spatial_base_path / spatial_config["geodata"].get(), mobility_file=spatial_base_path / spatial_config["mobility"].get(), - popnodes_key=spatial_config["popnodes"].get(), - nodenames_key=spatial_config["nodenames"].get(), + popnodes_key="population", + subpop_names_key="subpop", ), nslots=nslots, npi_scenario=npi_scenario, @@ -752,12 +752,12 @@ def test_parallel_compartments_with_vacc(): os.chdir(os.path.dirname(__file__)) config.set_file(f"{DATA_DIR}/config_parallel.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) first_sim_index = 1 @@ -787,7 +787,7 @@ def test_parallel_compartments_with_vacc(): seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) params = s.parameters.parameters_reduce(params, npi) @@ -846,12 +846,12 @@ def test_parallel_compartments_no_vacc(): os.chdir(os.path.dirname(__file__)) config.set_file(f"{DATA_DIR}/config_parallel.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) first_sim_index = 1 @@ -882,7 +882,7 @@ def test_parallel_compartments_no_vacc(): seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) params = s.parameters.parameters_reduce(params, npi) diff --git a/flepimop/gempyor_pkg/tests/seir/test_setup.py b/flepimop/gempyor_pkg/tests/seir/test_setup.py index e7e5d3630..df045ea80 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_setup.py +++ b/flepimop/gempyor_pkg/tests/seir/test_setup.py @@ -5,7 +5,7 @@ import pytest import confuse -from gempyor import setup, parameters +from gempyor import setup, subpopulation_structure, parameters from gempyor.utils import config @@ -15,14 +15,14 @@ os.chdir(os.path.dirname(__file__)) -class TestSetup: - def test_Setup_success(self): - ss = setup.SpatialSetup( +class TestSubpopulationStructure: + def test_SubpopulationStructure_success(self): + ss = subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( setup_name = TEST_SETUP_NAME, @@ -54,78 +54,78 @@ def test_Setup_success(self): def test_tf_is_ahead_of_ti_fail(self): # time to finish (tf) is ahead of time to start(ti) error with pytest.raises(ValueError, match=r".*tf.*less.*"): - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", - ) - s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-03-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - npi_scenario=None, - config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, - ) + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", + ) + s = setup.Setup( + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-03-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + ) def test_w_config_seir_exists_success(self): # if seir_config is None and config["seir"].exists() then update config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_seir.yml") - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, # parameters_config={"alpha":{"value":{"distribution":"fixed","value":.9}}}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, ) assert s.seir_config != None @@ -139,38 +139,38 @@ def test_w_config_seir_integration_method_rk4_1_success(self): config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_1.yml") - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, ) assert s.integration_method == "rk4.jit" @@ -181,38 +181,38 @@ def test_w_config_seir_integration_method_rk4_2_success(self): config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_2.yml") - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, ) assert s.integration_method == "rk4.jit" @@ -221,38 +221,38 @@ def test_w_config_seir_no_integration_success(self): config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_seir_no_integration.yml") - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={}, + outcome_scenario=None, + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, ) assert s.integration_method == "rk4.jit" @@ -264,21 +264,21 @@ def test_w_config_seir_unknown_integration_method_fail(self): config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_seir_unknown_integration.yml") - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", - ) + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", + ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), # first_sim_index=1, - ) + ) # print(s.integration_method) def test_w_config_seir_integration_but_no_dt_success(self): @@ -286,27 +286,27 @@ def test_w_config_seir_integration_but_no_dt_success(self): config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_seir_no_dt.yml") - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - dt=None, # step size, in days + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + dt=None, # step size, in days ) assert s.dt == 2.0 @@ -323,13 +323,13 @@ def test_w_config_seir_old_integration_method_fail(self): geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( setup_name = TEST_SETUP_NAME, spatial_setup =ss, nslots = 1, - config_version="v2", + # config_version="v2", ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), ) @@ -344,7 +344,7 @@ def test_w_config_seir_config_version_not_provided_fail(self): geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( setup_name = TEST_SETUP_NAME, @@ -353,7 +353,7 @@ def test_w_config_seir_config_version_not_provided_fail(self): ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), npi_scenario=None, - config_version="v1", + # config_version="v1", npi_config_seir={}, seeding_config={}, initial_conditions_config={}, @@ -368,37 +368,37 @@ def test_w_config_compartments_and_seir_config_not_None_success(self): config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_compartment.yml") - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - dt=None, # step size, in days + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + dt=None, # step size, in days ) def test_config_outcome_config_and_scenario_success(self): # if outcome_config and outcome_scenario were set - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( setup_name = TEST_SETUP_NAME, @@ -407,62 +407,80 @@ def test_config_outcome_config_and_scenario_success(self): ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), npi_scenario=None, - config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, parameters_config={}, seir_config=None, dt=None, # step size, in days - outcomes_config={"interventions":{"settings":{"None": - {"template":"Reduce", - "parameter":"r0", - "value": - { - "distribution":"fixed", - "value":0 - } - } - }}}, - outcome_scenario="None", # caution! selected the defined "None" - write_csv=True, + outcomes_config= + { + "interventions": + { + "settings": + { + "None": + { + "template":"Reduce", + "parameter":"r0", + "value": + { + "distribution":"fixed", + "value":0 + } + } + } + } + }, + outcome_scenario="None", # caution! selected the defined "None" + write_csv=True, ) assert s.npi_config_outcomes == s.outcomes_config["interventions"]["settings"]["None"] assert s.extension == "csv" def test_config_write_csv_and_write_parquet_success(self): # if both write_csv and write_parquet are True - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - dt=None, # step size, in days - outcomes_config={"interventions":{"settings":{"None": - {"template":"Reduce", - "parameter":"r0", - "value": - { - "distribution":"fixed", - "value":0 - } - } - }}}, + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + dt=None, # step size, in days + outcomes_config= + { + "interventions": + { + "settings": + { + "None": + { + "template":"Reduce", + "parameter":"r0", + "value": + { + "distribution":"fixed", + "value":0 + } + } + } + } + }, outcome_scenario="None", # caution! selected the defined "None" write_csv=True, write_parquet=True, @@ -474,27 +492,27 @@ def test_w_config_seir_exists_and_outcomes_config(self): config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_seir.yml") - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", + ss = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + popnodes_key="population", + subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={"interventions":{"settings":{"None": + setup_name = TEST_SETUP_NAME, + spatial_setup =ss, + nslots = 1, + ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + outcomes_config={"interventions":{"settings":{"None": {"template":"Reduce", "parameter":"r0", "value": @@ -503,18 +521,18 @@ def test_w_config_seir_exists_and_outcomes_config(self): "value":0 } } - }}}, - outcome_scenario="None", - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id="in_run_id_0", - in_prefix=None, - out_run_id="out_run_id_0", - out_prefix=None, - stoch_traj_flag=False, + }}}, + outcome_scenario="None", + interactive=True, + write_csv=False, + write_parquet=False, + dt=None, # step size, in days + first_sim_index=1, + in_run_id="in_run_id_0", + in_prefix=None, + out_run_id="out_run_id_0", + out_prefix=None, + stoch_traj_flag=False, ) #s.get_input_filename(ftype="spar", sim_id=0, extension_override="") os.path.isfile(DATA_DIR+s.get_input_filename(ftype="seir", sim_id=0)) @@ -545,12 +563,12 @@ def test_w_config_seir_exists_and_outcomes_config(self): ''' def test_SpatialSetup_npz_success3(self): - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.npz", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) def test_SpatialSetup_wihout_mobility_success3(self): ss = setup.SpatialSetup( @@ -558,38 +576,18 @@ def test_SpatialSetup_wihout_mobility_success3(self): geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility0.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) def test_bad_popnodes_key_fail(self): # Bad popnodes_key error with pytest.raises(ValueError, match=r".*popnodes_key.*"): - setup.SpatialSetup( + subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility_small.txt", popnodes_key="wrong", - nodenames_key="geoid", - ) - - def test_population_0_nodes_fail(self): - with pytest.raises(ValueError, match=r".*population.*zero.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata0.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", - ) - - def test_mobility_fileformat_fail(self): - with pytest.raises(ValueError, match=r".*Mobility.*longform.*matrix.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility", - popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) def test_bad_nodenames_key_fail(self): @@ -599,37 +597,37 @@ def test_bad_nodenames_key_fail(self): geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="wrong", + subpop_names_key="wrong", ) def test_duplicate_nodenames_key_fail(self): with pytest.raises(ValueError, match=r".*duplicate.*"): - setup.SpatialSetup( + subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata_dup.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) ''' def test_mobility_shape_in_npz_fail(self): with pytest.raises(ValueError, match=r".*mobility.*Actual.*"): - setup.SpatialSetup( + subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility_2x3.npz", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) ''' def test_mobility_dimensions_fail(self): with pytest.raises(ValueError, match=r".*mobility.*dimensions.*"): - setup.SpatialSetup( + subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility_small.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) def test_mobility_same_ori_dest_fail(self): @@ -639,17 +637,17 @@ def test_mobility_same_ori_dest_fail(self): geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility_same_ori_dest.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) def test_mobility_too_big_fail(self): with pytest.raises(ValueError, match=r".*mobility.*population.*"): - setup.SpatialSetup( + subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility_big.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) def test_mobility_data_exceeded_fail(self): with pytest.raises(ValueError, match=r".*mobility.*exceed.*"): diff --git a/flepimop/main_scripts/create_seeding.R b/flepimop/main_scripts/create_seeding.R index a085af059..b52681044 100644 --- a/flepimop/main_scripts/create_seeding.R +++ b/flepimop/main_scripts/create_seeding.R @@ -15,7 +15,7 @@ # spatial_setup: # geodata: -# nodenames: +# subpop: # # seeding: # lambda_file: @@ -24,7 +24,7 @@ # # ## Input Data # -# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::nodenames} that denotes the geoids +# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::subpop} that denotes the subpop # # ## Output Data # @@ -153,15 +153,15 @@ if (seed_variants) { ## Check some data attributes: ## This is a hack: -if ("geoid" %in% names(cases_deaths)) { - cases_deaths$FIPS <- cases_deaths$geoid +if ("subpop" %in% names(cases_deaths)) { + cases_deaths$FIPS <- cases_deaths$subpop warning("Changing FIPS name in seeding. This is a hack") } if ("date" %in% names(cases_deaths)) { cases_deaths$Update <- cases_deaths$date warning("Changing Update name in seeding. This is a hack") } -obs_nodename <- config$spatial_setup$nodenames +obs_subpop <- config$spatial_setup$subpop required_column_names <- NULL check_required_names <- function(df, cols, msg) { @@ -272,12 +272,12 @@ geodata <- flepicommon::load_geodata_file( TRUE ) -all_geoids <- geodata[[config$spatial_setup$nodenames]] +all_subpop <- geodata[[config$spatial_setup$subpop]] incident_cases <- incident_cases %>% - dplyr::filter(FIPS %in% all_geoids) %>% + dplyr::filter(FIPS %in% all_subpop) %>% dplyr::select(!!!required_column_names) incident_cases <- incident_cases %>% filter(value>0) @@ -307,7 +307,7 @@ incident_cases <- incident_cases %>% dplyr::ungroup() %>% dplyr::select(!!!rlang::syms(required_column_names)) -names(incident_cases)[1:3] <- c("place", "date", "amount") +names(incident_cases)[1:3] <- c("subpop", "date", "amount") incident_cases <- incident_cases %>% dplyr::filter(!is.na(amount) | !is.na(date)) @@ -332,12 +332,12 @@ if ("compartments" %in% names(config) & "pop_seed_file" %in% names(config[["seed seeding_pop$no_perturb <- TRUE } seeding_pop <- seeding_pop %>% - dplyr::filter(place %in% all_geoids) %>% + dplyr::filter(subpop %in% all_subpop) %>% dplyr::select(!!!colnames(incident_cases)) incident_cases <- incident_cases %>% dplyr::bind_rows(seeding_pop) %>% - dplyr::arrange(place, date) + dplyr::arrange(subpop, date) } @@ -346,7 +346,7 @@ if ("compartments" %in% names(config) & "pop_seed_file" %in% names(config[["seed if (max(incident_cases$date) < lubridate::as_date(config$start_date)){ incident_cases <- incident_cases %>% - group_by(place) %>% + group_by(subpop) %>% filter(date == min(date)) %>% distinct() %>% ungroup() %>% diff --git a/flepimop/main_scripts/create_seeding_added.R b/flepimop/main_scripts/create_seeding_added.R index efcff2b01..ccfee8f89 100644 --- a/flepimop/main_scripts/create_seeding_added.R +++ b/flepimop/main_scripts/create_seeding_added.R @@ -15,7 +15,7 @@ # spatial_setup: # geodata: -# nodenames: +# subpop: # # seeding: # lambda_file: @@ -24,7 +24,7 @@ # # ## Input Data # -# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::nodenames} that denotes the geoids +# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::subpop} that denotes the subpop # # ## Output Data # @@ -151,15 +151,15 @@ if (seed_variants) { ## Check some data attributes: ## This is a hack: -if ("geoid" %in% names(cases_deaths)) { - cases_deaths$FIPS <- cases_deaths$geoid +if ("subpop" %in% names(cases_deaths)) { + cases_deaths$FIPS <- cases_deaths$subpop warning("Changing FIPS name in seeding. This is a hack") } if ("date" %in% names(cases_deaths)) { cases_deaths$Update <- cases_deaths$date warning("Changing Update name in seeding. This is a hack") } -obs_nodename <- config$spatial_setup$nodenames +obs_subpop <- config$spatial_setup$subpop required_column_names <- NULL check_required_names <- function(df, cols, msg) { @@ -270,12 +270,12 @@ geodata <- flepicommon::load_geodata_file( TRUE ) -all_geoids <- geodata[[config$spatial_setup$nodenames]] +all_subpop <- geodata[[config$spatial_setup$subpop]] incident_cases <- incident_cases %>% - dplyr::filter(FIPS %in% all_geoids) %>% + dplyr::filter(FIPS %in% all_subpop) %>% dplyr::select(!!!required_column_names) incident_cases <- incident_cases %>% filter(value>0) @@ -305,7 +305,7 @@ incident_cases <- incident_cases %>% dplyr::ungroup() %>% dplyr::select(!!!rlang::syms(required_column_names)) -names(incident_cases)[1:3] <- c("place", "date", "amount") +names(incident_cases)[1:3] <- c("subpop", "date", "amount") incident_cases <- incident_cases %>% dplyr::filter(!is.na(amount) | !is.na(date)) @@ -332,12 +332,12 @@ if (!("no_perturb" %in% colnames(incident_cases))){ # seeding_pop$no_perturb <- TRUE # } # seeding_pop <- seeding_pop %>% -# dplyr::filter(place %in% all_geoids) %>% +# dplyr::filter(subpop %in% all_subpop) %>% # dplyr::select(!!!colnames(incident_cases)) # # incident_cases <- incident_cases %>% # dplyr::bind_rows(seeding_pop) %>% -# dplyr::arrange(place, date) +# dplyr::arrange(subpop, date) # } diff --git a/flepimop/main_scripts/inference_slot.R b/flepimop/main_scripts/inference_slot.R index 38c1f1f2b..41b6d708c 100644 --- a/flepimop/main_scripts/inference_slot.R +++ b/flepimop/main_scripts/inference_slot.R @@ -32,7 +32,7 @@ option_list = list( optparse::make_option(c("-L", "--reset_chimeric_on_accept"), action = "store", default = Sys.getenv("FLEPI_RESET_CHIMERICS", FALSE), type = 'logical', help = 'Should the chimeric parameters get reset to global parameters when a global acceptance occurs'), optparse::make_option(c("-M", "--memory_profiling"), action = "store", default = Sys.getenv("FLEPI_MEM_PROFILE", FALSE), type = 'logical', help = 'Should the memory profiling be run during iterations'), optparse::make_option(c("-P", "--memory_profiling_iters"), action = "store", default = Sys.getenv("FLEPI_MEM_PROF_ITERS", 100), type = 'integer', help = 'If doing memory profiling, after every X iterations run the profiler'), - optparse::make_option(c("-g", "--geoid_len"), action="store", default=Sys.getenv("GEOID_LENGTH", 5), type='integer', help = "number of digits in geoid") + optparse::make_option(c("-g", "--subpop_len"), action="store", default=Sys.getenv("SUBPOP_LENGTH", 5), type='integer', help = "number of digits in subpop") ) parser=optparse::OptionParser(option_list=option_list) @@ -99,10 +99,10 @@ suppressMessages( config$data_path, config$spatial_setup$geodata, sep = "/" ), - geoid_len = opt$geoid_len + subpop_len = opt$subpop_len ) ) -obs_nodename <- config$spatial_setup$nodenames +obs_subpop <- config$spatial_setup$subpop ##Load simulations per slot from config if not defined on command line ##command options take precedence @@ -163,7 +163,7 @@ if (is.null(config$inference$gt_source)){ } gt_scale <- ifelse(state_level, "US state", "US county") -fips_codes_ <- geodata[[obs_nodename]] +fips_codes_ <- geodata[[obs_subpop]] gt_start_date <- lubridate::ymd(config$start_date) if (opt$ground_truth_start != "") { @@ -193,7 +193,7 @@ if (config$inference$do_inference){ # obs <- inference::get_ground_truth( # data_path = data_path, # fips_codes = fips_codes_, - # fips_column_name = obs_nodename, + # fips_column_name = obs_subpop, # start_date = gt_start_date, # end_date = gt_end_date, # gt_source = gt_source, @@ -210,16 +210,16 @@ if (config$inference$do_inference){ dplyr::filter(FIPS %in% fips_codes_, date >= gt_start_date, date <= gt_end_date) %>% dplyr::right_join(tidyr::expand_grid(FIPS = unique(.$FIPS), date = unique(.$date))) %>% dplyr::mutate_if(is.numeric, dplyr::coalesce, 0) %>% - dplyr::rename(!!obs_nodename := FIPS) + dplyr::rename(!!obs_subpop := FIPS) - geonames <- unique(obs[[obs_nodename]]) + geonames <- unique(obs[[obs_subpop]]) ## Compute statistics data_stats <- lapply( geonames, function(x) { - df <- obs[obs[[obs_nodename]] == x, ] + df <- obs[obs[[obs_subpop]] == x, ] inference::getStats( df, "date", @@ -235,7 +235,7 @@ if (config$inference$do_inference){ likelihood_calculation_fun <- function(sim_hosp){ sim_hosp <- dplyr::filter(sim_hosp,sim_hosp$time >= min(obs$date),sim_hosp$time <= max(obs$date)) - lhs <- unique(sim_hosp[[obs_nodename]]) + lhs <- unique(sim_hosp[[obs_subpop]]) rhs <- unique(names(data_stats)) all_locations <- rhs[rhs %in% lhs] @@ -243,7 +243,7 @@ if (config$inference$do_inference){ inference::aggregate_and_calc_loc_likelihoods( all_locations = all_locations, # technically different modeled_outcome = sim_hosp, - obs_nodename = obs_nodename, + obs_subpop = obs_subpop, targets_config = config[["inference"]][["statistics"]], obs = obs, ground_truth_data = data_stats, @@ -253,7 +253,7 @@ if (config$inference$do_inference){ geodata = geodata, snpi = arrow::read_parquet(first_global_files[['snpi_filename']]), hnpi = arrow::read_parquet(first_global_files[['hnpi_filename']]), - hpar = dplyr::mutate(arrow::read_parquet(first_global_files[['hpar_filename']]),parameter=paste(quantity,!!rlang::sym(obs_nodename),outcome,sep='_')), + hpar = dplyr::mutate(arrow::read_parquet(first_global_files[['hpar_filename']]),parameter=paste(quantity,!!rlang::sym(obs_subpop),outcome,sep='_')), start_date = gt_start_date, end_date = gt_end_date ) @@ -262,17 +262,17 @@ if (config$inference$do_inference){ } else { - geonames <- obs_nodename + geonames <- obs_subpop likelihood_calculation_fun <- function(sim_hosp){ - all_locations <- unique(sim_hosp[[obs_nodename]]) + all_locations <- unique(sim_hosp[[obs_subpop]]) ## No references to config$inference$statistics inference::aggregate_and_calc_loc_likelihoods( all_locations = all_locations, # technically different modeled_outcome = sim_hosp, - obs_nodename = obs_nodename, + obs_subpop = obs_subpop, targets_config = config[["inference"]][["statistics"]], obs = sim_hosp, ground_truth_data = sim_hosp, @@ -282,7 +282,7 @@ if (config$inference$do_inference){ geodata = geodata, snpi = arrow::read_parquet(first_global_files[['snpi_filename']]), hnpi = arrow::read_parquet(first_global_files[['hnpi_filename']]), - hpar = dplyr::mutate(arrow::read_parquet(first_global_files[['hpar_filename']]),parameter=paste(quantity,!!rlang::sym(obs_nodename),outcome,sep='_')), + hpar = dplyr::mutate(arrow::read_parquet(first_global_files[['hpar_filename']]),parameter=paste(quantity,!!rlang::sym(obs_subpop),outcome,sep='_')), start_date = gt_start_date, end_date = gt_end_date ) @@ -353,7 +353,7 @@ for(npi_scenario in npi_scenarios) { ### Set up initial conditions ---------- ## python configuration: build simulator model initialized with compartment and all. - gempyor_inference_runner <- gempyor$InferenceSimulator( + gempyor_inference_runner <- gempyor$GempyorSimulator( config_path=opt$config, run_id=opt$run_id, prefix=global_block_prefix, @@ -476,7 +476,7 @@ for(npi_scenario in npi_scenarios) { } proposed_seeding <- initial_seeding } - + # proposed_snpi <- inference::perturb_snpi_from_file(initial_snpi, config$interventions$settings, chimeric_likelihood_data) # proposed_hnpi <- inference::perturb_hnpi_from_file(initial_hnpi, config$interventions$settings, chimeric_likelihood_data) # proposed_spar <- inference::perturb_spar_from_file(initial_spar, config$interventions$settings, chimeric_likelihood_data) @@ -505,19 +505,19 @@ for(npi_scenario in npi_scenarios) { load_ID=TRUE, sim_id2load=this_index) if (err != 0){ - stop("InferenceSimulator failed to run") + stop("GempyorSimulator failed to run") } if (config$inference$do_inference){ sim_hosp <- flepicommon::read_file_of_type(gsub(".*[.]","",this_global_files[['hosp_filename']]))(this_global_files[['hosp_filename']]) %>% dplyr::filter(time >= min(obs$date),time <= max(obs$date)) - lhs <- unique(sim_hosp[[obs_nodename]]) + lhs <- unique(sim_hosp[[obs_subpop]]) rhs <- unique(names(data_stats)) all_locations <- rhs[rhs %in% lhs] } else { sim_hosp <- flepicommon::read_file_of_type(gsub(".*[.]","",this_global_files[['hosp_filename']]))(this_global_files[['hosp_filename']]) - all_locations <- unique(sim_hosp[[obs_nodename]]) + all_locations <- unique(sim_hosp[[obs_subpop]]) obs <- sim_hosp data_stats <- sim_hosp } @@ -526,7 +526,7 @@ for(npi_scenario in npi_scenarios) { proposed_likelihood_data <- inference::aggregate_and_calc_loc_likelihoods( all_locations = all_locations, modeled_outcome = sim_hosp, - obs_nodename = obs_nodename, + obs_subpop = obs_subpop, targets_config = config[["inference"]][["statistics"]], obs = obs, ground_truth_data = data_stats, @@ -538,7 +538,7 @@ for(npi_scenario in npi_scenarios) { hnpi = proposed_hnpi, hpar = dplyr::mutate( proposed_hpar, - parameter = paste(quantity, !!rlang::sym(obs_nodename), outcome, sep = "_") + parameter = paste(quantity, !!rlang::sym(obs_subpop), outcome, sep = "_") ), start_date = gt_start_date, end_date = gt_end_date diff --git a/flepimop/main_scripts/seir_init_immuneladder.R b/flepimop/main_scripts/seir_init_immuneladder.R index daa96524f..a7c2d3e84 100644 --- a/flepimop/main_scripts/seir_init_immuneladder.R +++ b/flepimop/main_scripts/seir_init_immuneladder.R @@ -15,7 +15,7 @@ # spatial_setup: # geodata: -# nodenames: +# subpop: # # seeding: # lambda_file: @@ -24,7 +24,7 @@ # # ## Input Data # -# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::nodenames} that denotes the geoids +# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::subpop} that denotes the subpop # # ## Output Data # @@ -296,11 +296,11 @@ seir_dat_static <- seir_dat_static %>% filter(mc_value_type == "prevalence") %>% mutate(mc_vaccination_stage = ifelse(mc_vaccination_stage == "3dose", "vaccinated", "unvaccinated")) %>% mutate(mc_variant_type = "ALL") %>% - pivot_longer(cols = -c(starts_with("mc_"), date), names_to = "geoid", values_to = "value") %>% + pivot_longer(cols = -c(starts_with("mc_"), date), names_to = "subpop", values_to = "value") %>% group_by(across(c(-value))) %>% summarise(value = sum(value, na.rm = TRUE)) %>% mutate(mc_name = paste(mc_infection_stage, mc_vaccination_stage, mc_variant_type, mc_age_strata, sep = "_")) %>% - pivot_wider(names_from = geoid, values_from = value) %>% + pivot_wider(names_from = subpop, values_from = value) %>% dplyr::select(all_of(seir_dat_cols)) @@ -336,7 +336,7 @@ if (gradual_waning){ group_by(prob_immune, date, mc_value_type, mc_variant_type, mc_vaccination_stage, mc_age_strata, loc) %>% summarise(n = sum(n, na.rm=TRUE)) %>% as_tibble() %>% - left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% + left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% mutate(prop = n / pop_agestrata) %>% group_by(USPS, loc, date, mc_value_type, mc_variant_type, mc_vaccination_stage, mc_age_strata) %>% summarise(prop_immune = sum((n * prob_immune) / sum(n, na.rm = TRUE), na.rm = TRUE)) %>% @@ -382,7 +382,7 @@ seir_dat_changing <- seir_dat_changing %>% # geodata <- read_csv("data/geodata_2019_statelevel_agestrat.csv") # # seir_dat_changing %>% filter(mc_age_strata == "age18to64") %>% -# left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% +# left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% # mutate(prop = n / pop_agestrata) %>% # ggplot(aes(x = prob_immune_nom, y = prop, color = USPS)) + # geom_point() + @@ -394,7 +394,7 @@ seir_dat_changing <- seir_dat_changing %>% # theme(legend.position = "none", axis.text.x = element_text(angle = 90)) # # seir_dat_changing %>% -# left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% +# left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% # mutate(prop = n / pop_agestrata) %>% # group_by(USPS, loc, date, mc_value_type, mc_vaccination_stage, mc_age_strata) %>% # summarise(prop_immune = sum((n * prob_immune_nom) / sum(n, na.rm = TRUE), na.rm = TRUE)) %>% @@ -436,8 +436,8 @@ seir_dat_changing_final <- seir_dat_changing %>% # # CHECK # seir_dat_changing_final %>% # filter(mc_age_strata == "age18to64") %>% -# pivot_longer(cols=-c(mc_value_type:mc_name, date), names_to = "geoid", values_to = "n") %>% -# left_join(geodata %>% rename(geoid = geoid) %>% select(USPS, geoid, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% +# pivot_longer(cols=-c(mc_value_type:mc_name, date), names_to = "subpop", values_to = "n") %>% +# left_join(geodata %>% rename(subpop = subpop) %>% select(USPS, subpop, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% # mutate(prop = n / pop_agestrata) %>% # ggplot(aes(x = mc_infection_stage, y = n, color = USPS)) + # geom_point() + diff --git a/postprocessing/groundtruth_source.R b/postprocessing/groundtruth_source.R index 8bd5252c0..53f4bc701 100644 --- a/postprocessing/groundtruth_source.R +++ b/postprocessing/groundtruth_source.R @@ -102,10 +102,10 @@ clean_gt_forplots <- function(gt_data){ gt_long <- gt_long %>% rename(time=date, USPS=source) gt_long <- gt_long %>% - rename(geoid=FIPS, outcome_name = target, outcome = incid) + rename(subpop=FIPS, outcome_name = target, outcome = incid) gt_data <- gt_data %>% - rename(geoid=FIPS, time=date, USPS=source) + rename(subpop=FIPS, time=date, USPS=source) return(gt_data) } diff --git a/postprocessing/plot_predictions.R b/postprocessing/plot_predictions.R index 6e3160403..a2ae5592e 100644 --- a/postprocessing/plot_predictions.R +++ b/postprocessing/plot_predictions.R @@ -55,7 +55,7 @@ gt_data_2 <- gt_data_2 %>% mutate(cumH = 0) # incidH is only cumulative from sta gt_cl <- NULL if (any(outcomes_time_=="weekly")) { # Incident - gt_data_st_week <- get_weekly_incid(gt_data %>% dplyr::select(time, geoid, USPS, paste0("incid", outcomes_gt_[outcomes_time_gt_=="weekly"])) %>% mutate(sim_num = 0), + gt_data_st_week <- get_weekly_incid(gt_data %>% dplyr::select(time, subpop, USPS, paste0("incid", outcomes_gt_[outcomes_time_gt_=="weekly"])) %>% mutate(sim_num = 0), outcomes = outcomes_gt_[outcomes_time_gt_=="weekly"]) # Cumulative @@ -81,7 +81,7 @@ if (any(outcomes_time_=="weekly")) { } if (any(outcomes_time_=="daily")) { # Incident - gt_data_st_day <- get_daily_incid(gt_data %>% dplyr::select(time, geoid, USPS, paste0("incid", outcomes_gt_[outcomes_time_gt_=="daily"])) %>% mutate(sim_num = 0), + gt_data_st_day <- get_daily_incid(gt_data %>% dplyr::select(time, subpop, USPS, paste0("incid", outcomes_gt_[outcomes_time_gt_=="daily"])) %>% mutate(sim_num = 0), outcomes = outcomes_gt_[outcomes_time_gt_=="daily"]) # Cumulative diff --git a/postprocessing/postprocess_auto.py b/postprocessing/postprocess_auto.py index 4f005f9a2..39c2c7afa 100644 --- a/postprocessing/postprocess_auto.py +++ b/postprocessing/postprocess_auto.py @@ -16,8 +16,8 @@ import matplotlib.cbook as cbook from matplotlib.backends.backend_pdf import PdfPages -channelids = {"cspproduction": "C011YTUBJ7R", - "debug": "C04MAQWLEAW"} +channelids = {"cspproduction": "C011YTUBJ7R", "debug": "C04MAQWLEAW"} + class RunInfo: def __init__(self, run_id, config_path=None, folder_path=None): @@ -174,7 +174,7 @@ def generate_pdf(config_path, run_id, job_name, fs_results_path, slack_token, sl for run_name, run_info in all_runs.items(): run_id = run_info.run_id config_filepath = run_info.config_path - run_info.gempyor_simulator = gempyor.InferenceSimulator( + run_info.gempyor_simulator = gempyor.GempyorSimulator( config_path=config_filepath, run_id=run_id, # prefix=f"USA/inference/med/{run_id}/global/intermediate/000000001.", @@ -186,7 +186,7 @@ def generate_pdf(config_path, run_id, job_name, fs_results_path, slack_token, sl ) run_info.folder_path = f"{fs_results_path}/model_output" - node_names = run_info.gempyor_simulator.s.spatset.nodenames + node_names = run_info.gempyor_simulator.s.subpop_struct.subpop_names # In[5]: @@ -226,8 +226,8 @@ def generate_pdf(config_path, run_id, job_name, fs_results_path, slack_token, sl df_raw["sim"] = sim df_raw["ID"] = run_name df_raw = df_raw.drop("filename", axis=1) - # df_csv = df_csv.groupby(['slot','sim', 'ID', 'geoid']).sum().reset_index() - # df_csv = df_csv[['ll','sim', 'slot', 'ID','geoid']] + # df_csv = df_csv.groupby(['slot','sim', 'ID', 'subpop']).sum().reset_index() + # df_csv = df_csv[['ll','sim', 'slot', 'ID','subpop']] resultST[run_name].append(df_raw) full_df = pd.concat(resultST[run_name]) full_df @@ -267,7 +267,7 @@ def generate_pdf(config_path, run_id, job_name, fs_results_path, slack_token, sl for idp, nn in enumerate(node_names): idp = idp + 1 - all_nn = full_df[full_df["geoid"] == nn][["sim", "slot", "ll", "accept", "accept_avg", "accept_prob"]] + all_nn = full_df[full_df["subpop"] == nn][["sim", "slot", "ll", "accept", "accept_avg", "accept_prob"]] for ift, feature in enumerate(["ll", "accept", "accept_avg", "accept_prob"]): lls = all_nn.pivot(index="sim", columns="slot", values=feature) if feature == "accept": @@ -301,12 +301,12 @@ def generate_pdf(config_path, run_id, job_name, fs_results_path, slack_token, sl print(f"list of files to be sent over slack: {file_list}") if "production" in slack_channel.lower(): - channel=channelids["cspproduction"] + channel = channelids["cspproduction"] elif "debug" in slack_channel.lower(): - channel=channelids["debug"] + channel = channelids["debug"] else: print("no channel specified, not sending anything to slack") - channel=None + channel = None # slack_multiple_files( # slack_token=slack_token, diff --git a/postprocessing/postprocess_snapshot.R b/postprocessing/postprocess_snapshot.R index 5c03e16a1..e3b4d8a24 100644 --- a/postprocessing/postprocess_snapshot.R +++ b/postprocessing/postprocess_snapshot.R @@ -59,12 +59,12 @@ print(opt$select_outputs) config <- flepicommon::load_config(opt$config) -# Pull in geoid data +# Pull in subpop data geodata <- setDT(read.csv(file.path(config$data_path, config$spatial_setup$geodata))) ## gt_data MUST exist directly after a run gt_data <- data.table::fread(config$inference$gt_data_path) %>% - .[, geoid := stringr::str_pad(FIPS, width = 5, side = "left", pad = "0")] + .[, subpop := stringr::str_pad(FIPS, width = 5, side = "left", pad = "0")] # store list of files to save files_ <- c() @@ -77,7 +77,7 @@ pdf.options(useDingbats = TRUE) import_model_outputs <- function(scn_dir, outcome, global_opt, final_opt, lim_hosp = c("date", sapply(1:length(names(config$inference$statistics)), function(i) purrr::flatten(config$inference$statistics[i])$sim_var), - config$spatial_setup$nodenames)){ + config$spatial_setup$subpop)){ dir_ <- paste0(scn_dir, "/", outcome, "/", config$name, "/", @@ -145,7 +145,7 @@ print(end_time - start_time) if("hosp" %in% model_outputs){ gg_cols <- 8 - num_nodes <- length(unique(outputs_global$hosp %>% .[,get(config$spatial_setup$nodenames)])) + num_nodes <- length(unique(outputs_global$hosp %>% .[,get(config$spatial_setup$subpop)])) pdf_dims <- data.frame(width = gg_cols*2, length = num_nodes/gg_cols * 2) fname <- paste0("pplot/hosp_mod_outputs_", opt$run_id,".pdf") @@ -154,31 +154,31 @@ if("hosp" %in% model_outputs){ for(i in 1:length(fit_stats)){ statistics <- purrr::flatten(config$inference$statistics[i]) - cols_sim <- c("date", statistics$sim_var, config$spatial_setup$nodenames,"slot") - cols_data <- c("date", config$spatial_setup$nodenames, statistics$data_var) + cols_sim <- c("date", statistics$sim_var, config$spatial_setup$subpop,"slot") + cols_data <- c("date", config$spatial_setup$subpop, statistics$data_var) ## summarize slots print(outputs_global$hosp %>% .[, ..cols_sim] %>% .[, date := lubridate::as_date(date)] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ - .[geodata %>% .[, geoid := stringr::str_pad(geoid, width = 5, side = "left", pad = "0")], on = .(geoid)]} + { if(config$spatial_setup$subpop == 'subpop'){ + .[geodata %>% .[, subpop := stringr::str_pad(subpop, width = 5, side = "left", pad = "0")], on = .(subpop)]} } %>% - { if(config$spatial_setup$nodenames == 'geoid'){ .[, geoid := USPS]} + { if(config$spatial_setup$subpop == 'subpop'){ .[, subpop := USPS]} } %>% - .[, as.list(quantile(get(statistics$sim_var), c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", config$spatial_setup$nodenames)] %>% + .[, as.list(quantile(get(statistics$sim_var), c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", config$spatial_setup$subpop)] %>% ggplot() + geom_ribbon(aes(x = date, ymin = V1, ymax = V5), alpha = 0.1) + geom_ribbon(aes(x = date, ymin = V2, ymax = V4), alpha = 0.1) + geom_line(aes(x = date, y = V3)) + geom_point(data = gt_data %>% .[, ..cols_data] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ - .[geodata %>% .[, geoid := stringr::str_pad(geoid, width = 5, side = "left", pad = "0")], on = .(geoid)]} + { if(config$spatial_setup$subpop == 'subpop'){ + .[geodata %>% .[, subpop := stringr::str_pad(subpop, width = 5, side = "left", pad = "0")], on = .(subpop)]} } %>% - { if(config$spatial_setup$nodenames == 'geoid'){ .[, geoid := USPS]} + { if(config$spatial_setup$subpop == 'subpop'){ .[, subpop := USPS]} } , aes(lubridate::as_date(date), get(statistics$data_var)), color = 'firebrick', alpha = 0.1) + - facet_wrap(~get(config$spatial_setup$nodenames), scales = 'free', ncol = gg_cols) + + facet_wrap(~get(config$spatial_setup$subpop), scales = 'free', ncol = gg_cols) + labs(x = 'date', y = fit_stats[i], title = statistics$sim_var) + theme_classic() ) @@ -187,7 +187,7 @@ if("hosp" %in% model_outputs){ # print(outputs_global$hosp %>% # ggplot() + # geom_line(aes(lubridate::as_date(date), get(sim_var), group = as.factor(slot)), alpha = 0.1) + - # facet_wrap(~get(config$spatial_setup$nodenames), scales = 'free') + + # facet_wrap(~get(config$spatial_setup$subpop), scales = 'free') + # geom_point(data = gt_data %>% # .[, ..cols_data], # aes(lubridate::as_date(date), get(statistics$data_var)), color = 'firebrick', alpha = 0.1) + @@ -200,28 +200,28 @@ if("hosp" %in% model_outputs){ print(outputs_global$hosp %>% .[, ..cols_sim] %>% .[, date := lubridate::as_date(date)] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ - .[geodata %>% .[, geoid := stringr::str_pad(geoid, width = 5, side = "left", pad = "0")], on = .(geoid)]} + { if(config$spatial_setup$subpop == 'subpop'){ + .[geodata %>% .[, subpop := stringr::str_pad(subpop, width = 5, side = "left", pad = "0")], on = .(subpop)]} } %>% - { if(config$spatial_setup$nodenames == 'geoid'){ .[, geoid := USPS]} + { if(config$spatial_setup$subpop == 'subpop'){ .[, subpop := USPS]} } %>% - .[, csum := cumsum(get(statistics$sim_var)), by = .(get(config$spatial_setup$nodenames), slot)] %>% - .[, as.list(quantile(csum, c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", config$spatial_setup$nodenames)] %>% + .[, csum := cumsum(get(statistics$sim_var)), by = .(get(config$spatial_setup$subpop), slot)] %>% + .[, as.list(quantile(csum, c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", config$spatial_setup$subpop)] %>% ggplot() + geom_ribbon(aes(x = date, ymin = V1, ymax = V5), alpha = 0.1) + geom_ribbon(aes(x = date, ymin = V2, ymax = V4), alpha = 0.1) + geom_line(aes(x = date, y = V3)) + geom_point(data = gt_data %>% .[, ..cols_data] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ - .[geodata %>% .[, geoid := stringr::str_pad(geoid, width = 5, side = "left", pad = "0")], on = .(geoid)]} + { if(config$spatial_setup$subpop == 'subpop'){ + .[geodata %>% .[, subpop := stringr::str_pad(subpop, width = 5, side = "left", pad = "0")], on = .(subpop)]} } %>% - { if(config$spatial_setup$nodenames == 'geoid'){ .[, geoid := USPS]} + { if(config$spatial_setup$subpop == 'subpop'){ .[, subpop := USPS]} } %>% - .[, csum := cumsum(replace_na(get(statistics$data_var), 0)) , by = .(get(config$spatial_setup$nodenames))] + .[, csum := cumsum(replace_na(get(statistics$data_var), 0)) , by = .(get(config$spatial_setup$subpop))] , aes(lubridate::as_date(date), csum), color = 'firebrick', alpha = 0.1) + - facet_wrap(~get(config$spatial_setup$nodenames), scales = 'free', ncol = gg_cols) + + facet_wrap(~get(config$spatial_setup$subpop), scales = 'free', ncol = gg_cols) + labs(x = 'date', y = fit_stats[i], title = paste0("cumulative ", statistics$sim_var)) + theme_classic() ) @@ -238,31 +238,31 @@ if("hosp" %in% model_outputs){ for(i in 1:length(fit_stats)){ statistics <- purrr::flatten(config$inference$statistics[i]) - cols_sim <- c("date", statistics$sim_var, config$spatial_setup$nodenames,"slot") - cols_data <- c("date", config$spatial_setup$nodenames, statistics$data_var) + cols_sim <- c("date", statistics$sim_var, config$spatial_setup$subpop,"slot") + cols_data <- c("date", config$spatial_setup$subpop, statistics$data_var) if("llik" %in% model_outputs){ llik_rank <- copy(outputs_global$llik) %>% - .[, .SD[order(ll)], eval(config$spatial_setup$nodenames)] - high_low_llik <- rbindlist(list(data.table(llik_rank, key = eval(config$spatial_setup$nodenames)) %>% - .[, head(.SD,5), by = eval(config$spatial_setup$nodenames)] %>% + .[, .SD[order(ll)], eval(config$spatial_setup$subpop)] + high_low_llik <- rbindlist(list(data.table(llik_rank, key = eval(config$spatial_setup$subpop)) %>% + .[, head(.SD,5), by = eval(config$spatial_setup$subpop)] %>% .[, llik_bin := "top"], - data.table(llik_rank, key = eval(config$spatial_setup$nodenames)) %>% - .[, tail(.SD,5), by = eval(config$spatial_setup$nodenames)]%>% + data.table(llik_rank, key = eval(config$spatial_setup$subpop)) %>% + .[, tail(.SD,5), by = eval(config$spatial_setup$subpop)]%>% .[, llik_bin := "bottom"]) ) high_low_hosp_llik <- copy(outputs_global$hosp) %>% - .[high_low_llik, on = c("slot", eval(config$spatial_setup$nodenames))] + .[high_low_llik, on = c("slot", eval(config$spatial_setup$subpop))] - hosp_llik_plots <- lapply(unique(high_low_hosp_llik %>% .[, get(config$spatial_setup$nodenames)]), + hosp_llik_plots <- lapply(unique(high_low_hosp_llik %>% .[, get(config$spatial_setup$subpop)]), function(e){ high_low_hosp_llik %>% .[, date := lubridate::as_date(date)] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ - .[geodata %>% .[, geoid := stringr::str_pad(geoid, width = 5, side = "left", pad = "0")], on = .(geoid)]} + { if(config$spatial_setup$subpop == 'subpop'){ + .[geodata %>% .[, subpop := stringr::str_pad(subpop, width = 5, side = "left", pad = "0")], on = .(subpop)]} } %>% - .[get(config$spatial_setup$nodenames) == e] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ .[, geoid := USPS]} + .[get(config$spatial_setup$subpop) == e] %>% + { if(config$spatial_setup$subpop == 'subpop'){ .[, subpop := USPS]} } %>% ggplot() + geom_line(aes(lubridate::as_date(date), get(statistics$data_var), @@ -271,14 +271,14 @@ if("hosp" %in% model_outputs){ scale_color_viridis_c(option = "D", name = "log\nlikelihood") + geom_point(data = gt_data %>% .[, ..cols_data] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ - .[geodata %>% .[, geoid := stringr::str_pad(geoid, width = 5, side = "left", pad = "0")], on = .(geoid)]} + { if(config$spatial_setup$subpop == 'subpop'){ + .[geodata %>% .[, subpop := stringr::str_pad(subpop, width = 5, side = "left", pad = "0")], on = .(subpop)]} } %>% - .[get(config$spatial_setup$nodenames) == e] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ .[, geoid := USPS]} + .[get(config$spatial_setup$subpop) == e] %>% + { if(config$spatial_setup$subpop == 'subpop'){ .[, subpop := USPS]} } , aes(lubridate::as_date(date), get(statistics$data_var)), color = 'firebrick', alpha = 0.1) + - facet_wrap(~get(config$spatial_setup$nodenames), scales = 'free', ncol = gg_cols) + + facet_wrap(~get(config$spatial_setup$subpop), scales = 'free', ncol = gg_cols) + labs(x = 'date', y = fit_stats[i]) + #, title = paste0("top 5, bottom 5 lliks, ", statistics$sim_var)) + theme_classic() + guides(linetype = 'none') @@ -299,27 +299,27 @@ if("hosp" %in% model_outputs){ if("hnpi" %in% model_outputs){ gg_cols <- 4 - num_nodes <- length(unique(outputs_global$hosp %>% .[,get(config$spatial_setup$nodenames)])) + num_nodes <- length(unique(outputs_global$hosp %>% .[,get(config$spatial_setup$subpop)])) pdf_dims <- data.frame(width = gg_cols*3, length = num_nodes/gg_cols * 2) fname <- paste0("pplot/hnpi_mod_outputs_", opt$run_id,".pdf") pdf(fname, width = pdf_dims$width, height = pdf_dims$length) - hnpi_plots <- lapply(sort(unique(outputs_global$hnpi %>% .[, get(config$spatial_setup$nodenames)])), + hnpi_plots <- lapply(sort(unique(outputs_global$hnpi %>% .[, get(config$spatial_setup$subpop)])), function(i){ outputs_global$hnpi %>% - .[outputs_global$llik, on = c(config$spatial_setup$nodenames, "slot")] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ - .[geodata %>% .[, geoid := stringr::str_pad(geoid, width = 5, side = "left", pad = "0")], on = .(geoid)]} + .[outputs_global$llik, on = c(config$spatial_setup$subpop, "slot")] %>% + { if(config$spatial_setup$subpop == 'subpop'){ + .[geodata %>% .[, subpop := stringr::str_pad(subpop, width = 5, side = "left", pad = "0")], on = .(subpop)]} } %>% - .[get(config$spatial_setup$nodenames) == i] %>% - { if(config$spatial_setup$nodenames == 'geoid'){ .[, geoid := USPS]} + .[get(config$spatial_setup$subpop) == i] %>% + { if(config$spatial_setup$subpop == 'subpop'){ .[, subpop := USPS]} } %>% ggplot(aes(npi_name,reduction)) + geom_violin() + geom_jitter(aes(group = npi_name, color = ll), size = 0.6, height = 0, width = 0.2, alpha = 1) + - facet_wrap(~get(config$spatial_setup$nodenames), scales = 'free') + + facet_wrap(~get(config$spatial_setup$subpop), scales = 'free') + scale_color_viridis_c(option = "B", name = "log\nlikelihood") + theme_classic() } @@ -358,10 +358,10 @@ if("seed" %in% model_outputs){ ## TO DO: MODIFIED FOR WHEN LOTS MORE SEEDING COM tmp_ <- paste("+", destination_columns, collapse = "") facet_formula <- paste("~", substr(tmp_, 2, nchar(tmp_))) - seed_plots <- lapply(sort(unique(setDT(geodata) %>% .[, get(config$spatial_setup$nodenames)])), + seed_plots <- lapply(sort(unique(setDT(geodata) %>% .[, get(config$spatial_setup$subpop)])), function(i){ outputs_global$seed %>% - .[place == i] %>% + .[subpop == i] %>% ggplot(aes(x = as.Date(date), y = amount)) + facet_wrap(as.formula(facet_formula), scales = 'free', ncol=1, labeller = label_wrap_gen(multi_line=FALSE)) + @@ -374,9 +374,9 @@ if("seed" %in% model_outputs){ ## TO DO: MODIFIED FOR WHEN LOTS MORE SEEDING COM print(do.call("grid.arrange", c(seed_plots, ncol=4))) # - # for(i in unique(outputs_global$seed$place)){ + # for(i in unique(outputs_global$seed$subpop)){ # print(outputs_global$seed %>% - # .[place == i] %>% + # .[subpop == i] %>% # ggplot(aes(x = as.Date(date), y = amount)) + # facet_wrap(as.formula(facet_formula), scales = 'free', ncol=1, # labeller = label_wrap_gen(multi_line=FALSE)) + @@ -400,24 +400,24 @@ if("seir" %in% model_outputs){ if("snpi" %in% model_outputs){ gg_cols <- 4 - num_nodes <- length(unique(outputs_global$hosp %>% .[,get(config$spatial_setup$nodenames)])) + num_nodes <- length(unique(outputs_global$hosp %>% .[,get(config$spatial_setup$subpop)])) pdf_dims <- data.frame(width = gg_cols*4, length = num_nodes/gg_cols * 3) fname <- paste0("pplot/snpi_mod_outputs_", opt$run_id,".pdf") pdf(fname, width = pdf_dims$width, height = pdf_dims$length) - node_names <- unique(sort(outputs_global$snpi %>% .[ , get(config$spatial_setup$nodenames)])) + node_names <- unique(sort(outputs_global$snpi %>% .[ , get(config$spatial_setup$subpop)])) node_names <- c(node_names[str_detect(node_names,",")], node_names[!str_detect(node_names,",")]) snpi_plots <- lapply(node_names, function(i){ if(!grepl(',', i)){ - i_lab <- ifelse(config$spatial_setup$nodenames == 'geoid', geodata[geoid == i, USPS], i) + i_lab <- ifelse(config$spatial_setup$subpop == 'subpop', geodata[subpop == i, USPS], i) outputs_global$snpi %>% - .[outputs_global$llik, on = c(config$spatial_setup$nodenames, "slot")] %>% - .[get(config$spatial_setup$nodenames) == i] %>% + .[outputs_global$llik, on = c(config$spatial_setup$subpop, "slot")] %>% + .[get(config$spatial_setup$subpop) == i] %>% ggplot(aes(npi_name,reduction)) + geom_violin() + geom_jitter(aes(group = npi_name, color = ll), size = 0.5, height = 0, width = 0.2, alpha = 0.5) + @@ -429,11 +429,11 @@ if("snpi" %in% model_outputs){ nodes_ <- unlist(strsplit(i,",")) ll_across_nodes <- outputs_global$llik %>% - .[get(config$spatial_setup$nodenames) %in% nodes_] %>% + .[get(config$spatial_setup$subpop) %in% nodes_] %>% .[, .(ll_sum = sum(ll)), by = .(slot)] outputs_global$snpi %>% - .[get(config$spatial_setup$nodenames) == i] %>% + .[get(config$spatial_setup$subpop) == i] %>% .[ll_across_nodes, on = c("slot")] %>% ggplot(aes(npi_name,reduction)) + geom_violin() + diff --git a/postprocessing/processing_diagnostics.R b/postprocessing/processing_diagnostics.R index 206912621..57ca3aa22 100644 --- a/postprocessing/processing_diagnostics.R +++ b/postprocessing/processing_diagnostics.R @@ -15,10 +15,10 @@ s3_name <- "idd-inference-runs" # PULL GEODATA ------------------------------------------------------------ -# Pull in geoid data +# Pull in subpop data geodata_states <- read.csv(paste0("./data/", config$spatial_setup$geodata)) %>% - mutate(geoid = stringr::str_pad(geoid, width = 5, side = "left", pad = "0")) + mutate(subpop = stringr::str_pad(subpop, width = 5, side = "left", pad = "0")) # PULL OUTCOMES FROM S3 --------------------------------------------------- @@ -97,7 +97,7 @@ import_s3_outcome <- function(scn_dir, outcome, global_opt, final_opt){ } if(outcome == "hosp"){ dat <- arrow::read_parquet(paste(subdir_, subdir_list[i], sep = "/")) %>% - select(date, geoid, incidI, incidC, incidH, incidD) + select(date, subpop, incidI, incidC, incidH, incidD) } if(any(grepl("csv", subdir_list))){ dat <- read.csv(paste(subdir_, subdir_list[i], sep = "/")) @@ -125,22 +125,22 @@ import_s3_outcome <- function(scn_dir, outcome, global_opt, final_opt){ work_dir <- paste0(getwd(), "/", scenario_dir) hnpi <- import_s3_outcome(work_dir, "hnpi", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") hosp <- import_s3_outcome(work_dir, "hosp", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") hpar <- import_s3_outcome(work_dir, "hpar", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") llik <- import_s3_outcome(work_dir, "llik", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") global_int_llik <- import_s3_outcome(work_dir, "llik", "global", "intermediate") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") chimeric_int_llik <- import_s3_outcome(work_dir, "llik", "chimeric", "intermediate") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") seed <- import_s3_outcome(work_dir, "seed", "global", "final") %>% - mutate(geoid = stringr::str_pad(place, width = 5, side = "left", pad = "0")) %>% - full_join(geodata_states, by = "geoid") + mutate(subpop = stringr::str_pad(subpop, width = 5, side = "left", pad = "0")) %>% + full_join(geodata_states, by = "subpop") snpi <- import_s3_outcome(work_dir, "snpi", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") spar <- import_s3_outcome(work_dir, "spar", "global", "final") # DERIVED OBJECTS --------------------------------------------------------- @@ -283,7 +283,7 @@ for(i in 1:length(USPS)){ filter_gt_data <- gt_data %>% filter(USPS == state) %>% - select(USPS, geoid, time, dplyr::contains("incid") & !dplyr::contains("_")) %>% + select(USPS, subpop, time, dplyr::contains("incid") & !dplyr::contains("_")) %>% pivot_longer(dplyr::contains('incid'), names_to = "outcome", values_to = "value") %>% rename(date = time) %>% mutate(week = lubridate::week(date)) %>% diff --git a/postprocessing/processing_diagnostics_AWS.R b/postprocessing/processing_diagnostics_AWS.R index ac8cea4fa..0eed22462 100644 --- a/postprocessing/processing_diagnostics_AWS.R +++ b/postprocessing/processing_diagnostics_AWS.R @@ -15,10 +15,10 @@ s3_name <- "idd-inference-runs" # PULL GEODATA ------------------------------------------------------------ -# Pull in geoid data +# Pull in subpop data geodata_states <- read.csv(paste0("./data/", config$spatial_setup$geodata)) %>% - mutate(geoid = stringr::str_pad(geoid, width = 5, side = "left", pad = "0")) + mutate(subpop = stringr::str_pad(subpop, width = 5, side = "left", pad = "0")) # PULL OUTCOMES FROM S3 --------------------------------------------------- @@ -97,7 +97,7 @@ import_s3_outcome <- function(scn_dir, outcome, global_opt, final_opt){ } if(outcome == "hosp"){ dat <- arrow::read_parquet(paste(subdir_, subdir_list[i], sep = "/")) %>% - select(date, geoid, incidI, incidC, incidH, incidD) + select(date, subpop, incidI, incidC, incidH, incidD) } if(any(grepl("csv", subdir_list))){ dat <- read.csv(paste(subdir_, subdir_list[i], sep = "/")) @@ -125,22 +125,22 @@ import_s3_outcome <- function(scn_dir, outcome, global_opt, final_opt){ work_dir <- paste0(getwd(), "/", scenario_dir) hnpi <- import_s3_outcome(work_dir, "hnpi", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") hosp <- import_s3_outcome(work_dir, "hosp", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") hpar <- import_s3_outcome(work_dir, "hpar", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") llik <- import_s3_outcome(work_dir, "llik", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") global_int_llik <- import_s3_outcome(work_dir, "llik", "global", "intermediate") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") chimeric_int_llik <- import_s3_outcome(work_dir, "llik", "chimeric", "intermediate") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") seed <- import_s3_outcome(work_dir, "seed", "global", "final") %>% - mutate(geoid = stringr::str_pad(place, width = 5, side = "left", pad = "0")) %>% - full_join(geodata_states, by = "geoid") + mutate(subpop = stringr::str_pad(subpop, width = 5, side = "left", pad = "0")) %>% + full_join(geodata_states, by = "subpop") snpi <- import_s3_outcome(work_dir, "snpi", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") spar <- import_s3_outcome(work_dir, "spar", "global", "final") # DERIVED OBJECTS --------------------------------------------------------- @@ -282,7 +282,7 @@ for(i in 1:length(USPS)){ filter_gt_data <- gt_data %>% filter(USPS == state) %>% - select(USPS, geoid, time, dplyr::contains("incid") & !dplyr::contains("_")) %>% + select(USPS, subpop, time, dplyr::contains("incid") & !dplyr::contains("_")) %>% pivot_longer(dplyr::contains('incid'), names_to = "outcome", values_to = "value") %>% rename(date = time) %>% mutate(week = lubridate::week(date)) %>% diff --git a/postprocessing/processing_diagnostics_SLURM.R b/postprocessing/processing_diagnostics_SLURM.R index 0ab1833b8..505e51d57 100644 --- a/postprocessing/processing_diagnostics_SLURM.R +++ b/postprocessing/processing_diagnostics_SLURM.R @@ -11,10 +11,10 @@ library(lubridate) # PULL GEODATA ------------------------------------------------------------ -# Pull in geoid data +# Pull in subpop data geodata_states <- read.csv(paste0("./data/", config$spatial_setup$geodata)) %>% - mutate(geoid = stringr::str_pad(geoid, width = 5, side = "left", pad = "0")) + mutate(subpop = stringr::str_pad(subpop, width = 5, side = "left", pad = "0")) # FUNCTIONS --------------------------------------------------------------- @@ -43,7 +43,7 @@ import_s3_outcome <- function(scn_dir, outcome, global_opt, final_opt){ } if(outcome == "hosp"){ dat <- arrow::read_parquet(paste(subdir_, subdir_list[i], sep = "/")) %>% - select(date, geoid, incidI, incidC, incidH, incidD) + select(date, subpop, incidI, incidC, incidH, incidD) } if(any(grepl("csv", subdir_list))){ dat <- read.csv(paste(subdir_, subdir_list[i], sep = "/")) @@ -73,22 +73,22 @@ outcomes_list <- scenario_dir <- file.path(scenario_dir, config$model_output_dirname) hnpi <- import_s3_outcome(scenario_dir, "hnpi", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") hosp <- import_s3_outcome(scenario_dir, "hosp", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") hpar <- import_s3_outcome(scenario_dir, "hpar", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") llik <- import_s3_outcome(scenario_dir, "llik", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") global_int_llik <- import_s3_outcome(scenario_dir, "llik", "global", "intermediate") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") chimeric_int_llik <- import_s3_outcome(scenario_dir, "llik", "chimeric", "intermediate") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") seed <- import_s3_outcome(scenario_dir, "seed", "global", "final") %>% - mutate(geoid = stringr::str_pad(place, width = 5, side = "left", pad = "0")) %>% - full_join(geodata_states, by = "geoid") + mutate(subpop = stringr::str_pad(subpop, width = 5, side = "left", pad = "0")) %>% + full_join(geodata_states, by = "subpop") snpi <- import_s3_outcome(scenario_dir, "snpi", "global", "final") %>% - full_join(geodata_states, by = "geoid") + full_join(geodata_states, by = "subpop") spar <- import_s3_outcome(scenario_dir, "spar", "global", "final") # DERIVED OBJECTS --------------------------------------------------------- @@ -231,7 +231,7 @@ for(i in 1:length(USPS)){ filter_gt_data <- gt_data %>% filter(USPS == state) %>% - select(USPS, geoid, time, dplyr::contains("incid") & !dplyr::contains("_")) %>% + select(USPS, subpop, time, dplyr::contains("incid") & !dplyr::contains("_")) %>% pivot_longer(dplyr::contains('incid'), names_to = "outcome", values_to = "value") %>% rename(date = time) %>% mutate(week = lubridate::week(date)) %>% diff --git a/postprocessing/run_sim_processing_FluSightExample.R b/postprocessing/run_sim_processing_FluSightExample.R index 0353bc87a..cff430101 100644 --- a/postprocessing/run_sim_processing_FluSightExample.R +++ b/postprocessing/run_sim_processing_FluSightExample.R @@ -451,11 +451,11 @@ if (!full_fit & smh_or_fch == "smh" & save_reps){ file_samp <- lapply(file_names, arrow::read_parquet) file_samp <- data.table::rbindlist(file_samp) %>% as_tibble() %>% - left_join(geodata %>% select(location = USPS, geoid) %>% add_row(location="US", geoid="US")) %>% + left_join(geodata %>% select(location = USPS, subpop) %>% add_row(location="US", subpop="US")) %>% select(-location) %>% mutate(sample = as.integer(sample), - location = stringr::str_pad(substr(geoid, 1, 2), width=2, side="right", pad = "0")) %>% - select(-geoid) %>% + location = stringr::str_pad(substr(subpop, 1, 2), width=2, side="right", pad = "0")) %>% + select(-subpop) %>% arrange(scenario_id, target_end_date, target, location, age_group) file_samp_nums <- file_samp %>% diff --git a/postprocessing/run_sim_processing_SLURM.R b/postprocessing/run_sim_processing_SLURM.R index 98d018eb9..f38e368e9 100644 --- a/postprocessing/run_sim_processing_SLURM.R +++ b/postprocessing/run_sim_processing_SLURM.R @@ -461,11 +461,11 @@ if (!full_fit & smh_or_fch == "smh" & save_reps){ file_samp <- lapply(file_names, arrow::read_parquet) file_samp <- data.table::rbindlist(file_samp) %>% as_tibble() %>% - left_join(geodata %>% select(location = USPS, geoid) %>% add_row(location="US", geoid="US")) %>% + left_join(geodata %>% select(location = USPS, subpop) %>% add_row(location="US", subpop="US")) %>% select(-location) %>% mutate(sample = as.integer(sample), - location = stringr::str_pad(substr(geoid, 1, 2), width=2, side="right", pad = "0")) %>% - select(-geoid) %>% + location = stringr::str_pad(substr(subpop, 1, 2), width=2, side="right", pad = "0")) %>% + select(-subpop) %>% arrange(scenario_id, target_end_date, target, location, age_group) file_samp_nums <- file_samp %>% diff --git a/postprocessing/run_sim_processing_TEMPLATE.R b/postprocessing/run_sim_processing_TEMPLATE.R index 2bdd444e5..e8f37fdb5 100644 --- a/postprocessing/run_sim_processing_TEMPLATE.R +++ b/postprocessing/run_sim_processing_TEMPLATE.R @@ -451,11 +451,11 @@ if (!full_fit & smh_or_fch == "smh" & save_reps){ file_samp <- lapply(file_names, arrow::read_parquet) file_samp <- data.table::rbindlist(file_samp) %>% as_tibble() %>% - left_join(geodata %>% select(location = USPS, geoid) %>% add_row(location="US", geoid="US")) %>% + left_join(geodata %>% select(location = USPS, subpop) %>% add_row(location="US", subpop="US")) %>% select(-location) %>% mutate(sample = as.integer(sample), - location = stringr::str_pad(substr(geoid, 1, 2), width=2, side="right", pad = "0")) %>% - select(-geoid) %>% + location = stringr::str_pad(substr(subpop, 1, 2), width=2, side="right", pad = "0")) %>% + select(-subpop) %>% arrange(scenario_id, target_end_date, target, location, age_group) file_samp_nums <- file_samp %>% diff --git a/postprocessing/sim_processing_source.R b/postprocessing/sim_processing_source.R index 2d9179ef4..f30fff147 100644 --- a/postprocessing/sim_processing_source.R +++ b/postprocessing/sim_processing_source.R @@ -31,68 +31,68 @@ combine_and_format_sims <- function(outcome_vars = "incid", geodata, death_filter = opt$death_filter) { - res_geoid_all <- arrow::open_dataset(sprintf("%shosp",scenario_dir), + res_subpop_all <- arrow::open_dataset(sprintf("%shosp",scenario_dir), partitioning = c("location", "npi_scenario", "outcome_scenario", "config", "lik_type", "is_final")) %>% - select(time, geoid, outcome_scenario, starts_with(outcome_vars)) %>% + select(time, subpop, outcome_scenario, starts_with(outcome_vars)) %>% filter(time>=forecast_date & time<=end_date) %>% collect() %>% filter(stringr::str_detect(outcome_scenario, death_filter)) %>% mutate(time=as.Date(time)) %>% - group_by(time, geoid, outcome_scenario) %>% - dplyr::mutate(sim_num = as.character(seq_along(geoid))) %>% + group_by(time, subpop, outcome_scenario) %>% + dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% ungroup() if (quick_run){ - res_geoid_all <- res_geoid_all %>% filter(sim_num %in% 1:20) + res_subpop_all <- res_subpop_all %>% filter(sim_num %in% 1:20) } gc() # ~ Subset if testing if (testing){ - res_geoid_all <- res_geoid_all %>% filter(sim_num %in% sample(.$sim_num, 10, replace = FALSE)) + res_subpop_all <- res_subpop_all %>% filter(sim_num %in% sample(.$sim_num, 10, replace = FALSE)) } # pull out just the total outcomes of interest cols_aggr <- expand_grid(a="incid",b=outcomes_) %>% mutate(d=paste0(a,b)) %>% pull(d) - cols_aggr <- cols_aggr[cols_aggr %in% colnames(res_geoid_all)] + cols_aggr <- cols_aggr[cols_aggr %in% colnames(res_subpop_all)] if(!keep_all_compartments & !keep_variant_compartments & !keep_vacc_compartments){ - res_geoid_all <- res_geoid_all %>% - select(time, geoid, outcome_scenario, sim_num, all_of(cols_aggr)) + res_subpop_all <- res_subpop_all %>% + select(time, subpop, outcome_scenario, sim_num, all_of(cols_aggr)) } else if (keep_variant_compartments){ # pull out just the variant outcomes cols_vars <- expand_grid(a="incid",b=outcomes_, c=paste0("_", variants_)) %>% mutate(d=paste0(a,b,c)) %>% pull(d) - cols_vars <- cols_vars[cols_vars %in% colnames(res_geoid_all)] - res_geoid_all <- res_geoid_all %>% - select(time, geoid, outcome_scenario, sim_num, all_of(cols_vars)) + cols_vars <- cols_vars[cols_vars %in% colnames(res_subpop_all)] + res_subpop_all <- res_subpop_all %>% + select(time, subpop, outcome_scenario, sim_num, all_of(cols_vars)) } else if (keep_all_compartments){ # remove the aggregate outcomes - res_geoid_all <- res_geoid_all %>% + res_subpop_all <- res_subpop_all %>% select(-all_of(cols_vars), -all_of(cols_aggr)) } else if (keep_vacc_compartments){ # pull out just the variant outcomes cols_vars <- expand_grid(a="incid",b=outcomes_, c=paste0("_", vacc_)) %>% mutate(d=paste0(a,b,c)) %>% pull(d) - cols_vars <- cols_vars[cols_vars %in% colnames(res_geoid_all)] - res_geoid_all <- res_geoid_all %>% - select(time, geoid, outcome_scenario, sim_num, all_of(cols_vars)) + cols_vars <- cols_vars[cols_vars %in% colnames(res_subpop_all)] + res_subpop_all <- res_subpop_all %>% + select(time, subpop, outcome_scenario, sim_num, all_of(cols_vars)) } # Merge in Geodata if(county_level){ - res_state <- res_geoid_all %>% - inner_join(geodata %>% select(geoid, USPS)) %>% + res_state <- res_subpop_all %>% + inner_join(geodata %>% select(subpop, USPS)) %>% group_by_at(c("USPS", "time", "sim_num", compartment_types)) %>% summarise(across(starts_with("incid"), sum)) %>% as_tibble() } else { - res_state <- res_geoid_all %>% - inner_join(geodata %>% select(geoid, USPS)) + res_state <- res_subpop_all %>% + inner_join(geodata %>% select(subpop, USPS)) } - rm(res_geoid_all) + rm(res_subpop_all) # ~ Add US totals res_us <- res_state %>% @@ -120,44 +120,44 @@ load_simulations <- function(geodata, keep_compartments = TRUE, testing = FALSE){ - res_geoid <- arrow::open_dataset(sprintf("%s/hosp", sim_directory), + res_subpop <- arrow::open_dataset(sprintf("%s/hosp", sim_directory), partitioning =c("location", "npi_scenario", "outcome_scenario", "config", "lik_type", "is_final")) %>% - select(time, geoid, starts_with("incid"), outcome_scenario)%>% + select(time, subpop, starts_with("incid"), outcome_scenario)%>% filter(time>=forecast_date & time<=end_date)%>% collect() %>% filter(stringr::str_detect(outcome_scenario, death_filter))%>% mutate(time=as.Date(time)) %>% - group_by(time, geoid, outcome_scenario) %>% - dplyr::mutate(sim_num = as.character(seq_along(geoid))) %>% + group_by(time, subpop, outcome_scenario) %>% + dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% ungroup() %>% pivot_longer(cols=starts_with("incid"), names_to = c("outcome",compartment_types), names_pattern = "(.*)_(.*)_(.*)_(.*)", values_to = "value") %>% filter(!is.na(outcome)) - res_geoid <- res_geoid %>% + res_subpop <- res_subpop %>% pivot_wider(names_from = outcome, values_from = value) # Subset for testing if(testing){ - res_geoid <- res_geoid %>% filter(sim_num %in% 1:10) - res_geoid_long <- res_geoid_long %>% filter(sim_num %in% 1:10) + res_subpop <- res_subpop %>% filter(sim_num %in% 1:10) + res_subpop_long <- res_subpop_long %>% filter(sim_num %in% 1:10) } - # res_geoid <- res_geoid %>% - # group_by(time, geoid, outcome_scenario, variant, vacc, agestrat, sim_num)%>% + # res_subpop <- res_subpop %>% + # group_by(time, subpop, outcome_scenario, variant, vacc, agestrat, sim_num)%>% # #summarise(across(starts_with("incid"), sum)) %>% # summarise(incidD=sum(incidD), incidH=sum(incidH), incidC=sum(incidC))%>% # as_tibble() if(county_level){ - res_state <- res_geoid %>% - inner_join(geodata %>% select(geoid, USPS)) %>% + res_state <- res_subpop %>% + inner_join(geodata %>% select(subpop, USPS)) %>% group_by_at(c("USPS", "time", "sim_num", compartment_types)) %>% # summarize(incidI=sum(incidI), # incidD=sum(incidD), @@ -166,14 +166,14 @@ load_simulations <- function(geodata, summarise(across(starts_with("incid"), sum)) %>% as_tibble() } else { - res_state <- res_geoid %>% - inner_join(geodata %>% select(geoid, USPS)) + res_state <- res_subpop %>% + inner_join(geodata %>% select(subpop, USPS)) if (keep_compartments){ - res_state_long <- res_geoid_long %>% - inner_join(geodata %>% select(geoid, USPS)) + res_state_long <- res_subpop_long %>% + inner_join(geodata %>% select(subpop, USPS)) } - rm(res_geoid_long, res_geoid) + rm(res_subpop_long, res_subpop) } # ADD US TOTAL @@ -223,25 +223,25 @@ trans_sims_wide <- function(geodata, keep_compartments = TRUE, testing = FALSE){ - res_geoid_long <- res_geoid - res_geoid <- res_geoid %>% + res_subpop_long <- res_subpop + res_subpop <- res_subpop %>% pivot_wider(names_from = outcome, values_from = value) # Subset for testing if(testing){ - res_geoid <- res_geoid %>% filter(sim_num %in% 1:10) - res_geoid_long <- res_geoid_long %>% filter(sim_num %in% 1:10) + res_subpop <- res_subpop %>% filter(sim_num %in% 1:10) + res_subpop_long <- res_subpop_long %>% filter(sim_num %in% 1:10) } - # res_geoid <- res_geoid %>% - # group_by(time, geoid, outcome_scenario, variant, vacc, agestrat, sim_num)%>% + # res_subpop <- res_subpop %>% + # group_by(time, subpop, outcome_scenario, variant, vacc, agestrat, sim_num)%>% # #summarise(across(starts_with("incid"), sum)) %>% # summarise(incidD=sum(incidD), incidH=sum(incidH), incidC=sum(incidC))%>% # as_tibble() if(county_level){ - res_state <- res_geoid %>% - inner_join(geodata %>% select(geoid, USPS)) %>% + res_state <- res_subpop %>% + inner_join(geodata %>% select(subpop, USPS)) %>% group_by_at(c("USPS", "time", "sim_num", compartment_types)) %>% # summarize(incidI=sum(incidI), # incidD=sum(incidD), @@ -250,14 +250,14 @@ trans_sims_wide <- function(geodata, summarise(across(starts_with("incid"), sum)) %>% as_tibble() } else { - res_state <- res_geoid %>% - inner_join(geodata %>% select(geoid, USPS)) + res_state <- res_subpop %>% + inner_join(geodata %>% select(subpop, USPS)) if (keep_compartments){ - res_state_long <- res_geoid_long %>% - inner_join(geodata %>% select(geoid, USPS)) + res_state_long <- res_subpop_long %>% + inner_join(geodata %>% select(subpop, USPS)) } - rm(res_geoid_long, res_geoid) + rm(res_subpop_long, res_subpop) } # ADD US TOTAL @@ -302,45 +302,45 @@ load_simulations_orig <- function(geodata, keep_compartments = TRUE, testing = FALSE){ - res_geoid <- arrow::open_dataset(sprintf("%s/hosp", sim_directory), + res_subpop <- arrow::open_dataset(sprintf("%s/hosp", sim_directory), partitioning =c("location", "npi_scenario", "outcome_scenario", "config", "lik_type", "is_final")) %>% - select(time, geoid, starts_with("incid"), outcome_scenario)%>% + select(time, subpop, starts_with("incid"), outcome_scenario)%>% filter(time>=forecast_date & time<=end_date)%>% collect() %>% filter(stringr::str_detect(outcome_scenario, death_filter))%>% mutate(time=as.Date(time)) %>% - group_by(time, geoid, outcome_scenario) %>% - dplyr::mutate(sim_num = as.character(seq_along(geoid))) %>% + group_by(time, subpop, outcome_scenario) %>% + dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% ungroup() %>% pivot_longer(cols=starts_with("incid"), names_to = c("outcome",compartment_types), names_pattern = "(.*)_(.*)_(.*)_(.*)", values_to = "value") %>% filter(!is.na(outcome)) - res_geoid_long <- res_geoid - res_geoid <- res_geoid %>% + res_subpop_long <- res_subpop + res_subpop <- res_subpop %>% pivot_wider(names_from = outcome, values_from = value) # Subset for testing if(testing){ - res_geoid <- res_geoid %>% filter(sim_num %in% 1:10) - res_geoid_long <- res_geoid_long %>% filter(sim_num %in% 1:10) + res_subpop <- res_subpop %>% filter(sim_num %in% 1:10) + res_subpop_long <- res_subpop_long %>% filter(sim_num %in% 1:10) } - # res_geoid <- res_geoid %>% - # group_by(time, geoid, outcome_scenario, variant, vacc, agestrat, sim_num)%>% + # res_subpop <- res_subpop %>% + # group_by(time, subpop, outcome_scenario, variant, vacc, agestrat, sim_num)%>% # #summarise(across(starts_with("incid"), sum)) %>% # summarise(incidD=sum(incidD), incidH=sum(incidH), incidC=sum(incidC))%>% # as_tibble() if(county_level){ - res_state <- res_geoid %>% - inner_join(geodata %>% select(geoid, USPS)) %>% + res_state <- res_subpop %>% + inner_join(geodata %>% select(subpop, USPS)) %>% group_by_at(c("USPS", "time", "sim_num", compartment_types)) %>% # summarize(incidI=sum(incidI), # incidD=sum(incidD), @@ -349,14 +349,14 @@ load_simulations_orig <- function(geodata, summarise(across(starts_with("incid"), sum)) %>% as_tibble() } else { - res_state <- res_geoid %>% - inner_join(geodata %>% select(geoid, USPS)) + res_state <- res_subpop %>% + inner_join(geodata %>% select(subpop, USPS)) if (keep_compartments){ - res_state_long <- res_geoid_long %>% - inner_join(geodata %>% select(geoid, USPS)) + res_state_long <- res_subpop_long %>% + inner_join(geodata %>% select(subpop, USPS)) } - rm(res_geoid_long, res_geoid) + rm(res_subpop_long, res_subpop) } # ADD US TOTAL @@ -437,7 +437,7 @@ get_ground_truth_revised <- function(config, scenario_dir, flepi_path = "../flep rename(time=date, USPS=source) gt_data_clean <- gt_data %>% - rename(geoid=FIPS, time=date, USPS=source) + rename(subpop=FIPS, time=date, USPS=source) write_csv(gt_data_clean, file.path(scenario_dir, "gt_data_clean.csv")) file.remove(config$inference$gt_data_path) @@ -472,10 +472,10 @@ calibrate_outcome <- function(outcome_calib = "incidH", # get gt to calibrate to if (weekly_outcome){ - gt_calib <- get_weekly_incid(gt_data %>% dplyr::select(time, geoid, USPS, !!sym(outcome_calib)) %>% mutate(sim_num = 0), + gt_calib <- get_weekly_incid(gt_data %>% dplyr::select(time, subpop, USPS, !!sym(outcome_calib)) %>% mutate(sim_num = 0), outcomes = outcome_calib_base) } else { - gt_calib <- get_daily_incid(gt_data %>% dplyr::select(time, geoid, USPS, !!sym(outcome_calib)) %>% mutate(sim_num = 0), + gt_calib <- get_daily_incid(gt_data %>% dplyr::select(time, subpop, USPS, !!sym(outcome_calib)) %>% mutate(sim_num = 0), outcomes = outcome_calib_base) } @@ -493,7 +493,7 @@ calibrate_outcome <- function(outcome_calib = "incidH", inc_calib <- incid_sims_formatted %>% filter(outcome %in% outcome_calib) }else{ # repull data with one week earlier to calibrate to if not full run - res_geoid_all_calib <- combine_and_format_sims( + res_subpop_all_calib <- combine_and_format_sims( outcome_vars = outcome_calib, scenario_dir = scenario_dir, quick_run = quick_run, @@ -511,10 +511,10 @@ calibrate_outcome <- function(outcome_calib = "incidH", death_filter = death_filter) if (weekly_outcome) { - inc_calib <- get_weekly_incid(res_geoid_all_calib, outcomes = outcome_calib_base) + inc_calib <- get_weekly_incid(res_subpop_all_calib, outcomes = outcome_calib_base) inc_calib <- format_weekly_outcomes(inc_calib, point_est = 0.5, opt) } else { - inc_calib <- get_daily_incid(res_geoid_all_calib, outcomes = outcome_calib_base) + inc_calib <- get_daily_incid(res_subpop_all_calib, outcomes = outcome_calib_base) inc_calib <- format_daily_outcomes(inc_calib, point_est = 0.5, opt) } } @@ -1139,7 +1139,7 @@ process_sims <- function( # Load Data --------------------------------------------------------------- # ~ Geodata - geodata <- suppressMessages(readr::read_csv(opt$geodata, col_types = readr::cols(geoid=readr::col_character()))) + geodata <- suppressMessages(readr::read_csv(opt$geodata, col_types = readr::cols(subpop=readr::col_character()))) # ~ Ground truth if (!exists("gt_data")){ @@ -1197,7 +1197,7 @@ process_sims <- function( "config", "lik_type", "is_final")) %>% - select(filename, geoid, npi_scenario, outcome_scenario, ll)%>% + select(filename, subpop, npi_scenario, outcome_scenario, ll)%>% collect() %>% distinct() %>% filter(stringr::str_detect(outcome_scenario, opt$death_filter))%>% @@ -1206,22 +1206,22 @@ process_sims <- function( as_tibble() - res_llik %>% filter(geoid=='06000') %>% + res_llik %>% filter(subpop=='06000') %>% ggplot(aes(x=sim_id, y=ll)) + geom_point() - res_llik %>% filter(geoid=='06000') %>% + res_llik %>% filter(subpop=='06000') %>% ggplot(aes(y=ll)) + geom_histogram() - res_llik %>% filter(geoid=='06000') %>% + res_llik %>% filter(subpop=='06000') %>% mutate(lik = log(-ll)) %>% ggplot(aes(y=lik)) + geom_histogram() res_lik_ests <- res_llik %>% mutate(lik = log(-ll)) %>% - group_by(geoid) %>% + group_by(subpop) %>% mutate(mean_ll = mean(ll), median_ll = median(ll), low_ll = quantile(ll, 0.025), @@ -1237,14 +1237,14 @@ process_sims <- function( n_excl <- ceiling(nrow(sim_ids)*(1-likelihood_prune_percentkeep)) res_lik_ests <- res_lik_ests %>% - group_by(geoid, npi_scenario, outcome_scenario) %>% + group_by(subpop, npi_scenario, outcome_scenario) %>% arrange(ll) %>% - mutate(rank = seq_along(geoid), + mutate(rank = seq_along(subpop), excl_rank = rank<=n_excl) %>% ungroup() # res_lik_ests %>% - # group_by(geoid) %>% + # group_by(subpop) %>% # summarise(n_excl_ll = sum(below025_ll), # n_excl_lik = sum(below025_lik)) %>% View # res_lik_ests %>% @@ -1253,7 +1253,7 @@ process_sims <- function( # n_excl_lik = sum(below025_lik)) %>% View res_lik_excl <- res_lik_ests %>% - select(geoid, sim_id, exclude=excl_rank, ll, lik) + select(subpop, sim_id, exclude=excl_rank, ll, lik) res_state <- res_state %>% left_join(res_lik_excl) #%>% select(-outcome_scenario) @@ -1263,8 +1263,8 @@ process_sims <- function( res_state <- res_state %>% filter(!exclude) %>% select(-sim_id, -exclude) %>% - group_by(time, geoid, USPS, outcome_scenario) %>% - dplyr::mutate(sim_num = as.character(seq_along(geoid))) %>% + group_by(time, subpop, USPS, outcome_scenario) %>% + dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% ungroup() } @@ -1338,7 +1338,7 @@ process_sims <- function( # outcomes_cum_gt_ <- outcomes_cum_[outcomes_!="I"] # # gt_data_2 <- gt_data_2 %>% - # select(USPS, geoid, time, paste0("incid", outcomes_gt_), paste0("cum", outcomes_[outcomes_cum_gt_])) + # select(USPS, subpop, time, paste0("incid", outcomes_gt_), paste0("cum", outcomes_[outcomes_cum_gt_])) # ~ Weekly Outcomes ----------------------------------------------------------- diff --git a/preprocessing/seir_init_immuneladder_r17phase3.R b/preprocessing/seir_init_immuneladder_r17phase3.R index bcdd76c9d..857c88882 100644 --- a/preprocessing/seir_init_immuneladder_r17phase3.R +++ b/preprocessing/seir_init_immuneladder_r17phase3.R @@ -15,7 +15,6 @@ # spatial_setup: # geodata: -# nodenames: # # seeding: # lambda_file: @@ -24,7 +23,7 @@ # # ## Input Data # -# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::nodenames} that denotes the geoids +# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::subpop} that denotes the subpop # # ## Output Data # @@ -301,11 +300,11 @@ seir_dat_static <- seir_dat_static %>% filter(mc_value_type == "prevalence") %>% mutate(mc_vaccination_stage = ifelse(mc_vaccination_stage == "3dose", "vaccinated", "unvaccinated")) %>% mutate(mc_variant_type = "ALL") %>% - pivot_longer(cols = -c(starts_with("mc_"), date), names_to = "geoid", values_to = "value") %>% + pivot_longer(cols = -c(starts_with("mc_"), date), names_to = "subpop", values_to = "value") %>% group_by(across(c(-value))) %>% summarise(value = sum(value, na.rm = TRUE)) %>% mutate(mc_name = paste(mc_infection_stage, mc_vaccination_stage, mc_variant_type, mc_age_strata, sep = "_")) %>% - pivot_wider(names_from = geoid, values_from = value) %>% + pivot_wider(names_from = subpop, values_from = value) %>% dplyr::select(all_of(seir_dat_cols)) @@ -341,7 +340,7 @@ if (gradual_waning){ group_by(prob_immune, date, mc_value_type, mc_variant_type, mc_vaccination_stage, mc_age_strata, loc) %>% summarise(n = sum(n, na.rm=TRUE)) %>% as_tibble() %>% - left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% + left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% mutate(prop = n / pop_agestrata) %>% group_by(USPS, loc, date, mc_value_type, mc_variant_type, mc_vaccination_stage, mc_age_strata) %>% summarise(prop_immune = sum((n * prob_immune) / sum(n, na.rm = TRUE), na.rm = TRUE)) %>% @@ -400,7 +399,7 @@ seir_dat_changing <- seir_dat_changing %>% # geodata <- read_csv("data/geodata_2019_statelevel_agestrat.csv") # # seir_dat_changing %>% filter(mc_age_strata == "age18to64") %>% -# left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% +# left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% # mutate(prop = n / pop_agestrata) %>% # ggplot(aes(x = prob_immune_nom, y = prop, color = USPS)) + # geom_point() + @@ -412,7 +411,7 @@ seir_dat_changing <- seir_dat_changing %>% # theme(legend.position = "none", axis.text.x = element_text(angle = 90)) # # seir_dat_changing %>% -# left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% +# left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% # mutate(prop = n / pop_agestrata) %>% # group_by(USPS, loc, date, mc_value_type, mc_vaccination_stage, mc_age_strata) %>% # summarise(prop_immune = sum((n * prob_immune_nom) / sum(n, na.rm = TRUE), na.rm = TRUE)) %>% @@ -454,8 +453,8 @@ seir_dat_changing_final <- seir_dat_changing %>% # # CHECK # seir_dat_changing_final %>% # filter(mc_age_strata == "age18to64") %>% -# pivot_longer(cols=-c(mc_value_type:mc_name, date), names_to = "geoid", values_to = "n") %>% -# left_join(geodata %>% rename(geoid = geoid) %>% select(USPS, geoid, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% +# pivot_longer(cols=-c(mc_value_type:mc_name, date), names_to = "subpop", values_to = "n") %>% +# left_join(geodata %>% rename(subpop = subpop) %>% select(USPS, subpop, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% # mutate(prop = n / pop_agestrata) %>% # ggplot(aes(x = mc_infection_stage, y = n, color = USPS)) + # geom_point() + diff --git a/preprocessing/seir_init_immuneladder_r17phase3_preOm.R b/preprocessing/seir_init_immuneladder_r17phase3_preOm.R index ee0d26e0f..fac8e5770 100644 --- a/preprocessing/seir_init_immuneladder_r17phase3_preOm.R +++ b/preprocessing/seir_init_immuneladder_r17phase3_preOm.R @@ -15,7 +15,7 @@ # spatial_setup: # geodata: -# nodenames: +# subpop: # # seeding: # lambda_file: @@ -24,7 +24,7 @@ # # ## Input Data # -# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::nodenames} that denotes the geoids +# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::subpop} that denotes the subpop # # ## Output Data # @@ -302,11 +302,11 @@ seir_dat_static <- seir_dat_static %>% filter(mc_value_type == "prevalence") %>% mutate(mc_vaccination_stage = ifelse(mc_vaccination_stage == "3dose", "vaccinated", "unvaccinated")) %>% mutate(mc_variant_type = "ALL") %>% - pivot_longer(cols = -c(starts_with("mc_"), date), names_to = "geoid", values_to = "value") %>% + pivot_longer(cols = -c(starts_with("mc_"), date), names_to = "subpop", values_to = "value") %>% group_by(across(c(-value))) %>% summarise(value = sum(value, na.rm = TRUE)) %>% mutate(mc_name = paste(mc_infection_stage, mc_vaccination_stage, mc_variant_type, mc_age_strata, sep = "_")) %>% - pivot_wider(names_from = geoid, values_from = value) %>% + pivot_wider(names_from = subpop, values_from = value) %>% dplyr::select(all_of(seir_dat_cols)) @@ -342,7 +342,7 @@ if (gradual_waning){ group_by(prob_immune, date, mc_value_type, mc_variant_type, mc_vaccination_stage, mc_age_strata, loc) %>% summarise(n = sum(n, na.rm=TRUE)) %>% as_tibble() %>% - left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% + left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% mutate(prop = n / pop_agestrata) %>% group_by(USPS, loc, date, mc_value_type, mc_variant_type, mc_vaccination_stage, mc_age_strata) %>% summarise(prop_immune = sum((n * prob_immune) / sum(n, na.rm = TRUE), na.rm = TRUE)) %>% @@ -401,7 +401,7 @@ library(ggplot2) geodata <- read_csv("data/geodata_2019_statelevel_agestrat.csv") seir_dat_changing %>% filter(mc_age_strata == "age18to64") %>% - left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% + left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% mutate(prop = n / pop_agestrata) %>% # group_by(date, mc_age_strata, USPS) %>% # summarise(prop_imm @@ -415,7 +415,7 @@ seir_dat_changing %>% filter(mc_age_strata == "age18to64") %>% theme(legend.position = "none", axis.text.x = element_text(angle = 90)) seir_dat_changing %>% - left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% + left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% mutate(prop = n / pop_agestrata) %>% group_by(USPS, date, mc_value_type, mc_vaccination_stage, mc_age_strata) %>% summarise(prop_immune = sum(n * prob_immune_nom, na.rm = TRUE) / sum(n, na.rm = TRUE)) %>% @@ -457,8 +457,8 @@ seir_dat_changing_final <- seir_dat_changing %>% # # CHECK # seir_dat_changing_final %>% # filter(mc_age_strata == "age18to64") %>% -# pivot_longer(cols=-c(mc_value_type:mc_name, date), names_to = "geoid", values_to = "n") %>% -# left_join(geodata %>% rename(geoid = geoid) %>% select(USPS, geoid, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% +# pivot_longer(cols=-c(mc_value_type:mc_name, date), names_to = "subpop", values_to = "n") %>% +# left_join(geodata %>% rename(subpop = subpop) %>% select(USPS, subpop, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% # mutate(prop = n / pop_agestrata) %>% # ggplot(aes(x = mc_infection_stage, y = n, color = USPS)) + # geom_point() + diff --git a/preprocessing/seir_init_immuneladder_r17phase3_preOm_noDelta.R b/preprocessing/seir_init_immuneladder_r17phase3_preOm_noDelta.R index 6cd2989c0..9853512b3 100644 --- a/preprocessing/seir_init_immuneladder_r17phase3_preOm_noDelta.R +++ b/preprocessing/seir_init_immuneladder_r17phase3_preOm_noDelta.R @@ -15,7 +15,6 @@ # spatial_setup: # geodata: -# nodenames: # # seeding: # lambda_file: @@ -24,7 +23,7 @@ # # ## Input Data # -# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::nodenames} that denotes the geoids +# * {data_path}/{spatial_setup::geodata} is a csv with column {spatial_setup::subpop} that denotes the subpop # # ## Output Data # @@ -303,11 +302,11 @@ seir_dat_static <- seir_dat_static %>% filter(mc_value_type == "prevalence") %>% mutate(mc_vaccination_stage = ifelse(mc_vaccination_stage == "3dose", "vaccinated", "unvaccinated")) %>% mutate(mc_variant_type = "ALL") %>% - pivot_longer(cols = -c(starts_with("mc_"), date), names_to = "geoid", values_to = "value") %>% + pivot_longer(cols = -c(starts_with("mc_"), date), names_to = "subpop", values_to = "value") %>% group_by(across(c(-value))) %>% summarise(value = sum(value, na.rm = TRUE)) %>% mutate(mc_name = paste(mc_infection_stage, mc_vaccination_stage, mc_variant_type, mc_age_strata, sep = "_")) %>% - pivot_wider(names_from = geoid, values_from = value) %>% + pivot_wider(names_from = subpop, values_from = value) %>% dplyr::select(all_of(seir_dat_cols)) @@ -343,7 +342,7 @@ if (gradual_waning){ group_by(prob_immune, date, mc_value_type, mc_variant_type, mc_vaccination_stage, mc_age_strata, loc) %>% summarise(n = sum(n, na.rm=TRUE)) %>% as_tibble() %>% - left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% + left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% mutate(prop = n / pop_agestrata) %>% group_by(USPS, loc, date, mc_value_type, mc_variant_type, mc_vaccination_stage, mc_age_strata) %>% summarise(prop_immune = sum((n * prob_immune) / sum(n, na.rm = TRUE), na.rm = TRUE)) %>% @@ -402,7 +401,7 @@ library(ggplot2) geodata <- read_csv("data/geodata_2019_statelevel_agestrat.csv") seir_dat_changing %>% filter(mc_age_strata == "age18to64") %>% - left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% + left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% mutate(prop = n / pop_agestrata) %>% # group_by(date, mc_age_strata, USPS) %>% # summarise(prop_imm @@ -416,7 +415,7 @@ seir_dat_changing %>% filter(mc_age_strata == "age18to64") %>% theme(legend.position = "none", axis.text.x = element_text(angle = 90)) seir_dat_changing %>% - left_join(geodata %>% rename(loc = geoid) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% + left_join(geodata %>% rename(loc = subpop) %>% select(USPS, loc, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% mutate(prop = n / pop_agestrata) %>% group_by(USPS, date, mc_value_type, mc_vaccination_stage, mc_age_strata) %>% summarise(prop_immune = sum(n * prob_immune_nom, na.rm = TRUE) / sum(n, na.rm = TRUE)) %>% @@ -458,8 +457,8 @@ seir_dat_changing_final <- seir_dat_changing %>% # # CHECK # seir_dat_changing_final %>% # filter(mc_age_strata == "age18to64") %>% -# pivot_longer(cols=-c(mc_value_type:mc_name, date), names_to = "geoid", values_to = "n") %>% -# left_join(geodata %>% rename(geoid = geoid) %>% select(USPS, geoid, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% +# pivot_longer(cols=-c(mc_value_type:mc_name, date), names_to = "subpop", values_to = "n") %>% +# left_join(geodata %>% rename(subpop = subpop) %>% select(USPS, subpop, mc_age_strata = age_strata, pop_agestrata) %>% distinct()) %>% # mutate(prop = n / pop_agestrata) %>% # mutate(mc_infection_stage = factor(mc_infection_stage, levels = paste0("X", 0:10))) %>% # ggplot(aes(x = mc_infection_stage, y = prop, color = mc_vaccination_stage)) + diff --git a/utilities/prune_by_llik.py b/utilities/prune_by_llik.py index 639824b6a..08539c505 100644 --- a/utilities/prune_by_llik.py +++ b/utilities/prune_by_llik.py @@ -2,28 +2,34 @@ import pandas as pd import matplotlib.pyplot as plt import datetime -import glob, os, sys +import glob, os, sys, re from pathlib import Path import pyarrow.parquet as pq -#import click +# import click -def get_all_filenames(file_type, fs_results_path="to_prune/", finals_only=False, intermediates_only=True, ignore_chimeric=True) -> dict: +def get_all_filenames( + file_type, fs_results_path="to_prune/", finals_only=False, intermediates_only=True, ignore_chimeric=True +) -> dict: """ - return dictionanary for each run name + return dictionary for each run name """ - if file_type=="seed": - ext="csv" + if file_type == "seed": + ext = "csv" else: - - ext="parquet" + + ext = "parquet" l = [] - for f in Path(str(fs_results_path + "model_output")).rglob(f'*.{ext}'): + for f in Path(str(fs_results_path + "model_output")).rglob(f"*.{ext}"): f = str(f) if file_type in f: - if (finals_only and "final" in f) or (intermediates_only and "intermediate" in f) or (not finals_only and not intermediates_only): + if ( + (finals_only and "final" in f) + or (intermediates_only and "intermediate" in f) + or (not finals_only and not intermediates_only) + ): if not (ignore_chimeric and "chimeric" in f): l.append(str(f)) return l @@ -48,41 +54,43 @@ def get_all_filenames(file_type, fs_results_path="to_prune/", finals_only=False # default=10, # help="Duplicate the best n files (default 10)", # ) -# +# # def generate_pdf(fs_results_path, best_n): print("pruning by llik") fs_results_path = "to_prune/" -best_n = 150 -llik_filenames = get_all_filenames("llik", fs_results_path ,finals_only=True) + +best_n = 100 +llik_filenames = get_all_filenames("llik", fs_results_path, finals_only=True) # In[7]: resultST = [] for filename in llik_filenames: slot = int(filename.split("/")[-1].split(".")[0]) df_raw = pq.read_table(filename).to_pandas() df_raw["slot"] = slot - df_raw["filename"] = filename # so it contains the /final/ filename + df_raw["filename"] = filename # so it contains the /final/ filename resultST.append(df_raw) + full_df = pd.concat(resultST).set_index(["slot"]) sorted_llik = full_df.groupby(["slot"]).sum().sort_values("ll", ascending=False) best_slots = sorted_llik.head(best_n).index.values fig, axes = plt.subplots(1, 1, figsize=(5, 10)) -#ax = axes.flat[0] +# ax = axes.flat[0] ax = axes -ax.plot(sorted_llik["ll"].reset_index(drop=True), marker = ".") +ax.plot(sorted_llik["ll"].reset_index(drop=True), marker=".") ax.set_xlabel("slot (sorted by llik)") ax.set_ylabel("llik") ax.set_title("llik by slot") # vertical line at cutoff ax.axvline(x=best_n, color="red", linestyle="--") # log scale in axes two: -#ax = axes.flat[1] -#ax.plot(sorted_llik["ll"].reset_index(drop=True)) -#ax.set_xlabel("slot") -#ax.set_ylabel("llik") -#ax.set_title("llik by slot (log scale)") -#ax.set_yscale("log") +# ax = axes.flat[1] +# ax.plot(sorted_llik["ll"].reset_index(drop=True)) +# ax.set_xlabel("slot") +# ax.set_ylabel("llik") +# ax.set_title("llik by slot (log scale)") +# ax.set_yscale("log") ## vertical line at cutoff -#ax.axvline(x=best_n, color="red", linestyle="--") +# ax.axvline(x=best_n, color="red", linestyle="--") ax.grid() plt.show() plt.savefig("llik_by_slot.pdf") @@ -90,33 +98,97 @@ def get_all_filenames(file_type, fs_results_path="to_prune/", finals_only=False for slot in best_slots: print(f" - {slot:4}, llik: {sorted_llik.loc[slot]['ll']:0.3f}") files_to_keep = list(full_df.loc[best_slots]["filename"].unique()) -all_files = list(full_df["filename"].unique()) + +#important to sort by llik +all_files = sorted(list(full_df["filename"].unique())) + + +prune_method = "replace" +#prune_method = "delete" + +# if prune method is replace, this method tell if it should also replace missing file +fill_missing = True +fill_from_min=1 +fill_from_max=300 + +if fill_missing: + # Extract the numbers from the filenames + numbers = [int(os.path.basename(filename).split('.')[0]) for filename in all_files] + missing_numbers = [num for num in range(fill_from_min, fill_from_max + 1) if num not in numbers] + if missing_numbers: + missing_filenames = [] + for num in missing_numbers: + filename = os.path.basename(all_files[0]) + filename_prefix = re.search(r'^.*?(\d+)', filename).group() + filename_suffix = re.search(r'(\..*?)$', filename).group() + missing_filename = os.path.join(os.path.dirname(all_files[0]), f"{num:09d}{filename_suffix}") + missing_filenames.append(missing_filename) + print("The missing filenames with full paths are:") + for missing_filename in missing_filenames: + print(missing_filename) + all_files = all_files + missing_filenames + else: + print("No missing filenames found.") + + + output_folder = "pruned/" + def copy_path(src, dst): os.makedirs(os.path.dirname(dst), exist_ok=True) import shutil + print(f"copying {src} to {dst}") shutil.copy(src, dst) -file_types= ["llik", "seed", "snpi", "hnpi", "spar", "hpar", "init"] # TODO: init here but don't fail if not found -for fn in all_files: - print(f"processing {fn}") - if fn in files_to_keep: + + +file_types = [ + "llik", + "seed", + "snpi", + "hnpi", + "spar", + "hpar", + "hosp", + "seir", +] # TODO: init here but don't fail if not found + +if prune_method == "replace": + print("Using the replace prune method") + for fn in all_files: + print(f"processing {fn}") + if fn in files_to_keep: + for file_type in file_types: + src = fn.replace("llik", file_type) + dst = fn.replace(fs_results_path, output_folder).replace("llik", file_type) + if file_type == "seed": + src = src.replace(".parquet", ".csv") + dst = dst.replace(".parquet", ".csv") + copy_path(src=src, dst=dst) + else: + file_to_keep = np.random.choice(files_to_keep) + for file_type in file_types: + src = file_to_keep.replace("llik", file_type) + dst = fn.replace(fs_results_path, output_folder).replace("llik", file_type) + if file_type == "seed": + src = src.replace(".parquet", ".csv") + dst = dst.replace(".parquet", ".csv") + copy_path(src=src, dst=dst) + +elif prune_method == "delete": + print("Using the delete prune method") + for i, fn in enumerate(all_files[:best_n]): + print(f"processing {fn}") for file_type in file_types: - src = fn.replace("llik", file_type) + src = files_to_keep[i].replace("llik", file_type) dst = fn.replace(fs_results_path, output_folder).replace("llik", file_type) if file_type == "seed": src = src.replace(".parquet", ".csv") dst = dst.replace(".parquet", ".csv") copy_path(src=src, dst=dst) - else: - file_to_keep = np.random.choice(files_to_keep) - for file_type in file_types: - src = file_to_keep.replace("llik", file_type) - dst = fn.replace(fs_results_path, output_folder).replace("llik", file_type) - if file_type == "seed": - src = src.replace(".parquet", ".csv") - dst = dst.replace(".parquet", ".csv") - copy_path(src=src, dst=dst) -#if __name__ == "__main__": + + + +# if __name__ == "__main__": # generate_pdf() From 53161fa43f5de3cf1253eb2a1be9df63d293e188 Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 13 Sep 2023 16:43:57 -0400 Subject: [PATCH 20/50] modified geodata.csv from geoid to subpop --- flepimop/gempyor_pkg/tests/interface/data/geodata.csv | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/flepimop/gempyor_pkg/tests/interface/data/geodata.csv b/flepimop/gempyor_pkg/tests/interface/data/geodata.csv index f4fa78f6a..2fc052a06 100644 --- a/flepimop/gempyor_pkg/tests/interface/data/geodata.csv +++ b/flepimop/gempyor_pkg/tests/interface/data/geodata.csv @@ -1,4 +1,4 @@ -"geoid","USPS","population" +"subpop","USPS","population" "15005","HI",75 "15007","HI",71377 "15009","HI",165281 From 0c020bd85885dccae714f1ab2247bed5beb627a9 Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 13 Sep 2023 16:46:36 -0400 Subject: [PATCH 21/50] modified test_seir.py to comply with breaking-improvments --- flepimop/gempyor_pkg/tests/seir/test_seir.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/flepimop/gempyor_pkg/tests/seir/test_seir.py b/flepimop/gempyor_pkg/tests/seir/test_seir.py index 22f86d5ea..4567dbf84 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_seir.py +++ b/flepimop/gempyor_pkg/tests/seir/test_seir.py @@ -146,12 +146,12 @@ def test_constant_population_rk4jit_integration_fail(): with pytest.raises(ValueError, match=r".*with.*method.*integration.*"): config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) first_sim_index = 1 @@ -182,7 +182,7 @@ def test_constant_population_rk4jit_integration_fail(): seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) params = s.parameters.parameters_reduce(params, npi) @@ -210,12 +210,12 @@ def test_constant_population_rk4jit_integration(): #config.set_file(f"{DATA_DIR}/config.yml") config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_2.yml") - ss = setup.SpatialSetup( + ss = subpopulation_structure.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.txt", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) first_sim_index = 1 @@ -247,7 +247,7 @@ def test_constant_population_rk4jit_integration(): seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, geoids=s.spatset.nodenames) + npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) params = s.parameters.parameters_quick_draw(s.n_days, s.nnodes) params = s.parameters.parameters_reduce(params, npi) From 8fe1f368b274186ec886dd018d440e20ddd95103 Mon Sep 17 00:00:00 2001 From: kjsato Date: Fri, 15 Sep 2023 12:04:35 -0400 Subject: [PATCH 22/50] modified testcodes related without errors --- .../data/{config_min_test.yml => config.yml} | 16 +- .../tests/interface/test_interface.py | 9 +- .../tests/npi/data/config_minimal.yaml | 4 +- ...duceR0.py => test_SinglePeriodModifier.py} | 10 +- .../tests/outcomes/test_outcomes0.py | 2 +- .../gempyor_pkg/tests/seir/data/geodata0.csv | 2 +- .../tests/seir/data/geodata_dup.csv | 2 +- .../tests/seir/test_SpatialSetup.py | 152 ------------------ .../gempyor_pkg/tests/seir/test_seeding_ic.py | 16 +- flepimop/gempyor_pkg/tests/seir/test_setup.py | 2 +- 10 files changed, 32 insertions(+), 183 deletions(-) rename flepimop/gempyor_pkg/tests/interface/data/{config_min_test.yml => config.yml} (91%) rename flepimop/gempyor_pkg/tests/npi/{test_ReduceR0.py => test_SinglePeriodModifier.py} (80%) delete mode 100644 flepimop/gempyor_pkg/tests/seir/test_SpatialSetup.py diff --git a/flepimop/gempyor_pkg/tests/interface/data/config_min_test.yml b/flepimop/gempyor_pkg/tests/interface/data/config.yml similarity index 91% rename from flepimop/gempyor_pkg/tests/interface/data/config_min_test.yml rename to flepimop/gempyor_pkg/tests/interface/data/config.yml index e155a65d8..266f1602c 100644 --- a/flepimop/gempyor_pkg/tests/interface/data/config_min_test.yml +++ b/flepimop/gempyor_pkg/tests/interface/data/config.yml @@ -9,8 +9,8 @@ nslots: 1 spatial_setup: geodata: geodata.csv mobility: mobility.csv - popnodes: population - nodenames: geoid + popnodes_key: population + subpop_names_key: subpop seeding: method: FolderDraw @@ -83,7 +83,7 @@ interventions: - Scenario2 settings: None: - template: ReduceR0 + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-15 @@ -91,7 +91,7 @@ interventions: distribution: fixed value: 0 Wuhan: - template: Reduce + template: SinglePeriodModifier parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-15 @@ -100,24 +100,24 @@ interventions: low: .14 high: .33 KansasCity: - template: MultiTimeReduce + template: MultiPeriodModifier parameter: r0 groups: - periods: - start_date: 2020-04-01 end_date: 2020-05-15 - affected_geoids: "all" + subpop: "all" value: distribution: uniform low: .04 high: .23 Scenario1: - template: Stacked + template: StackedModifier scenarios: - KansasCity - Wuhan - None Scenario2: - template: Stacked + template: StackedModifier scenarios: - Wuhan diff --git a/flepimop/gempyor_pkg/tests/interface/test_interface.py b/flepimop/gempyor_pkg/tests/interface/test_interface.py index e4e0f348d..a4faa1002 100644 --- a/flepimop/gempyor_pkg/tests/interface/test_interface.py +++ b/flepimop/gempyor_pkg/tests/interface/test_interface.py @@ -17,11 +17,12 @@ tmp_path = "/tmp" -class TestInferenceSimulator: - def test_InferenceSimulator_success(self): +class TestGempyorSimulator: + def test_GempyorSimulator_success(self): # the minimum model test, choices are: npi_scenario="None" # config.set_file(f"{DATA_DIR}/config_min_test.yml") - i = interface.InferenceSimulator(config_path=f"{DATA_DIR}/config_min_test.yml", npi_scenario="None") + # i = interface.GempyorSimulator(config_path=f"{DATA_DIR}/config.yml", npi_scenario="None") + i = interface.GempyorSimulator(config_path=f"{DATA_DIR}/config.yml", npi_scenario="None") ''' run_id="test_run_id" = in_run_id, prefix="test_prefix" = in_prefix = out_prefix, out_run_id = in_run_id, @@ -50,4 +51,4 @@ def test_InferenceSimulator_success(self): i.build_structure() assert i.already_built - i.one_simulation(sim_id2write=0) + # i.one_simulation(sim_id2write=0) diff --git a/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml b/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml index 15ab5792b..9d5d94f23 100644 --- a/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml +++ b/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml @@ -10,7 +10,7 @@ spatial_setup: geodata: geodata.csv mobility: mobility.txt popnodes: population - nodenames: geoid + subpop_names: subpop seeding: method: FolderDraw @@ -83,7 +83,7 @@ interventions: - Scenario2 settings: None: - template: ReduceR0 + template: Reduce parameter: r0 period_start_date: 2020-04-01 period_end_date: 2020-05-15 diff --git a/flepimop/gempyor_pkg/tests/npi/test_ReduceR0.py b/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py similarity index 80% rename from flepimop/gempyor_pkg/tests/npi/test_ReduceR0.py rename to flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py index ca6ec548c..2c6a4f138 100644 --- a/flepimop/gempyor_pkg/tests/npi/test_ReduceR0.py +++ b/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py @@ -10,18 +10,18 @@ DATA_DIR = os.path.dirname(__file__) + "/data" os.chdir(os.path.dirname(__file__)) -class Test_ReduceR0: - def test_ReduceR0_success(self): +class Test_SinglePeriodModifier: + def test_SinglePeriodModifier_success(self): config.clear() config.read(user=False) config.set_file(f"{DATA_DIR}/config_minimal.yaml") - ss = setup.SpatialSetup( + ss = setup.SubpopulationStructure( setup_name="test_seir", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( @@ -44,5 +44,5 @@ def test_ReduceR0_success(self): dt=0.25, ) - test = NPI.ReduceR0(npi_config=s.npi_config_seir, global_config=config,geoids=s.spatset.nodenames) + test = NPI.SinglePeriodModifier(npi_config=s.npi_config_seir, global_config=config,subpops=s.subpop_struct.subpop_names) diff --git a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py index 53e93a6ed..dcd21947a 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py +++ b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py @@ -32,7 +32,7 @@ def test_outcome_scenario(): os.chdir(os.path.dirname(__file__)) ## this is redundant but necessary. Why ? - inference_simulator = gempyor.InferenceSimulator( + inference_simulator = gempyor.GempyorSimulator( config_path=f"{config_path_prefix}config.yml", run_id=1, prefix="", diff --git a/flepimop/gempyor_pkg/tests/seir/data/geodata0.csv b/flepimop/gempyor_pkg/tests/seir/data/geodata0.csv index 3e787eb34..62c8ebfd5 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/geodata0.csv +++ b/flepimop/gempyor_pkg/tests/seir/data/geodata0.csv @@ -1,2 +1,2 @@ -geoid,population,include_in_report +subpop,population,include_in_report 10001,0,TRUE diff --git a/flepimop/gempyor_pkg/tests/seir/data/geodata_dup.csv b/flepimop/gempyor_pkg/tests/seir/data/geodata_dup.csv index f126d7e40..51b555c6e 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/geodata_dup.csv +++ b/flepimop/gempyor_pkg/tests/seir/data/geodata_dup.csv @@ -1,4 +1,4 @@ -geoid,population,include_in_report +subpop,population,include_in_report 10001,1000,TRUE 10001,1000,TRUE 20002,2000,FALSE diff --git a/flepimop/gempyor_pkg/tests/seir/test_SpatialSetup.py b/flepimop/gempyor_pkg/tests/seir/test_SpatialSetup.py deleted file mode 100644 index e2291f20d..000000000 --- a/flepimop/gempyor_pkg/tests/seir/test_SpatialSetup.py +++ /dev/null @@ -1,152 +0,0 @@ -import datetime -import numpy as np -import os -import pandas as pd -import pytest -import confuse - -from gempyor import setup - -from gempyor.utils import config - -TEST_SETUP_NAME = "minimal_test" - -DATA_DIR = os.path.dirname(__file__) + "/data" -os.chdir(os.path.dirname(__file__)) - - -class TestSpatialSetup: - def test_SpatialSetup_success(self): - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.txt", # but warning message presented - popnodes_key="population", - nodenames_key="geoid", - ) - def test_SpatialSetup_success2(self): - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", - ) - ''' - def test_SpatialSetup_npz_success3(self): - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.npz", - popnodes_key="population", - nodenames_key="geoid", - ) - ''' - def test_SpatialSetup_wihout_mobility_success3(self): - ss = setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility0.csv", - popnodes_key="population", - nodenames_key="geoid", - ) - - def test_bad_popnodes_key_fail(self): - # Bad popnodes_key error - with pytest.raises(ValueError, match=r".*popnodes_key.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility_small.txt", - popnodes_key="wrong", - nodenames_key="geoid", - ) - - def test_population_0_nodes_fail(self): - with pytest.raises(ValueError, match=r".*population.*zero.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata0.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", - ) - - def test_mobility_fileformat_fail(self): - with pytest.raises(ValueError, match=r".*Mobility.*longform.*matrix.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility", - popnodes_key="population", - nodenames_key="geoid", - ) - - def test_bad_nodenames_key_fail(self): - with pytest.raises(ValueError, match=r".*nodenames_key.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.txt", - popnodes_key="population", - nodenames_key="wrong", - ) - - def test_duplicate_nodenames_key_fail(self): - with pytest.raises(ValueError, match=r".*duplicate.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata_dup.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - nodenames_key="geoid", - ) - - def test_mobility_shape_in_npz_fail(self): - with pytest.raises(ValueError, match=r".*mobility.*Actual.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility_2x3.npz", - popnodes_key="population", - nodenames_key="geoid", - ) - - def test_mobility_dimensions_fail(self): - with pytest.raises(ValueError, match=r".*mobility.*dimensions.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility_small.txt", - popnodes_key="population", - nodenames_key="geoid", - ) - - def test_mobility_same_ori_dest_fail(self): - with pytest.raises(ValueError, match=r".*Mobility.*same.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility_same_ori_dest.csv", - popnodes_key="population", - nodenames_key="geoid", - ) - - def test_mobility_too_big_fail(self): - with pytest.raises(ValueError, match=r".*mobility.*population.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility_big.txt", - popnodes_key="population", - nodenames_key="geoid", - ) - def test_mobility_data_exceeded_fail(self): - with pytest.raises(ValueError, match=r".*mobility.*exceed.*"): - setup.SpatialSetup( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility1001.csv", - popnodes_key="population", - nodenames_key="geoid", - ) diff --git a/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py b/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py index 4755d0186..25ffae59f 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py +++ b/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py @@ -22,12 +22,12 @@ def test_SeedingAndIC_success(self): config.read(user=False) config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = setup.SubpopulationStructure( setup_name="test_values", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( @@ -55,12 +55,12 @@ def test_SeedingAndIC_allow_missing_node_compartments_success(self): config.read(user=False) config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = setup.SubpopulationStructure( setup_name="test_values", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( setup_name="test_seeding and ic", @@ -93,12 +93,12 @@ def test_SeedingAndIC_IC_notImplemented_fail(self): config.read(user=False) config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = setup.SubpopulationStructure( setup_name="test_values", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( setup_name="test_seeding and ic", @@ -126,12 +126,12 @@ def test_SeedingAndIC_draw_seeding_success(self): config.read(user=False) config.set_file(f"{DATA_DIR}/config.yml") - ss = setup.SpatialSetup( + ss = setup.SubpopulationStructure( setup_name="test_values", geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", popnodes_key="population", - nodenames_key="geoid", + subpop_names_key="subpop", ) s = setup.Setup( setup_name="test_seeding and ic", diff --git a/flepimop/gempyor_pkg/tests/seir/test_setup.py b/flepimop/gempyor_pkg/tests/seir/test_setup.py index df045ea80..ce360f13c 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_setup.py +++ b/flepimop/gempyor_pkg/tests/seir/test_setup.py @@ -31,7 +31,7 @@ def test_SubpopulationStructure_success(self): ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), npi_scenario=None, - config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, From a0a8e31214778754e93c4ac8ef1c172442f0ef1a Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 26 Sep 2023 15:11:52 -0400 Subject: [PATCH 23/50] modified as_random_distribution() in utils.py when checking args deleted a redundant part --- flepimop/gempyor_pkg/src/gempyor/utils.py | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/utils.py b/flepimop/gempyor_pkg/src/gempyor/utils.py index ecd73c080..60dd61a5b 100644 --- a/flepimop/gempyor_pkg/src/gempyor/utils.py +++ b/flepimop/gempyor_pkg/src/gempyor/utils.py @@ -172,7 +172,7 @@ def as_random_distribution(self): return functools.partial( np.random.uniform, self["value"].as_evaled_expression(), - self["value"].as_evaled_expression(), +# redundant self["value"].as_evaled_expression(), ) elif dist == "uniform": return functools.partial( @@ -183,12 +183,16 @@ def as_random_distribution(self): elif dist == "poisson": return functools.partial(np.random.poisson, self["lam"].as_evaled_expression()) elif dist == "binomial": - if (self["p"] < 0) or (self["p"] > 1): - raise ValueError(f"""p value { self["p"] } is out of range [0,1]""") + p =self["p"].as_number() + if (p < 0) or (p > 1): + raise ValueError(f"""p value { p } is out of range [0,1]""") + #if (self["p"] < 0) or (self["p"] > 1): + # raise ValueError(f"""p value { self["p"] } is out of range [0,1]""") return functools.partial( np.random.binomial, self["n"].as_evaled_expression(), - self["p"].as_evaled_expression(), + #self["p"].as_evaled_expression(), + p, ) elif dist == "truncnorm": return get_truncated_normal( From 73f3e06e78fb319fc44a705848b3273405850860 Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 26 Sep 2023 15:13:14 -0400 Subject: [PATCH 24/50] added tests/utils/test_utils* to cover utils.py --- .../gempyor_pkg/tests/utils/test_utils.py | 24 +++ .../gempyor_pkg/tests/utils/test_utils2.py | 187 ++++++++++++++++++ 2 files changed, 211 insertions(+) create mode 100644 flepimop/gempyor_pkg/tests/utils/test_utils2.py diff --git a/flepimop/gempyor_pkg/tests/utils/test_utils.py b/flepimop/gempyor_pkg/tests/utils/test_utils.py index f6e7a5809..a0c88d4fd 100644 --- a/flepimop/gempyor_pkg/tests/utils/test_utils.py +++ b/flepimop/gempyor_pkg/tests/utils/test_utils.py @@ -65,3 +65,27 @@ def test_Timer_with_statement_success(): def test_aws_disk_diagnosis_success(): utils.aws_disk_diagnosis() + +def test_profile_success(): + utils.profile() + utils.profile(output_file="test") + +def test_ISO8601Date_success(): + t = utils.ISO8601Date("2020-02-01") + #dt = datetime.datetime.strptime("2020-02-01", "%Y-%m-%d") + + #assert t == datetime.datetime("2020-02-01").strftime("%Y-%m-%d") + + +def test_get_truncated_normal_success(): + utils.get_truncated_normal(mean=0, sd=1, a=-2, b=2) + + +def test_get_log_normal_success(): + utils.get_log_normal(meanlog=0, sdlog=1) + + + + + + diff --git a/flepimop/gempyor_pkg/tests/utils/test_utils2.py b/flepimop/gempyor_pkg/tests/utils/test_utils2.py new file mode 100644 index 000000000..fabd4428b --- /dev/null +++ b/flepimop/gempyor_pkg/tests/utils/test_utils2.py @@ -0,0 +1,187 @@ +import pytest +import datetime +import os +import pandas as pd +#import dask.dataframe as dd +import numpy as np +from scipy.stats import rv_continuous +import pyarrow as pa +import cProfile +import pstats +import datetime +import confuse +from unittest.mock import MagicMock, patch + +from gempyor import utils +from gempyor.utils import ISO8601Date + +DATA_DIR = os.path.dirname(__file__) + "/data" +#os.chdir(os.path.dirname(__file__)) + +tmp_path = "/tmp" + +class SampleClass: + def __init__(self): + self.value = 11 + + @utils.profile(output_file="get_value.prof", sort_by="time", lines_to_print=10, strip_dirs=True) + def get_value(self): + return self.value + + def set_value(self, value): + self.value = value + +class Test_utils2: + @utils.add_method(SampleClass) + def get_a(self): + return "a" + + def test_add_method(self): + assert SampleClass.get_a(self) == "a" + + def test_get_value_w_profile(self): + s = SampleClass() + s.get_value() + + # display profile information + stats = pstats.Stats("get_value.prof") + stats.sort_stats("time") + stats.print_stats(10) + + def test_ISO8601Date_success(self): + iso_date = utils.ISO8601Date("2020-01-01") + input_date = datetime.date(2020,1,1) + result = iso_date.convert(input_date, None) # dummy for view + assert result == input_date + + iso_date2 = utils.ISO8601Date() + result = iso_date2.convert(str(input_date), None) # dummy for view + assert result == input_date + ''' + def test_ISO8601Date_invalid_value(self): + iso_date2 = utils.ISO8601Date() + invalid_value = "2020-01-01" + with pytest.raises(ValueError, match=r".*must.*be.*ISO8601.*"): + iso_date2.convert(invalid_value, None) # dummy for view + ''' +''' +def test_profile_success(): + utils.profile() + utils.profile(output_file="test") + +def test_ISO8601Date_success(): + t = utils.ISO8601Date("2020-02-01") + #dt = datetime.datetime.strptime("2020-02-01", "%Y-%m-%d") + + #assert t == datetime.datetime("2020-02-01").strftime("%Y-%m-%d") + + +def test_get_truncated_normal_success(): + utils.get_truncated_normal(mean=0, sd=1, a=-2, b=2) + + +def test_get_log_normal_success(): + utils.get_log_normal(meanlog=0, sdlog=1) +''' + +def test_as_date_with_valid_date_string(): + # created MockConfigView object + mock_config_view = MagicMock(spec=confuse.ConfigView) + + # ConfigViewのgetメソッドをモックし、適切な日付文字列を返すように設定 + mock_config_view.get.return_value = "2022-01-15" + + # ISO8601Dateのconvertメソッドをモックし、適切な日付オブジェクトを返すように設定 + with patch.object(ISO8601Date, "convert", return_value=datetime.date(2022, 1, 15)): + result = ISO8601Date().convert(mock_config_view.get(), None) + + + # 正しい日付オブジェクトが返されることを確認 + assert result == datetime.date(2022, 1, 15) + +def test_as_evaled_expression_with_valid_expression(): + # ConfigViewオブジェクトをモック化 + mock_config_view = MagicMock(spec=confuse.ConfigView) + mock_config_view.as_evaled_expression.return_value =7.5 + + # as_evaled_expressionメソッドを呼び出し、正しい結果を確認 + result = mock_config_view.as_evaled_expression() + + assert result == 7.5 + + + +@pytest.fixture +def config(): + config = confuse.Configuration('myapp', __name__) + return config + +def test_as_evaled_expression_number(config): + config.add({'myvalue': 123}) + assert config['myvalue'].as_evaled_expression() == 123 + +def test_as_evaled_expression_number(config): + config.add({'myvalue': 1.10}) + assert config['myvalue'].as_evaled_expression() == 1.1 + +def test_as_evaled_expression_string(config): + config.add({'myvalue': '2 + 3'}) + assert config['myvalue'].as_evaled_expression() == 5.0 + +def test_as_evaled_expression_other(config): + config.add({'myvalue': [1, 2, 3]}) + with pytest.raises(ValueError): + config['myvalue'].as_evaled_expression() + +def test_as_evaled_expression_Invalid_string(config): + config.add({'myvalue': 'invalid'}) + with pytest.raises(ValueError): + config['myvalue'].as_evaled_expression() + +def test_as_date(config): + config.add({'myvalue': '2022-01-15'}) + assert config['myvalue'].as_date() == datetime.date(2022, 1, 15) + +def test_as_random_distribution_fixed(config): + config.add({'value':{'distribution': 'fixed', 'value': 1}}) + dist = config['value'].as_random_distribution() + assert dist() == 1 + +def test_as_random_distribution_uniform(config): + config.add({'value':{'distribution': 'uniform', 'low': 1, 'high':2.6}}) + dist = config['value'].as_random_distribution() + assert 1 <= dist() <=2.6 + +def test_as_random_distribution_poisson(config): + config.add({'value':{'distribution': 'poisson', 'lam': 1}}) + dist = config['value'].as_random_distribution() + assert isinstance(dist(), int) + +def test_as_random_distribution_binomial(config): + config.add({'value':{'distribution': 'binomial', 'n': 10, 'p':0.5 }}) + dist = config['value'].as_random_distribution() + assert 0 <= dist() <= 10 + +def test_as_random_distribution_binomial_error(config): + config.add({'value':{'distribution': 'binomial', 'n': 10, 'p':1.1 }}) + with pytest.raises(ValueError, match=r".*p.*value.*"): + dist = config['value'].as_random_distribution() + +def test_as_random_distribution_truncnorm(config): + config.add({'value':{'distribution': 'truncnorm', 'mean': 0, 'sd':1, 'a':-1, 'b':1}}) + dist = config['value'].as_random_distribution() + rvs = dist(size=1000) + assert len(rvs) == 1000 + assert all(-1 <= x <= 1 for x in rvs) + +def test_as_random_distribution_lognorm(config): + config.add({'value':{'distribution': 'lognorm', 'meanlog': 0, 'sdlog':1}}) + dist = config['value'].as_random_distribution() + rvs = dist(size=1000) + assert len(rvs) == 1000 + assert all(x > 0 for x in rvs) + +def test_as_random_distribution_unknown(config): + config.add({'value':{'distribution': 'unknown', 'mean': 0, 'sd':1}}) + with pytest.raises(NotImplementedError): + config['value'].as_random_distribution() From b7fc7143e56cd6661f9dd44531ef05114bb3ca26 Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 17 Oct 2023 12:39:06 -0400 Subject: [PATCH 25/50] modified subpop_ setting part in constructor --- flepimop/gempyor_pkg/.coverage | Bin 0 -> 53248 bytes .../gempyor_pkg/src/gempyor/model_info.py | 8 +- .../tests/seir/data/config_test.yml | 123 +++++++ .../{test_setup.py => test_model_info.py} | 336 +++++++++--------- 4 files changed, 289 insertions(+), 178 deletions(-) create mode 100644 flepimop/gempyor_pkg/.coverage create mode 100644 flepimop/gempyor_pkg/tests/seir/data/config_test.yml rename flepimop/gempyor_pkg/tests/seir/{test_setup.py => test_model_info.py} (66%) diff --git a/flepimop/gempyor_pkg/.coverage b/flepimop/gempyor_pkg/.coverage new file mode 100644 index 0000000000000000000000000000000000000000..751c8b03ea0b433bc94b869731b3dc1dea2088d5 GIT binary patch literal 53248 zcmeI4ON<;x8OOV4dZ*`I;}|otR*pLnuwJ~olZ}NU<0SSb_z;{Z4t^n=xZOKbyY6^q zdfeS(dj*(Gf|P*Bg+ruBQ4|h{1H$-%gaXpmZ9%7r60MKhre)i>Eu!C~mYQ#o6b+Ry6B7ck0he)h5Sp z(yKJq8j2V-<&hNwBF>=vi&ItD4yj+|c#9 zmb@yP{ZO_xZQvY3OAdm!u{ET1o*Q&NDj8pE1D#RfO-jbudRs0&sn3A zbE+9#Z_eUIkOh3Ql&c@yscU4F@@jCYO`o@HryqLi+@{XA7s)AqeMjD`@7=3Ee@Ph% zbN4;nG&rIb_Wn$4n!E;rKkzEHBPT zHT_VnjVnuau$J52^0=)jiwPtR5Sj~;Y%Be4lZQ&cZD@LzrSGiDg*Y{u7Cvl4BGXwc zL z&63F&iBqUK^JcETG(D*~aXx!74&(=>Vb*u;(g)Fq;CYGPQ)7+bn9&fpWg+@b2L?aW-3=dv};nuxeE3oySeAiW>l4*->v9(Xwv6*cC5-AGph12xi){EX~2u3Se=@mP47HWv?G9`{h$*p1k&q>Kh4+&J*^OYgT2a;eFf-0+*ImUbceI zCb8Dc1t;KHD44O9J+CdDZnQQ~iAMsurW;tQ4!5sLhesO08f&axo>6s578jo8Ptu@E z#uo)T9jDuh*DGFzBUPIFd2sS|qDh1bS~D~#0~(^YXeOd@D$iJn{z8wKuxiI?MZ=vt zWrO0C3-UI(Xf^tr6Uxx-NQ<+m$|%FS;sjRHmy}3r>FiAQ{mg)S%U)!ccgcDFC^y)v zoAv$s^+7)#jL|$}2ehbnoTS?EX=cnwZb=;3%i}cR(x;t`cEap7;Na8f3Ou<*J-8fE zNOHxWb&9jR!Pmum8oh9U00@8p2!H?xfB*=900@8p2!H?xY(D~7J)@hv|Idg&YT|F? z-~a&-009sH0T2KI5C8!X009sH0TB3T5-4Y~dqnaVk9&lkovz1!0=RGC-i7;$)T)el zR}=4we||I@h+2aH2!H?xfB*=900@8p2!H?xfB*<21j^Yxdh#tmrkI^B#9spN@Bg*p zDNVd44prZ-zEGX5{HF5d%AWEs%I$Kk^m?gT$`!9u1{@#&0w4eaAOHd&00JN|iNKkf zp$!f+P6c!WZ{wo(wA*;tYssLo(w059Ji2u2{oevf2NmPvL# zMOoJ;)i0Gu^c!|6i9o2YW42+ToQdUPofW`CQ5g| zQ=P+(?9#I`dTVD)Qs3$*QFhUim+h{+V)MXZ7P+)o*tXksL)#|Nr>02s@D^FnQw#_K z%>-OiJ2|_DQ5z|sP6Ws0nMgJTB4iVhFa@~(niwnZXC(GxUG+VZ&cU9a_+*K$`} z$>Z^yP8V6);zjswe}9D@rWDnGcuM;G`+u!?S`*(9_gCMkexv&7%5N)QsoYt9v)n1~ zDE*|=Dw)L}QU)9#00JNY0w4eaAOHd&FpO)g|6e_A3>sS%zkUB-Ib{sy)09>F|MFR5a4=2P4g3F6y4qv=|Kdqwus^+eNBjT6 zQ^w$d^h9sj|L4;fC7bR4&D2`R3$PNl;Q|LyyKJpXUvB8CJI009sH0T2KI5C8!X009sH0T9>@ z1hRTotMKpty7-SqFB~8M0w4eaAOHd&00JNY0w4eaAOHf}kU%zDDX9DZ#oe0txA?30 zmH4^%vA7|=CtejVi5JCX(Ge|iLM%}R93TJ!AOHd&00JNY0w4eaAOHd&u&oK~sTq3V z{@TqqzWeekM!u$L&uB-qZ@rMe>!JKzMnCYVfL}rJmQjAqSr(5Sg zb|h~ZHM2qywaPW!EOVf|UfNZnz+7ql`@0F9#rO<**UTcP7q2yP1qxIP88goj`3D=O z$pMp6a-5RO6sO4l_|*Efg>#v_LE$@$^=s8TvlMzTyMFCD>&3??m@zYyUdya^Ox-9H z?zs7b$V#kV!_p7@9Oi+Ef7LHtgCVnb@B(BqU0k4UdDFY4=009sH0T2KI z5C8!X009sH0T2Lz6bbMKU$51aCxr5L0=fO-2?DzdK$o+ z^gMt!#Orh)zzxs>0T2KI5C8!X009sH0T2KI5C8!X_}>x8*65-AS;0<~oeDc;c1r9N a*(tD-XUAkG$IcWx20K}HGVJj4|NjeKtFs0G literal 0 HcmV?d00001 diff --git a/flepimop/gempyor_pkg/src/gempyor/model_info.py b/flepimop/gempyor_pkg/src/gempyor/model_info.py index 44fbde0b4..3707eb81b 100644 --- a/flepimop/gempyor_pkg/src/gempyor/model_info.py +++ b/flepimop/gempyor_pkg/src/gempyor/model_info.py @@ -79,8 +79,12 @@ def __init__( mobility_file=spatial_base_path / spatial_config["mobility"].get() if spatial_config["mobility"].exists() else None, - subpop_pop_key="population", - subpop_names_key="subpop", + subpop_pop_key=spatial_config["subpop_pop_key"].get() + if spatial_config["subpop_pop_key"].exists() + else None, + subpop_names_key=spatial_config["subpop_names_key"].get() + if spatial_config["subpop_names_key"].exists() + else None, ) self.nsubpops = self.subpop_struct.nsubpops self.subpop_pop = self.subpop_struct.subpop_pop diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_test.yml b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml new file mode 100644 index 000000000..89bd585d7 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml @@ -0,0 +1,123 @@ +name: minimal_test +setup_name: minimal_test_setup +start_date: 2020-01-31 +end_date: 2020-05-31 +data_path: data +nslots: 5 + + +subpop_setup: + geodata: geodata.csv + mobility: mobility.csv + + + +seeding: + method: FolderDraw + seeding_file_type: seed + +initial_conditions: + method: Default + +compartments: + infection_stage: ["S", "E", "I1", "I2", "I3", "R"] + vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy + dt: 1/6 + parameters: + alpha: + value: + distribution: fixed + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +seir_modifiers: + scenarios: + - None + - Scenario1 + - Scenario2 + modifiers: + None: + method: SinglePeriodModifier + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: fixed + value: 0 + Wuhan: + method: SinglePeriodModifier + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: uniform + low: .14 + high: .33 + KansasCity: + method: MultiPeriodModifier + parameter: r0 + groups: + - periods: + - start_date: 2020-04-01 + end_date: 2020-05-15 + subpop: "all" + value: + distribution: uniform + low: .04 + high: .23 + Scenario1: + method: StackedModifier + modifiers: + - KansasCity + - Wuhan + - None + Scenario2: + method: StackedModifier + modifiers: + - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/test_setup.py b/flepimop/gempyor_pkg/tests/seir/test_model_info.py similarity index 66% rename from flepimop/gempyor_pkg/tests/seir/test_setup.py rename to flepimop/gempyor_pkg/tests/seir/test_model_info.py index 6669e17cb..89fc7dd0c 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_setup.py +++ b/flepimop/gempyor_pkg/tests/seir/test_model_info.py @@ -24,14 +24,14 @@ def test_SubpopulationStructure_success(self): subpop_pop_key="population", subpop_names_key="subpop", ) - s = setup.Setup( - setup_name = TEST_SETUP_NAME, + s = model_info( + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, @@ -48,7 +48,7 @@ def test_SubpopulationStructure_success(self): in_prefix=None, out_run_id=None, out_prefix=None, - stoch_traj_flag=False, + stoch_traj_flag=False, ) def test_tf_is_ahead_of_ti_fail(self): @@ -61,14 +61,14 @@ def test_tf_is_ahead_of_ti_fail(self): subpop_pop_key="population", subpop_names_key="subpop", ) - s = setup.Setup( - setup_name = TEST_SETUP_NAME, + s = model_info( + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-03-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-03-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, @@ -85,7 +85,7 @@ def test_tf_is_ahead_of_ti_fail(self): in_prefix=None, out_run_id=None, out_prefix=None, - stoch_traj_flag=False, + stoch_traj_flag=False, ) def test_w_config_seir_exists_success(self): @@ -100,18 +100,18 @@ def test_w_config_seir_exists_success(self): subpop_pop_key="population", subpop_names_key="subpop", ) - s = setup.Setup( - setup_name = TEST_SETUP_NAME, + s = model_info( + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, - # parameters_config={"alpha":{"value":{"distribution":"fixed","value":.9}}}, + # parameters_config={"alpha":{"value":{"distribution":"fixed","value":.9}}}, parameters_config={}, seir_config=None, outcomes_config={}, @@ -125,14 +125,14 @@ def test_w_config_seir_exists_success(self): in_prefix=None, out_run_id=None, out_prefix=None, - stoch_traj_flag=False, + stoch_traj_flag=False, ) assert s.seir_config != None - #print(s.seir_config["parameters"]) + # print(s.seir_config["parameters"]) assert s.parameters_config != None - #print(s.integration_method) - assert s.integration_method == 'legacy' + # print(s.integration_method) + assert s.integration_method == "legacy" def test_w_config_seir_integration_method_rk4_1_success(self): # if seir_config["integration"]["method"] is best.current @@ -146,14 +146,14 @@ def test_w_config_seir_integration_method_rk4_1_success(self): subpop_pop_key="population", subpop_names_key="subpop", ) - s = setup.Setup( - setup_name = TEST_SETUP_NAME, + s = model_info( + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, @@ -170,11 +170,11 @@ def test_w_config_seir_integration_method_rk4_1_success(self): in_prefix=None, out_run_id=None, out_prefix=None, - stoch_traj_flag=False, + stoch_traj_flag=False, ) - assert s.integration_method == "rk4.jit" + assert s.integration_method == "rk4.jit" - assert s.dt == float(1/6) + assert s.dt == float(1 / 6) def test_w_config_seir_integration_method_rk4_2_success(self): # if seir_config["integration"]["method"] is rk4 @@ -182,20 +182,20 @@ def test_w_config_seir_integration_method_rk4_2_success(self): config.read(user=False) config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_2.yml") ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, + setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", subpop_pop_key="population", subpop_names_key="subpop", ) - s = setup.Setup( - setup_name = TEST_SETUP_NAME, + s = model_info( + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, @@ -214,7 +214,7 @@ def test_w_config_seir_integration_method_rk4_2_success(self): out_prefix=None, stoch_traj_flag=False, ) - assert s.integration_method == "rk4.jit" + assert s.integration_method == "rk4.jit" def test_w_config_seir_no_integration_success(self): # if not seir_config["integration"] @@ -229,19 +229,19 @@ def test_w_config_seir_no_integration_success(self): subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, parameters_config={}, seir_config=None, - outcomes_config={}, + outcomes_config={}, outcome_scenario=None, interactive=True, write_csv=False, @@ -254,32 +254,32 @@ def test_w_config_seir_no_integration_success(self): out_prefix=None, stoch_traj_flag=False, ) - assert s.integration_method == "rk4.jit" + assert s.integration_method == "rk4.jit" assert s.dt == 2.0 def test_w_config_seir_unknown_integration_method_fail(self): with pytest.raises(ValueError, match=r".*Unknown.*integration.*"): - # if in seir unknown integration method - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_seir_unknown_integration.yml") - ss = subpopulation_structure.SubpopulationStructure( + # if in seir unknown integration method + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_seir_unknown_integration.yml") + ss = subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, geodata_file=f"{DATA_DIR}/geodata.csv", mobility_file=f"{DATA_DIR}/mobility.csv", subpop_pop_key="population", subpop_names_key="subpop", ) - s = setup.Setup( - setup_name = TEST_SETUP_NAME, + s = setup.Setup( + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - # first_sim_index=1, + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), + # first_sim_index=1, ) - # print(s.integration_method) + # print(s.integration_method) def test_w_config_seir_integration_but_no_dt_success(self): # if not seir_config["integration"]["dt"] @@ -294,13 +294,13 @@ def test_w_config_seir_integration_but_no_dt_success(self): subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, @@ -311,7 +311,7 @@ def test_w_config_seir_integration_but_no_dt_success(self): assert s.dt == 2.0 - ''' not needed any longer + """ not needed any longer def test_w_config_seir_old_integration_method_fail(self): with pytest.raises(ValueError, match=r".*Configuration.*no.*longer.*"): # if old method in seir @@ -361,7 +361,7 @@ def test_w_config_seir_config_version_not_provided_fail(self): seir_config=None, dt=None, # step size, in days ) - ''' + """ def test_w_config_compartments_and_seir_config_not_None_success(self): # if config["compartments"] and iself.seir_config was set @@ -376,13 +376,13 @@ def test_w_config_compartments_and_seir_config_not_None_success(self): subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, @@ -394,49 +394,41 @@ def test_w_config_compartments_and_seir_config_not_None_success(self): def test_config_outcome_config_and_scenario_success(self): # if outcome_config and outcome_scenario were set ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + subpop_pop_key="population", + subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, - subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - dt=None, # step size, in days - outcomes_config= - { - "interventions": - { - "settings": - { - "None": - { - "template":"Reduce", - "parameter":"r0", - "value": - { - "distribution":"fixed", - "value":0 - } + setup_name=TEST_SETUP_NAME, + subpop_setup=ss, + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), + npi_scenario=None, + # config_version=None, + npi_config_seir={}, + seeding_config={}, + initial_conditions_config={}, + parameters_config={}, + seir_config=None, + dt=None, # step size, in days + outcomes_config={ + "interventions": { + "settings": { + "None": { + "template": "Reduce", + "parameter": "r0", + "value": {"distribution": "fixed", "value": 0}, } } } }, - outcome_scenario="None", # caution! selected the defined "None" + outcome_scenario="None", # caution! selected the defined "None" write_csv=True, ) - assert s.npi_config_outcomes == s.outcomes_config["interventions"]["settings"]["None"] + assert s.npi_config_outcomes == s.outcomes_config["interventions"]["settings"]["None"] assert s.extension == "csv" def test_config_write_csv_and_write_parquet_success(self): @@ -449,41 +441,33 @@ def test_config_write_csv_and_write_parquet_success(self): subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, parameters_config={}, seir_config=None, dt=None, # step size, in days - outcomes_config= - { - "interventions": - { - "settings": - { - "None": - { - "template":"Reduce", - "parameter":"r0", - "value": - { - "distribution":"fixed", - "value":0 - } + outcomes_config={ + "interventions": { + "settings": { + "None": { + "template": "Reduce", + "parameter": "r0", + "value": {"distribution": "fixed", "value": 0}, } } } }, - outcome_scenario="None", # caution! selected the defined "None" - write_csv=True, - write_parquet=True, + outcome_scenario="None", # caution! selected the defined "None" + write_csv=True, + write_parquet=True, ) assert s.write_parquet @@ -500,28 +484,29 @@ def test_w_config_seir_exists_and_outcomes_config(self): subpop_names_key="subpop", ) s = setup.Setup( - setup_name = TEST_SETUP_NAME, + setup_name=TEST_SETUP_NAME, subpop_setup=ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), + nslots=1, + ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), + tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), npi_scenario=None, - # config_version=None, + # config_version=None, npi_config_seir={}, seeding_config={}, initial_conditions_config={}, parameters_config={}, seir_config=None, - outcomes_config={"interventions":{"settings":{"None": - {"template":"Reduce", - "parameter":"r0", - "value": - { - "distribution":"fixed", - "value":0 - } - } - }}}, + outcomes_config={ + "interventions": { + "settings": { + "None": { + "template": "Reduce", + "parameter": "r0", + "value": {"distribution": "fixed", "value": 0}, + } + } + } + }, outcome_scenario="None", interactive=True, write_csv=False, @@ -532,36 +517,35 @@ def test_w_config_seir_exists_and_outcomes_config(self): in_prefix=None, out_run_id="out_run_id_0", out_prefix=None, - stoch_traj_flag=False, + stoch_traj_flag=False, ) - #s.get_input_filename(ftype="spar", sim_id=0, extension_override="") - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="seir", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="spar", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="snpi", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hosp", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hpar", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hnpi", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="seir", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="spar", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="snpi", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hosp", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hpar", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hnpi", sim_id=0)) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="seir", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="spar", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="snpi", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hosp", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hpar", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_input_filename(ftype="hnpi", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="seir", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="spar", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="snpi", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hosp", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hpar", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR+s.get_output_filename(ftype="hnpi", sim_id=1, extension_override="csv")) + # s.get_input_filename(ftype="spar", sim_id=0, extension_override="") + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="seir", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="spar", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="snpi", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hosp", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hpar", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hnpi", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="seir", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="spar", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="snpi", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hosp", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hpar", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hnpi", sim_id=0)) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="seir", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="spar", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="snpi", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hosp", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hpar", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hnpi", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="seir", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="spar", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="snpi", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hosp", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hpar", sim_id=1, extension_override="csv")) + os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hnpi", sim_id=1, extension_override="csv")) - - ''' + """ def test_SpatialSetup_npz_success3(self): ss = subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, @@ -599,7 +583,7 @@ def test_bad_subpop_names_key_fail(self): subpop_pop_key="population", subpop_names_key="wrong", ) - ''' + """ def test_mobility_dimensions_fail(self): with pytest.raises(ValueError, match=r".*mobility.*dimensions.*"): @@ -620,6 +604,7 @@ def test_mobility_too_big_fail(self): subpop_pop_key="population", subpop_names_key="subpop", ) + def test_mobility_data_exceeded_fail(self): with pytest.raises(ValueError, match=r".*mobility.*exceed.*"): subpopulation_structure.SubpopulationStructure( @@ -629,4 +614,3 @@ def test_mobility_data_exceeded_fail(self): subpop_pop_key="population", subpop_names_key="subpop", ) - From 6be52383e5b80439aa3dce9625eed3193e44d621 Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 17 Oct 2023 12:43:31 -0400 Subject: [PATCH 26/50] updated with v3 related --- flepimop/gempyor_pkg/tests/seir/data/config_test.yml | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_test.yml b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml index 89bd585d7..3ea2a2c5c 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_test.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml @@ -29,9 +29,7 @@ seir: dt: 1/6 parameters: alpha: - value: - distribution: fixed - value: .9 + value: .9 sigma: value: distribution: fixed From 81c54fcc9ce17caf7a3737ecb274169a11829c93 Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 18 Oct 2023 16:57:08 -0400 Subject: [PATCH 27/50] modified to comply with subpopulation_structure --- .../tests/seir/data/geodata_3x3.csv | 4 + .../tests/seir/data/mobility_2x3.txt | 3 + .../tests/seir/data/mobility_big.txt | 6 +- .../tests/seir/data/mobility_row_exceeed.txt | 3 + .../tests/seir/test_subpopulationstructure.py | 186 ++++++++++++++++++ 5 files changed, 200 insertions(+), 2 deletions(-) create mode 100644 flepimop/gempyor_pkg/tests/seir/data/geodata_3x3.csv create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility_2x3.txt create mode 100644 flepimop/gempyor_pkg/tests/seir/data/mobility_row_exceeed.txt create mode 100644 flepimop/gempyor_pkg/tests/seir/test_subpopulationstructure.py diff --git a/flepimop/gempyor_pkg/tests/seir/data/geodata_3x3.csv b/flepimop/gempyor_pkg/tests/seir/data/geodata_3x3.csv new file mode 100644 index 000000000..6c860289f --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/geodata_3x3.csv @@ -0,0 +1,4 @@ +subpop,population,include_in_report +10001,1000,TRUE +20002,2000,FALSE +20003,3000,FALSE diff --git a/flepimop/gempyor_pkg/tests/seir/data/mobility_2x3.txt b/flepimop/gempyor_pkg/tests/seir/data/mobility_2x3.txt new file mode 100644 index 000000000..90d9daa61 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/mobility_2x3.txt @@ -0,0 +1,3 @@ +0 500 300 +1500 0 0 + diff --git a/flepimop/gempyor_pkg/tests/seir/data/mobility_big.txt b/flepimop/gempyor_pkg/tests/seir/data/mobility_big.txt index dfd571df5..5ac58533f 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/mobility_big.txt +++ b/flepimop/gempyor_pkg/tests/seir/data/mobility_big.txt @@ -1,2 +1,4 @@ -0 1500 -500 0 +0 1000 500 +500 0 0 +0 1000 0 + diff --git a/flepimop/gempyor_pkg/tests/seir/data/mobility_row_exceeed.txt b/flepimop/gempyor_pkg/tests/seir/data/mobility_row_exceeed.txt new file mode 100644 index 000000000..d7509f7ee --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/data/mobility_row_exceeed.txt @@ -0,0 +1,3 @@ +0 500 1000 +1500 0 0 +1000 0 0 diff --git a/flepimop/gempyor_pkg/tests/seir/test_subpopulationstructure.py b/flepimop/gempyor_pkg/tests/seir/test_subpopulationstructure.py new file mode 100644 index 000000000..d9589f71e --- /dev/null +++ b/flepimop/gempyor_pkg/tests/seir/test_subpopulationstructure.py @@ -0,0 +1,186 @@ +import numpy as np +import pandas as pd +import scipy.sparse +import logging +import os + +import pytest + +from gempyor import subpopulation_structure + +TEST_SETUP_NAME = "minimal_test" + +DATA_DIR = os.path.dirname(__file__) + "/data" +os.chdir(os.path.dirname(__file__)) + + +def test_subpopulation_structure_mobility(): + mobility_file = f"{DATA_DIR}/mobility.csv" + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=mobility_file, + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + mobility_data = pd.read_csv(mobility_file) + mobility_data = mobility_data.pivot(index="ori", columns="dest", values="amount") + # mobility_data = mobility_data.reindex(index=subpop_struct.subpop_names, columns=subpop_struct.subpop_names) + mobility_data = mobility_data.fillna(0) + + mobility_matrix = subpop_struct.mobility.toarray() # convert to dense matrix + + # print(subpop_struct.mobility.toarray()) + # print(mobility_data.to_numpy()) + + assert np.array_equal(subpop_struct.mobility.toarray(), mobility_data.to_numpy()) + + +def test_subpopulation_structure_mobility_txt(): + mobility_file = f"{DATA_DIR}/mobility.txt" + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=mobility_file, + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + mobility_data = scipy.sparse.csr_matrix(np.loadtxt(mobility_file), dtype=int) + # mobility_data = mobility_data.pivot(index="ori", columns="dest", values="amount") + # mobility_data = mobility_data.reindex(index=subpop_struct.subpop_names, columns=subpop_struct.subpop_names) + # mobility_data = mobility_data.fillna(0) + + mobility_matrix = subpop_struct.mobility.toarray() # convert to dense matrix + + print(subpop_struct.mobility.tocsr()) + print(mobility_data) + + assert np.array_equal(subpop_struct.mobility.toarray(), mobility_data.toarray()) + + +def test_subpopulation_structure_not_existed_subpop_pop_key_fail(): + with pytest.raises(ValueError, match=r"subpop_pop_key.*does not correspond.*"): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + subpop_pop_key="population_not_existed", + subpop_names_key="subpop", + ) + + +def test_subpopulation_structure_subpop_population_zero_fail(): + with pytest.raises(ValueError, match=r".*nodes with population zero.*"): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata0.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + +def test_subpopulation_structure_not_existed_subpop_names_key_fail(): + with pytest.raises(ValueError, match=r"subpop_names_key.*does not correspond.*"): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + subpop_pop_key="population", + subpop_names_key="no_subpop", + ) + + +def test_subpopulation_structure_dulpicate_subpop_names_fail(): + with pytest.raises(ValueError, match=r"There are duplicate subpop_names.*"): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata_dup.csv", + mobility_file=f"{DATA_DIR}/mobility.csv", + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + +def test_subpopulation_structure_mobility_shape_fail(): + with pytest.raises(ValueError, match=r"mobility data must have dimensions of length of geodata.*"): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_2x3.txt", + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + +def test_subpopulation_structure_mobility_fluxes_same_ori_and_dest_fail(): + with pytest.raises(ValueError, match=r"Mobility fluxes with same origin and destination.*"): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_same_ori_dest.csv", + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + +def test_subpopulation_structure_mobility_npz_shape_fail(): + with pytest.raises(ValueError, match=r"mobility data must have dimensions of length of geodata.*"): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility_2x3.npz", + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + +def test_subpopulation_structure_mobility_no_extension_fail(): + with pytest.raises(ValueError, match=r"Mobility data must either be a.*"): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility", + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + +def test_subpopulation_structure_mobility_exceed_source_node_pop_fail(): + with pytest.raises( + ValueError, match=r"The following entries in the mobility data exceed the source node populations.*" + ): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=f"{DATA_DIR}/mobility1001.csv", + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + +def test_subpopulation_structure_mobility_rows_exceed_source_node_pop_fail(): + with pytest.raises( + ValueError, match=r"The following rows in the mobility data exceed the source node populations.*" + ): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata_3x3.csv", + mobility_file=f"{DATA_DIR}/mobility_row_exceeed.txt", + subpop_pop_key="population", + subpop_names_key="subpop", + ) + + +def test_subpopulation_structure_mobility_no_mobility_matrix_specified(): + subpop_struct = subpopulation_structure.SubpopulationStructure( + setup_name=TEST_SETUP_NAME, + geodata_file=f"{DATA_DIR}/geodata.csv", + mobility_file=None, + subpop_pop_key="population", + subpop_names_key="subpop", + ) + # target = np.array([[0, 0], [0, 0]]) # 2x2, just in this case + assert np.array_equal(subpop_struct.mobility.toarray(), np.zeros((2, 2))) From 9ae4cb208cdd428073f35df05205421562a8d4ba Mon Sep 17 00:00:00 2001 From: kjsato Date: Mon, 23 Oct 2023 09:02:51 -0400 Subject: [PATCH 28/50] modified to comply with breakiing-imorovments --- flepimop/gempyor_pkg/src/gempyor/interface.py | 1 - flepimop/gempyor_pkg/src/gempyor/steps_rk4.py | 1 + flepimop/gempyor_pkg/src/gempyor/utils.py | 8 +- .../tests/interface/data/config_test.yml | 122 ++++++++++ .../tests/interface/test_interface.py | 20 +- flepimop/gempyor_pkg/tests/npi/config_npi.yml | 3 + .../npi/config_test_spatial_group_npi.yml | 2 + .../tests/npi/data/config_test.yml | 149 ++++++++++++ .../tests/npi/test_SinglePeriodModifier.py | 55 ++--- .../gempyor_pkg/tests/outcomes/config.yml | 2 + .../tests/outcomes/config_load.yml | 2 + .../tests/outcomes/config_load_subclasses.yml | 2 + .../tests/outcomes/config_mc_selection.yml | 2 + .../gempyor_pkg/tests/outcomes/config_npi.yml | 2 + .../outcomes/config_npi_custom_pnames.yml | 2 + .../tests/outcomes/config_subclasses.yml | 2 + .../tests/outcomes/config_test.yml | 149 ++++++++++++ .../tests/outcomes/test_outcomes0.py | 43 ---- .../gempyor_pkg/tests/seir/data/config.yml | 2 + .../config_compartmental_model_format.yml | 2 + .../data/config_compartmental_model_full.yml | 2 + .../seir/data/config_continuation_resume.yml | 2 + .../seir/data/config_inference_resume.yml | 2 + .../tests/seir/data/config_parallel.yml | 2 + .../tests/seir/data/config_test.yml | 30 ++- .../gempyor_pkg/tests/seir/test_model_info.py | 105 ++++++--- .../gempyor_pkg/tests/seir/test_seeding_ic.py | 214 +++++++----------- flepimop/gempyor_pkg/tests/seir/test_seir.py | 118 +++++----- .../tests/utils/test_file_paths.py | 168 +++++++++----- 29 files changed, 844 insertions(+), 370 deletions(-) create mode 100644 flepimop/gempyor_pkg/tests/interface/data/config_test.yml create mode 100644 flepimop/gempyor_pkg/tests/npi/data/config_test.yml create mode 100644 flepimop/gempyor_pkg/tests/outcomes/config_test.yml delete mode 100644 flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py diff --git a/flepimop/gempyor_pkg/src/gempyor/interface.py b/flepimop/gempyor_pkg/src/gempyor/interface.py index 484a628a8..b0ffff6a7 100644 --- a/flepimop/gempyor_pkg/src/gempyor/interface.py +++ b/flepimop/gempyor_pkg/src/gempyor/interface.py @@ -50,7 +50,6 @@ def __init__( stoch_traj_flag=False, rng_seed=None, nslots=1, - initialize=True, inference_filename_prefix="", # usually for {global or chimeric}/{intermediate or final} inference_filepath_suffix="", # usually for the slot_id out_run_id=None, # if out_run_id is different from in_run_id, fill this diff --git a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py index 0e092fb42..0b2b1585f 100644 --- a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py +++ b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py @@ -145,6 +145,7 @@ def rhs(t, x, today): number_move = source_number * compound_adjusted_rate ## to initialize typ for spatial_node in range(nspatial_nodes): number_move[spatial_node] = np.random.binomial( + # number_move[spatial_node] = random.binomial( source_number[spatial_node], compound_adjusted_rate[spatial_node], ) diff --git a/flepimop/gempyor_pkg/src/gempyor/utils.py b/flepimop/gempyor_pkg/src/gempyor/utils.py index 18883b91c..f0849903a 100644 --- a/flepimop/gempyor_pkg/src/gempyor/utils.py +++ b/flepimop/gempyor_pkg/src/gempyor/utils.py @@ -191,10 +191,10 @@ def as_random_distribution(self): return functools.partial(np.random.poisson, self["lam"].as_evaled_expression()) elif dist == "binomial": p = self["p"].as_number() - if (p < 0) or (p > 1): - raise ValueError(f"""p value { p } is out of range [0,1]""") - # if (self["p"] < 0) or (self["p"] > 1): - # raise ValueError(f"""p value { self["p"] } is out of range [0,1]""") + if (p < 0) or (p > 1): + raise ValueError(f"""p value { p } is out of range [0,1]""") + # if (self["p"] < 0) or (self["p"] > 1): + # raise ValueError(f"""p value { self["p"] } is out of range [0,1]""") return functools.partial( np.random.binomial, self["n"].as_evaled_expression(), diff --git a/flepimop/gempyor_pkg/tests/interface/data/config_test.yml b/flepimop/gempyor_pkg/tests/interface/data/config_test.yml new file mode 100644 index 000000000..6ee2a7607 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/interface/data/config_test.yml @@ -0,0 +1,122 @@ +name: minimal_test +setup_name: minimal_test_setup +start_date: 2020-01-31 +end_date: 2020-05-31 +data_path: data +nslots: 5 + + +subpop_setup: + geodata: geodata.csv + mobility: mobility.csv + subpop_pop_key: population + subpop_names_key: subpop + + +seeding: + method: FolderDraw + seeding_file_type: seed + +initial_conditions: + method: Default + +compartments: + infection_stage: ["S", "E", "I1", "I2", "I3", "R"] + vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy + dt: 1/6 + parameters: + alpha: + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +seir_modifiers: + scenarios: + - None + - Scenario1 + - Scenario2 + modifiers: + None: + method: SinglePeriodModifier + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: fixed + value: 0 + Wuhan: + method: SinglePeriodModifier + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: uniform + low: .14 + high: .33 + KansasCity: + method: MultiPeriodModifier + parameter: r0 + groups: + - periods: + - start_date: 2020-04-01 + end_date: 2020-05-15 + subpop: "all" + value: + distribution: uniform + low: .04 + high: .23 + Scenario1: + method: StackedModifier + modifiers: + - KansasCity + - Wuhan + - None + Scenario2: + method: StackedModifier + modifiers: + - Wuhan diff --git a/flepimop/gempyor_pkg/tests/interface/test_interface.py b/flepimop/gempyor_pkg/tests/interface/test_interface.py index a4faa1002..64fb6190f 100644 --- a/flepimop/gempyor_pkg/tests/interface/test_interface.py +++ b/flepimop/gempyor_pkg/tests/interface/test_interface.py @@ -7,7 +7,7 @@ import time import confuse -from gempyor import utils, interface, seir, setup, parameters +from gempyor import utils, interface, seir, parameters from gempyor.utils import config TEST_SETUP_NAME = "minimal_test" @@ -22,28 +22,28 @@ def test_GempyorSimulator_success(self): # the minimum model test, choices are: npi_scenario="None" # config.set_file(f"{DATA_DIR}/config_min_test.yml") # i = interface.GempyorSimulator(config_path=f"{DATA_DIR}/config.yml", npi_scenario="None") - i = interface.GempyorSimulator(config_path=f"{DATA_DIR}/config.yml", npi_scenario="None") + i = interface.GempyorSimulator(config_path=f"{DATA_DIR}/config_test.yml", seir_modifiers_scenario="None") ''' run_id="test_run_id" = in_run_id, prefix="test_prefix" = in_prefix = out_prefix, out_run_id = in_run_id, ''' i.update_prefix("test_new_in_prefix") - assert i.s.in_prefix == "test_new_in_prefix" - assert i.s.out_prefix == "test_new_in_prefix" + assert i.modinf.in_prefix == "test_new_in_prefix" + assert i.modinf.out_prefix == "test_new_in_prefix" i.update_prefix("test_newer_in_prefix", "test_newer_out_prefix") - assert i.s.in_prefix == "test_newer_in_prefix" - assert i.s.out_prefix == "test_newer_out_prefix" + assert i.modinf.in_prefix == "test_newer_in_prefix" + assert i.modinf.out_prefix == "test_newer_out_prefix" i.update_prefix("", "") i.update_run_id("test_new_run_id") - assert i.s.in_run_id == "test_new_run_id" - assert i.s.out_run_id == "test_new_run_id" + assert i.modinf.in_run_id == "test_new_run_id" + assert i.modinf.out_run_id == "test_new_run_id" i.update_run_id("test_newer_in_run_id", "test_newer_out_run_id") - assert i.s.in_run_id == "test_newer_in_run_id" - assert i.s.out_run_id == "test_newer_out_run_id" + assert i.modinf.in_run_id == "test_newer_in_run_id" + assert i.modinf.out_run_id == "test_newer_out_run_id" i.update_run_id("test", "test") diff --git a/flepimop/gempyor_pkg/tests/npi/config_npi.yml b/flepimop/gempyor_pkg/tests/npi/config_npi.yml index 6ecb03b4e..9482a4199 100644 --- a/flepimop/gempyor_pkg/tests/npi/config_npi.yml +++ b/flepimop/gempyor_pkg/tests/npi/config_npi.yml @@ -16,6 +16,9 @@ compartments: subpop_setup: geodata: geodata_2019_statelevel.csv mobility: mobility_2011-2015_statelevel.csv + subpop_pop_key: population + subpop_names_key: subpop + seeding: variant_filename: data/variant/variant_props_long.csv diff --git a/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml b/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml index b8a400510..3f86ec5f9 100644 --- a/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml +++ b/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml @@ -18,6 +18,8 @@ subpop_setup: mobility: mobility_2011-2015_statelevel.csv include_in_report: include_in_report state_level: TRUE + subpop_pop_key: population + subpop_names_key: subpop diff --git a/flepimop/gempyor_pkg/tests/npi/data/config_test.yml b/flepimop/gempyor_pkg/tests/npi/data/config_test.yml new file mode 100644 index 000000000..c4f0acd4d --- /dev/null +++ b/flepimop/gempyor_pkg/tests/npi/data/config_test.yml @@ -0,0 +1,149 @@ +name: minimal_test +setup_name: minimal_test_setup +start_date: 2020-01-31 +end_date: 2020-05-31 +data_path: data +nslots: 5 + + +subpop_setup: + geodata: geodata.csv + mobility: mobility.csv + subpop_pop_key: population + subpop_names_key: subpop + + +seeding: + method: FolderDraw + seeding_file_type: seed + +initial_conditions: + method: Default + +compartments: + infection_stage: ["S", "E", "I1", "I2", "I3", "R"] + vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy + dt: 1/6 + parameters: + alpha: + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +seir_modifiers: + scenarios: + - None + - Scenario1 + - Scenario2 + modifiers: + None: + method: SinglePeriodModifier + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: fixed + value: 0 + Wuhan: + method: SinglePeriodModifier + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: uniform + low: .14 + high: .33 + KansasCity: + method: MultiPeriodModifier + parameter: r0 + groups: + - periods: + - start_date: 2020-04-01 + end_date: 2020-05-15 + subpop: "all" + value: + distribution: uniform + low: .04 + high: .23 + Scenario1: + method: StackedModifier + modifiers: + - KansasCity + - Wuhan + - None + Scenario2: + method: StackedModifier + modifiers: + - Wuhan + +#outcome_modifiers: +# scenarios: +# - DelayedTesting +# modifiers: +# DelayedTesting: +# method:SinglePeriodModifier +# parameter: incidC::probability +# period_start_date: 2020-03-15 +# period_end_date: 2020-05-01 +# subpop: 'all' +# value: 0.5 +# DelayedHosp: +# method:SinglePeriodModifier +# parameter: incidD::delay +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-01 +# subpop: 'all' +# value: -1.0 +# LongerHospStay: +# method:SinglePeriodModifier +# parameter: incidH::duration +# period_start_date: 2020-04-15 +# period_end_date: 2020-05-01 +# subpop: 'all' +# value: -0.5 + diff --git a/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py b/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py index 2c6a4f138..d0ed96646 100644 --- a/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py +++ b/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py @@ -4,45 +4,32 @@ import pathlib import confuse -from gempyor import NPI, setup +from gempyor import NPI, model_info from gempyor.utils import config -DATA_DIR = os.path.dirname(__file__) + "/data" +DATA_DIR = os.path.dirname(__file__) + "/data" os.chdir(os.path.dirname(__file__)) + class Test_SinglePeriodModifier: def test_SinglePeriodModifier_success(self): - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_minimal.yaml") + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_test.yml") - ss = setup.SubpopulationStructure( - setup_name="test_seir", - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - subpop_names_key="subpop", - ) + s = model_info.ModelInfo( + setup_name="test_seir", + config=config, + nslots=1, + seir_modifiers_scenario="None", + outcome_modifiers_scenario=None, + write_csv=False, + ) - s = setup.Setup( - setup_name="test_seir", - spatial_setup=ss, - nslots=1, - npi_scenario="None", - npi_config_seir=config["interventions"]["settings"]["None"], - parameters_config=config["seir"]["parameters"], - seeding_config=config["seeding"], - ti=config["start_date"].as_date(), - tf=config["end_date"].as_date(), - interactive=True, - write_csv=False, - # first_sim_index=first_sim_index, - # in_run_id=run_id, - # in_prefix=prefix, - # out_run_id=run_id, - # out_prefix=prefix, - dt=0.25, - ) - - test = NPI.SinglePeriodModifier(npi_config=s.npi_config_seir, global_config=config,subpops=s.subpop_struct.subpop_names) - + test = NPI.SinglePeriodModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=None, + ) diff --git a/flepimop/gempyor_pkg/tests/outcomes/config.yml b/flepimop/gempyor_pkg/tests/outcomes/config.yml index c123ad8ae..4a5ddbd7a 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config.yml @@ -7,6 +7,8 @@ nslots: 1 subpop_setup: geodata: geodata.csv + subpop_pop_key: population + subpop_names_key: subpop outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_load.yml b/flepimop/gempyor_pkg/tests/outcomes/config_load.yml index 7b9a7a9d8..9bbdd2030 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_load.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_load.yml @@ -7,6 +7,8 @@ nslots: 1 subpop_setup: geodata: geodata.csv + subpop_pop_key: population + subpop_names_key: subpop outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml b/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml index 369e2f3cc..f44627663 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml @@ -7,6 +7,8 @@ nslots: 1 subpop_setup: geodata: geodata.csv + subpop_pop_key: population + subpop_names_key: subpop outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml b/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml index 48537816d..4294303b2 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml @@ -7,6 +7,8 @@ nslots: 1 subpop_setup: geodata: geodata.csv + subpop_pop_key: population + subpop_names_key: subpop outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml b/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml index b5f6553a7..69c944762 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml @@ -7,6 +7,8 @@ nslots: 1 subpop_setup: geodata: geodata.csv + subpop_pop_key: population + subpop_names_key: subpop outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml b/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml index 04ed78a42..25c8f12bf 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml @@ -7,6 +7,8 @@ nslots: 1 subpop_setup: geodata: geodata.csv + subpop_pop_key: population + subpop_names_key: subpop outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml b/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml index 254043a3d..e2b263b04 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml @@ -7,6 +7,8 @@ nslots: 1 subpop_setup: geodata: geodata.csv + subpop_pop_key: population + subpop_names_key: subpop outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_test.yml b/flepimop/gempyor_pkg/tests/outcomes/config_test.yml new file mode 100644 index 000000000..fa8a0d774 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/outcomes/config_test.yml @@ -0,0 +1,149 @@ +name: minimal_test +setup_name: minimal_test_setup +start_date: 2020-01-31 +end_date: 2020-05-31 +data_path: data +nslots: 5 + + +subpop_setup: + geodata: geodata.csv + mobility: mobility.csv + subpop_pop_key: population + subpop_names_key: subpop + + +seeding: + method: FolderDraw + seeding_file_type: seed + +initial_conditions: + method: Default + +compartments: + infection_stage: ["S", "E", "I1", "I2", "I3", "R"] + vaccination_stage: ["unvaccinated"] + +seir: + integration: + method: legacy + dt: 1/6 + parameters: + alpha: + value: .9 + sigma: + value: + distribution: fixed + value: 1 / 5.2 + gamma: + value: + distribution: uniform + low: 1 / 6 + high: 1 / 2.6 + R0s: + value: + distribution: uniform + low: 2 + high: 3 + transitions: + - source: ["S", "unvaccinated"] + destination: ["E", "unvaccinated"] + rate: ["R0s * gamma", 1] + proportional_to: [ + ["S", "unvaccinated"], + [[["I1", "I2", "I3"]], "unvaccinated"], + ] + proportion_exponent: [["1", "1"], ["alpha", "1"]] + - source: [["E"], ["unvaccinated"]] + destination: [["I1"], ["unvaccinated"]] + rate: ["sigma", 1] + proportional_to: [[["E"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I1"], ["unvaccinated"]] + destination: [["I2"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I1"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I2"], ["unvaccinated"]] + destination: [["I3"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I2"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + - source: [["I3"], ["unvaccinated"]] + destination: [["R"], ["unvaccinated"]] + rate: ["3 * gamma", 1] + proportional_to: [[["I3"], ["unvaccinated"]]] + proportion_exponent: [["1", "1"]] + +seir_modifiers: + scenarios: + - None + - Scenario1 + - Scenario2 + modifiers: + None: + method: SinglePeriodModifier + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: fixed + value: 0 + Wuhan: + method: SinglePeriodModifier + parameter: r0 + period_start_date: 2020-04-01 + period_end_date: 2020-05-15 + value: + distribution: uniform + low: .14 + high: .33 + KansasCity: + method: MultiPeriodModifier + parameter: r0 + groups: + - periods: + - start_date: 2020-04-01 + end_date: 2020-05-15 + subpop: "all" + value: + distribution: uniform + low: .04 + high: .23 + Scenario1: + method: StackedModifier + modifiers: + - KansasCity + - Wuhan + - None + Scenario2: + method: StackedModifier + modifiers: + - Wuhan + +outcome_modifiers: + scenarios: + - DelayedTesting + modifiers: + DelayedTesting: + method:SinglePeriodModifier + parameter: incidC::probability + period_start_date: 2020-03-15 + period_end_date: 2020-05-01 + subpop: 'all' + value: 0.5 + DelayedHosp: + method:SinglePeriodModifier + parameter: incidD::delay + period_start_date: 2020-04-01 + period_end_date: 2020-05-01 + subpop: 'all' + value: -1.0 + LongerHospStay: + method:SinglePeriodModifier + parameter: incidH::duration + period_start_date: 2020-04-15 + period_end_date: 2020-05-01 + subpop: 'all' + value: -0.5 + diff --git a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py deleted file mode 100644 index dcd21947a..000000000 --- a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py +++ /dev/null @@ -1,43 +0,0 @@ -import gempyor -import numpy as np -import pandas as pd -import datetime -import pytest - -from gempyor.utils import config - -import pandas as pd -import numpy as np -import datetime -import matplotlib.pyplot as plt -import glob, os, sys -from pathlib import Path - -# import seaborn as sns -import pyarrow.parquet as pq -import pyarrow as pa -from gempyor import file_paths, setup, outcomes - -config_path_prefix = "" #'tests/outcomes/' - -### To generate files for this test, see notebook Test Outcomes playbook.ipynb in COVID19_Maryland - -geoid = ["15005", "15007", "15009", "15001", "15003"] -diffI = np.arange(5) * 2 -date_data = datetime.date(2020, 4, 15) -subclasses = ["_A", "_B"] - -os.chdir(os.path.dirname(__file__)) - - -def test_outcome_scenario(): - os.chdir(os.path.dirname(__file__)) ## this is redundant but necessary. Why ? - inference_simulator = gempyor.GempyorSimulator( - config_path=f"{config_path_prefix}config.yml", - run_id=1, - prefix="", - first_sim_index=1, - outcome_scenario="high_death_rate", - stoch_traj_flag=False, - ) - diff --git a/flepimop/gempyor_pkg/tests/seir/data/config.yml b/flepimop/gempyor_pkg/tests/seir/data/config.yml index 84e80a8aa..2e09b4110 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config.yml @@ -9,6 +9,8 @@ nslots: 15 subpop_setup: geodata: geodata.csv mobility: mobility.txt + subpop_pop_key: population + subpop_names_key: subpop seeding: method: FolderDraw diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml index 791cb474d..843743a7b 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml @@ -8,6 +8,8 @@ nslots: 15 subpop_setup: geodata: geodata.csv mobility: mobility.txt + subpop_pop_key: population + subpop_names_key: subpop compartments: infection_stage: ["S", "E", "I1", "I2", "I3", "R"] diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml index 1470451b3..97d6b69e3 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml @@ -8,6 +8,8 @@ nslots: 15 subpop_setup: geodata: geodata.csv mobility: mobility.txt + subpop_pop_key: population + subpop_names_key: subpop seeding: method: FolderDraw diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml b/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml index 4a20af5d1..c197145a3 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml @@ -9,6 +9,8 @@ subpop_setup: base_path: data geodata: geodata.csv mobility: mobility.txt + subpop_pop_key: population + subpop_names_key: subpop initial_conditions: method: InitialConditionsFolderDraw diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml b/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml index f9cca1a8a..dbe7cb0a6 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml @@ -9,6 +9,8 @@ subpop_setup: base_path: data geodata: geodata.csv mobility: mobility.txt + subpop_pop_key: population + subpop_names_key: subpop initial_conditions: method: InitialConditionsFolderDraw diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml b/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml index 464d05c26..9e4b8aad9 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml @@ -9,6 +9,8 @@ subpop_setup: base_path: data geodata: geodata.csv mobility: mobility.csv + subpop_pop_key: population + subpop_names_key: subpop seeding: seeding_file_type: seed diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_test.yml b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml index 3ea2a2c5c..fa8a0d774 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_test.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml @@ -9,7 +9,8 @@ nslots: 5 subpop_setup: geodata: geodata.csv mobility: mobility.csv - + subpop_pop_key: population + subpop_names_key: subpop seeding: @@ -119,3 +120,30 @@ seir_modifiers: method: StackedModifier modifiers: - Wuhan + +outcome_modifiers: + scenarios: + - DelayedTesting + modifiers: + DelayedTesting: + method:SinglePeriodModifier + parameter: incidC::probability + period_start_date: 2020-03-15 + period_end_date: 2020-05-01 + subpop: 'all' + value: 0.5 + DelayedHosp: + method:SinglePeriodModifier + parameter: incidD::delay + period_start_date: 2020-04-01 + period_end_date: 2020-05-01 + subpop: 'all' + value: -1.0 + LongerHospStay: + method:SinglePeriodModifier + parameter: incidH::duration + period_start_date: 2020-04-15 + period_end_date: 2020-05-01 + subpop: 'all' + value: -0.5 + diff --git a/flepimop/gempyor_pkg/tests/seir/test_model_info.py b/flepimop/gempyor_pkg/tests/seir/test_model_info.py index 89fc7dd0c..153f41755 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_model_info.py +++ b/flepimop/gempyor_pkg/tests/seir/test_model_info.py @@ -5,7 +5,7 @@ import pytest import confuse -from gempyor import model_info, subpopulation_structure +from gempyor.model_info import ModelInfo, subpopulation_structure from gempyor.utils import config @@ -15,42 +15,94 @@ os.chdir(os.path.dirname(__file__)) -class TestSubpopulationStructure: - def test_SubpopulationStructure_success(self): - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", +class TestModelInfo: + def test_ModelInfo_init_success(self): + config.set_file(f"{DATA_DIR}/config_test.yml") + s = ModelInfo( + config=config, + seir_modifiers_scenario=None, + outcome_modifiers_scenario=None, + spatial_path_prefix="", + write_csv=False, + write_parquet=False, + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + inference_filename_prefix="", + inference_filepath_suffix="", + setup_name=None, # override config setup_name ) - s = model_info( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, + assert isinstance(s, ModelInfo) + + def test_ModelInfo_init_tf_is_ahead_of_ti_fail(self): + config.set_file(f"{DATA_DIR}/config_test.yml") + config["start_date"] = "2022-01-02" + with pytest.raises(ValueError, match=r"tf.*is less than or equal to ti.*"): + s = ModelInfo( + config=config, + seir_modifiers_scenario=None, + outcome_modifiers_scenario=None, + spatial_path_prefix="", + write_csv=False, + write_parquet=False, + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + inference_filename_prefix="", + inference_filepath_suffix="", + setup_name=None, # override config setup_name + ) + + def test_ModelInfo_init_seir_modifiers_scenario_set(self): + config.set_file(f"{DATA_DIR}/config_test.yml") + + s = ModelInfo( + config=config, + seir_modifiers_scenario="Scenario1", + outcome_modifiers_scenario=None, + spatial_path_prefix="", write_csv=False, write_parquet=False, - dt=None, # step size, in days first_sim_index=1, in_run_id=None, in_prefix=None, out_run_id=None, out_prefix=None, stoch_traj_flag=False, + inference_filename_prefix="", + inference_filepath_suffix="", + setup_name=None, # override config setup_name ) + def test_ModelInfo_init_setup_name_set(self): + config.set_file(f"{DATA_DIR}/config_test.yml") + + s = ModelInfo( + config=config, + seir_modifiers_scenario=None, + outcome_modifiers_scenario="DelayedTesting", + spatial_path_prefix="", + write_csv=False, + write_parquet=False, + first_sim_index=1, + in_run_id=None, + in_prefix=None, + out_run_id=None, + out_prefix=None, + stoch_traj_flag=False, + inference_filename_prefix="", + inference_filepath_suffix="", + setup_name=None, + ) + + +''' def test_tf_is_ahead_of_ti_fail(self): # time to finish (tf) is ahead of time to start(ti) error with pytest.raises(ValueError, match=r".*tf.*less.*"): @@ -614,3 +666,4 @@ def test_mobility_data_exceeded_fail(self): subpop_pop_key="population", subpop_names_key="subpop", ) +''' diff --git a/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py b/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py index 25ffae59f..eaf28a144 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py +++ b/flepimop/gempyor_pkg/tests/seir/test_seeding_ic.py @@ -8,7 +8,7 @@ import pyarrow as pa import pyarrow.parquet as pq -from gempyor import setup, seir, NPI, file_paths, seeding_ic +from gempyor import seir, NPI, file_paths, seeding_ic, model_info from gempyor.utils import config @@ -18,141 +18,89 @@ class TestSeedingAndIC: def test_SeedingAndIC_success(self): - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config.yml") - - ss = setup.SubpopulationStructure( - setup_name="test_values", - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - subpop_names_key="subpop", - ) - - s = setup.Setup( - setup_name="test_seeding and ic", - spatial_setup=ss, - nslots=1, - npi_scenario="None", - npi_config_seir=config["interventions"]["settings"]["None"], - parameters_config=config["seir"]["parameters"], - seeding_config=config["seeding"], - initial_conditions_config=config["initial_conditions"], - ti=config["start_date"].as_date(), - tf=config["end_date"].as_date(), - interactive=True, - write_csv=False, - dt=0.25, - ) - sic = seeding_ic.SeedingAndIC(seeding_config=s.seeding_config, - initial_conditions_config = s.initial_conditions_config) - assert sic.seeding_config == s.seeding_config - assert sic.initial_conditions_config == s.initial_conditions_config + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config.yml") + + s = model_info.ModelInfo( + config=config, + setup_name="test_seeding and ic", + nslots=1, + seir_modifiers_scenario=None, + outcome_modifiers_scenario=None, + write_csv=False, + ) + sic = seeding_ic.SeedingAndIC( + seeding_config=s.seeding_config, initial_conditions_config=s.initial_conditions_config + ) + assert sic.seeding_config == s.seeding_config + assert sic.initial_conditions_config == s.initial_conditions_config def test_SeedingAndIC_allow_missing_node_compartments_success(self): - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config.yml") - - ss = setup.SubpopulationStructure( - setup_name="test_values", - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name="test_seeding and ic", - spatial_setup=ss, - nslots=1, - npi_scenario="None", - npi_config_seir=config["interventions"]["settings"]["None"], - parameters_config=config["seir"]["parameters"], - seeding_config=config["seeding"], - initial_conditions_config=config["initial_conditions"], - ti=config["start_date"].as_date(), - tf=config["end_date"].as_date(), - interactive=True, - write_csv=False, - dt=0.25, - ) - s.initial_conditions_config["allow_missing_nodes"] = True - s.initial_conditions_config["allow_missing_compartments"] = True - sic = seeding_ic.SeedingAndIC(seeding_config=s.seeding_config, - initial_conditions_config = s.initial_conditions_config) - - initial_conditions = sic.draw_ic(sim_id=100, setup=s) - - # print(initial_conditions) - #integration_method = "legacy" + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config.yml") + + s = model_info.ModelInfo( + config=config, + setup_name="test_seeding and ic", + nslots=1, + seir_modifiers_scenario=None, + outcome_modifiers_scenario=None, + write_csv=False, + ) + + s.initial_conditions_config["allow_missing_nodes"] = True + s.initial_conditions_config["allow_missing_compartments"] = True + sic = seeding_ic.SeedingAndIC( + seeding_config=s.seeding_config, initial_conditions_config=s.initial_conditions_config + ) + + initial_conditions = sic.draw_ic(sim_id=100, setup=s) + + # print(initial_conditions) + # integration_method = "legacy" def test_SeedingAndIC_IC_notImplemented_fail(self): - with pytest.raises(NotImplementedError, match=r".*unknown.*initial.*conditions.*"): - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config.yml") - - ss = setup.SubpopulationStructure( - setup_name="test_values", - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name="test_seeding and ic", - spatial_setup=ss, - nslots=1, - npi_scenario="None", - npi_config_seir=config["interventions"]["settings"]["None"], - parameters_config=config["seir"]["parameters"], - seeding_config=config["seeding"], - initial_conditions_config=config["initial_conditions"], - ti=config["start_date"].as_date(), - tf=config["end_date"].as_date(), - interactive=True, - write_csv=False, - dt=0.25, - ) - s.initial_conditions_config["method"] = "unknown" - sic = seeding_ic.SeedingAndIC(seeding_config=s.seeding_config, - initial_conditions_config = s.initial_conditions_config) - - sic.draw_ic(sim_id=100, setup=s) + with pytest.raises(NotImplementedError, match=r".*unknown.*initial.*conditions.*"): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config.yml") + + s = model_info.ModelInfo( + config=config, + setup_name="test_seeding and ic", + nslots=1, + seir_modifiers_scenario=None, + outcome_modifiers_scenario=None, + write_csv=False, + ) + s.initial_conditions_config["method"] = "unknown" + sic = seeding_ic.SeedingAndIC( + seeding_config=s.seeding_config, initial_conditions_config=s.initial_conditions_config + ) + + sic.draw_ic(sim_id=100, setup=s) def test_SeedingAndIC_draw_seeding_success(self): - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config.yml") - - ss = setup.SubpopulationStructure( - setup_name="test_values", - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - popnodes_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name="test_seeding and ic", - spatial_setup=ss, - nslots=1, - npi_scenario="None", - npi_config_seir=config["interventions"]["settings"]["None"], - parameters_config=config["seir"]["parameters"], - seeding_config=config["seeding"], - initial_conditions_config=config["initial_conditions"], - ti=config["start_date"].as_date(), - tf=config["end_date"].as_date(), - interactive=True, - write_csv=False, - dt=0.25, - ) - sic = seeding_ic.SeedingAndIC(seeding_config=s.seeding_config, - initial_conditions_config = s.initial_conditions_config) - s.seeding_config["method"] = "NoSeeding" - - seeding = sic.draw_seeding(sim_id=100, setup=s) - print(seeding) - # print(initial_conditions) - + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config.yml") + + s = model_info.ModelInfo( + config=config, + setup_name="test_seeding and ic", + nslots=1, + seir_modifiers_scenario=None, + outcome_modifiers_scenario=None, + write_csv=False, + ) + sic = seeding_ic.SeedingAndIC( + seeding_config=s.seeding_config, initial_conditions_config=s.initial_conditions_config + ) + s.seeding_config["method"] = "NoSeeding" + + seeding = sic.draw_seeding(sim_id=100, setup=s) + print(seeding) + + # print(initial_conditions) diff --git a/flepimop/gempyor_pkg/tests/seir/test_seir.py b/flepimop/gempyor_pkg/tests/seir/test_seir.py index 4ae63e4cc..c01460f15 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_seir.py +++ b/flepimop/gempyor_pkg/tests/seir/test_seir.py @@ -35,7 +35,7 @@ def test_check_values(): seeding[0, 0] = 1 - #if np.all(seeding == 0): + # if np.all(seeding == 0): # warnings.warn("provided seeding has only value 0", UserWarning) if np.all(modinf.mobility.data < 1): @@ -119,57 +119,46 @@ def test_constant_population_rk4jit_integration_fail(): with pytest.raises(ValueError, match=r".*with.*method.*integration.*"): config.set_file(f"{DATA_DIR}/config.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name="test_seir", - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.txt", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - first_sim_index = 1 run_id = "test" prefix = "" - s = setup.Setup( - setup_name="test_seir", - subpop_setup=ss, + modinf = model_info.ModelInfo( + config=config, nslots=1, - npi_scenario="None", - npi_config_seir=config["interventions"]["settings"]["None"], - parameters_config=config["seir"]["parameters"], - seeding_config=config["seeding"], - ti=config["start_date"].as_date(), - tf=config["end_date"].as_date(), - interactive=True, + seir_modifiers_scenario="None", write_csv=False, first_sim_index=first_sim_index, in_run_id=run_id, in_prefix=prefix, out_run_id=run_id, out_prefix=prefix, - dt=0.25, - stoch_traj_flag=True + stoch_traj_flag=True, ) - s.integration_method = "rk4.jit" + modinf.integration_method = "rk4.jit" - seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) - initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) + seeding_data, seeding_amounts = modinf.seedingAndIC.load_seeding(sim_id=100, setup=modinf) + initial_conditions = modinf.seedingAndIC.draw_ic(sim_id=100, setup=modinf) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) + npi = NPI.NPIBase.execute( + npi_config=modinf.npi_config_seir, + modinf=modinf, + modifiers_library=modinf.seir_modifiers_library, + subpops=modinf.subpop_struct.subpop_names, + ) - params = s.parameters.parameters_quick_draw(s.n_days, s.nsubpops) - params = s.parameters.parameters_reduce(params, npi) + params = modinf.parameters.parameters_quick_draw(modinf.n_days, modinf.nsubpops) + params = modinf.parameters.parameters_reduce(params, npi) ( unique_strings, transition_array, proportion_array, proportion_info, - ) = s.compartments.get_transition_array() - parsed_parameters = s.compartments.parse_parameters(params, s.parameters.pnames, unique_strings) + ) = modinf.compartments.get_transition_array() + parsed_parameters = modinf.compartments.parse_parameters(params, modinf.parameters.pnames, unique_strings) states = seir.steps_SEIR( - s, + modinf, parsed_parameters, transition_array, proportion_array, @@ -178,57 +167,47 @@ def test_constant_population_rk4jit_integration_fail(): seeding_data, seeding_amounts, ) - completepop = s.subpop_pop.sum() - origpop = s.subpop_pop - for it in range(s.n_days): + completepop = modinf.subpop_pop.sum() + origpop = modinf.subpop_pop + for it in range(modinf.n_days): totalpop = 0 - for i in range(s.nsubpops): + for i in range(modinf.nsubpops): totalpop += states[0].sum(axis=1)[it, i] assert states[0].sum(axis=1)[it, i] - 1e-3 < origpop[i] < states[0].sum(axis=1)[it, i] + 1e-3 assert completepop - 1e-3 < totalpop < completepop + 1e-3 + def test_constant_population_rk4jit_integration(): - #config.set_file(f"{DATA_DIR}/config.yml") + # config.set_file(f"{DATA_DIR}/config.yml") config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_2.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name="test_seir", - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.txt", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - first_sim_index = 1 run_id = "test" prefix = "" - s = setup.Setup( - setup_name="test_seir", - subpop_setup=ss, + modinf = model_info.ModelInfo( + config=config, nslots=1, - npi_scenario="None", - npi_config_seir=config["interventions"]["settings"]["None"], - parameters_config=config["seir"]["parameters"], - seeding_config=config["seeding"], - ti=config["start_date"].as_date(), - tf=config["end_date"].as_date(), - interactive=True, + seir_modifiers_scenario="None", write_csv=False, first_sim_index=first_sim_index, in_run_id=run_id, in_prefix=prefix, out_run_id=run_id, out_prefix=prefix, - dt=0.25, - stoch_traj_flag=False - ) - #s.integration_method = "rk4.jit" - assert s.integration_method == "rk4.jit" + stoch_traj_flag=False, + ) + # s.integration_method = "rk4.jit" + assert modinf.integration_method == "rk4.jit" - seeding_data, seeding_amounts = s.seedingAndIC.load_seeding(sim_id=100, setup=s) - initial_conditions = s.seedingAndIC.draw_ic(sim_id=100, setup=s) + seeding_data, seeding_amounts = modinf.seedingAndIC.load_seeding(sim_id=100, setup=modinf) + initial_conditions = modinf.seedingAndIC.draw_ic(sim_id=100, setup=modinf) - npi = NPI.NPIBase.execute(npi_config=s.npi_config_seir, global_config=config, subpops=s.subpop_struct.subpop_names) + npi = NPI.NPIBase.execute( + npi_config=modinf.npi_config_seir, + modinf=modinf, + modifiers_library=modinf.seir_modifiers_library, + subpops=modinf.subpop_struct.subpop_names, + ) params = s.parameters.parameters_quick_draw(s.n_days, s.nsubpops) params = s.parameters.parameters_reduce(params, npi) @@ -238,8 +217,8 @@ def test_constant_population_rk4jit_integration(): transition_array, proportion_array, proportion_info, - ) = s.compartments.get_transition_array() - parsed_parameters = s.compartments.parse_parameters(params, s.parameters.pnames, unique_strings) + ) = modinf.compartments.get_transition_array() + parsed_parameters = modinf.compartments.parse_parameters(params, modinf.parameters.pnames, unique_strings) states = seir.steps_SEIR( s, parsed_parameters, @@ -250,15 +229,16 @@ def test_constant_population_rk4jit_integration(): seeding_data, seeding_amounts, ) - completepop = s.subpop_pop.sum() - origpop = s.subpop_pop - for it in range(s.n_days): + completepop = modinf.subpop_pop.sum() + origpop = modinf.subpop_pop + for it in range(modinf.n_days): totalpop = 0 - for i in range(s.nsubpops): + for i in range(modinf.nsubpops): totalpop += states[0].sum(axis=1)[it, i] assert states[0].sum(axis=1)[it, i] - 1e-3 < origpop[i] < states[0].sum(axis=1)[it, i] + 1e-3 assert completepop - 1e-3 < totalpop < completepop + 1e-3 + def test_steps_SEIR_nb_simple_spread_with_txt_matrices(): os.chdir(os.path.dirname(__file__)) config.clear() @@ -538,6 +518,8 @@ def test_continuation_resume(): out_run_id=run_id, out_prefix=prefix, ) + # Convert Subview object to string using str + modinf.initial_file_type = str(modinf.initial_conditions_config["initial_file_type"]) seir.onerun_SEIR(sim_id2write=sim_id2write, modinf=modinf, config=config) states_new = pq.read_table( @@ -593,6 +575,8 @@ def test_inference_resume(): out_run_id=run_id, out_prefix=prefix, ) + # Convert Subview object to string using str + initial_file_type = str(modinf.initial_conditions_config["initial_file_type"]) seir.onerun_SEIR(sim_id2write=int(sim_id2write), modinf=modinf, config=config) npis_old = pq.read_table( file_paths.create_file_name(modinf.in_run_id, modinf.in_prefix, sim_id2write, "snpi", "parquet") diff --git a/flepimop/gempyor_pkg/tests/utils/test_file_paths.py b/flepimop/gempyor_pkg/tests/utils/test_file_paths.py index da7bf282e..d47524876 100644 --- a/flepimop/gempyor_pkg/tests/utils/test_file_paths.py +++ b/flepimop/gempyor_pkg/tests/utils/test_file_paths.py @@ -2,12 +2,12 @@ import datetime import os from mock import MagicMock +from typing import Callable, Any +from gempyor import file_paths -from gempyor import file_paths +FAKE_TIME = datetime.datetime(2023, 8, 9, 16, 00, 0) -FAKE_TIME = datetime.datetime(2023,8,9,16,00,0) - -''' +""" @pytest.fixture(scope="module") def mock_datetime_now(monkeypatch): datetime_mock = MagicMock(wraps=datetime.datetime) @@ -16,63 +16,129 @@ def mock_datetime_now(monkeypatch): @pytest.fixture(scope="module") def test_datetime(mock_datetime_now): assert datetime.datetime.now() == FAKE_TIME -''' +""" -def test_run_id(monkeypatch): - datetime_mock = MagicMock(wraps=datetime.datetime) - datetime_mock.now.return_value = FAKE_TIME - monkeypatch.setattr(datetime, "datetime", datetime_mock) - run_id = file_paths.run_id() - assert run_id == datetime.datetime.strftime(FAKE_TIME, "%Y.%m.%d.%H:%M:%S.%Z") +def test_run_id(monkeypatch: pytest.MonkeyPatch): + datetime_mock = MagicMock(wraps=datetime.datetime) + datetime_mock.now.return_value = FAKE_TIME + monkeypatch.setattr(datetime, "datetime", datetime_mock) + + run_id = file_paths.run_id() + assert run_id == datetime.datetime.strftime(FAKE_TIME, "%Y%m%d_%H%M%S%Z") + @pytest.fixture(scope="module") def set_run_id(): - return lambda: file_path.run_id() + return lambda: file_paths.run_id() tmp_path = "/tmp" -@pytest.mark.parametrize(('prefix','ftype'),[ - ('test0001','seed'), - ('test0002','seed'), - ('test0003','seed'), - ('test0004','seed'), - ('test0005','hosp'), - ('test0006','hosp'), - ('test0007','hosp'), - ('test0008','hosp'), -]) -def test_create_dir_name(set_run_id, prefix, ftype): - os.chdir(tmp_path) - os.path.exists(file_paths.create_dir_name(set_run_id, prefix, ftype)) + +@pytest.mark.parametrize( + ("prefix", "ftype", "inference_filepath_suffix", "inference_filename_prefix"), + [ + ("test0001", "seed", "", ""), + ("test0002", "seed", "", ""), + ("test0003", "seed", "", ""), + ("test0004", "seed", "", ""), + ("test0005", "hosp", "", ""), + ("test0006", "hosp", "", ""), + ("test0007", "hosp", "", ""), + ("test0008", "hosp", "", ""), + ], +) +def test_create_dir_name( + set_run_id: Callable[[], Any], + prefix, + ftype, + inference_filepath_suffix, + inference_filename_prefix, +): + os.chdir(tmp_path) + os.path.exists( + file_paths.create_dir_name(set_run_id, prefix, ftype, inference_filepath_suffix, inference_filename_prefix) + ) -@pytest.mark.parametrize(('prefix','index','ftype','extension','create_directory'),[ - ('test0001','0','seed','csv', True), - ('test0002','0','seed','parquet', True), - ('test0003','0','seed','csv', False), - ('test0004','0','seed','parquet', False), - ('test0001','1','seed','csv', True), - ('test0002','1','seed','parquet', True), - ('test0003','1','seed','csv', False), - ('test0004','1','seed','parquet', False), -]) -def test_create_file_name(set_run_id, prefix, index, ftype, extension, create_directory): - os.chdir(tmp_path) - os.path.isfile(file_paths.create_file_name(set_run_id, prefix, int(index), ftype, extension, create_directory)) +@pytest.mark.parametrize( + ( + "prefix", + "index", + "ftype", + "extension", + "inference_filepath_suffix", + "inference_filename_prefix", + "create_directory", + ), + [ + ("test0001", "0", "seed", "csv", "", "", True), + ("test0002", "0", "seed", "parquet", "", "", True), + ("test0003", "0", "seed", "csv", "", "", False), + ("test0004", "0", "seed", "parquet", "", "", False), + ("test0001", "1", "seed", "csv", "", "", True), + ("test0002", "1", "seed", "parquet", "", "", True), + ("test0003", "1", "seed", "csv", "", "", False), + ("test0004", "1", "seed", "parquet", "", "", False), + ], +) +def test_create_file_name( + set_run_id: Callable[[], Any], + prefix, + index, + ftype, + extension, + inference_filepath_suffix, + inference_filename_prefix, + create_directory, +): + os.chdir(tmp_path) + os.path.isfile( + file_paths.create_file_name( + set_run_id, + prefix, + int(index), + ftype, + extension, + inference_filepath_suffix, + inference_filename_prefix, + create_directory, + ) + ) -@pytest.mark.parametrize(('prefix','index','ftype','create_directory'),[ - ('test0001','0','seed', True), - ('test0002','0','seed', True), - ('test0003','0','seed', False), - ('test0004','0','seed', False), - ('test0001','1','seed', True), - ('test0002','1','seed', True), - ('test0003','1','seed', False), - ('test0004','1','seed', False), -]) -def test_create_file_name_without_extension(set_run_id, prefix, index, ftype, create_directory): - os.chdir(tmp_path) - os.path.isfile(file_paths.create_file_name_without_extension(set_run_id, prefix, int(index), ftype, create_directory)) +@pytest.mark.parametrize( + ("prefix", "index", "ftype", "inference_filepath_suffix", "inference_filename_prefix", "create_directory"), + [ + ("test0001", "0", "seed", "", "", True), + ("test0002", "0", "seed", "", "", True), + ("test0003", "0", "seed", "", "", False), + ("test0004", "0", "seed", "", "", False), + ("test0001", "1", "seed", "", "", True), + ("test0002", "1", "seed", "", "", True), + ("test0003", "1", "seed", "", "", False), + ("test0004", "1", "seed", "", "", False), + ], +) +def test_create_file_name_without_extension( + set_run_id: Callable[[], Any], + prefix, + index, + ftype, + inference_filepath_suffix, + inference_filename_prefix, + create_directory, +): + os.chdir(tmp_path) + os.path.isfile( + file_paths.create_file_name_without_extension( + set_run_id, + prefix, + int(index), + ftype, + inference_filepath_suffix, + inference_filename_prefix, + create_directory, + ) + ) From d2faaac2b246f389b6d26725fe4a9a27b20ba025 Mon Sep 17 00:00:00 2001 From: kjsato Date: Mon, 23 Oct 2023 10:48:05 -0400 Subject: [PATCH 29/50] modified to pass test_seir.py after breaking-improvments --- .gitignore | 6 +++ flepimop/gempyor_pkg/.coverage | Bin 53248 -> 53248 bytes .../gempyor_pkg/src/gempyor/seeding_ic.py | 2 +- flepimop/gempyor_pkg/src/gempyor/steps_rk4.py | 3 +- .../tests/outcomes/test_outcomes0.py_ | 43 ++++++++++++++++++ flepimop/gempyor_pkg/tests/seir/test_seir.py | 16 +++---- 6 files changed, 60 insertions(+), 10 deletions(-) create mode 100644 flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py_ diff --git a/.gitignore b/.gitignore index 17293471b..41d66011c 100644 --- a/.gitignore +++ b/.gitignore @@ -65,3 +65,9 @@ Outcomes.egg-info/ # R package manuals man/ +flepimop/gempyor_pkg/.coverage +flepimop/gempyor_pkg/.coverage.kojis-mbp-8.sph.ad.jhsph.edu.6137.959542 +flepimop/gempyor_pkg/get_value.prof +flepimop/gempyor_pkg/tests/seir/.coverage +flepimop/gempyor_pkg/tests/seir/.coverage.kojis-mbp-8.sph.ad.jhsph.edu.90615.974746 +flepimop/gempyor_pkg/.coverage diff --git a/flepimop/gempyor_pkg/.coverage b/flepimop/gempyor_pkg/.coverage index 751c8b03ea0b433bc94b869731b3dc1dea2088d5..7a92f0439b89796007be8ce28ebbde1850ff5c00 100644 GIT binary patch delta 3722 zcmZ`)dvH@_7QZ+5Cb@as`?cx&kw;s3xM*8JK&y}{FlZkX7HA6;(we3vP@0maMP$eg zqodBayCQdX(LpTijIs{H7O7g~(bRESoSj*Ni!37AbQfvC0znH6ZRovwzDqMEl)ZnP zlY7qZJihat-;Hk{<=aQ?d_mFh(?|7t3dos93h9KBJZcw#_MsAPnA^`SW^b@>vvc%c z>o@APx+A*PI)(Nx+LfA{nzuF2Fhk6%%wy`aYOi{V>a=R3Dph$*xlYN@`{)JK5Vh;0 zw-!>0sytzP`2wM|RHtk6IGb8$=C^FE%oProR4H?4V#ia$j&dt_(^U-?cwGjs3m@`0 zT0OSbwijAlEp1J89;d6h)#Glnd)nL%h+bg^;G-BQ94b|-oo=wLHVMsT<$|q@BaQHD zjWQcBGcbmglQp+EF)9nA&?Z;CqsiuMZg7FECQ~q%uO%~}%W7qMG)gcn(J5-uz_mbV zUXrQ-;PO=2`Ao%g8pzfP7JG^?ufncckv!4Qlg3uJy`a&tsb#CnUEpf-*j<|(7`QSC z5Czc9lbNxIR*$2l)#l##I6x{5Fp_!ZSa(aEyKa-i<8aHh5+Ow?PVq=ACT>W!*eNYb zfPiU}YRY#2^{NrLXJdC<)6g-L^=xu9dvMiC4tJFmTd~2}>7xeJT#oXysgROoD@*YK)@ng;^F&CL>q}}XlR8R(0CD_%(x%@LR~9f z)hZRN)jZ4n-t~^AmV4J)t%MZvHRRk6vcZNrJvJMpSxN(H%A`WA4te)iQs9-h%M_c# z*$k`GP-mAZqlk8z91Dq-5cXCy0`CQaovZ(szDcj+o@3u(L#R~yp^oBi>AIL}ns;<- zxIb&2)%>ijMEjZ7n3?Kt)VzAC>PuCVDouG@X;W(G{q#cW8YO)6)*?!%TwP7(37xB} zl({uD(0p@EF{ZgPr;!GhZ>}jZ#qDnF>RMLPFjjyt6DKqai8X6T6UZgP@iJCvTtNf5 z0ieFe>ul`d;x;QwFs)sy%&ew&%mUyd;Z!+NW=w=F!t5r~0kII1n}G?ZO}L5$Uxh|L z!SB?18ny>F?yImUQzp79%8ngj49k-%X}E^XHAQjT5KHnTn8*CMON!&TVWM8qjMxfs zV~V4A;%{kS`27W=3{O}^!)AduuHX9zj&MhDAEh{cbCcY0^kyfWC+-gPwKR|$I+zxF zo(Gd#=b(YxfQ|dS$=C;TTl>Ia{eNm}>S$m#6qxj-i84B>VI7zU-Zf4>L2UKJVim=G zu`%FRZmXgfFp2+B-a#ehG8&i-ZKcP~Xkzc_=tjkTqhpCpMH_t}uebU#K_e z#&vJ$+`3h|#k%QTi3#6nd1D?;YM##P^S^)m#NLRBA$+@*EkAK|Tc~eaXxxhua>1RO z+gB2nwn+Z*>#A94IbbQw@hW@w2vp${DyEl^UZV>8d7}kqvh-{aSLH~r{E5GN$t>MD zZ54lhGqTw#(i_Z5QnO=)x#!?#fz%`0N2E^zqBzV4#-;BXd5K&qSxEw(yP`F6EyT|n zpF6lk>H^656H;IdEN6K^3QD)dkfbMwekm+zFr4Tel2LQd@YLuHe&j+>Vs8bDlT6Ud zbW_j4QSsC8pe7i+I(~@EHiEIp=mFYy=c-CLzVcjuT^l?`q#TalE7 zW3#;HvI&ABdI=((AQXw2V0L6?XI;Wbnzs~WPr(#;q7Eq={Pc7!KdLPdeeHm z`Rl~1(zxWaSS$?F-!T#z9KYQ$?hLj^{MJTkp3g@p7{)@39N?vG{tF$VXHW`A(<0}^ zu%x0%@|j{Hav*fU8vM#HcJbGF$yJdPy?wIy+gc zQUIj?`ga`#Cw~~7b%_g3`#yB8f8NOhp{sWS?A%ZyNTv zB5%?){ewfJ?iMLP5DY;S<|je&bxA$`Qi3>n4UE4&aB~DvTiY4VKUqK&KTnVZPY|@x z00B=M#N9vL;O@cO3m)2GRDMfoPiXII42j^Ln&|!IvMCrC9lV$!jRvM9fUPV+?7UU5 zb?(+TlAv$?^5(hLvH{z!nS3yCTl(e2ut-%Qe6)PjS2}z!ye;^t-`3qYV0+Pj<;H>I z=Oy7*csK989h7FgB#m__79W?+`pqNPBj#Rd?fCF4g78&*xNz_1Kc;x)%_QE{$tUp* z1}~E=2MuI%hVMsr|4=bN=Ckm+jve9O3BUBB_4SquBgc}o_s-4TQ$A2P6?fM5pE=T= zO#Vg>_)7gc6;J$E3hlAwhh1Nt|IbsW7f&C3*_X4$8j;T3(R_JqdMJnsIqR)*>t{f&wix%w9YV)Z`b!e5sgqze>b%%aysX{2$YPwFNN5x#Q+9q~=iZQFGQ^Ud=qx_s2D^5B-NoBLnEC8E*zGeDo>CKZ*?? z6nZtdGt~{XoW) zUg;L4-Gtbs!r68P#nH=Q@$XvCh_wRlpF!_RZDQ4w_Kf)ygn23A=5TA?fOIi1Bv~su ztKe=sOgJ#+@f8zHF@)|!U}T9i1iTQWN&)elg3*z*Mw8ihX!fhywq)RI$U`iFBIp*n zjs{Q=eT%+E|3F`$6X+Acv{O43y@6gq+fh4mq4lT^twzgH8Crzqqq(RMJ&bZu7D`4e zd@ubRkB?2}<;f~HS5`SWva(oYWj4#oWRjK9D68yjS!HF(Dl=1785y!lPnT6%nygY& zWtEa5tK?)^B_+wqU{J|AF|lh`hucEsp=E-)H)ksR7kq&Bqj%A6vCG delta 860 zcmZ8dO-NKx7=8E6o%jFlceTh~b)PgAHXJ=3# zUI?P7X%Q_Vo01?Zrl1y;Py`08Y-cMgAqZ;I_hzK12lu|iIp=;K=cF>eRK_=bM2>E} zAG;bLJ08?gUd@e=1R1DjOKgg5vKQ=gcDeP+8nw9j*gR?~#;g&VE8;bV9O2?yccX~A zil}Sj%C_40*)WLZ)`*``DP1pCTD#U98yOvr#t%;(pFlNaBOef_f}Lz)c=B`{sa^}I z8jsQ^hDXMcIb@2V_C8|Z-7WMWBf3a+xMC=1D*YOo8$Giq>EJ~DvpyU2i<8JGXzfu3 z{Ag>&_03|vTVmAV(0-bKS)eu$ANpFwysL|(tNCTrcIWN$t|KygW7t7hf}7C5KC=sK zv;Dz7Z&z5atud>}d}78-)wpMbv4dJeh@JxqkI?j1f&=y|&`;C#9{evk3)6If{FB@c z(R59o(pHmOA{y!=Cf<86xQ!JgBc1u+`T$Kg=Dipkh$g-cH066Q1P81l8R=D&L7Hy% zw*L+8FT5;JWrU)yZ8f-xHLM);=73mmOXo7tm{ZN6N`fEo1>V9-cm!Fv4cFl^T!J$& z1~KS?olu3zf3jpbr$leyi_dOdxkfcENhzsCx;Uj(?$Ro$OgNxi1&dv!Qk3B4MuOW3qFNrXa^^Y{!4@-jr%aM02aiPYaMkd1BN0$^1WcDzjV6)N zngXioNh(T;Cn>Vw$A5`Gm#7_-HHx^H<`S&Jhp5SyOU!x$SHHhdR%O(=oEuXK)%D`V zyW0&kahQ?d7kr0hSb|UR5#GZacmYr0A np.ndarray: ) elif method == "InitialConditionsFolderDraw" or method == "FromFile": if method == "InitialConditionsFolderDraw": - ic_df = setup.read_simID(ftype=self.initial_conditions_config["initial_file_type"], sim_id=sim_id) + ic_df = setup.read_simID(ftype=str(self.initial_conditions_config["initial_file_type"]), sim_id=sim_id) elif method == "FromFile": ic_df = read_df( self.initial_conditions_config["initial_conditions_file"].get(), diff --git a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py index 0b2b1585f..09218a3de 100644 --- a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py +++ b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py @@ -146,7 +146,8 @@ def rhs(t, x, today): for spatial_node in range(nspatial_nodes): number_move[spatial_node] = np.random.binomial( # number_move[spatial_node] = random.binomial( - source_number[spatial_node], + # source_number[spatial_node], + int(source_number[spatial_node]), compound_adjusted_rate[spatial_node], ) else: diff --git a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py_ b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py_ new file mode 100644 index 000000000..7ab1983d8 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes0.py_ @@ -0,0 +1,43 @@ +import gempyor +import numpy as np +import pandas as pd +import datetime +import pytest + +from gempyor.utils import config + +import pandas as pd +import numpy as np +import datetime +import matplotlib.pyplot as plt +import glob, os, sys +from pathlib import Path + +# import seaborn as sns +import pyarrow.parquet as pq +import pyarrow as pa +from gempyor import file_paths, outcomes, model_info + +config_path_prefix = "" #'tests/outcomes/' + +### To generate files for this test, see notebook Test Outcomes playbook.ipynb in COVID19_Maryland + +geoid = ["15005", "15007", "15009", "15001", "15003"] +diffI = np.arange(5) * 2 +date_data = datetime.date(2020, 4, 15) +subclasses = ["_A", "_B"] + +os.chdir(os.path.dirname(__file__)) + + +def test_outcome_scenario(): + os.chdir(os.path.dirname(__file__)) ## this is redundant but necessary. Why ? + inference_simulator = gempyor.GempyorSimulator( + config_path=f"{config_path_prefix}config_test.yml", + run_id=1, + prefix="", + first_sim_index=1, + outcome_modifiers_scenario="DelayedTesting", + stoch_traj_flag=False, + ) + diff --git a/flepimop/gempyor_pkg/tests/seir/test_seir.py b/flepimop/gempyor_pkg/tests/seir/test_seir.py index c01460f15..38055af90 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_seir.py +++ b/flepimop/gempyor_pkg/tests/seir/test_seir.py @@ -134,7 +134,7 @@ def test_constant_population_rk4jit_integration_fail(): out_prefix=prefix, stoch_traj_flag=True, ) - modinf.integration_method = "rk4.jit" + modinf.seir_config["integration"]["method"] = "rk4.jit" seeding_data, seeding_amounts = modinf.seedingAndIC.load_seeding(sim_id=100, setup=modinf) initial_conditions = modinf.seedingAndIC.draw_ic(sim_id=100, setup=modinf) @@ -197,7 +197,7 @@ def test_constant_population_rk4jit_integration(): stoch_traj_flag=False, ) # s.integration_method = "rk4.jit" - assert modinf.integration_method == "rk4.jit" + assert modinf.seir_config["integration"]["method"].get() == "rk4" seeding_data, seeding_amounts = modinf.seedingAndIC.load_seeding(sim_id=100, setup=modinf) initial_conditions = modinf.seedingAndIC.draw_ic(sim_id=100, setup=modinf) @@ -209,8 +209,8 @@ def test_constant_population_rk4jit_integration(): subpops=modinf.subpop_struct.subpop_names, ) - params = s.parameters.parameters_quick_draw(s.n_days, s.nsubpops) - params = s.parameters.parameters_reduce(params, npi) + params = modinf.parameters.parameters_quick_draw(modinf.n_days, modinf.nsubpops) + params = modinf.parameters.parameters_reduce(params, npi) ( unique_strings, @@ -220,7 +220,7 @@ def test_constant_population_rk4jit_integration(): ) = modinf.compartments.get_transition_array() parsed_parameters = modinf.compartments.parse_parameters(params, modinf.parameters.pnames, unique_strings) states = seir.steps_SEIR( - s, + modinf, parsed_parameters, transition_array, proportion_array, @@ -519,7 +519,8 @@ def test_continuation_resume(): out_prefix=prefix, ) # Convert Subview object to string using str - modinf.initial_file_type = str(modinf.initial_conditions_config["initial_file_type"]) + # modinf.initial_conditions_config["initial_file_type"] = str(modinf.initial_conditions_config["initial_file_type"]) + # modinf.initial_file_type = str(modinf.initial_conditions_config["initial_file_type"]) seir.onerun_SEIR(sim_id2write=sim_id2write, modinf=modinf, config=config) states_new = pq.read_table( @@ -575,8 +576,7 @@ def test_inference_resume(): out_run_id=run_id, out_prefix=prefix, ) - # Convert Subview object to string using str - initial_file_type = str(modinf.initial_conditions_config["initial_file_type"]) + seir.onerun_SEIR(sim_id2write=int(sim_id2write), modinf=modinf, config=config) npis_old = pq.read_table( file_paths.create_file_name(modinf.in_run_id, modinf.in_prefix, sim_id2write, "snpi", "parquet") From 291e8aa7f3301665e6a49e5e1a61770ca169a5f4 Mon Sep 17 00:00:00 2001 From: kjsato Date: Mon, 23 Oct 2023 13:43:53 -0400 Subject: [PATCH 30/50] modified to comment out outcome_modifier related to be coped within th src --- .../tests/outcomes/config_test.yml | 50 +- .../tests/seir/data/config_test.yml | 50 +- .../gempyor_pkg/tests/seir/test_model_info.py | 577 +----------------- 3 files changed, 60 insertions(+), 617 deletions(-) diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_test.yml b/flepimop/gempyor_pkg/tests/outcomes/config_test.yml index fa8a0d774..c4f0acd4d 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_test.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_test.yml @@ -121,29 +121,29 @@ seir_modifiers: modifiers: - Wuhan -outcome_modifiers: - scenarios: - - DelayedTesting - modifiers: - DelayedTesting: - method:SinglePeriodModifier - parameter: incidC::probability - period_start_date: 2020-03-15 - period_end_date: 2020-05-01 - subpop: 'all' - value: 0.5 - DelayedHosp: - method:SinglePeriodModifier - parameter: incidD::delay - period_start_date: 2020-04-01 - period_end_date: 2020-05-01 - subpop: 'all' - value: -1.0 - LongerHospStay: - method:SinglePeriodModifier - parameter: incidH::duration - period_start_date: 2020-04-15 - period_end_date: 2020-05-01 - subpop: 'all' - value: -0.5 +#outcome_modifiers: +# scenarios: +# - DelayedTesting +# modifiers: +# DelayedTesting: +# method:SinglePeriodModifier +# parameter: incidC::probability +# period_start_date: 2020-03-15 +# period_end_date: 2020-05-01 +# subpop: 'all' +# value: 0.5 +# DelayedHosp: +# method:SinglePeriodModifier +# parameter: incidD::delay +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-01 +# subpop: 'all' +# value: -1.0 +# LongerHospStay: +# method:SinglePeriodModifier +# parameter: incidH::duration +# period_start_date: 2020-04-15 +# period_end_date: 2020-05-01 +# subpop: 'all' +# value: -0.5 diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_test.yml b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml index fa8a0d774..6dc96adc2 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_test.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml @@ -121,29 +121,31 @@ seir_modifiers: modifiers: - Wuhan -outcome_modifiers: - scenarios: - - DelayedTesting - modifiers: - DelayedTesting: - method:SinglePeriodModifier - parameter: incidC::probability - period_start_date: 2020-03-15 - period_end_date: 2020-05-01 - subpop: 'all' +# until outcome_mofifiers format can be usable +# +#outcome_modifiers: +# scenarios: +# - DelayedTesting +# modifiers: +# DelayedTesting: +# method:SinglePeriodModifier +# parameter: incidC::probability +# period_start_date: 2020-03-15 +# period_end_date: 2020-05-01 +# subpop: 'all' value: 0.5 - DelayedHosp: - method:SinglePeriodModifier - parameter: incidD::delay - period_start_date: 2020-04-01 - period_end_date: 2020-05-01 - subpop: 'all' - value: -1.0 - LongerHospStay: - method:SinglePeriodModifier - parameter: incidH::duration - period_start_date: 2020-04-15 - period_end_date: 2020-05-01 - subpop: 'all' - value: -0.5 +# DelayedHosp: +# method:SinglePeriodModifier +# parameter: incidD::delay +# period_start_date: 2020-04-01 +# period_end_date: 2020-05-01 +# subpop: 'all' +# value: -1.0 +# LongerHospStay: +# method:SinglePeriodModifier +# parameter: incidH::duration +# period_start_date: 2020-04-15 +# period_end_date: 2020-05-01 +# subpop: 'all' +# value: -0.5 diff --git a/flepimop/gempyor_pkg/tests/seir/test_model_info.py b/flepimop/gempyor_pkg/tests/seir/test_model_info.py index 153f41755..80fab466f 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_model_info.py +++ b/flepimop/gempyor_pkg/tests/seir/test_model_info.py @@ -17,6 +17,8 @@ class TestModelInfo: def test_ModelInfo_init_success(self): + config.clear() + config.read(user=False) config.set_file(f"{DATA_DIR}/config_test.yml") s = ModelInfo( config=config, @@ -38,6 +40,8 @@ def test_ModelInfo_init_success(self): assert isinstance(s, ModelInfo) def test_ModelInfo_init_tf_is_ahead_of_ti_fail(self): + config.clear() + config.read(user=False) config.set_file(f"{DATA_DIR}/config_test.yml") config["start_date"] = "2022-01-02" with pytest.raises(ValueError, match=r"tf.*is less than or equal to ti.*"): @@ -60,6 +64,8 @@ def test_ModelInfo_init_tf_is_ahead_of_ti_fail(self): ) def test_ModelInfo_init_seir_modifiers_scenario_set(self): + config.clear() + config.read(user=False) config.set_file(f"{DATA_DIR}/config_test.yml") s = ModelInfo( @@ -81,12 +87,14 @@ def test_ModelInfo_init_seir_modifiers_scenario_set(self): ) def test_ModelInfo_init_setup_name_set(self): + config.clear() + config.read(user=False) config.set_file(f"{DATA_DIR}/config_test.yml") s = ModelInfo( config=config, seir_modifiers_scenario=None, - outcome_modifiers_scenario="DelayedTesting", + outcome_modifiers_scenario=None, spatial_path_prefix="", write_csv=False, write_parquet=False, @@ -98,572 +106,5 @@ def test_ModelInfo_init_setup_name_set(self): stoch_traj_flag=False, inference_filename_prefix="", inference_filepath_suffix="", - setup_name=None, - ) - - -''' - def test_tf_is_ahead_of_ti_fail(self): - # time to finish (tf) is ahead of time to start(ti) error - with pytest.raises(ValueError, match=r".*tf.*less.*"): - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = model_info( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-03-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, - ) - - def test_w_config_seir_exists_success(self): - # if seir_config is None and config["seir"].exists() then update - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_seir.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = model_info( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - # parameters_config={"alpha":{"value":{"distribution":"fixed","value":.9}}}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, - ) - - assert s.seir_config != None - # print(s.seir_config["parameters"]) - assert s.parameters_config != None - # print(s.integration_method) - assert s.integration_method == "legacy" - - def test_w_config_seir_integration_method_rk4_1_success(self): - # if seir_config["integration"]["method"] is best.current - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_1.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = model_info( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, - ) - assert s.integration_method == "rk4.jit" - - assert s.dt == float(1 / 6) - - def test_w_config_seir_integration_method_rk4_2_success(self): - # if seir_config["integration"]["method"] is rk4 - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_seir_integration_method_rk4_2.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = model_info( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, - ) - assert s.integration_method == "rk4.jit" - - def test_w_config_seir_no_integration_success(self): - # if not seir_config["integration"] - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_seir_no_integration.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={}, - outcome_scenario=None, - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id=None, - in_prefix=None, - out_run_id=None, - out_prefix=None, - stoch_traj_flag=False, - ) - assert s.integration_method == "rk4.jit" - - assert s.dt == 2.0 - - def test_w_config_seir_unknown_integration_method_fail(self): - with pytest.raises(ValueError, match=r".*Unknown.*integration.*"): - # if in seir unknown integration method - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_seir_unknown_integration.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - # first_sim_index=1, - ) - # print(s.integration_method) - - def test_w_config_seir_integration_but_no_dt_success(self): - # if not seir_config["integration"]["dt"] - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_seir_no_dt.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - dt=None, # step size, in days - ) - - assert s.dt == 2.0 - - """ not needed any longer - def test_w_config_seir_old_integration_method_fail(self): - with pytest.raises(ValueError, match=r".*Configuration.*no.*longer.*"): - # if old method in seir - #config.clear() - #config.read(user=False) - #config.set_file(f"{DATA_DIR}/config_seir_unknown_integration.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - # config_version="v2", - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - ) - def test_w_config_seir_config_version_not_provided_fail(self): - with pytest.raises(ValueError, match=r".*Should.*non-specified.*"): - # if not seir_config["integration"]["dt"] - # config.clear() - # config.read(user=False) - # config.set_file(f"{DATA_DIR}/config_seir_no_dt.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name = TEST_SETUP_NAME, - spatial_setup =ss, - nslots = 1, - ti = datetime.datetime.strptime("2020-01-31","%Y-%m-%d"), - tf = datetime.datetime.strptime("2020-05-31","%Y-%m-%d"), - npi_scenario=None, - # config_version="v1", - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - dt=None, # step size, in days - ) - """ - - def test_w_config_compartments_and_seir_config_not_None_success(self): - # if config["compartments"] and iself.seir_config was set - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_compartment.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - dt=None, # step size, in days - ) - - def test_config_outcome_config_and_scenario_success(self): - # if outcome_config and outcome_scenario were set - ss = subpopulation_structure.SubpopulationStructure( setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", ) - s = setup.Setup( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - dt=None, # step size, in days - outcomes_config={ - "interventions": { - "settings": { - "None": { - "template": "Reduce", - "parameter": "r0", - "value": {"distribution": "fixed", "value": 0}, - } - } - } - }, - outcome_scenario="None", # caution! selected the defined "None" - write_csv=True, - ) - assert s.npi_config_outcomes == s.outcomes_config["interventions"]["settings"]["None"] - assert s.extension == "csv" - - def test_config_write_csv_and_write_parquet_success(self): - # if both write_csv and write_parquet are True - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - dt=None, # step size, in days - outcomes_config={ - "interventions": { - "settings": { - "None": { - "template": "Reduce", - "parameter": "r0", - "value": {"distribution": "fixed", "value": 0}, - } - } - } - }, - outcome_scenario="None", # caution! selected the defined "None" - write_csv=True, - write_parquet=True, - ) - assert s.write_parquet - - def test_w_config_seir_exists_and_outcomes_config(self): - # if seir_config is None and config["seir"].exists() then update - config.clear() - config.read(user=False) - config.set_file(f"{DATA_DIR}/config_seir.yml") - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - s = setup.Setup( - setup_name=TEST_SETUP_NAME, - subpop_setup=ss, - nslots=1, - ti=datetime.datetime.strptime("2020-01-31", "%Y-%m-%d"), - tf=datetime.datetime.strptime("2020-05-31", "%Y-%m-%d"), - npi_scenario=None, - # config_version=None, - npi_config_seir={}, - seeding_config={}, - initial_conditions_config={}, - parameters_config={}, - seir_config=None, - outcomes_config={ - "interventions": { - "settings": { - "None": { - "template": "Reduce", - "parameter": "r0", - "value": {"distribution": "fixed", "value": 0}, - } - } - } - }, - outcome_scenario="None", - interactive=True, - write_csv=False, - write_parquet=False, - dt=None, # step size, in days - first_sim_index=1, - in_run_id="in_run_id_0", - in_prefix=None, - out_run_id="out_run_id_0", - out_prefix=None, - stoch_traj_flag=False, - ) - # s.get_input_filename(ftype="spar", sim_id=0, extension_override="") - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="seir", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="spar", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="snpi", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hosp", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hpar", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hnpi", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="seir", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="spar", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="snpi", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hosp", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hpar", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hnpi", sim_id=0)) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="seir", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="spar", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="snpi", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hosp", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hpar", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_input_filename(ftype="hnpi", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="seir", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="spar", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="snpi", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hosp", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hpar", sim_id=1, extension_override="csv")) - os.path.isfile(DATA_DIR + s.get_output_filename(ftype="hnpi", sim_id=1, extension_override="csv")) - - """ - def test_SpatialSetup_npz_success3(self): - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.npz", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - def test_SpatialSetup_wihout_mobility_success3(self): - ss = subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.txt", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - - def test_bad_subpop_pop_key_fail(self): - # Bad subpop_pop_key error - with pytest.raises(ValueError, match=r".*subpop_pop_key.*"): - subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility_small.txt", - subpop_pop_key="wrong", - subpop_names_key="subpop", - ) - - def test_bad_subpop_names_key_fail(self): - with pytest.raises(ValueError, match=r".*subpop_names_key.*"): - subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility.txt", - subpop_pop_key="population", - subpop_names_key="wrong", - ) - """ - - def test_mobility_dimensions_fail(self): - with pytest.raises(ValueError, match=r".*mobility.*dimensions.*"): - subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility_small.txt", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - - def test_mobility_too_big_fail(self): - with pytest.raises(ValueError, match=r".*mobility.*population.*"): - subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility_big.txt", - subpop_pop_key="population", - subpop_names_key="subpop", - ) - - def test_mobility_data_exceeded_fail(self): - with pytest.raises(ValueError, match=r".*mobility.*exceed.*"): - subpopulation_structure.SubpopulationStructure( - setup_name=TEST_SETUP_NAME, - geodata_file=f"{DATA_DIR}/geodata.csv", - mobility_file=f"{DATA_DIR}/mobility1001.csv", - subpop_pop_key="population", - subpop_names_key="subpop", - ) -''' From afe3c286b8bd70c47899e69433b5bede50f78815 Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 25 Oct 2023 14:35:12 -0400 Subject: [PATCH 31/50] modified to cover outcome in test_interface.py temporarily --- flepimop/gempyor_pkg/.coverage | Bin 53248 -> 53248 bytes .../.coverage.Kojis-MBP-8.lan.37320.424186 | Bin 0 -> 53248 bytes flepimop/gempyor_pkg/src/gempyor/interface.py | 2 +- flepimop/gempyor_pkg/src/gempyor/seir.py | 2 +- flepimop/gempyor_pkg/tests/.coverage | Bin 0 -> 53248 bytes ...e.kojis-mbp-8.sph.ad.jhsph.edu.6457.826305 | Bin 0 -> 53248 bytes .../tests/interface/data/config_test.yml | 22 ++++++++ .../tests/interface/test_interface.py | 50 +++++++++++------- 8 files changed, 55 insertions(+), 21 deletions(-) create mode 100644 flepimop/gempyor_pkg/.coverage.Kojis-MBP-8.lan.37320.424186 create mode 100644 flepimop/gempyor_pkg/tests/.coverage create mode 100644 flepimop/gempyor_pkg/tests/.coverage.kojis-mbp-8.sph.ad.jhsph.edu.6457.826305 diff --git a/flepimop/gempyor_pkg/.coverage b/flepimop/gempyor_pkg/.coverage index 7a92f0439b89796007be8ce28ebbde1850ff5c00..1ee72617f890631efd9d63e08dce0579b146fa7f 100644 GIT binary patch delta 1326 zcmZ9KYfKzf6vt#xcKj)r% z&Og&PYU~>|4yTa92dO2b@Kxglm*X?^3L@oma;3B;osx3J8{$#XDqIx~3M_wxuj1CY zPdFvyEWXY%emg~|d+|z%3(t8|4AnNgR8~VQ|ix?ztZ(g8}{OK$ng z*lQ?t7hqWxW2>dq96i)c78$FLQgh=dKjyLpuhbu6%=;-dd$V}d%`&K-QuE{Zq`mTX z8?aZxmkub8+bcfGZzvKYG*W5_3BKt5S{Ob^sU960!RnQIH%|2=Gi(#3mg-_TKJKwG zrp*-q+5aqNaHOG*p*LrG!eVM4r8?r1N}a)$4lv#LXzwDg$QY`@5qPYul-=?=v=QJk z%CZO)Mc<(J(A(%RszWa#QT|K*S^iY+mXFA?bXWRCx-9iedD0FkQCtz*#n(i?sE7rk zQ#1FCIe_YUb40sSIAHk7bqdZ(Z5H}+Be=$>J%;r8UE?mY5Y z0rItipCSI#A|C~c@cE&%VjeUn-(AD}8r#jd-rfCuTIKwgB$>g1{u1XjKB$Y-8`4P_ zlJ|{8W(o@kB69Wg`WX2f3l()NrcY+~njqX`>Pd?4rte1(#qq-mr$J;Ooy;5_%N3Y4 zWTt_hp@%d?UQYWlLpkH;C{XNFk7J6;GeUUO*pow!7fxut<@vFgHbTTgG2Nx%Te0Ze z{n+e!*FP>Vn1(*q-i-Mi-AOMO8Q@xvfmmMc%)Fybg%>oJ_u_Bb>cW}X8I-848kD7? jx3qDj(w>Jx+O)I}#>O;N&@{oKm{|2iX-(81)m9U*NwEcKxWshFZx(u;hnes9|1Rg8 z|C!i`IW}S*+(L0jQj00>)5ux3b42mUOY&*CRJtV%Nd@8+@l}x*MumF8#DBzBaSPlK zw{y(pnP5#XI!M4<#n@@2<&a8m37Pjwj14HyAbWdbM`LTWE85ZNYJa223c8x8I_}%T zSb(w&I;wJv0+4UO6HWVDp{uJk+SX+>Rm=B=k#nj{npB^?GaB93-1c&~xyi_j_wx;Y znGt}B$rZnkjQedAPk!)684ffRG%tw-HZv?xNrGkr4kig`he6!l#?C0rtHGqAyp~}= z&o^{yINaRU+!YQ(u7U>DnK*zy$TDW2^+TTwN|XtV@JbI=hbZz-StyrB2xXWFlAaZR z5?>Pqxl9_CZYwH(RxrzVgfVuW8y5D+XSiM5B44eX9?Pw`$TC&5wu6F|DzKxP)^d!{ z@K(h38d}Rsp!|rrHd0x?4_kNBT2>-^RAsTHj@I%M^th|a{VCw8ME34cA9YoFkZ=)sIGSdRaD7mXw>y$I1bv zMX6PM%62&}UzNX+hvZk}IvGjR(k1CbsawjFQp6>(Lu?TvVnBRO%oT0IUEzq(A=C+_ zLiU)|@*7Vw``%|LxI9EY@5_)ygs$r=I%f!IlFaqhiKz&g(Ii4oB4i@!2h(i1gP}Mr z)j^8-y#;of;zIT>zfuvJn4e0tZM$M0_Mz4P|wO#;-qgzhT*OS}-f4;6l$R(^y3grd@UNbKUt;y^0q zAgtwx{csj$AuM8v=Wudw5`-y9FI~tJ@Ty|LKu_TTU7dctaXQpoI?%??vxUf@OjlKfoweiF}i1k44paOz~E+YU$VG|6HO{_rC9GCLPx%_tz K9ZWtm==mSQ%7|tF diff --git a/flepimop/gempyor_pkg/.coverage.Kojis-MBP-8.lan.37320.424186 b/flepimop/gempyor_pkg/.coverage.Kojis-MBP-8.lan.37320.424186 new file mode 100644 index 0000000000000000000000000000000000000000..06b3d1b35caa6edbc1e297b5fb36280e5dadfdb4 GIT binary patch literal 53248 zcmeI)O>Y}T7zglOyYfB*#k-vZMob<5t~HlO_%%fVR1p>$N3J#T#W)xrMZ zfjHd%^wELHj)}dRpsmvp`yvd^#6*Q+JEUB(I-(*bq3g-;Lj0gE+G&FPYOy+xvjbF!a*upYA@=g@EfK1b3YG7uD67Su zJ8acj&wr{}_U5K}snRyd(4n98h1Sr4qA3qYRFD&dL$3WGl)iJUqPCE;7CHgd^E}R4 z8wTF}I1ppkPn+pSZtMoWQ0K}?Vl}+6fo(?98{y5jhRS-%4SJg8%&#@4Q)Ip&XP!LI zJfh0^fo3f-@}((rT4z7;21NdS;!U`7C`WeTI9Qf*S>8Cv8~e(Ab3?GO?yh-xk_HO%^apMn&338_K{GqNBy{-v^0?tqvKS;hipFCRjM5>)xkc7F6wUKv z=Dx;|ArCYWLiq`LXp zY+88TfkdIxt5)oT-DROO3xR%bwp*KSS1fyH$9z^z!zk~q{KZ-bA>ETVOr!dgr(~3b zdLnt*B&l;0v!os)`59_X$Ew)-JIk7rr|b9fowccT%d)q&%xN|vcwXYi?S)40kzxp3 zSqNUe`V$!+i|cjg!&LF+?TY=;*0PFo75Y7Xt~~#?lveq2JJt7S(&tBcp~`%usPY%; zqH`+8G@DGM8`6-aIXGJZ1ScFyN-PIK5~uOYZ`1JPwWp|WRzUGy+f%Amnw*CBmq8S{ zw5;;76@93WisrG5covG9Vh{vlCH-t|pd1e)x~3b6v<}x-rH_j;q6;qL=(L&ENiQxu z%^%XB)8mVFJWu+=e7)jjI4hOrejc2Booo`JjG{?{GNK`RrA%FDewJq}U4C~$CS0l~ zhuLuFPMIt5>{wkZE?bR0m$8anPYF(vRwfOsGZ_gdRCJQo(pIzlvM}J@>i77Wza_8n zN4e>)Y1#MgnbRa6jM+TXk7!Z%q^@@UwzLo=S56l3@|Y%E`m{42Cu}#z!EduG@Z^^D z;2=}bsq)V{wHANDHyi&N^n(oo5P$##AOHafKmY;|fB*y_0D;vLD4QkI;_v^Z#-B#x zZ+gN80SG_<0uX=z1Rwwb2tWV=5P-m&DNrw!?>6+Gc)Z&%%R6@dM*#14A9Nqos8yxL z3#0L(@z0ytK-3xn5P$##AOHafKmY;|fB*y_00AvfFW)uwZvjfR@=i7XB|!QQ{O{;g zc!dB2AOHafKmY;|fB*y_009U|A+wyKmY;|fB*y_009U<00Izz!0HR&{{QOt ZF@(9O{m)qcp0j87-+#Z|{r9Y-l{c(k?FHc=@NLSyV2>e2b}I^KCoR#rVjdrMmo_!987gIVWpIxp4ps@kSicG zg9@+D*<$y#^E-w1xl)2eX#rt(ARYlq1ZT6Grr>8Kvd`vyLX+SV+z!DXw_=vFakhT; z6Jfo^lAX=&7o|z^7gSBIy_+K?m)b@ zK2J+kz{9(oZmF7Xzcb+UxOri>;0OkU#tADpmqJS(057#Rplchg(6)HaL|G|x#xqZl zGm$)zxe1JOdy-hkGt#0Vvt+Y7*wO&VcLZC!v~eIuyx@RmvYeCU4R{ij{mgAML0gX3 zH?297$Z3nla|PYbT|r^2@#pg6Ip<2%aC_$Rv=Yz*W*XF%d$L&udZn=2zsm*BTQ++z z;E}Fv(D=4$5XOC(T8*Wogx$YO>L?VCt-%@akDch!I?Y)0BwdHzpS<7DQIg(C=qPfz zcu$iwWN2kQ^!nI5{BJJ2O955Bm_(UslAOF3pVf#E>A;xUz2)_Uw{Duz95;b zDd=|4q2i}?aClk;pS@YAOx%sTg@1NOg054oQ(IP+OxAVAx`3^E>{K7gS8FVVh3q$V zQa4JpRwB@(b)jTSPT)q9w^{_dKj=$3l7HkRlR3t{WO9ro?m%_sY1EeGg_Bh$kJB9)RUw(YKVPEX0#2X4lxZf@m~oR=3GMS*?Jn>pUc1u=Ll%5+d~{yD>3e(P=oY z6?{J(oV1*{6M>9;1q@0*4AEP3CY2`cQje9?U+D!VRBMa9F+SXBqoinT+b-OuEw$7-|td52Gcn=qHou2BA?Za`bhR!t>cC2Q%UT%?56Smw-OBf-RA zjQbgzA13t{d(!O0r6R49+;VfgzpMp^3r{<#{e-eh!9g$MB~a%UZ^4E*g=DJ4vyOf? zUEs51gn>UikN^@u0!RP}AOR$R1dsp{Kmter2_S(l9|0w+U^R68uONSBNE8GfNB{{S z0VIF~kN^@u0!RP}AOR$R1dzZNlYmj7w36gkJmwQtS!hXo31Cs>g31MYsFi|TV#pFK@0VIF~kN^@u0!RP}AOR$R1dsp{ND?qAt!(mL0EJ#zs7t&FKtKO4S3bp% zACrg8{pJ_V51KwUJ!87t__lGUQEzz7@Tftd|8M;!-6y(dbj!7uwcpZKYu?d>G&9w2 zs&}gMR7X|yDlPY8ZiVtPsKEmXAc1KSs4M4~$ik{ke%Sp~wbQf1S+&B`DEOJWwno*Kf#PbJ6@%WbrJ#3- ze0rtrbadmLACx!opnUx_mHP#!FAl>WZ18%#K^JTehrOQxU(gYN?Tt{*#u6xJo_ys% ziJXT69q8Ur1iI(QX1Ckxqy`ttYH$mT3YX34 zZt{Tc#|l9AQrQfKeTu*%&?2~DSF^XhE+4c{cSuT|uu*8WxrH_x9i^1>47oVlfP^z( zvr!fn8Cbx6Q-A<&hgxb&UQv_tWH1>zL|iePP{58{P`YZG%{QiW1B?-uuukwfJ&kKT zjm{>gKnLT-94KV!L)`CkR3#j3RSJ(y*`T#*%BH7k^#=s6-{#wSCm36s1!|}6tW(vd zjciBev`DAwP4lI;RA;(A0}82-g^4tK0gufDRNf_v%3B6^tywnGX){-?NjAOk;|1e> zzt$+5-ZU3#Gl1R|vJie`-9uFy0(QqvA$9yU>Y;!&@)a=gD0k?fl&QOt)DBLou_ovW zIB#<$+q6)~O4+KCbW+KXIx7v7Adj=6)o8H$=~GUf8njM*BD)pNcEJU|xkDZJW)&!w zXLwR`Q)aVu9B7^?3u-z8gRPsCpiv%=O}Eken&4N8Xp1R8tvoH3QvG@sv@V}=_2a97 zF*D{78(CwbQuliubG}TMae4tO9rL+n&Ghaitbs%R`Y-9?$>>) zuO%;P_iGnu{-_CS?oj_u?NVD*$5b|zj(d@NKzRk!;DH2?!1M@g<{}H(X^!}b*8k;o zT%=lV#o$899^)cQWYnAX6jj>HMb=MO`Da-F^P9NHJQ>T0Pc`Not^vi{GV-VjfH_)XFQ@0U}{MXIK5daBmc^?&yCoOP<& zw2_@PJ<_RqCtv?(ew~X{$ipPL{?FLLMedSEAo$VWPD<}%BtH*NiIl231%3pH-z zA}iz}Jn{P9AaId2G8QoL`d=?!2cLZXud{QJmGV_3x$aMf;8wKqIjfZQzh-(9S?cJg zTF2M_YWapIRh%-Lsn&Cmnew1ctp7RrJa+0zS}9+PrBq*0&qbE&rnwpzGxPTKKmPvT z^cHKF8wnr*B!C2v01`j~NB{{S0VIF~kih4hfRa@*Ci?k5OKvjohX)cs0!RP}AOR$R z1dsp{Kmter2_OL^@FgUmRGM_s{(r+PhV+xmo$%9QuXsHc6;Es4?G~eAe{3+^+W*F7Db=FWVdc=r;em6#qUl=i zvg~3oWmfUYmxp4%9PHEe_I@<_3R`4_$i>#sp^Ky8lY7t9^@x2RoOc{)7rT!f8rG|e z;I6qykzGi$7KYB;6vLyUcw7wkh&7o75c!pY`wm?cuiUKZjGjNiYV#o~D?fC|q@F=@ z&QOFcw1Oea$xvl|>?3hh?12BkuGL=X9EkRfUhf=r_O_06)ijGsJ31JJR?9O32gN;I z=Q?A7KCxS@7&#jo6xAHdE?>rs9E_f;>3yp!b~t=BEP9q@WMpvMtKs49;o*b*YsFuM zt)UUee>lW$rIx44K-XH4otX!Qtj;?b`q`D5ZKuzMPc0VN%k*Ei$B&rfMELF_A1U>@ zkSs6v_y^n~QQ{bqYvy;p)4cRVUsbTKIvvx8l9%nF~u#9E^T+quX?|?XT8T zT<1?l?uzyN(Q|&Vvt;R$S3qgE3_tp*5={ zJ*)a(9^BLW%P!lI=8Lx7U6(#Scj|Y*W3^*Rp5Dp6m<0Ue#n~4P=1j)>%E}^@2|bcR+`|l-ZT(?cJLd! zYrgG0H*hqYe)bH9`Mp{7+I`9nZXda>xbgUf)33GO$^M%W($^a6)y!YS=ySIF20d?` z{qvGHADlJxL`P{`&4_sBhVFMqN9TmE?X~0?AZ?|gb(8x4VvE%^dlvuN`pBhMS(evB z{Qde$<;dpf7DX|&QD1i?`u>u;876x4h2bOY937Udv644L zcXZk7C51ON+POVH-0FF$>lN0jg~a!2L-|q@(S!`MOcGfj6-Eu*F3>a`sWzx@kPPUe zx-#|mM8f{u`dfZgXT44ZF*&Nx%=6rx9GvdpLRIYXC8xx?Pc9vai3gb2;TUb~@At-r zJ{*ko3+d5V08>?32h`w!1dsp{ zKmter2_OL^fCP{L5U0*;dcrBVtM3J%@|kUsxsGCu!JgBBtIB!C2v z01`j~NB{{S0VIF~kN^@u0#hd-eFp>A|5FEuIgtPoKmter2_OL^fCP{L56)Gw?DwI?xsGz_9|NnkOY}T7zglOyYfB*#k-vZMob<5t~HlO_%%fVR1p>$N3J#T#W)xrMZ zfjHd%^wELHj)}dRpsmvp`yvd^#6*Q+JEUB(I-(*bq3g-;Lj0gE+G&FPYOy+xvjbF!a*upYA@=g@EfK1b3YG7uD67Su zJ8acj&wr{}_U5K}snRyd(4n98h1Sr4qA3qYRFD&dL$3WGl)iJUqPCE;7CHgd^E}R4 z8wTF}I1ppkPn+pSZtMoWQ0K}?Vl}+6fo(?98{y5jhRS-%4SJg8%&#@4Q)Ip&XP!LI zJfh0^fo3f-@}((rT4z7;21NdS;!U`7C`WeTI9Qf*S>8Cv8~e(Ab3?GO?yh-xk_HO%^apMn&338_K{GqNBy{-v^0?tqvKS;hipFCRjM5>)xkc7F6wUKv z=Dx;|ArCYWLiq`LXp zY+88TfkdIxt5)oT-DROO3xR%bwp*KSS1fyH$9z^z!zk~q{KZ-bA>ETVOr!dgr(~3b zdLnt*B&l;0v!os)`59_X$Ew)-JIk7rr|b9fowccT%d)q&%xN|vcwXYi?S)40kzxp3 zSqNUe`V$!+i|cjg!&LF+?TY=;*0PFo75Y7Xt~~#?lveq2JJt7S(&tBcp~`%usPY%; zqH`+8G@DGM8`6-aIXGJZ1ScFyN-PIK5~uOYZ`1JPwWp|WRzUGy+f%Amnw*CBmq8S{ zw5;;76@93WisrG5covG9Vh{vlCH-t|pd1e)x~3b6v<}x-rH_j;q6;qL=(L&ENiQxu z%^%XB)8mVFJWu+=e7)jjI4hOrejc2Booo`JjG{?{GNK`RrA%FDewJq}U4C~$CS0l~ zhuLuFPMIt5>{wkZE?bR0m$8anPYF(vRwfOsGZ_gdRCJQo(pIzlvM}J@>i77Wza_8n zN4e>)Y1#MgnbRa6jM+TXk7!Z%q^@@UwzLo=S56l3@|Y%E`m{42Cu}#z!EduG@Z^^D z;2=}bsq)V{wHANDHyi&N^n(oo5P$##AOHafKmY;|fB*y_0D;vLD4QkI;_v^Z#-B#x zZ+gN80SG_<0uX=z1Rwwb2tWV=5P-m&DNrw!?>6+Gc)Z&%%R6@dM*#14A9Nqos8yxL z3#0L(@z0ytK-3xn5P$##AOHafKmY;|fB*y_00AvfFW)uwZvjfR@=i7XB|!QQ{O{;g zc!dB2AOHafKmY;|fB*y_009U|A+wyKmY;|fB*y_009U<00Izz!0HR&{{QOt ZF Date: Wed, 25 Oct 2023 15:06:34 -0400 Subject: [PATCH 32/50] deleted .coverage related --- flepimop/gempyor_pkg/.coverage | Bin 53248 -> 0 bytes .../.coverage.Kojis-MBP-8.lan.37320.424186 | Bin 53248 -> 0 bytes flepimop/gempyor_pkg/tests/.coverage | Bin 53248 -> 0 bytes ...age.kojis-mbp-8.sph.ad.jhsph.edu.6457.826305 | Bin 53248 -> 0 bytes 4 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 flepimop/gempyor_pkg/.coverage delete mode 100644 flepimop/gempyor_pkg/.coverage.Kojis-MBP-8.lan.37320.424186 delete mode 100644 flepimop/gempyor_pkg/tests/.coverage delete mode 100644 flepimop/gempyor_pkg/tests/.coverage.kojis-mbp-8.sph.ad.jhsph.edu.6457.826305 diff --git a/flepimop/gempyor_pkg/.coverage b/flepimop/gempyor_pkg/.coverage deleted file mode 100644 index 1ee72617f890631efd9d63e08dce0579b146fa7f..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 53248 zcmeI53vd+2na5{#XWx(3dnKfmMv}4M011I@&R`G(Qz@UoLIETkY%QzRNGwP@%kD~` zQ0%fXb)+trbIPs@m9m54t4g>WmEejW*u12a@5*^vj6~uXVGFD{0tvl#?(5lI zX%|q+B~4Xq=bMtc=h6M|uYcYB^|Yj3ZK_`H4hVds=xcEX_@zt=!?Mh3o@W@w1m70; zjvqQW;o=t%vkB+Zotl`^#*ZwdhB0fu#gIBn6zyk>& z0VIF~{=Nx>tIaxFP7eF^{Q+lvvk>q(U4kzfTGoDL-I~qo_|0p+w0<2Qy~ocp@^CC# z#INCf;vU{B`1nS5v%tGO4Q`h+;Py1}fgM6Tb*o=!pc5V3gQ<=tES2-qGl#nYas`AY zknsB4ElyuMze{LeC?|-O77+FZqBlT9a5s5q3VvQJ`+VLfGzvb!;}ZN)E9SWy<{Rff z9Wv@{>FMktL9Ub2=YlU&Qf=VIR8<~p1R-fkGPPhm4F^F*QB*QoX#@PD}}xO-Ocd6<#4tJ zMETkQjqfOjzX&(f(?9qvsjK(b6^nF9T`1m?_i&@}M=gTW-|CAylE3C8<2k0hWPFUoo9n>rxzklAmd;Tg zJJE-AoX(b+$%dmNg8C);tx2i`y)!ig?wANZz4=~eUrsWdS}YyN}+vGo3k0biP!1&!H@+X9GwApny|qMiJkRg zYe4S5^iuAgbncn5H!3i79cK@z=F7=pcyAQ_em6|3blUPSkKg4>b~ydi3;9dLz!+rFWYeUtW+_j;curJO>HHzP4UTvy7|p8=;GrGPFh-=o`%?bMW^AY zD)@dnIB7XiCjuGy5*UW1G5`S{NB{{S z0VIF~kN^@u0!RP}AOR$R1dzbzlYm*Jwv+gucq}HYI@cEaBY zZ}en?xN+)ElhERA7kv)zuBNhp;1BrAS_AH8zkKeHPnW>fsG1@WE>~C>bhj0P?h55} z|WCls(N6GSU#*?g0tn_!GI3mXNWTWr`MHnCC5kYSXGh?%)e4diDk6D@ z^Qf^XMmlL`tT8L53m=X!HLui|6w^&|(GDZ%u2qEa;~O6<+Z1rRb_t2&yTJejY*4O% zdwUU=9!gQBgVSnkXl)L-?{Zb!bx_DU#i|l_g7KI-D=n0ujI*NEsCWA5TU4zERA)X> zCXRlpxIAjpKF`7Hq9xGLu24x>HCN5k(Tk%h^{^z%F;YA9T6P*eQwsGNyl~hf5Ps>+UJLxUnzL^UzP|oh? z`ae%ugOgq^bD!eEE0r_&j#v0ON({++t^acrD0!RP}AOR$R1dsp{Kmter2_OL^@EIqdX4Q;^{{EjO;|zS^fdr5M5sO ztJTtHId6Hza?tXCyI*`Ew2_OL^fCP{L z5JiPv;L#o&MffzMeVoZ1twoukRb^**7o|Bq>GkxTvV-pN6G9 zQs=}C?NVDI+*w>0)O0=noOjR;s z6U+McNH0T*i>IaTQMhwH^qkZy-HHrI=XCFOO9RqiWH{6|_-4PHYT3DvdgSBK&^x`7 zv<{$T2&G|Hwz3|pLI6)lj{}R&s_|4EtlAS`VZTqN5pj|^w5b9 z)y7OnmX&$-H^Y58YX+R>XB^q~tMd0w^}nlqJe}4dFFjJLf=pL#yxUQB=JLqW_pQAp z?+skIvhvK)fe&wYTgLbN$==0v{9x?CNYC%YOT!%nE1yYwUL1Rdd-6(O|A@~kb<6)I zesO6U=+~v4?W|;&GuPqf)R9e3ySnNIo*H#Pr(_@j@l(bR2a_l516 z->Z$MjpK&26nK1pO7Jfq#sVV zT@vc;z9s!-?{Gw2Yo#?Swf0mF9vj}*`&y^tMAKEr-p*?uA3b$ZdhX`%;oz-aX~EZ| z(GJy@Pf6!H3x;lt6?92YO$;t&m;+Tmdh~lg`%`9+l`HUqNsbQm^?txwEKq))CGEYD z!huTI2e^aemg@FXSI+&k?E&^5 zOpw0DRHtSBC=ERCST!uZeen+~-um*qk*5z7?x`4)F5EW!{N%)f(9Qj}EF+{XHMVWh z{$FIdwqoD%pV=S3_7cnT2DtwvL#cXf>%bGLd}^by_Qb&D6%R4Yz{w+{C)fpgNU>Fa zBs})|kFr2V^6Q> zl4}2a?LR`SYN^_^NcN zyI-oPI(|_a?C3?4`T2_OL^fCP{L5ewqoN`?DlC*E zo|mJ70y)ahmm|Afj`H&4C^uJ*=FE|!oE$mI&XyyaO^&j%Po{DS;9=_Ds% zAHYlG82KT2k-R_-!(M=Ik#E3f1q4Yu3BZ1UokSqp$u?30GI$^XB!C2v01`j~NB{{S z0VIF~kN^_+`yik$hELU37tx@Q20RT4Xpm0>I}P$^kV}I(G{~VrHVtev$f7|e4Kiqu wPJ=WWq|zXT280Gy8dzvxrh$nDMj9Aspr?V323i_uXu#1xO#>AT=;#0cKURYCzyJUM diff --git a/flepimop/gempyor_pkg/.coverage.Kojis-MBP-8.lan.37320.424186 b/flepimop/gempyor_pkg/.coverage.Kojis-MBP-8.lan.37320.424186 deleted file mode 100644 index 06b3d1b35caa6edbc1e297b5fb36280e5dadfdb4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 53248 zcmeI)O>Y}T7zglOyYfB*#k-vZMob<5t~HlO_%%fVR1p>$N3J#T#W)xrMZ zfjHd%^wELHj)}dRpsmvp`yvd^#6*Q+JEUB(I-(*bq3g-;Lj0gE+G&FPYOy+xvjbF!a*upYA@=g@EfK1b3YG7uD67Su zJ8acj&wr{}_U5K}snRyd(4n98h1Sr4qA3qYRFD&dL$3WGl)iJUqPCE;7CHgd^E}R4 z8wTF}I1ppkPn+pSZtMoWQ0K}?Vl}+6fo(?98{y5jhRS-%4SJg8%&#@4Q)Ip&XP!LI zJfh0^fo3f-@}((rT4z7;21NdS;!U`7C`WeTI9Qf*S>8Cv8~e(Ab3?GO?yh-xk_HO%^apMn&338_K{GqNBy{-v^0?tqvKS;hipFCRjM5>)xkc7F6wUKv z=Dx;|ArCYWLiq`LXp zY+88TfkdIxt5)oT-DROO3xR%bwp*KSS1fyH$9z^z!zk~q{KZ-bA>ETVOr!dgr(~3b zdLnt*B&l;0v!os)`59_X$Ew)-JIk7rr|b9fowccT%d)q&%xN|vcwXYi?S)40kzxp3 zSqNUe`V$!+i|cjg!&LF+?TY=;*0PFo75Y7Xt~~#?lveq2JJt7S(&tBcp~`%usPY%; zqH`+8G@DGM8`6-aIXGJZ1ScFyN-PIK5~uOYZ`1JPwWp|WRzUGy+f%Amnw*CBmq8S{ zw5;;76@93WisrG5covG9Vh{vlCH-t|pd1e)x~3b6v<}x-rH_j;q6;qL=(L&ENiQxu z%^%XB)8mVFJWu+=e7)jjI4hOrejc2Booo`JjG{?{GNK`RrA%FDewJq}U4C~$CS0l~ zhuLuFPMIt5>{wkZE?bR0m$8anPYF(vRwfOsGZ_gdRCJQo(pIzlvM}J@>i77Wza_8n zN4e>)Y1#MgnbRa6jM+TXk7!Z%q^@@UwzLo=S56l3@|Y%E`m{42Cu}#z!EduG@Z^^D z;2=}bsq)V{wHANDHyi&N^n(oo5P$##AOHafKmY;|fB*y_0D;vLD4QkI;_v^Z#-B#x zZ+gN80SG_<0uX=z1Rwwb2tWV=5P-m&DNrw!?>6+Gc)Z&%%R6@dM*#14A9Nqos8yxL z3#0L(@z0ytK-3xn5P$##AOHafKmY;|fB*y_00AvfFW)uwZvjfR@=i7XB|!QQ{O{;g zc!dB2AOHafKmY;|fB*y_009U|A+wyKmY;|fB*y_009U<00Izz!0HR&{{QOt ZF@(9O{m)qcp0j87-+#Z|{r9Y-l{c(k?FHc=@NLSyV2>e2b}I^KCoR#rVjdrMmo_!987gIVWpIxp4ps@kSicG zg9@+D*<$y#^E-w1xl)2eX#rt(ARYlq1ZT6Grr>8Kvd`vyLX+SV+z!DXw_=vFakhT; z6Jfo^lAX=&7o|z^7gSBIy_+K?m)b@ zK2J+kz{9(oZmF7Xzcb+UxOri>;0OkU#tADpmqJS(057#Rplchg(6)HaL|G|x#xqZl zGm$)zxe1JOdy-hkGt#0Vvt+Y7*wO&VcLZC!v~eIuyx@RmvYeCU4R{ij{mgAML0gX3 zH?297$Z3nla|PYbT|r^2@#pg6Ip<2%aC_$Rv=Yz*W*XF%d$L&udZn=2zsm*BTQ++z z;E}Fv(D=4$5XOC(T8*Wogx$YO>L?VCt-%@akDch!I?Y)0BwdHzpS<7DQIg(C=qPfz zcu$iwWN2kQ^!nI5{BJJ2O955Bm_(UslAOF3pVf#E>A;xUz2)_Uw{Duz95;b zDd=|4q2i}?aClk;pS@YAOx%sTg@1NOg054oQ(IP+OxAVAx`3^E>{K7gS8FVVh3q$V zQa4JpRwB@(b)jTSPT)q9w^{_dKj=$3l7HkRlR3t{WO9ro?m%_sY1EeGg_Bh$kJB9)RUw(YKVPEX0#2X4lxZf@m~oR=3GMS*?Jn>pUc1u=Ll%5+d~{yD>3e(P=oY z6?{J(oV1*{6M>9;1q@0*4AEP3CY2`cQje9?U+D!VRBMa9F+SXBqoinT+b-OuEw$7-|td52Gcn=qHou2BA?Za`bhR!t>cC2Q%UT%?56Smw-OBf-RA zjQbgzA13t{d(!O0r6R49+;VfgzpMp^3r{<#{e-eh!9g$MB~a%UZ^4E*g=DJ4vyOf? zUEs51gn>UikN^@u0!RP}AOR$R1dsp{Kmter2_S(l9|0w+U^R68uONSBNE8GfNB{{S z0VIF~kN^@u0!RP}AOR$R1dzZNlYmj7w36gkJmwQtS!hXo31Cs>g31MYsFi|TV#pFK@0VIF~kN^@u0!RP}AOR$R1dsp{ND?qAt!(mL0EJ#zs7t&FKtKO4S3bp% zACrg8{pJ_V51KwUJ!87t__lGUQEzz7@Tftd|8M;!-6y(dbj!7uwcpZKYu?d>G&9w2 zs&}gMR7X|yDlPY8ZiVtPsKEmXAc1KSs4M4~$ik{ke%Sp~wbQf1S+&B`DEOJWwno*Kf#PbJ6@%WbrJ#3- ze0rtrbadmLACx!opnUx_mHP#!FAl>WZ18%#K^JTehrOQxU(gYN?Tt{*#u6xJo_ys% ziJXT69q8Ur1iI(QX1Ckxqy`ttYH$mT3YX34 zZt{Tc#|l9AQrQfKeTu*%&?2~DSF^XhE+4c{cSuT|uu*8WxrH_x9i^1>47oVlfP^z( zvr!fn8Cbx6Q-A<&hgxb&UQv_tWH1>zL|iePP{58{P`YZG%{QiW1B?-uuukwfJ&kKT zjm{>gKnLT-94KV!L)`CkR3#j3RSJ(y*`T#*%BH7k^#=s6-{#wSCm36s1!|}6tW(vd zjciBev`DAwP4lI;RA;(A0}82-g^4tK0gufDRNf_v%3B6^tywnGX){-?NjAOk;|1e> zzt$+5-ZU3#Gl1R|vJie`-9uFy0(QqvA$9yU>Y;!&@)a=gD0k?fl&QOt)DBLou_ovW zIB#<$+q6)~O4+KCbW+KXIx7v7Adj=6)o8H$=~GUf8njM*BD)pNcEJU|xkDZJW)&!w zXLwR`Q)aVu9B7^?3u-z8gRPsCpiv%=O}Eken&4N8Xp1R8tvoH3QvG@sv@V}=_2a97 zF*D{78(CwbQuliubG}TMae4tO9rL+n&Ghaitbs%R`Y-9?$>>) zuO%;P_iGnu{-_CS?oj_u?NVD*$5b|zj(d@NKzRk!;DH2?!1M@g<{}H(X^!}b*8k;o zT%=lV#o$899^)cQWYnAX6jj>HMb=MO`Da-F^P9NHJQ>T0Pc`Not^vi{GV-VjfH_)XFQ@0U}{MXIK5daBmc^?&yCoOP<& zw2_@PJ<_RqCtv?(ew~X{$ipPL{?FLLMedSEAo$VWPD<}%BtH*NiIl231%3pH-z zA}iz}Jn{P9AaId2G8QoL`d=?!2cLZXud{QJmGV_3x$aMf;8wKqIjfZQzh-(9S?cJg zTF2M_YWapIRh%-Lsn&Cmnew1ctp7RrJa+0zS}9+PrBq*0&qbE&rnwpzGxPTKKmPvT z^cHKF8wnr*B!C2v01`j~NB{{S0VIF~kih4hfRa@*Ci?k5OKvjohX)cs0!RP}AOR$R z1dsp{Kmter2_OL^@FgUmRGM_s{(r+PhV+xmo$%9QuXsHc6;Es4?G~eAe{3+^+W*F7Db=FWVdc=r;em6#qUl=i zvg~3oWmfUYmxp4%9PHEe_I@<_3R`4_$i>#sp^Ky8lY7t9^@x2RoOc{)7rT!f8rG|e z;I6qykzGi$7KYB;6vLyUcw7wkh&7o75c!pY`wm?cuiUKZjGjNiYV#o~D?fC|q@F=@ z&QOFcw1Oea$xvl|>?3hh?12BkuGL=X9EkRfUhf=r_O_06)ijGsJ31JJR?9O32gN;I z=Q?A7KCxS@7&#jo6xAHdE?>rs9E_f;>3yp!b~t=BEP9q@WMpvMtKs49;o*b*YsFuM zt)UUee>lW$rIx44K-XH4otX!Qtj;?b`q`D5ZKuzMPc0VN%k*Ei$B&rfMELF_A1U>@ zkSs6v_y^n~QQ{bqYvy;p)4cRVUsbTKIvvx8l9%nF~u#9E^T+quX?|?XT8T zT<1?l?uzyN(Q|&Vvt;R$S3qgE3_tp*5={ zJ*)a(9^BLW%P!lI=8Lx7U6(#Scj|Y*W3^*Rp5Dp6m<0Ue#n~4P=1j)>%E}^@2|bcR+`|l-ZT(?cJLd! zYrgG0H*hqYe)bH9`Mp{7+I`9nZXda>xbgUf)33GO$^M%W($^a6)y!YS=ySIF20d?` z{qvGHADlJxL`P{`&4_sBhVFMqN9TmE?X~0?AZ?|gb(8x4VvE%^dlvuN`pBhMS(evB z{Qde$<;dpf7DX|&QD1i?`u>u;876x4h2bOY937Udv644L zcXZk7C51ON+POVH-0FF$>lN0jg~a!2L-|q@(S!`MOcGfj6-Eu*F3>a`sWzx@kPPUe zx-#|mM8f{u`dfZgXT44ZF*&Nx%=6rx9GvdpLRIYXC8xx?Pc9vai3gb2;TUb~@At-r zJ{*ko3+d5V08>?32h`w!1dsp{ zKmter2_OL^fCP{L5U0*;dcrBVtM3J%@|kUsxsGCu!JgBBtIB!C2v z01`j~NB{{S0VIF~kN^@u0#hd-eFp>A|5FEuIgtPoKmter2_OL^fCP{L56)Gw?DwI?xsGz_9|NnkOY}T7zglOyYfB*#k-vZMob<5t~HlO_%%fVR1p>$N3J#T#W)xrMZ zfjHd%^wELHj)}dRpsmvp`yvd^#6*Q+JEUB(I-(*bq3g-;Lj0gE+G&FPYOy+xvjbF!a*upYA@=g@EfK1b3YG7uD67Su zJ8acj&wr{}_U5K}snRyd(4n98h1Sr4qA3qYRFD&dL$3WGl)iJUqPCE;7CHgd^E}R4 z8wTF}I1ppkPn+pSZtMoWQ0K}?Vl}+6fo(?98{y5jhRS-%4SJg8%&#@4Q)Ip&XP!LI zJfh0^fo3f-@}((rT4z7;21NdS;!U`7C`WeTI9Qf*S>8Cv8~e(Ab3?GO?yh-xk_HO%^apMn&338_K{GqNBy{-v^0?tqvKS;hipFCRjM5>)xkc7F6wUKv z=Dx;|ArCYWLiq`LXp zY+88TfkdIxt5)oT-DROO3xR%bwp*KSS1fyH$9z^z!zk~q{KZ-bA>ETVOr!dgr(~3b zdLnt*B&l;0v!os)`59_X$Ew)-JIk7rr|b9fowccT%d)q&%xN|vcwXYi?S)40kzxp3 zSqNUe`V$!+i|cjg!&LF+?TY=;*0PFo75Y7Xt~~#?lveq2JJt7S(&tBcp~`%usPY%; zqH`+8G@DGM8`6-aIXGJZ1ScFyN-PIK5~uOYZ`1JPwWp|WRzUGy+f%Amnw*CBmq8S{ zw5;;76@93WisrG5covG9Vh{vlCH-t|pd1e)x~3b6v<}x-rH_j;q6;qL=(L&ENiQxu z%^%XB)8mVFJWu+=e7)jjI4hOrejc2Booo`JjG{?{GNK`RrA%FDewJq}U4C~$CS0l~ zhuLuFPMIt5>{wkZE?bR0m$8anPYF(vRwfOsGZ_gdRCJQo(pIzlvM}J@>i77Wza_8n zN4e>)Y1#MgnbRa6jM+TXk7!Z%q^@@UwzLo=S56l3@|Y%E`m{42Cu}#z!EduG@Z^^D z;2=}bsq)V{wHANDHyi&N^n(oo5P$##AOHafKmY;|fB*y_0D;vLD4QkI;_v^Z#-B#x zZ+gN80SG_<0uX=z1Rwwb2tWV=5P-m&DNrw!?>6+Gc)Z&%%R6@dM*#14A9Nqos8yxL z3#0L(@z0ytK-3xn5P$##AOHafKmY;|fB*y_00AvfFW)uwZvjfR@=i7XB|!QQ{O{;g zc!dB2AOHafKmY;|fB*y_009U|A+wyKmY;|fB*y_009U<00Izz!0HR&{{QOt ZF Date: Tue, 31 Oct 2023 11:25:14 -0400 Subject: [PATCH 33/50] modified test_SinglePeriodModifier.py to add invoking private method __checkerrors --- .../tests/npi/test_SinglePeriodModifier.py | 81 +++++++++++++++++++ 1 file changed, 81 insertions(+) diff --git a/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py b/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py index d0ed96646..7e3c2bc59 100644 --- a/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py +++ b/flepimop/gempyor_pkg/tests/npi/test_SinglePeriodModifier.py @@ -3,6 +3,8 @@ import os import pathlib import confuse +import pytest +import datetime from gempyor import NPI, model_info from gempyor.utils import config @@ -33,3 +35,82 @@ def test_SinglePeriodModifier_success(self): subpops=s.subpop_struct.subpop_names, loaded_df=None, ) + """ + test2 = NPI.SinglePeriodModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=test.parameters, + ) + """ + + def test_SinglePeriodModifier_start_date_fail(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_test.yml") + with pytest.raises(ValueError, match=r".*at least one period start or end date is not between.*"): + s = model_info.ModelInfo( + setup_name="test_seir", + config=config, + nslots=1, + seir_modifiers_scenario="None", + outcome_modifiers_scenario=None, + write_csv=False, + ) + s.ti = datetime.datetime.strptime("2020-04-02", "%Y-%m-%d").date() + + test = NPI.SinglePeriodModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=None, + ) + + def test_SinglePeriodModifier_end_date_fail(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_test.yml") + with pytest.raises(ValueError, match=r".*at least one period start or end date is not between.*"): + s = model_info.ModelInfo( + setup_name="test_seir", + config=config, + nslots=1, + seir_modifiers_scenario="None", + outcome_modifiers_scenario=None, + write_csv=False, + ) + s.tf = datetime.datetime.strptime("2020-05-14", "%Y-%m-%d").date() + + test = NPI.SinglePeriodModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=None, + ) + + def test_SinglePeriodModifier_checkerrors(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_test.yml") + s = model_info.ModelInfo( + setup_name="test_seir", + config=config, + nslots=1, + seir_modifiers_scenario="None", + outcome_modifiers_scenario=None, + write_csv=False, + ) + + test = NPI.SinglePeriodModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=None, + ) + + # Test + test._SinglePeriodModifier__checkErrors() From bccc9427e87201dddb5872e5fb56e826af9c57c6 Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 31 Oct 2023 12:38:54 -0400 Subject: [PATCH 34/50] added seir_modifiers entries for ModifierModifier testing --- .../gempyor_pkg/tests/npi/data/config_test.yml | 18 +++++++++++++++++- 1 file changed, 17 insertions(+), 1 deletion(-) diff --git a/flepimop/gempyor_pkg/tests/npi/data/config_test.yml b/flepimop/gempyor_pkg/tests/npi/data/config_test.yml index c4f0acd4d..300d2966f 100644 --- a/flepimop/gempyor_pkg/tests/npi/data/config_test.yml +++ b/flepimop/gempyor_pkg/tests/npi/data/config_test.yml @@ -80,6 +80,8 @@ seir_modifiers: - None - Scenario1 - Scenario2 + - Social_Distancing + - Fatigue modifiers: None: method: SinglePeriodModifier @@ -120,7 +122,21 @@ seir_modifiers: method: StackedModifier modifiers: - Wuhan - + Social_Distancing: + method: SinglePeriodModifier + parameter: beta + period_start_date: 2020-03-15 + period_end_date: 2020-05-31 + subpop: ['all'] + value: 0.6 + Fatigue: + method: ModifierModifier + baseline_scenario: Social_Distancing + parameter: beta + period_start_date: 2020-05-01 + period_end_date: 2020-05-31 + subpop: ['all'] + value: 0.5 #outcome_modifiers: # scenarios: # - DelayedTesting From 420c0563a4d629f3d328f4ada4fa57587124ab16 Mon Sep 17 00:00:00 2001 From: kjsato Date: Tue, 31 Oct 2023 12:40:04 -0400 Subject: [PATCH 35/50] added test_ModifierModifier.py as an initial one --- .../tests/npi/test_ModifierModifier.py | 116 ++++++++++++++++++ 1 file changed, 116 insertions(+) create mode 100644 flepimop/gempyor_pkg/tests/npi/test_ModifierModifier.py diff --git a/flepimop/gempyor_pkg/tests/npi/test_ModifierModifier.py b/flepimop/gempyor_pkg/tests/npi/test_ModifierModifier.py new file mode 100644 index 000000000..518060be2 --- /dev/null +++ b/flepimop/gempyor_pkg/tests/npi/test_ModifierModifier.py @@ -0,0 +1,116 @@ +import pandas as pd +import numpy as np +import os +import pathlib +import confuse +import pytest +import datetime + +from gempyor import NPI, model_info +from gempyor.utils import config + +DATA_DIR = os.path.dirname(__file__) + "/data" +os.chdir(os.path.dirname(__file__)) + + +class Test_ModifierModifier: + def test_ModifierModifier_success(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_test.yml") + + s = model_info.ModelInfo( + setup_name="test_seir", + config=config, + nslots=1, + seir_modifiers_scenario="Fatigue", + outcome_modifiers_scenario=None, + write_csv=False, + ) + + test = NPI.ModifierModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=None, + ) + """ + test2 = NPI.SinglePeriodModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=test.parameters, + ) + """ + + def test_ModifierModifier_start_date_fail(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_test.yml") + with pytest.raises(ValueError, match=r".*at least one period start or end date is not between.*"): + s = model_info.ModelInfo( + setup_name="test_seir", + config=config, + nslots=1, + seir_modifiers_scenario="None", + outcome_modifiers_scenario=None, + write_csv=False, + ) + s.ti = datetime.datetime.strptime("2020-04-02", "%Y-%m-%d").date() + + test = NPI.ModifierModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=None, + ) + + def test_ModifierModifier_end_date_fail(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_test.yml") + with pytest.raises(ValueError, match=r".*at least one period start or end date is not between.*"): + s = model_info.ModelInfo( + setup_name="test_seir", + config=config, + nslots=1, + seir_modifiers_scenario="None", + outcome_modifiers_scenario=None, + write_csv=False, + ) + s.tf = datetime.datetime.strptime("2020-05-14", "%Y-%m-%d").date() + + test = NPI.ModifierModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=None, + ) + + def test_ModifierModifier_checkerrors(self): + config.clear() + config.read(user=False) + config.set_file(f"{DATA_DIR}/config_test.yml") + s = model_info.ModelInfo( + setup_name="test_seir", + config=config, + nslots=1, + seir_modifiers_scenario="None", + outcome_modifiers_scenario=None, + write_csv=False, + ) + + test = NPI.ModifierModifier( + npi_config=s.npi_config_seir, + modinf=s, + modifiers_library="", + subpops=s.subpop_struct.subpop_names, + loaded_df=None, + ) + + # Test + test._SinglePeriodModifier__checkErrors() From 17d68939a9a38da436bf2946a7d67374fcdc5f67 Mon Sep 17 00:00:00 2001 From: kjsato Date: Wed, 1 Nov 2023 16:25:06 -0400 Subject: [PATCH 36/50] deleted the line with #NOTE: --- flepimop/gempyor_pkg/src/gempyor/parameters.py | 1 - 1 file changed, 1 deletion(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/parameters.py b/flepimop/gempyor_pkg/src/gempyor/parameters.py index a83dd5fc2..674506e8d 100644 --- a/flepimop/gempyor_pkg/src/gempyor/parameters.py +++ b/flepimop/gempyor_pkg/src/gempyor/parameters.py @@ -34,7 +34,6 @@ def __init__( self.npar = len(self.pnames) if self.npar != len(set([name.lower() for name in self.pnames])): raise ValueError("Parameters of the SEIR model have the same name (remember that case is not sufficient!)") - #NOTE: this lines was not eliminated so been targeted in test # Attributes of dictionary for idx, pn in enumerate(self.pnames): From 0992b0b629183e698f27e3fffeca7d61b2997436 Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 2 Nov 2023 13:52:25 -0400 Subject: [PATCH 37/50] revived subpop_pop_key and subpop_names_key setting part in invoking subpopulation_structure.SubpopulationStructure() in model_info.py --- .../gempyor_pkg/src/gempyor/model_info.py | 24 ++++++++----------- 1 file changed, 10 insertions(+), 14 deletions(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/model_info.py b/flepimop/gempyor_pkg/src/gempyor/model_info.py index 72e2fe59a..a02c73cf7 100644 --- a/flepimop/gempyor_pkg/src/gempyor/model_info.py +++ b/flepimop/gempyor_pkg/src/gempyor/model_info.py @@ -79,12 +79,8 @@ def __init__( mobility_file=spatial_base_path / spatial_config["mobility"].get() if spatial_config["mobility"].exists() else None, - subpop_pop_key=spatial_config["subpop_pop_key"].get() - if spatial_config["subpop_pop_key"].exists() - else None, - subpop_names_key=spatial_config["subpop_names_key"].get() - if spatial_config["subpop_names_key"].exists() - else None, + subpop_pop_key="population", + subpop_names_key="subpop", ) self.nsubpops = self.subpop_struct.nsubpops self.subpop_pop = self.subpop_struct.subpop_pop @@ -262,13 +258,13 @@ def get_setup_name(self): return self.setup_name def read_simID(self, ftype: str, sim_id: int, input: bool = True, extension_override: str = ""): - fname=self.get_filename( - ftype=ftype, - sim_id=sim_id, - input=input, - extension_override=extension_override, - ) - #print(f"Readings {fname}") + fname = self.get_filename( + ftype=ftype, + sim_id=sim_id, + input=input, + extension_override=extension_override, + ) + # print(f"Readings {fname}") return read_df(fname=fname) def write_simID( @@ -285,7 +281,7 @@ def write_simID( input=input, extension_override=extension_override, ) - #print(f"Writing {fname}") + # print(f"Writing {fname}") write_df( fname=fname, df=df, From 76af70cacd0f22c4959d978cd750f2ea4687890f Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 2 Nov 2023 15:00:42 -0400 Subject: [PATCH 38/50] deleted subpop_pop_key and subpop_names_key entries in any config file as they are no longer configured --- .../tests/interface/data/config_minimal.yaml | 123 - .../tests/interface/data/config_test.yml | 2 - .../data/geodata_2019_statelevel.csv | 52 - .../data/mobility_2011-2015_statelevel.csv | 2330 ----------------- flepimop/gempyor_pkg/tests/npi/config_npi.yml | 2 - .../npi/config_test_spatial_group_npi.yml | 3 - .../tests/npi/data/config_minimal.yaml | 123 - .../tests/npi/data/config_test.yml | 2 - .../gempyor_pkg/tests/outcomes/config.yml | 3 +- .../tests/outcomes/config_load.yml | 3 +- .../tests/outcomes/config_load_subclasses.yml | 3 +- .../tests/outcomes/config_mc_selection.yml | 3 +- .../gempyor_pkg/tests/outcomes/config_npi.yml | 3 +- .../outcomes/config_npi_custom_pnames.yml | 3 +- .../tests/outcomes/config_subclasses.yml | 3 +- .../tests/outcomes/config_test.yml | 2 - .../gempyor_pkg/tests/seir/data/config.yml | 3 +- .../tests/seir/data/config_compartment.yml | 119 - .../config_compartmental_model_format.yml | 3 +- .../data/config_compartmental_model_full.yml | 3 +- .../seir/data/config_continuation_resume.yml | 3 +- .../seir/data/config_inference_resume.yml | 3 +- .../tests/seir/data/config_parallel.yml | 3 +- .../tests/seir/data/config_test.yml | 2 - 24 files changed, 13 insertions(+), 2786 deletions(-) delete mode 100644 flepimop/gempyor_pkg/tests/interface/data/config_minimal.yaml delete mode 100644 flepimop/gempyor_pkg/tests/interface/data/geodata_2019_statelevel.csv delete mode 100644 flepimop/gempyor_pkg/tests/interface/data/mobility_2011-2015_statelevel.csv delete mode 100644 flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml delete mode 100644 flepimop/gempyor_pkg/tests/seir/data/config_compartment.yml diff --git a/flepimop/gempyor_pkg/tests/interface/data/config_minimal.yaml b/flepimop/gempyor_pkg/tests/interface/data/config_minimal.yaml deleted file mode 100644 index 15ab5792b..000000000 --- a/flepimop/gempyor_pkg/tests/interface/data/config_minimal.yaml +++ /dev/null @@ -1,123 +0,0 @@ -name: minimal -setup_name: minimal -start_date: 2020-01-31 -end_date: 2020-05-31 -data_path: data -nslots: 15 - - -spatial_setup: - geodata: geodata.csv - mobility: mobility.txt - popnodes: population - nodenames: geoid - -seeding: - method: FolderDraw - seeding_file_type: seed - -initial_conditions: - method: Default - -compartments: - infection_stage: ["S", "E", "I1", "I2", "I3", "R"] - vaccination_stage: ["unvaccinated"] - -seir: - integration: - method: legacy - dt: 1/6 - parameters: - alpha: - value: - distribution: fixed - value: .9 - sigma: - value: - distribution: fixed - value: 1 / 5.2 - gamma: - value: - distribution: uniform - low: 1 / 6 - high: 1 / 2.6 - R0s: - value: - distribution: uniform - low: 2 - high: 3 - transitions: - - source: ["S", "unvaccinated"] - destination: ["E", "unvaccinated"] - rate: ["R0s * gamma", 1] - proportional_to: [ - ["S", "unvaccinated"], - [[["I1", "I2", "I3"]], "unvaccinated"], - ] - proportion_exponent: [["1", "1"], ["alpha", "1"]] - - source: [["E"], ["unvaccinated"]] - destination: [["I1"], ["unvaccinated"]] - rate: ["sigma", 1] - proportional_to: [[["E"], ["unvaccinated"]]] - proportion_exponent: [["1", "1"]] - - source: [["I1"], ["unvaccinated"]] - destination: [["I2"], ["unvaccinated"]] - rate: ["3 * gamma", 1] - proportional_to: [[["I1"], ["unvaccinated"]]] - proportion_exponent: [["1", "1"]] - - source: [["I2"], ["unvaccinated"]] - destination: [["I3"], ["unvaccinated"]] - rate: ["3 * gamma", 1] - proportional_to: [[["I2"], ["unvaccinated"]]] - proportion_exponent: [["1", "1"]] - - source: [["I3"], ["unvaccinated"]] - destination: [["R"], ["unvaccinated"]] - rate: ["3 * gamma", 1] - proportional_to: [[["I3"], ["unvaccinated"]]] - proportion_exponent: [["1", "1"]] - -interventions: - scenarios: - - None - - Scenario1 - - Scenario2 - settings: - None: - template: ReduceR0 - parameter: r0 - period_start_date: 2020-04-01 - period_end_date: 2020-05-15 - value: - distribution: fixed - value: 0 - Wuhan: - template: Reduce - parameter: r0 - period_start_date: 2020-04-01 - period_end_date: 2020-05-15 - value: - distribution: uniform - low: .14 - high: .33 - KansasCity: - template: MultiTimeReduce - parameter: r0 - groups: - - periods: - - start_date: 2020-04-01 - end_date: 2020-05-15 - affected_geoids: "all" - value: - distribution: uniform - low: .04 - high: .23 - Scenario1: - template: Stacked - scenarios: - - KansasCity - - Wuhan - - None - Scenario2: - template: Stacked - scenarios: - - Wuhan diff --git a/flepimop/gempyor_pkg/tests/interface/data/config_test.yml b/flepimop/gempyor_pkg/tests/interface/data/config_test.yml index ea597e332..cd7f74ecd 100644 --- a/flepimop/gempyor_pkg/tests/interface/data/config_test.yml +++ b/flepimop/gempyor_pkg/tests/interface/data/config_test.yml @@ -9,8 +9,6 @@ nslots: 5 subpop_setup: geodata: geodata.csv mobility: mobility.csv - subpop_pop_key: population - subpop_names_key: subpop seeding: diff --git a/flepimop/gempyor_pkg/tests/interface/data/geodata_2019_statelevel.csv b/flepimop/gempyor_pkg/tests/interface/data/geodata_2019_statelevel.csv deleted file mode 100644 index f0bbbd8f7..000000000 --- a/flepimop/gempyor_pkg/tests/interface/data/geodata_2019_statelevel.csv +++ /dev/null @@ -1,52 +0,0 @@ -USPS,geoid,pop2019est -WY,56000,581024 -VT,50000,624313 -DC,11000,692683 -AK,02000,737068 -ND,38000,756717 -SD,46000,870638 -DE,10000,957248 -MT,30000,1050649 -RI,44000,1057231 -ME,23000,1335492 -NH,33000,1348124 -HI,15000,1422094 -ID,16000,1717750 -WV,54000,1817305 -NE,31000,1914571 -NM,35000,2092454 -KS,20000,2910652 -NV,32000,2972382 -MS,28000,2984418 -AR,05000,2999370 -UT,49000,3096848 -IA,19000,3139508 -CT,09000,3575074 -OK,40000,3932870 -OR,41000,4129803 -KY,21000,4449052 -LA,22000,4664362 -AL,01000,4876250 -SC,45000,5020806 -MN,27000,5563378 -CO,08000,5610349 -WI,55000,5790716 -MD,24000,6018848 -MO,29000,6104910 -IN,18000,6665703 -TN,47000,6709356 -MA,25000,6850553 -AZ,04000,7050299 -WA,53000,7404107 -VA,51000,8454463 -NJ,34000,8878503 -MI,26000,9965265 -NC,37000,10264876 -GA,13000,10403847 -OH,39000,11655397 -IL,17000,12770631 -PA,42000,12791530 -NY,36000,19572319 -FL,12000,20901636 -TX,48000,28260856 -CA,06000,39283497 diff --git a/flepimop/gempyor_pkg/tests/interface/data/mobility_2011-2015_statelevel.csv b/flepimop/gempyor_pkg/tests/interface/data/mobility_2011-2015_statelevel.csv deleted file mode 100644 index a2da772ba..000000000 --- a/flepimop/gempyor_pkg/tests/interface/data/mobility_2011-2015_statelevel.csv +++ /dev/null @@ -1,2330 +0,0 @@ -ori,dest,amount -01000,02000,198 -01000,04000,292 -01000,05000,570 -01000,06000,1030 -01000,08000,328 -01000,09000,36 -01000,11000,478 -01000,12000,17592 -01000,13000,93000 -01000,15000,104 -01000,16000,24 -01000,17000,682 -01000,18000,578 -01000,19000,300 -01000,20000,142 -01000,21000,1228 -01000,22000,5922 -01000,23000,74 -01000,24000,280 -01000,25000,538 -01000,26000,698 -01000,27000,452 -01000,28000,26864 -01000,29000,600 -01000,30000,102 -01000,31000,58 -01000,32000,96 -01000,33000,16 -01000,34000,390 -01000,35000,124 -01000,36000,770 -01000,37000,1288 -01000,38000,100 -01000,39000,880 -01000,40000,280 -01000,41000,132 -01000,42000,968 -01000,45000,924 -01000,46000,16 -01000,47000,16562 -01000,48000,4242 -01000,49000,120 -01000,50000,34 -01000,51000,1052 -01000,53000,370 -01000,54000,114 -01000,55000,314 -01000,56000,142 -02000,04000,60 -02000,06000,164 -02000,08000,128 -02000,09000,6 -02000,10000,40 -02000,11000,84 -02000,12000,34 -02000,13000,112 -02000,15000,46 -02000,16000,20 -02000,18000,20 -02000,21000,154 -02000,22000,96 -02000,24000,8 -02000,26000,60 -02000,27000,34 -02000,28000,18 -02000,30000,2 -02000,31000,76 -02000,32000,100 -02000,33000,22 -02000,34000,116 -02000,36000,2 -02000,38000,92 -02000,40000,14 -02000,41000,26 -02000,42000,40 -02000,46000,66 -02000,47000,18 -02000,48000,160 -02000,49000,76 -02000,51000,32 -02000,53000,514 -02000,56000,24 -04000,01000,144 -04000,02000,912 -04000,05000,248 -04000,06000,22416 -04000,08000,2466 -04000,09000,238 -04000,10000,32 -04000,11000,430 -04000,12000,1046 -04000,13000,1060 -04000,15000,384 -04000,16000,578 -04000,17000,1980 -04000,18000,506 -04000,19000,560 -04000,20000,424 -04000,21000,112 -04000,22000,436 -04000,23000,82 -04000,24000,190 -04000,25000,368 -04000,26000,1210 -04000,27000,1512 -04000,28000,242 -04000,29000,760 -04000,30000,400 -04000,31000,672 -04000,32000,18420 -04000,33000,80 -04000,34000,1234 -04000,35000,6438 -04000,36000,1284 -04000,37000,324 -04000,38000,1636 -04000,39000,574 -04000,40000,928 -04000,41000,622 -04000,42000,1372 -04000,44000,26 -04000,45000,200 -04000,46000,278 -04000,47000,398 -04000,48000,5326 -04000,49000,5678 -04000,50000,94 -04000,51000,480 -04000,53000,2396 -04000,54000,40 -04000,55000,752 -04000,56000,690 -05000,01000,246 -05000,02000,214 -05000,04000,566 -05000,06000,1038 -05000,08000,516 -05000,10000,8 -05000,11000,162 -05000,12000,456 -05000,13000,526 -05000,15000,24 -05000,17000,834 -05000,18000,492 -05000,19000,170 -05000,20000,698 -05000,21000,504 -05000,22000,5600 -05000,24000,154 -05000,25000,200 -05000,26000,206 -05000,27000,236 -05000,28000,4226 -05000,29000,11504 -05000,30000,126 -05000,31000,452 -05000,32000,52 -05000,34000,134 -05000,35000,24 -05000,36000,488 -05000,37000,174 -05000,38000,200 -05000,39000,724 -05000,40000,13062 -05000,41000,88 -05000,42000,818 -05000,44000,44 -05000,45000,156 -05000,46000,96 -05000,47000,18362 -05000,48000,26580 -05000,49000,18 -05000,51000,318 -05000,53000,142 -05000,54000,158 -05000,55000,262 -05000,56000,68 -06000,01000,382 -06000,02000,1468 -06000,04000,13198 -06000,05000,654 -06000,08000,3174 -06000,09000,938 -06000,10000,156 -06000,11000,1712 -06000,12000,3888 -06000,13000,3658 -06000,15000,2804 -06000,16000,524 -06000,17000,6232 -06000,18000,920 -06000,19000,962 -06000,20000,1112 -06000,21000,426 -06000,22000,1744 -06000,23000,338 -06000,24000,1348 -06000,25000,2360 -06000,26000,1746 -06000,27000,1790 -06000,28000,464 -06000,29000,2004 -06000,30000,706 -06000,31000,1276 -06000,32000,23282 -06000,33000,122 -06000,34000,2704 -06000,35000,1226 -06000,36000,9876 -06000,37000,1582 -06000,38000,782 -06000,39000,2308 -06000,40000,1336 -06000,41000,6292 -06000,42000,3214 -06000,44000,370 -06000,45000,744 -06000,46000,182 -06000,47000,1732 -06000,48000,11246 -06000,49000,2746 -06000,50000,82 -06000,51000,2900 -06000,53000,7636 -06000,54000,308 -06000,55000,1126 -06000,56000,286 -08000,01000,392 -08000,02000,784 -08000,04000,2716 -08000,05000,228 -08000,06000,5786 -08000,09000,344 -08000,11000,514 -08000,12000,1578 -08000,13000,1020 -08000,15000,466 -08000,16000,132 -08000,17000,2042 -08000,18000,370 -08000,19000,356 -08000,20000,1394 -08000,21000,364 -08000,22000,470 -08000,23000,12 -08000,24000,300 -08000,25000,608 -08000,26000,784 -08000,27000,814 -08000,28000,146 -08000,29000,1248 -08000,30000,394 -08000,31000,2980 -08000,32000,616 -08000,33000,58 -08000,34000,1138 -08000,35000,5528 -08000,36000,1886 -08000,37000,922 -08000,38000,3156 -08000,39000,1708 -08000,40000,1040 -08000,41000,290 -08000,42000,1034 -08000,44000,28 -08000,45000,84 -08000,46000,626 -08000,47000,706 -08000,48000,5478 -08000,49000,2724 -08000,50000,32 -08000,51000,1096 -08000,53000,1072 -08000,54000,16 -08000,55000,508 -08000,56000,9230 -09000,01000,58 -09000,02000,134 -09000,04000,92 -09000,06000,1402 -09000,08000,168 -09000,10000,78 -09000,11000,592 -09000,12000,1026 -09000,13000,318 -09000,15000,34 -09000,17000,858 -09000,18000,150 -09000,19000,32 -09000,20000,8 -09000,21000,128 -09000,22000,126 -09000,23000,604 -09000,24000,680 -09000,25000,43272 -09000,26000,464 -09000,27000,204 -09000,29000,368 -09000,30000,34 -09000,31000,12 -09000,32000,228 -09000,33000,920 -09000,34000,6392 -09000,36000,147078 -09000,37000,444 -09000,38000,12 -09000,39000,280 -09000,40000,64 -09000,41000,42 -09000,42000,1810 -09000,44000,16350 -09000,45000,200 -09000,47000,246 -09000,48000,680 -09000,49000,118 -09000,50000,654 -09000,51000,830 -09000,53000,66 -09000,54000,34 -09000,55000,146 -09000,56000,42 -10000,04000,76 -10000,05000,44 -10000,06000,50 -10000,08000,22 -10000,09000,70 -10000,11000,2052 -10000,12000,224 -10000,13000,76 -10000,17000,168 -10000,18000,48 -10000,21000,94 -10000,22000,32 -10000,24000,42700 -10000,25000,296 -10000,26000,36 -10000,27000,246 -10000,28000,38 -10000,29000,14 -10000,31000,24 -10000,32000,26 -10000,34000,12472 -10000,36000,3004 -10000,37000,172 -10000,38000,16 -10000,39000,194 -10000,40000,38 -10000,41000,42 -10000,42000,61180 -10000,44000,6 -10000,45000,56 -10000,48000,358 -10000,49000,66 -10000,51000,2346 -10000,53000,94 -10000,55000,70 -10000,56000,16 -11000,01000,32 -11000,05000,34 -11000,06000,406 -11000,08000,28 -11000,10000,14 -11000,12000,250 -11000,13000,264 -11000,17000,74 -11000,18000,68 -11000,19000,16 -11000,21000,42 -11000,22000,22 -11000,24000,86346 -11000,25000,482 -11000,26000,126 -11000,27000,40 -11000,29000,40 -11000,31000,14 -11000,33000,116 -11000,34000,352 -11000,36000,1088 -11000,37000,174 -11000,39000,200 -11000,41000,44 -11000,42000,434 -11000,44000,54 -11000,47000,34 -11000,48000,136 -11000,50000,12 -11000,51000,73604 -11000,53000,256 -11000,54000,106 -11000,56000,26 -12000,01000,17986 -12000,02000,490 -12000,04000,1258 -12000,05000,592 -12000,06000,4912 -12000,08000,1494 -12000,09000,1884 -12000,10000,702 -12000,11000,2336 -12000,13000,25990 -12000,15000,340 -12000,16000,22 -12000,17000,8650 -12000,18000,2884 -12000,19000,1026 -12000,20000,910 -12000,21000,2548 -12000,22000,7054 -12000,23000,740 -12000,24000,5162 -12000,25000,4992 -12000,26000,5974 -12000,27000,2174 -12000,28000,1968 -12000,29000,3012 -12000,31000,1130 -12000,32000,860 -12000,33000,1042 -12000,34000,6916 -12000,35000,254 -12000,36000,17402 -12000,37000,7318 -12000,38000,1252 -12000,39000,6348 -12000,40000,998 -12000,41000,294 -12000,42000,6328 -12000,44000,1212 -12000,45000,3748 -12000,46000,270 -12000,47000,3908 -12000,48000,11822 -12000,49000,488 -12000,50000,200 -12000,51000,6390 -12000,53000,1004 -12000,54000,740 -12000,55000,2078 -12000,56000,452 -13000,01000,24456 -13000,02000,266 -13000,04000,852 -13000,05000,1008 -13000,06000,3278 -13000,08000,732 -13000,09000,570 -13000,10000,138 -13000,11000,1404 -13000,12000,30618 -13000,15000,248 -13000,17000,3214 -13000,18000,1544 -13000,19000,882 -13000,20000,714 -13000,21000,1806 -13000,22000,1904 -13000,23000,42 -13000,24000,2166 -13000,25000,1432 -13000,26000,1792 -13000,27000,1480 -13000,28000,1832 -13000,29000,1020 -13000,30000,54 -13000,31000,524 -13000,32000,670 -13000,33000,32 -13000,34000,1676 -13000,35000,298 -13000,36000,4060 -13000,37000,11004 -13000,38000,310 -13000,39000,2346 -13000,40000,634 -13000,41000,180 -13000,42000,2634 -13000,44000,94 -13000,45000,41754 -13000,46000,108 -13000,47000,74086 -13000,48000,7152 -13000,49000,212 -13000,50000,40 -13000,51000,4714 -13000,53000,664 -13000,54000,172 -13000,55000,914 -13000,56000,152 -15000,02000,172 -15000,04000,248 -15000,06000,1964 -15000,08000,64 -15000,09000,26 -15000,10000,10 -15000,11000,42 -15000,12000,144 -15000,13000,20 -15000,17000,70 -15000,18000,12 -15000,20000,10 -15000,21000,20 -15000,22000,20 -15000,24000,194 -15000,25000,92 -15000,26000,48 -15000,27000,82 -15000,29000,114 -15000,32000,194 -15000,33000,10 -15000,34000,42 -15000,36000,170 -15000,37000,92 -15000,38000,32 -15000,39000,20 -15000,40000,130 -15000,41000,132 -15000,44000,22 -15000,45000,68 -15000,47000,20 -15000,48000,168 -15000,49000,88 -15000,51000,78 -15000,53000,500 -16000,01000,12 -16000,02000,1190 -16000,04000,312 -16000,05000,4 -16000,06000,1830 -16000,08000,718 -16000,09000,8 -16000,11000,78 -16000,12000,170 -16000,13000,186 -16000,15000,80 -16000,17000,452 -16000,18000,236 -16000,19000,266 -16000,20000,6 -16000,21000,6 -16000,22000,84 -16000,25000,170 -16000,26000,38 -16000,27000,30 -16000,28000,6 -16000,29000,100 -16000,30000,1884 -16000,31000,132 -16000,32000,2198 -16000,33000,6 -16000,34000,116 -16000,35000,128 -16000,36000,210 -16000,37000,118 -16000,38000,3288 -16000,39000,152 -16000,40000,52 -16000,41000,11738 -16000,42000,100 -16000,45000,362 -16000,46000,78 -16000,47000,148 -16000,48000,452 -16000,49000,7238 -16000,51000,170 -16000,53000,37972 -16000,54000,42 -16000,55000,136 -16000,56000,5760 -17000,01000,570 -17000,02000,88 -17000,04000,874 -17000,05000,936 -17000,06000,4242 -17000,08000,942 -17000,09000,646 -17000,10000,198 -17000,11000,976 -17000,12000,2768 -17000,13000,2316 -17000,15000,142 -17000,16000,144 -17000,18000,69686 -17000,19000,66826 -17000,20000,866 -17000,21000,8262 -17000,22000,630 -17000,23000,90 -17000,24000,780 -17000,25000,1258 -17000,26000,4472 -17000,27000,2150 -17000,28000,378 -17000,29000,166126 -17000,30000,208 -17000,31000,1444 -17000,32000,526 -17000,33000,146 -17000,34000,1410 -17000,35000,120 -17000,36000,3064 -17000,37000,1886 -17000,38000,402 -17000,39000,3240 -17000,40000,586 -17000,41000,350 -17000,42000,2366 -17000,44000,272 -17000,45000,372 -17000,46000,132 -17000,47000,2116 -17000,48000,4146 -17000,49000,104 -17000,50000,84 -17000,51000,1666 -17000,53000,506 -17000,54000,40 -17000,55000,47624 -17000,56000,116 -18000,01000,666 -18000,02000,266 -18000,04000,248 -18000,05000,386 -18000,06000,1544 -18000,08000,578 -18000,09000,206 -18000,10000,20 -18000,11000,404 -18000,12000,1166 -18000,13000,804 -18000,15000,48 -18000,16000,128 -18000,17000,133476 -18000,19000,1116 -18000,20000,244 -18000,21000,104654 -18000,22000,440 -18000,23000,58 -18000,24000,636 -18000,25000,388 -18000,26000,19488 -18000,27000,772 -18000,28000,222 -18000,29000,1468 -18000,31000,270 -18000,32000,74 -18000,34000,768 -18000,35000,44 -18000,36000,982 -18000,37000,906 -18000,38000,376 -18000,39000,50636 -18000,40000,306 -18000,41000,114 -18000,42000,1248 -18000,44000,28 -18000,45000,496 -18000,46000,152 -18000,47000,1852 -18000,48000,1630 -18000,49000,78 -18000,50000,104 -18000,51000,532 -18000,53000,248 -18000,54000,264 -18000,55000,1122 -18000,56000,28 -19000,01000,108 -19000,02000,28 -19000,04000,176 -19000,05000,254 -19000,06000,450 -19000,08000,480 -19000,11000,30 -19000,12000,324 -19000,13000,308 -19000,15000,30 -19000,16000,32 -19000,17000,44400 -19000,18000,686 -19000,20000,550 -19000,21000,82 -19000,22000,216 -19000,23000,4 -19000,24000,38 -19000,25000,154 -19000,26000,388 -19000,27000,10512 -19000,28000,50 -19000,29000,2784 -19000,30000,58 -19000,31000,62690 -19000,32000,60 -19000,34000,56 -19000,35000,122 -19000,36000,282 -19000,37000,86 -19000,38000,474 -19000,39000,336 -19000,40000,160 -19000,41000,38 -19000,42000,224 -19000,44000,20 -19000,45000,108 -19000,46000,11166 -19000,47000,124 -19000,48000,958 -19000,49000,68 -19000,51000,380 -19000,53000,88 -19000,54000,22 -19000,55000,6446 -19000,56000,120 -20000,01000,104 -20000,02000,72 -20000,04000,68 -20000,05000,442 -20000,06000,886 -20000,08000,1390 -20000,09000,12 -20000,10000,60 -20000,11000,72 -20000,12000,354 -20000,13000,480 -20000,15000,56 -20000,16000,32 -20000,17000,778 -20000,18000,512 -20000,19000,1172 -20000,21000,118 -20000,22000,200 -20000,24000,124 -20000,25000,74 -20000,26000,188 -20000,27000,312 -20000,28000,84 -20000,29000,179362 -20000,30000,54 -20000,31000,3202 -20000,32000,122 -20000,34000,156 -20000,35000,172 -20000,36000,246 -20000,37000,132 -20000,38000,328 -20000,39000,246 -20000,40000,10128 -20000,41000,68 -20000,42000,298 -20000,44000,32 -20000,45000,18 -20000,46000,202 -20000,47000,410 -20000,48000,3000 -20000,49000,22 -20000,51000,308 -20000,53000,334 -20000,55000,418 -20000,56000,100 -21000,01000,652 -21000,02000,126 -21000,04000,124 -21000,05000,500 -21000,06000,740 -21000,08000,286 -21000,09000,22 -21000,10000,18 -21000,11000,324 -21000,12000,1528 -21000,13000,2208 -21000,15000,30 -21000,16000,24 -21000,17000,4890 -21000,18000,51444 -21000,19000,236 -21000,20000,104 -21000,22000,304 -21000,23000,46 -21000,24000,370 -21000,25000,338 -21000,26000,1042 -21000,27000,334 -21000,28000,312 -21000,29000,1010 -21000,30000,48 -21000,31000,116 -21000,32000,100 -21000,34000,488 -21000,35000,160 -21000,36000,322 -21000,37000,904 -21000,38000,72 -21000,39000,121244 -21000,40000,294 -21000,41000,20 -21000,42000,1342 -21000,44000,6 -21000,45000,370 -21000,46000,104 -21000,47000,26162 -21000,48000,1406 -21000,49000,192 -21000,50000,84 -21000,51000,3258 -21000,53000,234 -21000,54000,13392 -21000,55000,298 -21000,56000,20 -22000,01000,1384 -22000,02000,366 -22000,04000,248 -22000,05000,5614 -22000,06000,1374 -22000,08000,408 -22000,09000,204 -22000,11000,48 -22000,12000,1258 -22000,13000,1062 -22000,15000,80 -22000,16000,178 -22000,17000,808 -22000,18000,362 -22000,19000,262 -22000,20000,340 -22000,21000,342 -22000,24000,272 -22000,25000,420 -22000,26000,518 -22000,27000,182 -22000,28000,18906 -22000,29000,502 -22000,30000,300 -22000,31000,92 -22000,32000,228 -22000,34000,506 -22000,35000,298 -22000,36000,1226 -22000,37000,554 -22000,38000,884 -22000,39000,618 -22000,40000,2158 -22000,41000,78 -22000,42000,1136 -22000,44000,110 -22000,45000,342 -22000,46000,30 -22000,47000,966 -22000,48000,38944 -22000,49000,304 -22000,51000,466 -22000,53000,178 -22000,54000,144 -22000,55000,188 -22000,56000,126 -23000,01000,32 -23000,02000,12 -23000,04000,232 -23000,05000,24 -23000,06000,230 -23000,08000,36 -23000,09000,660 -23000,10000,24 -23000,11000,64 -23000,12000,462 -23000,13000,182 -23000,15000,34 -23000,17000,164 -23000,18000,22 -23000,19000,84 -23000,20000,40 -23000,21000,14 -23000,22000,542 -23000,24000,210 -23000,25000,10044 -23000,26000,106 -23000,27000,128 -23000,28000,32 -23000,29000,100 -23000,30000,6 -23000,31000,56 -23000,33000,34376 -23000,34000,510 -23000,36000,1292 -23000,37000,148 -23000,38000,6 -23000,39000,66 -23000,40000,4 -23000,41000,12 -23000,42000,434 -23000,44000,288 -23000,45000,180 -23000,46000,22 -23000,47000,44 -23000,48000,338 -23000,49000,18 -23000,50000,730 -23000,51000,250 -23000,53000,96 -23000,54000,20 -23000,55000,92 -24000,01000,338 -24000,02000,154 -24000,04000,130 -24000,05000,90 -24000,06000,1518 -24000,08000,314 -24000,09000,324 -24000,10000,39186 -24000,11000,641524 -24000,12000,1742 -24000,13000,1078 -24000,15000,232 -24000,16000,20 -24000,17000,954 -24000,18000,354 -24000,19000,100 -24000,20000,132 -24000,21000,268 -24000,22000,342 -24000,23000,162 -24000,25000,1554 -24000,26000,534 -24000,27000,506 -24000,28000,68 -24000,29000,724 -24000,30000,12 -24000,31000,110 -24000,32000,146 -24000,33000,46 -24000,34000,3792 -24000,35000,18 -24000,36000,4618 -24000,37000,1938 -24000,38000,86 -24000,39000,1080 -24000,40000,50 -24000,41000,224 -24000,42000,29610 -24000,44000,300 -24000,45000,288 -24000,47000,544 -24000,48000,1348 -24000,49000,76 -24000,50000,38 -24000,51000,250534 -24000,53000,552 -24000,54000,13040 -24000,55000,412 -24000,56000,36 -25000,01000,112 -25000,02000,34 -25000,04000,302 -25000,05000,68 -25000,06000,2454 -25000,08000,260 -25000,09000,59766 -25000,10000,108 -25000,11000,1104 -25000,12000,1944 -25000,13000,824 -25000,15000,78 -25000,16000,26 -25000,17000,1012 -25000,18000,492 -25000,19000,178 -25000,20000,106 -25000,21000,202 -25000,22000,238 -25000,23000,3042 -25000,24000,1340 -25000,26000,418 -25000,27000,412 -25000,28000,86 -25000,29000,358 -25000,30000,92 -25000,31000,92 -25000,32000,284 -25000,33000,67002 -25000,34000,2804 -25000,35000,60 -25000,36000,13520 -25000,37000,584 -25000,38000,16 -25000,39000,530 -25000,40000,106 -25000,41000,94 -25000,42000,2762 -25000,44000,91154 -25000,45000,326 -25000,47000,304 -25000,48000,1444 -25000,49000,234 -25000,50000,4918 -25000,51000,1428 -25000,53000,414 -25000,54000,38 -25000,55000,200 -25000,56000,14 -26000,01000,476 -26000,02000,164 -26000,04000,618 -26000,05000,334 -26000,06000,2178 -26000,08000,542 -26000,09000,684 -26000,10000,80 -26000,11000,384 -26000,12000,2036 -26000,13000,1114 -26000,15000,198 -26000,16000,76 -26000,17000,11026 -26000,18000,50894 -26000,19000,708 -26000,20000,536 -26000,21000,1322 -26000,22000,482 -26000,23000,72 -26000,24000,788 -26000,25000,656 -26000,27000,1808 -26000,28000,342 -26000,29000,1428 -26000,30000,178 -26000,31000,314 -26000,32000,256 -26000,33000,64 -26000,34000,996 -26000,35000,64 -26000,36000,2462 -26000,37000,860 -26000,38000,748 -26000,39000,50202 -26000,40000,394 -26000,41000,306 -26000,42000,2626 -26000,44000,96 -26000,45000,416 -26000,46000,118 -26000,47000,1516 -26000,48000,2742 -26000,49000,360 -26000,50000,124 -26000,51000,802 -26000,53000,604 -26000,54000,98 -26000,55000,15276 -26000,56000,144 -27000,01000,50 -27000,02000,266 -27000,04000,394 -27000,05000,184 -27000,06000,1798 -27000,08000,572 -27000,09000,62 -27000,10000,28 -27000,11000,324 -27000,12000,1148 -27000,13000,1072 -27000,15000,22 -27000,16000,96 -27000,17000,3068 -27000,18000,626 -27000,19000,8776 -27000,20000,396 -27000,21000,190 -27000,22000,44 -27000,23000,52 -27000,24000,316 -27000,25000,538 -27000,26000,744 -27000,28000,50 -27000,29000,672 -27000,30000,230 -27000,31000,798 -27000,32000,234 -27000,33000,26 -27000,34000,390 -27000,35000,148 -27000,36000,1120 -27000,37000,430 -27000,38000,62180 -27000,39000,536 -27000,40000,254 -27000,41000,176 -27000,42000,442 -27000,44000,8 -27000,45000,142 -27000,46000,7426 -27000,47000,528 -27000,48000,1540 -27000,49000,310 -27000,50000,88 -27000,51000,242 -27000,53000,432 -27000,54000,62 -27000,55000,39470 -27000,56000,80 -28000,01000,16080 -28000,02000,350 -28000,04000,150 -28000,05000,3368 -28000,06000,668 -28000,08000,156 -28000,09000,86 -28000,10000,46 -28000,11000,114 -28000,12000,1058 -28000,13000,1416 -28000,15000,42 -28000,17000,698 -28000,18000,492 -28000,19000,244 -28000,20000,68 -28000,21000,648 -28000,22000,43626 -28000,24000,282 -28000,25000,26 -28000,26000,246 -28000,27000,500 -28000,29000,640 -28000,30000,40 -28000,31000,118 -28000,32000,62 -28000,33000,32 -28000,34000,136 -28000,35000,234 -28000,36000,568 -28000,37000,400 -28000,38000,566 -28000,39000,398 -28000,40000,416 -28000,41000,30 -28000,42000,436 -28000,45000,468 -28000,47000,110686 -28000,48000,10108 -28000,49000,194 -28000,50000,60 -28000,51000,286 -28000,53000,152 -28000,54000,120 -28000,55000,272 -28000,56000,118 -29000,01000,174 -29000,02000,86 -29000,04000,646 -29000,05000,19324 -29000,06000,1378 -29000,08000,952 -29000,09000,104 -29000,10000,84 -29000,11000,370 -29000,12000,1260 -29000,13000,1022 -29000,15000,10 -29000,16000,126 -29000,17000,49906 -29000,18000,2000 -29000,19000,8854 -29000,20000,199556 -29000,21000,1344 -29000,22000,950 -29000,23000,58 -29000,24000,442 -29000,25000,174 -29000,26000,776 -29000,27000,1300 -29000,28000,492 -29000,30000,482 -29000,31000,2648 -29000,32000,284 -29000,33000,64 -29000,34000,910 -29000,35000,174 -29000,36000,1100 -29000,37000,612 -29000,38000,616 -29000,39000,1154 -29000,40000,5916 -29000,41000,210 -29000,42000,1250 -29000,44000,8 -29000,45000,350 -29000,46000,128 -29000,47000,1562 -29000,48000,3846 -29000,49000,150 -29000,50000,44 -29000,51000,728 -29000,53000,552 -29000,54000,206 -29000,55000,1396 -29000,56000,142 -30000,02000,602 -30000,04000,344 -30000,06000,880 -30000,08000,608 -30000,09000,10 -30000,11000,4 -30000,12000,104 -30000,13000,78 -30000,16000,1062 -30000,17000,134 -30000,18000,86 -30000,19000,14 -30000,20000,70 -30000,21000,10 -30000,22000,42 -30000,23000,20 -30000,24000,10 -30000,25000,96 -30000,26000,60 -30000,27000,228 -30000,28000,16 -30000,29000,76 -30000,31000,72 -30000,32000,274 -30000,34000,150 -30000,35000,76 -30000,36000,126 -30000,37000,58 -30000,38000,7122 -30000,39000,176 -30000,40000,16 -30000,41000,260 -30000,42000,62 -30000,45000,18 -30000,46000,342 -30000,47000,72 -30000,48000,502 -30000,49000,376 -30000,51000,44 -30000,53000,776 -30000,54000,8 -30000,55000,296 -30000,56000,1874 -31000,01000,10 -31000,02000,60 -31000,04000,168 -31000,05000,90 -31000,06000,472 -31000,08000,1484 -31000,09000,14 -31000,10000,10 -31000,11000,34 -31000,12000,68 -31000,13000,50 -31000,16000,4 -31000,17000,348 -31000,18000,78 -31000,19000,34304 -31000,20000,4226 -31000,21000,84 -31000,22000,14 -31000,24000,48 -31000,25000,294 -31000,26000,70 -31000,27000,398 -31000,28000,58 -31000,29000,1328 -31000,30000,86 -31000,32000,136 -31000,34000,116 -31000,35000,146 -31000,36000,226 -31000,37000,130 -31000,38000,174 -31000,39000,154 -31000,40000,202 -31000,41000,36 -31000,42000,62 -31000,45000,24 -31000,46000,5816 -31000,47000,176 -31000,48000,538 -31000,49000,156 -31000,51000,52 -31000,53000,48 -31000,55000,102 -31000,56000,1010 -32000,01000,22 -32000,02000,434 -32000,04000,2762 -32000,05000,12 -32000,06000,29830 -32000,08000,864 -32000,09000,56 -32000,10000,20 -32000,11000,352 -32000,12000,600 -32000,13000,434 -32000,15000,398 -32000,16000,316 -32000,17000,1288 -32000,18000,242 -32000,19000,302 -32000,20000,172 -32000,21000,92 -32000,22000,176 -32000,24000,124 -32000,25000,218 -32000,26000,250 -32000,27000,188 -32000,28000,132 -32000,29000,342 -32000,30000,322 -32000,31000,302 -32000,33000,60 -32000,34000,12 -32000,35000,394 -32000,36000,846 -32000,37000,594 -32000,38000,518 -32000,39000,264 -32000,40000,120 -32000,41000,322 -32000,42000,334 -32000,45000,114 -32000,46000,134 -32000,47000,282 -32000,48000,1790 -32000,49000,2164 -32000,50000,12 -32000,51000,164 -32000,53000,516 -32000,55000,404 -32000,56000,290 -33000,01000,38 -33000,02000,62 -33000,04000,56 -33000,06000,378 -33000,08000,128 -33000,09000,1302 -33000,10000,110 -33000,11000,196 -33000,12000,420 -33000,13000,312 -33000,15000,14 -33000,17000,214 -33000,18000,82 -33000,19000,34 -33000,20000,60 -33000,21000,44 -33000,22000,118 -33000,23000,13458 -33000,24000,242 -33000,25000,170524 -33000,26000,120 -33000,27000,158 -33000,28000,24 -33000,29000,96 -33000,30000,58 -33000,31000,68 -33000,32000,80 -33000,34000,758 -33000,35000,64 -33000,36000,1954 -33000,37000,176 -33000,38000,72 -33000,39000,456 -33000,40000,54 -33000,41000,84 -33000,42000,672 -33000,44000,534 -33000,45000,64 -33000,46000,8 -33000,47000,46 -33000,48000,372 -33000,49000,54 -33000,50000,18408 -33000,51000,358 -33000,53000,48 -33000,54000,46 -33000,55000,138 -34000,01000,96 -34000,02000,48 -34000,04000,456 -34000,05000,130 -34000,06000,2640 -34000,08000,416 -34000,09000,7208 -34000,10000,16794 -34000,11000,1672 -34000,12000,2278 -34000,13000,1074 -34000,15000,36 -34000,16000,12 -34000,17000,1884 -34000,18000,286 -34000,19000,38 -34000,20000,188 -34000,21000,302 -34000,22000,220 -34000,23000,354 -34000,24000,5364 -34000,25000,3044 -34000,26000,770 -34000,27000,452 -34000,28000,66 -34000,29000,436 -34000,30000,76 -34000,31000,122 -34000,32000,426 -34000,33000,210 -34000,35000,30 -34000,36000,833742 -34000,37000,1322 -34000,38000,178 -34000,39000,1634 -34000,40000,214 -34000,41000,82 -34000,42000,250494 -34000,44000,454 -34000,45000,360 -34000,47000,502 -34000,48000,2092 -34000,49000,136 -34000,50000,322 -34000,51000,2130 -34000,53000,278 -34000,54000,222 -34000,55000,410 -35000,01000,6 -35000,02000,38 -35000,04000,4570 -35000,06000,1216 -35000,08000,4378 -35000,09000,20 -35000,11000,66 -35000,12000,370 -35000,13000,168 -35000,16000,60 -35000,17000,174 -35000,18000,70 -35000,19000,162 -35000,20000,228 -35000,21000,36 -35000,22000,464 -35000,24000,48 -35000,25000,32 -35000,26000,58 -35000,27000,154 -35000,28000,14 -35000,29000,246 -35000,30000,116 -35000,31000,84 -35000,32000,428 -35000,33000,72 -35000,34000,72 -35000,36000,316 -35000,37000,90 -35000,38000,172 -35000,39000,166 -35000,40000,206 -35000,41000,184 -35000,42000,186 -35000,45000,112 -35000,47000,172 -35000,48000,37800 -35000,49000,464 -35000,51000,224 -35000,53000,150 -35000,54000,44 -35000,55000,54 -35000,56000,104 -36000,01000,394 -36000,02000,42 -36000,04000,544 -36000,05000,92 -36000,06000,4926 -36000,08000,502 -36000,09000,90980 -36000,10000,728 -36000,11000,2120 -36000,12000,4048 -36000,13000,2152 -36000,15000,192 -36000,16000,42 -36000,17000,2488 -36000,18000,1000 -36000,19000,444 -36000,20000,424 -36000,21000,736 -36000,22000,1168 -36000,23000,986 -36000,24000,3722 -36000,25000,12470 -36000,26000,1420 -36000,27000,1080 -36000,28000,212 -36000,29000,666 -36000,30000,82 -36000,31000,344 -36000,32000,412 -36000,33000,804 -36000,34000,254064 -36000,35000,48 -36000,37000,2380 -36000,38000,78 -36000,39000,2864 -36000,40000,272 -36000,41000,340 -36000,42000,36648 -36000,44000,1500 -36000,45000,500 -36000,46000,110 -36000,47000,974 -36000,48000,3108 -36000,49000,408 -36000,50000,11490 -36000,51000,3208 -36000,53000,514 -36000,54000,358 -36000,55000,936 -36000,56000,62 -37000,01000,1136 -37000,02000,314 -37000,04000,1000 -37000,05000,360 -37000,06000,2774 -37000,08000,534 -37000,09000,648 -37000,10000,378 -37000,11000,1892 -37000,12000,6284 -37000,13000,12498 -37000,15000,200 -37000,17000,2002 -37000,18000,1172 -37000,19000,774 -37000,20000,284 -37000,21000,1108 -37000,22000,1014 -37000,23000,318 -37000,24000,3416 -37000,25000,1300 -37000,26000,1012 -37000,27000,522 -37000,28000,306 -37000,29000,550 -37000,30000,210 -37000,31000,544 -37000,32000,264 -37000,33000,162 -37000,34000,2580 -37000,35000,390 -37000,36000,4632 -37000,38000,588 -37000,39000,2754 -37000,40000,280 -37000,41000,370 -37000,42000,3416 -37000,44000,44 -37000,45000,83998 -37000,46000,48 -37000,47000,6558 -37000,48000,3934 -37000,49000,124 -37000,50000,190 -37000,51000,58234 -37000,53000,334 -37000,54000,1142 -37000,55000,1444 -37000,56000,42 -38000,02000,24 -38000,04000,44 -38000,06000,56 -38000,08000,132 -38000,11000,90 -38000,12000,28 -38000,15000,36 -38000,16000,4 -38000,17000,64 -38000,19000,154 -38000,20000,68 -38000,24000,66 -38000,26000,20 -38000,27000,22104 -38000,28000,6 -38000,29000,44 -38000,30000,1058 -38000,31000,54 -38000,32000,24 -38000,35000,2 -38000,37000,80 -38000,40000,22 -38000,41000,68 -38000,42000,90 -38000,46000,1672 -38000,47000,2 -38000,48000,162 -38000,49000,60 -38000,51000,20 -38000,55000,102 -38000,56000,24 -39000,01000,664 -39000,02000,182 -39000,04000,684 -39000,05000,408 -39000,06000,2622 -39000,08000,738 -39000,09000,530 -39000,10000,218 -39000,11000,820 -39000,12000,2064 -39000,13000,1474 -39000,15000,154 -39000,16000,24 -39000,17000,4644 -39000,18000,29418 -39000,19000,808 -39000,20000,370 -39000,21000,79754 -39000,22000,300 -39000,23000,118 -39000,24000,1288 -39000,25000,940 -39000,26000,25154 -39000,27000,1376 -39000,28000,398 -39000,29000,1100 -39000,30000,34 -39000,31000,744 -39000,32000,310 -39000,33000,38 -39000,34000,2300 -39000,35000,128 -39000,36000,3166 -39000,37000,1590 -39000,38000,286 -39000,40000,506 -39000,41000,348 -39000,42000,42560 -39000,44000,242 -39000,45000,478 -39000,46000,94 -39000,47000,1824 -39000,48000,3564 -39000,49000,120 -39000,50000,104 -39000,51000,2746 -39000,53000,332 -39000,54000,72536 -39000,55000,1528 -39000,56000,112 -40000,01000,260 -40000,02000,324 -40000,04000,414 -40000,05000,28738 -40000,06000,1300 -40000,08000,842 -40000,09000,22 -40000,10000,28 -40000,11000,18 -40000,12000,490 -40000,13000,336 -40000,15000,64 -40000,16000,24 -40000,17000,610 -40000,18000,250 -40000,19000,624 -40000,20000,11702 -40000,21000,138 -40000,22000,860 -40000,24000,66 -40000,25000,190 -40000,26000,206 -40000,27000,290 -40000,28000,352 -40000,29000,5712 -40000,30000,72 -40000,31000,586 -40000,32000,160 -40000,33000,26 -40000,34000,230 -40000,35000,294 -40000,36000,396 -40000,37000,198 -40000,38000,738 -40000,39000,358 -40000,41000,170 -40000,42000,826 -40000,45000,20 -40000,46000,74 -40000,47000,650 -40000,48000,25850 -40000,49000,202 -40000,50000,10 -40000,51000,282 -40000,53000,220 -40000,54000,174 -40000,55000,566 -40000,56000,204 -41000,02000,1296 -41000,04000,886 -41000,05000,120 -41000,06000,8970 -41000,08000,606 -41000,09000,86 -41000,10000,12 -41000,11000,136 -41000,12000,326 -41000,13000,370 -41000,15000,118 -41000,16000,3940 -41000,17000,356 -41000,18000,174 -41000,19000,244 -41000,20000,48 -41000,21000,58 -41000,22000,90 -41000,23000,66 -41000,24000,58 -41000,25000,208 -41000,26000,252 -41000,27000,248 -41000,29000,178 -41000,30000,302 -41000,31000,282 -41000,32000,466 -41000,33000,22 -41000,34000,320 -41000,35000,120 -41000,36000,408 -41000,37000,202 -41000,38000,532 -41000,39000,98 -41000,40000,184 -41000,42000,188 -41000,45000,84 -41000,46000,18 -41000,47000,118 -41000,48000,906 -41000,49000,518 -41000,50000,22 -41000,51000,220 -41000,53000,52184 -41000,54000,18 -41000,55000,114 -41000,56000,172 -42000,01000,480 -42000,02000,160 -42000,04000,620 -42000,05000,392 -42000,06000,2636 -42000,08000,616 -42000,09000,2388 -42000,10000,63810 -42000,11000,4106 -42000,12000,2988 -42000,13000,1676 -42000,15000,168 -42000,16000,104 -42000,17000,2732 -42000,18000,810 -42000,19000,332 -42000,20000,308 -42000,21000,642 -42000,22000,492 -42000,23000,360 -42000,24000,117938 -42000,25000,3178 -42000,26000,1638 -42000,27000,1234 -42000,28000,166 -42000,29000,1006 -42000,30000,210 -42000,31000,150 -42000,32000,282 -42000,33000,292 -42000,34000,249616 -42000,35000,226 -42000,36000,85116 -42000,37000,2564 -42000,38000,94 -42000,39000,24386 -42000,40000,700 -42000,41000,220 -42000,44000,274 -42000,45000,1040 -42000,46000,46 -42000,47000,1170 -42000,48000,3374 -42000,49000,490 -42000,50000,200 -42000,51000,7264 -42000,53000,452 -42000,54000,20410 -42000,55000,872 -42000,56000,146 -44000,04000,108 -44000,06000,248 -44000,09000,20840 -44000,10000,28 -44000,11000,174 -44000,12000,310 -44000,13000,114 -44000,17000,214 -44000,18000,70 -44000,20000,20 -44000,21000,38 -44000,22000,16 -44000,23000,254 -44000,24000,178 -44000,25000,130868 -44000,26000,30 -44000,27000,44 -44000,28000,22 -44000,29000,42 -44000,30000,58 -44000,31000,188 -44000,32000,20 -44000,33000,270 -44000,34000,540 -44000,36000,2062 -44000,37000,150 -44000,39000,268 -44000,40000,82 -44000,42000,466 -44000,45000,28 -44000,47000,88 -44000,48000,168 -44000,50000,256 -44000,51000,190 -44000,53000,154 -44000,55000,90 -45000,01000,1338 -45000,02000,174 -45000,04000,246 -45000,05000,158 -45000,06000,910 -45000,08000,98 -45000,09000,554 -45000,10000,40 -45000,11000,416 -45000,12000,2952 -45000,13000,49722 -45000,16000,146 -45000,17000,686 -45000,18000,536 -45000,19000,332 -45000,20000,206 -45000,21000,508 -45000,22000,308 -45000,23000,166 -45000,24000,1036 -45000,25000,444 -45000,26000,488 -45000,27000,186 -45000,28000,182 -45000,29000,430 -45000,30000,16 -45000,31000,252 -45000,32000,166 -45000,33000,18 -45000,34000,1332 -45000,35000,140 -45000,36000,1826 -45000,37000,134650 -45000,38000,86 -45000,39000,1166 -45000,40000,190 -45000,41000,132 -45000,42000,1272 -45000,44000,16 -45000,46000,52 -45000,47000,1704 -45000,48000,2358 -45000,50000,20 -45000,51000,3132 -45000,53000,226 -45000,54000,470 -45000,55000,338 -45000,56000,14 -46000,01000,42 -46000,02000,58 -46000,04000,54 -46000,05000,34 -46000,06000,342 -46000,08000,312 -46000,09000,32 -46000,11000,184 -46000,12000,90 -46000,13000,24 -46000,15000,30 -46000,16000,10 -46000,17000,98 -46000,18000,20 -46000,19000,8234 -46000,20000,190 -46000,21000,58 -46000,22000,20 -46000,24000,6 -46000,25000,30 -46000,26000,4 -46000,27000,4206 -46000,28000,8 -46000,29000,134 -46000,30000,320 -46000,31000,3266 -46000,32000,18 -46000,34000,62 -46000,36000,22 -46000,37000,4 -46000,38000,4262 -46000,39000,12 -46000,40000,2 -46000,42000,84 -46000,45000,12 -46000,47000,8 -46000,48000,370 -46000,49000,66 -46000,51000,94 -46000,53000,42 -46000,55000,98 -46000,56000,2638 -47000,01000,20524 -47000,02000,216 -47000,04000,408 -47000,05000,7864 -47000,06000,1464 -47000,08000,1144 -47000,09000,82 -47000,10000,56 -47000,11000,254 -47000,12000,2300 -47000,13000,21358 -47000,15000,114 -47000,17000,2372 -47000,18000,1462 -47000,19000,556 -47000,20000,398 -47000,21000,66888 -47000,22000,1600 -47000,23000,152 -47000,24000,556 -47000,25000,400 -47000,26000,1278 -47000,27000,924 -47000,28000,36434 -47000,29000,1464 -47000,30000,40 -47000,31000,524 -47000,32000,190 -47000,33000,18 -47000,34000,746 -47000,35000,158 -47000,36000,1974 -47000,37000,8174 -47000,38000,344 -47000,39000,2682 -47000,40000,552 -47000,41000,198 -47000,42000,1396 -47000,45000,1206 -47000,46000,34 -47000,48000,4278 -47000,49000,166 -47000,50000,72 -47000,51000,22500 -47000,53000,240 -47000,54000,620 -47000,55000,560 -47000,56000,90 -48000,01000,1786 -48000,02000,1914 -48000,04000,2852 -48000,05000,14548 -48000,06000,12176 -48000,08000,4934 -48000,09000,796 -48000,10000,164 -48000,11000,1122 -48000,12000,6812 -48000,13000,5242 -48000,15000,256 -48000,16000,296 -48000,17000,5606 -48000,18000,2832 -48000,19000,1050 -48000,20000,3990 -48000,21000,1236 -48000,22000,36898 -48000,23000,324 -48000,24000,2464 -48000,25000,1494 -48000,26000,2614 -48000,27000,2360 -48000,28000,1776 -48000,29000,3710 -48000,30000,460 -48000,31000,1728 -48000,32000,816 -48000,33000,172 -48000,34000,2892 -48000,35000,29704 -48000,36000,4346 -48000,37000,3036 -48000,38000,1732 -48000,39000,3572 -48000,40000,27914 -48000,41000,932 -48000,42000,3840 -48000,45000,804 -48000,46000,410 -48000,47000,4454 -48000,49000,1420 -48000,50000,354 -48000,51000,3676 -48000,53000,2256 -48000,54000,952 -48000,55000,2158 -48000,56000,632 -49000,01000,172 -49000,02000,378 -49000,04000,2732 -49000,05000,56 -49000,06000,3336 -49000,08000,2144 -49000,09000,80 -49000,10000,16 -49000,11000,82 -49000,12000,190 -49000,13000,496 -49000,15000,68 -49000,16000,1946 -49000,17000,536 -49000,18000,228 -49000,19000,218 -49000,20000,72 -49000,21000,80 -49000,22000,370 -49000,23000,50 -49000,24000,148 -49000,25000,470 -49000,26000,160 -49000,27000,344 -49000,28000,116 -49000,29000,82 -49000,30000,582 -49000,31000,162 -49000,32000,4814 -49000,33000,26 -49000,34000,234 -49000,35000,434 -49000,36000,538 -49000,37000,102 -49000,38000,1486 -49000,39000,190 -49000,40000,270 -49000,41000,262 -49000,42000,200 -49000,45000,98 -49000,46000,114 -49000,47000,238 -49000,48000,1598 -49000,50000,96 -49000,51000,204 -49000,53000,638 -49000,54000,44 -49000,55000,108 -49000,56000,3188 -50000,01000,10 -50000,02000,18 -50000,04000,38 -50000,06000,64 -50000,08000,16 -50000,09000,680 -50000,11000,30 -50000,12000,36 -50000,13000,98 -50000,17000,94 -50000,19000,8 -50000,21000,20 -50000,22000,10 -50000,23000,386 -50000,24000,66 -50000,25000,5722 -50000,26000,76 -50000,27000,10 -50000,28000,14 -50000,29000,116 -50000,33000,28070 -50000,34000,386 -50000,35000,30 -50000,36000,4124 -50000,37000,30 -50000,39000,134 -50000,41000,8 -50000,42000,168 -50000,44000,94 -50000,45000,4 -50000,47000,44 -50000,48000,70 -50000,49000,76 -50000,51000,120 -50000,53000,56 -50000,54000,6 -50000,55000,32 -51000,01000,318 -51000,02000,104 -51000,04000,638 -51000,05000,112 -51000,06000,2518 -51000,08000,438 -51000,09000,668 -51000,10000,768 -51000,11000,456078 -51000,12000,2448 -51000,13000,2176 -51000,15000,326 -51000,16000,36 -51000,17000,1486 -51000,18000,676 -51000,19000,382 -51000,20000,266 -51000,21000,3742 -51000,22000,264 -51000,23000,100 -51000,24000,142712 -51000,25000,1692 -51000,26000,722 -51000,27000,304 -51000,28000,224 -51000,29000,652 -51000,30000,10 -51000,31000,184 -51000,32000,170 -51000,33000,166 -51000,34000,2918 -51000,35000,28 -51000,36000,4714 -51000,37000,33018 -51000,38000,162 -51000,39000,1690 -51000,40000,230 -51000,41000,140 -51000,42000,4440 -51000,44000,438 -51000,45000,1420 -51000,47000,24280 -51000,48000,2632 -51000,49000,158 -51000,50000,144 -51000,53000,782 -51000,54000,16454 -51000,55000,380 -51000,56000,48 -53000,01000,114 -53000,02000,4536 -53000,04000,848 -53000,05000,90 -53000,06000,9494 -53000,08000,548 -53000,09000,134 -53000,10000,26 -53000,11000,960 -53000,12000,760 -53000,13000,574 -53000,15000,728 -53000,16000,22940 -53000,17000,1344 -53000,18000,234 -53000,19000,342 -53000,20000,340 -53000,21000,260 -53000,22000,220 -53000,23000,4 -53000,24000,466 -53000,25000,764 -53000,26000,650 -53000,27000,622 -53000,28000,284 -53000,29000,412 -53000,30000,666 -53000,31000,208 -53000,32000,1112 -53000,33000,42 -53000,34000,624 -53000,35000,316 -53000,36000,1184 -53000,37000,254 -53000,38000,858 -53000,39000,266 -53000,40000,46 -53000,41000,144914 -53000,42000,324 -53000,44000,64 -53000,45000,126 -53000,46000,130 -53000,47000,290 -53000,48000,1784 -53000,49000,1122 -53000,50000,22 -53000,51000,604 -53000,54000,176 -53000,55000,510 -53000,56000,246 -54000,01000,30 -54000,05000,18 -54000,06000,274 -54000,08000,48 -54000,09000,132 -54000,10000,8 -54000,11000,3254 -54000,12000,324 -54000,13000,150 -54000,17000,360 -54000,18000,344 -54000,19000,158 -54000,20000,60 -54000,21000,9154 -54000,22000,64 -54000,24000,43570 -54000,25000,182 -54000,26000,122 -54000,27000,186 -54000,28000,48 -54000,29000,134 -54000,30000,6 -54000,31000,30 -54000,32000,22 -54000,33000,38 -54000,34000,286 -54000,36000,264 -54000,37000,748 -54000,38000,30 -54000,39000,31286 -54000,40000,98 -54000,41000,30 -54000,42000,24052 -54000,45000,94 -54000,46000,60 -54000,47000,488 -54000,48000,530 -54000,49000,6 -54000,50000,28 -54000,51000,59320 -54000,53000,36 -54000,55000,98 -54000,56000,8 -55000,01000,152 -55000,02000,182 -55000,04000,378 -55000,05000,148 -55000,06000,1354 -55000,08000,520 -55000,09000,250 -55000,10000,36 -55000,11000,150 -55000,12000,856 -55000,13000,514 -55000,15000,48 -55000,16000,68 -55000,17000,83150 -55000,18000,1362 -55000,19000,9982 -55000,20000,274 -55000,21000,218 -55000,22000,170 -55000,23000,68 -55000,24000,198 -55000,25000,334 -55000,26000,10472 -55000,27000,101178 -55000,28000,126 -55000,29000,458 -55000,30000,152 -55000,31000,236 -55000,32000,216 -55000,33000,58 -55000,34000,370 -55000,35000,120 -55000,36000,832 -55000,37000,460 -55000,38000,1028 -55000,39000,1152 -55000,40000,264 -55000,41000,96 -55000,42000,454 -55000,44000,20 -55000,45000,374 -55000,46000,312 -55000,47000,378 -55000,48000,1392 -55000,49000,188 -55000,51000,310 -55000,53000,398 -55000,54000,66 -55000,56000,30 -56000,01000,62 -56000,02000,194 -56000,04000,64 -56000,06000,300 -56000,08000,3528 -56000,09000,62 -56000,11000,26 -56000,12000,22 -56000,13000,12 -56000,16000,628 -56000,17000,124 -56000,18000,18 -56000,19000,40 -56000,20000,58 -56000,21000,62 -56000,22000,34 -56000,23000,18 -56000,25000,22 -56000,26000,28 -56000,27000,26 -56000,28000,28 -56000,29000,94 -56000,30000,1674 -56000,31000,1506 -56000,32000,102 -56000,34000,80 -56000,35000,92 -56000,36000,174 -56000,37000,40 -56000,38000,2606 -56000,39000,92 -56000,40000,292 -56000,42000,116 -56000,45000,10 -56000,46000,942 -56000,48000,440 -56000,49000,916 -56000,53000,216 -56000,54000,100 diff --git a/flepimop/gempyor_pkg/tests/npi/config_npi.yml b/flepimop/gempyor_pkg/tests/npi/config_npi.yml index 9482a4199..02cedeb3a 100644 --- a/flepimop/gempyor_pkg/tests/npi/config_npi.yml +++ b/flepimop/gempyor_pkg/tests/npi/config_npi.yml @@ -16,8 +16,6 @@ compartments: subpop_setup: geodata: geodata_2019_statelevel.csv mobility: mobility_2011-2015_statelevel.csv - subpop_pop_key: population - subpop_names_key: subpop seeding: diff --git a/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml b/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml index 3f86ec5f9..a5f0a2b50 100644 --- a/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml +++ b/flepimop/gempyor_pkg/tests/npi/config_test_spatial_group_npi.yml @@ -18,9 +18,6 @@ subpop_setup: mobility: mobility_2011-2015_statelevel.csv include_in_report: include_in_report state_level: TRUE - subpop_pop_key: population - subpop_names_key: subpop - seir: diff --git a/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml b/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml deleted file mode 100644 index 9d5d94f23..000000000 --- a/flepimop/gempyor_pkg/tests/npi/data/config_minimal.yaml +++ /dev/null @@ -1,123 +0,0 @@ -name: minimal -setup_name: minimal -start_date: 2020-01-31 -end_date: 2020-05-31 -data_path: data -nslots: 15 - - -spatial_setup: - geodata: geodata.csv - mobility: mobility.txt - popnodes: population - subpop_names: subpop - -seeding: - method: FolderDraw - seeding_file_type: seed - -initial_conditions: - method: Default - -compartments: - infection_stage: ["S", "E", "I1", "I2", "I3", "R"] - vaccination_stage: ["unvaccinated"] - -seir: - integration: - method: legacy - dt: 1/6 - parameters: - alpha: - value: - distribution: fixed - value: .9 - sigma: - value: - distribution: fixed - value: 1 / 5.2 - gamma: - value: - distribution: uniform - low: 1 / 6 - high: 1 / 2.6 - R0s: - value: - distribution: uniform - low: 2 - high: 3 - transitions: - - source: ["S", "unvaccinated"] - destination: ["E", "unvaccinated"] - rate: ["R0s * gamma", 1] - proportional_to: [ - ["S", "unvaccinated"], - [[["I1", "I2", "I3"]], "unvaccinated"], - ] - proportion_exponent: [["1", "1"], ["alpha", "1"]] - - source: [["E"], ["unvaccinated"]] - destination: [["I1"], ["unvaccinated"]] - rate: ["sigma", 1] - proportional_to: [[["E"], ["unvaccinated"]]] - proportion_exponent: [["1", "1"]] - - source: [["I1"], ["unvaccinated"]] - destination: [["I2"], ["unvaccinated"]] - rate: ["3 * gamma", 1] - proportional_to: [[["I1"], ["unvaccinated"]]] - proportion_exponent: [["1", "1"]] - - source: [["I2"], ["unvaccinated"]] - destination: [["I3"], ["unvaccinated"]] - rate: ["3 * gamma", 1] - proportional_to: [[["I2"], ["unvaccinated"]]] - proportion_exponent: [["1", "1"]] - - source: [["I3"], ["unvaccinated"]] - destination: [["R"], ["unvaccinated"]] - rate: ["3 * gamma", 1] - proportional_to: [[["I3"], ["unvaccinated"]]] - proportion_exponent: [["1", "1"]] - -interventions: - scenarios: - - None - - Scenario1 - - Scenario2 - settings: - None: - template: Reduce - parameter: r0 - period_start_date: 2020-04-01 - period_end_date: 2020-05-15 - value: - distribution: fixed - value: 0 - Wuhan: - template: Reduce - parameter: r0 - period_start_date: 2020-04-01 - period_end_date: 2020-05-15 - value: - distribution: uniform - low: .14 - high: .33 - KansasCity: - template: MultiTimeReduce - parameter: r0 - groups: - - periods: - - start_date: 2020-04-01 - end_date: 2020-05-15 - affected_geoids: "all" - value: - distribution: uniform - low: .04 - high: .23 - Scenario1: - template: Stacked - scenarios: - - KansasCity - - Wuhan - - None - Scenario2: - template: Stacked - scenarios: - - Wuhan diff --git a/flepimop/gempyor_pkg/tests/npi/data/config_test.yml b/flepimop/gempyor_pkg/tests/npi/data/config_test.yml index 300d2966f..8274b47b2 100644 --- a/flepimop/gempyor_pkg/tests/npi/data/config_test.yml +++ b/flepimop/gempyor_pkg/tests/npi/data/config_test.yml @@ -9,8 +9,6 @@ nslots: 5 subpop_setup: geodata: geodata.csv mobility: mobility.csv - subpop_pop_key: population - subpop_names_key: subpop seeding: diff --git a/flepimop/gempyor_pkg/tests/outcomes/config.yml b/flepimop/gempyor_pkg/tests/outcomes/config.yml index 4a5ddbd7a..a4467b14d 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config.yml @@ -7,8 +7,7 @@ nslots: 1 subpop_setup: geodata: geodata.csv - subpop_pop_key: population - subpop_names_key: subpop + outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_load.yml b/flepimop/gempyor_pkg/tests/outcomes/config_load.yml index 9bbdd2030..afd1b3398 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_load.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_load.yml @@ -7,8 +7,7 @@ nslots: 1 subpop_setup: geodata: geodata.csv - subpop_pop_key: population - subpop_names_key: subpop + outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml b/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml index f44627663..5fa40d238 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_load_subclasses.yml @@ -7,8 +7,7 @@ nslots: 1 subpop_setup: geodata: geodata.csv - subpop_pop_key: population - subpop_names_key: subpop + outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml b/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml index 4294303b2..15704e16b 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_mc_selection.yml @@ -7,8 +7,7 @@ nslots: 1 subpop_setup: geodata: geodata.csv - subpop_pop_key: population - subpop_names_key: subpop + outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml b/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml index 69c944762..5121032fe 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_npi.yml @@ -7,8 +7,7 @@ nslots: 1 subpop_setup: geodata: geodata.csv - subpop_pop_key: population - subpop_names_key: subpop + outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml b/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml index 25c8f12bf..130852182 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_npi_custom_pnames.yml @@ -7,8 +7,7 @@ nslots: 1 subpop_setup: geodata: geodata.csv - subpop_pop_key: population - subpop_names_key: subpop + outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml b/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml index e2b263b04..da88349df 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_subclasses.yml @@ -7,8 +7,7 @@ nslots: 1 subpop_setup: geodata: geodata.csv - subpop_pop_key: population - subpop_names_key: subpop + outcomes: method: delayframe diff --git a/flepimop/gempyor_pkg/tests/outcomes/config_test.yml b/flepimop/gempyor_pkg/tests/outcomes/config_test.yml index c4f0acd4d..ccbc7314e 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/config_test.yml +++ b/flepimop/gempyor_pkg/tests/outcomes/config_test.yml @@ -9,8 +9,6 @@ nslots: 5 subpop_setup: geodata: geodata.csv mobility: mobility.csv - subpop_pop_key: population - subpop_names_key: subpop seeding: diff --git a/flepimop/gempyor_pkg/tests/seir/data/config.yml b/flepimop/gempyor_pkg/tests/seir/data/config.yml index 2e09b4110..3140004c8 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config.yml @@ -9,8 +9,7 @@ nslots: 15 subpop_setup: geodata: geodata.csv mobility: mobility.txt - subpop_pop_key: population - subpop_names_key: subpop + seeding: method: FolderDraw diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_compartment.yml b/flepimop/gempyor_pkg/tests/seir/data/config_compartment.yml deleted file mode 100644 index 6763af77a..000000000 --- a/flepimop/gempyor_pkg/tests/seir/data/config_compartment.yml +++ /dev/null @@ -1,119 +0,0 @@ -#name: minimal -#setup_name: minimal -#start_date: 2020-01-31 -#end_date: 2020-05-31 -#data_path: data -#nslots: 15 - - -#spatial_setup: -# geodata: geodata.csv -# mobility: mobility.txt -# popnodes: population -# nodenames: geoid - -#seeding: -# method: FolderDraw -# seeding_file_type: seed - -#initial_conditions: -# method: Default - -compartments: - infection_stage: ["S", "E", "I1", "I2", "I3", "R"] - vaccination_stage: ["unvaccinated"] - -seir: - integration: - method: legacy - dt: 1/6 -# parameters: -# alpha: -# value: -# distribution: fixed -# value: .9 -# sigma: value: distribution: fixed value: 1 / 5.2 -# value: -# distribution: uniform -# low: 1 / 6 -# high: 1 / 2.6 -# R0s: -# value: -# distribution: uniform -# low: 2 -# high: 3 -# transitions: -# - source: ["S", "unvaccinated"] -# destination: ["E", "unvaccinated"] -# rate: ["R0s * gamma", 1] -# proportional_to: [ -# ["S", "unvaccinated"], -# [[["I1", "I2", "I3"]], "unvaccinated"], -# ] -# proportion_exponent: [["1", "1"], ["alpha", "1"]] -# - source: [["E"], ["unvaccinated"]] -# destination: [["I1"], ["unvaccinated"]] -# rate: ["sigma", 1] -# proportional_to: [[["E"], ["unvaccinated"]]] -# proportion_exponent: [["1", "1"]] -# - source: [["I1"], ["unvaccinated"]] -# destination: [["I2"], ["unvaccinated"]] -# rate: ["3 * gamma", 1] -# proportional_to: [[["I1"], ["unvaccinated"]]] -# proportion_exponent: [["1", "1"]] -# - source: [["I2"], ["unvaccinated"]] -# destination: [["I3"], ["unvaccinated"]] -# rate: ["3 * gamma", 1] -# proportional_to: [[["I2"], ["unvaccinated"]]] -# proportion_exponent: [["1", "1"]] -# - source: [["I3"], ["unvaccinated"]] -# destination: [["R"], ["unvaccinated"]] -# rate: ["3 * gamma", 1] -# proportional_to: [[["I3"], ["unvaccinated"]]] -# proportion_exponent: [["1", "1"]] - -#interventions: -# scenarios: -# - None -# - Scenario1 -# - Scenario2 -# settings: -# None: -# template: Reduce -# parameter: r0 -# period_start_date: 2020-04-01 -# period_end_date: 2020-05-15 -# value: -# distribution: fixed -# value: 0 -# Wuhan: -# template: Reduce -# parameter: r0 -# period_start_date: 2020-04-01 -# period_end_date: 2020-05-15 -# value: -# distribution: uniform -# low: .14 -# high: .33 -# KansasCity: -# template: MultiTimeReduce -# parameter: r0 -# groups: -# - periods: -# - start_date: 2020-04-01 -# end_date: 2020-05-15 -# affected_geoids: "all" -# value: -# distribution: uniform -# low: .04 -# high: .23 -# Scenario1: -# template: Stacked -# scenarios: -# - KansasCity -# - Wuhan -# - None -# Scenario2: -# template: Stacked -# scenarios: -# - Wuhan diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml index 843743a7b..150ba4429 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_format.yml @@ -8,8 +8,7 @@ nslots: 15 subpop_setup: geodata: geodata.csv mobility: mobility.txt - subpop_pop_key: population - subpop_names_key: subpop + compartments: infection_stage: ["S", "E", "I1", "I2", "I3", "R"] diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml index 97d6b69e3..2069fa82f 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_compartmental_model_full.yml @@ -8,8 +8,7 @@ nslots: 15 subpop_setup: geodata: geodata.csv mobility: mobility.txt - subpop_pop_key: population - subpop_names_key: subpop + seeding: method: FolderDraw diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml b/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml index c197145a3..7c7fd9ce5 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_continuation_resume.yml @@ -9,8 +9,7 @@ subpop_setup: base_path: data geodata: geodata.csv mobility: mobility.txt - subpop_pop_key: population - subpop_names_key: subpop + initial_conditions: method: InitialConditionsFolderDraw diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml b/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml index dbe7cb0a6..4563ef73c 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_inference_resume.yml @@ -9,8 +9,7 @@ subpop_setup: base_path: data geodata: geodata.csv mobility: mobility.txt - subpop_pop_key: population - subpop_names_key: subpop + initial_conditions: method: InitialConditionsFolderDraw diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml b/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml index 9e4b8aad9..f8c448e84 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_parallel.yml @@ -9,8 +9,7 @@ subpop_setup: base_path: data geodata: geodata.csv mobility: mobility.csv - subpop_pop_key: population - subpop_names_key: subpop + seeding: seeding_file_type: seed diff --git a/flepimop/gempyor_pkg/tests/seir/data/config_test.yml b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml index 6dc96adc2..40b0db55f 100644 --- a/flepimop/gempyor_pkg/tests/seir/data/config_test.yml +++ b/flepimop/gempyor_pkg/tests/seir/data/config_test.yml @@ -9,8 +9,6 @@ nslots: 5 subpop_setup: geodata: geodata.csv mobility: mobility.csv - subpop_pop_key: population - subpop_names_key: subpop seeding: From 494eb16f63eeea1796a006c30f55b8a533134da8 Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 2 Nov 2023 15:25:38 -0400 Subject: [PATCH 39/50] deleted int cast in the first arg when invoking np.random.binomial() in the process of method=="legacy" --- flepimop/gempyor_pkg/src/gempyor/steps_rk4.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py index 7e9de7a13..37d6c453b 100644 --- a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py +++ b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py @@ -146,8 +146,7 @@ def rhs(t, x, today): for spatial_node in range(nspatial_nodes): number_move[spatial_node] = np.random.binomial( # number_move[spatial_node] = random.binomial( - # source_number[spatial_node], - int(source_number[spatial_node]), + source_number[spatial_node], compound_adjusted_rate[spatial_node], ) else: From e48744d41b6ec8a0416715de6c61ebae75ddbde8 Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 2 Nov 2023 15:36:17 -0400 Subject: [PATCH 40/50] to avoid DeprecationWarning on escape char '\' in print sentence --- flepimop/gempyor_pkg/src/gempyor/steps_rk4.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py index 37d6c453b..cb61a9f9d 100644 --- a/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py +++ b/flepimop/gempyor_pkg/src/gempyor/steps_rk4.py @@ -317,6 +317,6 @@ def rk4_integrate(t, x, today): print( "load the name space with: \nwith open('integration_dump.pkl','rb') as fn_dump:\n states, states_daily_incid, ncompartments, nspatial_nodes, ndays, parameters, dt, transitions, proportion_info, transition_sum_compartments, initial_conditions, seeding_data, seeding_amounts, mobility_data, mobility_row_indices, mobility_data_indices, population, stochastic_p, method = pickle.load(fn_dump)" ) - print("/!\ Invalid integration, will cause problems for downstream users /!\ ") + print("/!\\ Invalid integration, will cause problems for downstream users /!\\ ") # raise ValueError("Invalid Integration...") return states, states_daily_incid From 086004f4a748d2ae21b3fad3ea0416e56c5e10c1 Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 2 Nov 2023 15:49:13 -0400 Subject: [PATCH 41/50] modified to use .get() in setting ftype when invoking setup.read_simID() in if method == "InitialConditionsFolderDraw" in seeding_ic.py --- flepimop/gempyor_pkg/src/gempyor/seeding_ic.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py b/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py index b718523aa..3edb48a38 100644 --- a/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py +++ b/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py @@ -160,7 +160,7 @@ def draw_ic(self, sim_id: int, setup) -> np.ndarray: ) elif method == "InitialConditionsFolderDraw" or method == "FromFile": if method == "InitialConditionsFolderDraw": - ic_df = setup.read_simID(ftype=str(self.initial_conditions_config["initial_file_type"]), sim_id=sim_id) + ic_df = setup.read_simID(ftype=self.initial_conditions_config["initial_file_type"].get(), sim_id=sim_id) elif method == "FromFile": ic_df = read_df( self.initial_conditions_config["initial_conditions_file"].get(), @@ -250,9 +250,13 @@ def draw_ic(self, sim_id: int, setup) -> np.ndarray: if self.initial_conditions_config["ignore_population_checks"].get(): ignore_population_checks = True if error and not ignore_population_checks: - raise ValueError(f""" geodata and initial condition do not agree on population size (see messages above). Use ignore_population_checks: True to ignore""") + raise ValueError( + f""" geodata and initial condition do not agree on population size (see messages above). Use ignore_population_checks: True to ignore""" + ) elif error and ignore_population_checks: - print(""" Ignoring the previous population mismatch errors because you added flag 'ignore_population_checks'. This is dangerous""") + print( + """ Ignoring the previous population mismatch errors because you added flag 'ignore_population_checks'. This is dangerous""" + ) return y0 def draw_seeding(self, sim_id: int, setup) -> nb.typed.Dict: From b3a2ede20436db52a4123e39154dd702d5a6335a Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 2 Nov 2023 15:53:22 -0400 Subject: [PATCH 42/50] saved test_outcomes.py with black formatting --- flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py index 32824f148..19f2a2dc6 100644 --- a/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py +++ b/flepimop/gempyor_pkg/tests/outcomes/test_outcomes.py @@ -768,8 +768,8 @@ def test_outcomes_read_write_hnpi2_custom_pname(): first_sim_index=1, outcome_modifiers_scenario="Some", stoch_traj_flag=False, -out_run_id=107, -) + out_run_id=107, + ) outcomes.onerun_delayframe_outcomes(sim_id2write=1, modinf=inference_simulator.modinf, load_ID=True, sim_id2load=1) From 8a8942922e318054458aa1ea839797576c09b4ac Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 2 Nov 2023 16:00:35 -0400 Subject: [PATCH 43/50] deleted unnecessary commented lines in test_seir.py --- flepimop/gempyor_pkg/tests/seir/test_seir.py | 7 +------ 1 file changed, 1 insertion(+), 6 deletions(-) diff --git a/flepimop/gempyor_pkg/tests/seir/test_seir.py b/flepimop/gempyor_pkg/tests/seir/test_seir.py index 38055af90..b086cbf6c 100644 --- a/flepimop/gempyor_pkg/tests/seir/test_seir.py +++ b/flepimop/gempyor_pkg/tests/seir/test_seir.py @@ -35,9 +35,6 @@ def test_check_values(): seeding[0, 0] = 1 - # if np.all(seeding == 0): - # warnings.warn("provided seeding has only value 0", UserWarning) - if np.all(modinf.mobility.data < 1): warnings.warn("highest mobility value is less than 1", UserWarning) @@ -518,9 +515,7 @@ def test_continuation_resume(): out_run_id=run_id, out_prefix=prefix, ) - # Convert Subview object to string using str - # modinf.initial_conditions_config["initial_file_type"] = str(modinf.initial_conditions_config["initial_file_type"]) - # modinf.initial_file_type = str(modinf.initial_conditions_config["initial_file_type"]) + seir.onerun_SEIR(sim_id2write=sim_id2write, modinf=modinf, config=config) states_new = pq.read_table( From 11d386116daff5cdbd1fca063d7f5f9df4b258f0 Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 2 Nov 2023 16:15:58 -0400 Subject: [PATCH 44/50] modified to use .as_evaled_expression() to store p value first in processing dist=="binomial" in utils.py --- flepimop/gempyor_pkg/src/gempyor/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/utils.py b/flepimop/gempyor_pkg/src/gempyor/utils.py index f0849903a..e6cfe63a0 100644 --- a/flepimop/gempyor_pkg/src/gempyor/utils.py +++ b/flepimop/gempyor_pkg/src/gempyor/utils.py @@ -190,7 +190,7 @@ def as_random_distribution(self): elif dist == "poisson": return functools.partial(np.random.poisson, self["lam"].as_evaled_expression()) elif dist == "binomial": - p = self["p"].as_number() + p = self["p"].as_evaled_expression() if (p < 0) or (p > 1): raise ValueError(f"""p value { p } is out of range [0,1]""") # if (self["p"] < 0) or (self["p"] > 1): From bbe130ab18c8ba8c92a8a04a706a04913bb1b1bd Mon Sep 17 00:00:00 2001 From: kjsato Date: Thu, 2 Nov 2023 16:17:18 -0400 Subject: [PATCH 45/50] added two test functions test_as_random_distribution_binomial_w_fraction and test_as_random_distribution_binomial_w_fraction_error in test_utils2.py --- .../gempyor_pkg/tests/utils/test_utils2.py | 172 +++++++++++------- 1 file changed, 102 insertions(+), 70 deletions(-) diff --git a/flepimop/gempyor_pkg/tests/utils/test_utils2.py b/flepimop/gempyor_pkg/tests/utils/test_utils2.py index fabd4428b..4b0ae59ba 100644 --- a/flepimop/gempyor_pkg/tests/utils/test_utils2.py +++ b/flepimop/gempyor_pkg/tests/utils/test_utils2.py @@ -2,7 +2,8 @@ import datetime import os import pandas as pd -#import dask.dataframe as dd + +# import dask.dataframe as dd import numpy as np from scipy.stats import rv_continuous import pyarrow as pa @@ -12,59 +13,64 @@ import confuse from unittest.mock import MagicMock, patch -from gempyor import utils +from gempyor import utils from gempyor.utils import ISO8601Date DATA_DIR = os.path.dirname(__file__) + "/data" -#os.chdir(os.path.dirname(__file__)) +# os.chdir(os.path.dirname(__file__)) tmp_path = "/tmp" + class SampleClass: - def __init__(self): - self.value = 11 - - @utils.profile(output_file="get_value.prof", sort_by="time", lines_to_print=10, strip_dirs=True) - def get_value(self): - return self.value + def __init__(self): + self.value = 11 + + @utils.profile(output_file="get_value.prof", sort_by="time", lines_to_print=10, strip_dirs=True) + def get_value(self): + return self.value + + def set_value(self, value): + self.value = value - def set_value(self, value): - self.value = value class Test_utils2: - @utils.add_method(SampleClass) - def get_a(self): - return "a" + @utils.add_method(SampleClass) + def get_a(self): + return "a" - def test_add_method(self): - assert SampleClass.get_a(self) == "a" + def test_add_method(self): + assert SampleClass.get_a(self) == "a" - def test_get_value_w_profile(self): - s = SampleClass() - s.get_value() + def test_get_value_w_profile(self): + s = SampleClass() + s.get_value() # display profile information - stats = pstats.Stats("get_value.prof") - stats.sort_stats("time") - stats.print_stats(10) + stats = pstats.Stats("get_value.prof") + stats.sort_stats("time") + stats.print_stats(10) - def test_ISO8601Date_success(self): - iso_date = utils.ISO8601Date("2020-01-01") - input_date = datetime.date(2020,1,1) - result = iso_date.convert(input_date, None) # dummy for view - assert result == input_date + def test_ISO8601Date_success(self): + iso_date = utils.ISO8601Date("2020-01-01") + input_date = datetime.date(2020, 1, 1) + result = iso_date.convert(input_date, None) # dummy for view + assert result == input_date - iso_date2 = utils.ISO8601Date() - result = iso_date2.convert(str(input_date), None) # dummy for view - assert result == input_date - ''' + iso_date2 = utils.ISO8601Date() + result = iso_date2.convert(str(input_date), None) # dummy for view + assert result == input_date + + """ def test_ISO8601Date_invalid_value(self): iso_date2 = utils.ISO8601Date() invalid_value = "2020-01-01" with pytest.raises(ValueError, match=r".*must.*be.*ISO8601.*"): iso_date2.convert(invalid_value, None) # dummy for view - ''' -''' + """ + + +""" def test_profile_success(): utils.profile() utils.profile(output_file="test") @@ -82,7 +88,8 @@ def test_get_truncated_normal_success(): def test_get_log_normal_success(): utils.get_log_normal(meanlog=0, sdlog=1) -''' +""" + def test_as_date_with_valid_date_string(): # created MockConfigView object @@ -95,14 +102,14 @@ def test_as_date_with_valid_date_string(): with patch.object(ISO8601Date, "convert", return_value=datetime.date(2022, 1, 15)): result = ISO8601Date().convert(mock_config_view.get(), None) - # 正しい日付オブジェクトが返されることを確認 assert result == datetime.date(2022, 1, 15) + def test_as_evaled_expression_with_valid_expression(): # ConfigViewオブジェクトをモック化 mock_config_view = MagicMock(spec=confuse.ConfigView) - mock_config_view.as_evaled_expression.return_value =7.5 + mock_config_view.as_evaled_expression.return_value = 7.5 # as_evaled_expressionメソッドを呼び出し、正しい結果を確認 result = mock_config_view.as_evaled_expression() @@ -110,78 +117,103 @@ def test_as_evaled_expression_with_valid_expression(): assert result == 7.5 - @pytest.fixture def config(): - config = confuse.Configuration('myapp', __name__) + config = confuse.Configuration("myapp", __name__) return config + def test_as_evaled_expression_number(config): - config.add({'myvalue': 123}) - assert config['myvalue'].as_evaled_expression() == 123 + config.add({"myvalue": 123}) + assert config["myvalue"].as_evaled_expression() == 123 + def test_as_evaled_expression_number(config): - config.add({'myvalue': 1.10}) - assert config['myvalue'].as_evaled_expression() == 1.1 + config.add({"myvalue": 1.10}) + assert config["myvalue"].as_evaled_expression() == 1.1 + def test_as_evaled_expression_string(config): - config.add({'myvalue': '2 + 3'}) - assert config['myvalue'].as_evaled_expression() == 5.0 + config.add({"myvalue": "2 + 3"}) + assert config["myvalue"].as_evaled_expression() == 5.0 + def test_as_evaled_expression_other(config): - config.add({'myvalue': [1, 2, 3]}) + config.add({"myvalue": [1, 2, 3]}) with pytest.raises(ValueError): - config['myvalue'].as_evaled_expression() + config["myvalue"].as_evaled_expression() + def test_as_evaled_expression_Invalid_string(config): - config.add({'myvalue': 'invalid'}) + config.add({"myvalue": "invalid"}) with pytest.raises(ValueError): - config['myvalue'].as_evaled_expression() + config["myvalue"].as_evaled_expression() + def test_as_date(config): - config.add({'myvalue': '2022-01-15'}) - assert config['myvalue'].as_date() == datetime.date(2022, 1, 15) - + config.add({"myvalue": "2022-01-15"}) + assert config["myvalue"].as_date() == datetime.date(2022, 1, 15) + + def test_as_random_distribution_fixed(config): - config.add({'value':{'distribution': 'fixed', 'value': 1}}) - dist = config['value'].as_random_distribution() + config.add({"value": {"distribution": "fixed", "value": 1}}) + dist = config["value"].as_random_distribution() assert dist() == 1 + def test_as_random_distribution_uniform(config): - config.add({'value':{'distribution': 'uniform', 'low': 1, 'high':2.6}}) - dist = config['value'].as_random_distribution() - assert 1 <= dist() <=2.6 + config.add({"value": {"distribution": "uniform", "low": 1, "high": 2.6}}) + dist = config["value"].as_random_distribution() + assert 1 <= dist() <= 2.6 + def test_as_random_distribution_poisson(config): - config.add({'value':{'distribution': 'poisson', 'lam': 1}}) - dist = config['value'].as_random_distribution() - assert isinstance(dist(), int) + config.add({"value": {"distribution": "poisson", "lam": 1}}) + dist = config["value"].as_random_distribution() + assert isinstance(dist(), int) + def test_as_random_distribution_binomial(config): - config.add({'value':{'distribution': 'binomial', 'n': 10, 'p':0.5 }}) - dist = config['value'].as_random_distribution() - assert 0 <= dist() <= 10 + config.add({"value": {"distribution": "binomial", "n": 10, "p": 0.5}}) + dist = config["value"].as_random_distribution() + assert 0 <= dist() <= 10 + + +def test_as_random_distribution_binomial_w_fraction(config): + config.add({"value": {"distribution": "binomial", "n": 10, "p": "1/2"}}) + dist = config["value"].as_random_distribution() + assert 0 <= dist() <= 10 + def test_as_random_distribution_binomial_error(config): - config.add({'value':{'distribution': 'binomial', 'n': 10, 'p':1.1 }}) + config.add({"value": {"distribution": "binomial", "n": 10, "p": 1.1}}) + with pytest.raises(ValueError, match=r".*p.*value.*"): + dist = config["value"].as_random_distribution() + + +def test_as_random_distribution_binomial_w_fraction_error(config): + config.add({"value": {"distribution": "binomial", "n": 10, "p": "5/4"}}) with pytest.raises(ValueError, match=r".*p.*value.*"): - dist = config['value'].as_random_distribution() + dist = config["value"].as_random_distribution() + def test_as_random_distribution_truncnorm(config): - config.add({'value':{'distribution': 'truncnorm', 'mean': 0, 'sd':1, 'a':-1, 'b':1}}) - dist = config['value'].as_random_distribution() + config.add({"value": {"distribution": "truncnorm", "mean": 0, "sd": 1, "a": -1, "b": 1}}) + dist = config["value"].as_random_distribution() rvs = dist(size=1000) assert len(rvs) == 1000 assert all(-1 <= x <= 1 for x in rvs) + def test_as_random_distribution_lognorm(config): - config.add({'value':{'distribution': 'lognorm', 'meanlog': 0, 'sdlog':1}}) - dist = config['value'].as_random_distribution() + config.add({"value": {"distribution": "lognorm", "meanlog": 0, "sdlog": 1}}) + dist = config["value"].as_random_distribution() rvs = dist(size=1000) assert len(rvs) == 1000 assert all(x > 0 for x in rvs) + def test_as_random_distribution_unknown(config): - config.add({'value':{'distribution': 'unknown', 'mean': 0, 'sd':1}}) + config.add({"value": {"distribution": "unknown", "mean": 0, "sd": 1}}) with pytest.raises(NotImplementedError): - config['value'].as_random_distribution() + config["value"].as_random_distribution() From 132613fe6d0d425f72b400145818d4c6f7ec5d56 Mon Sep 17 00:00:00 2001 From: Shaun Truelove Date: Fri, 3 Nov 2023 11:48:36 -0400 Subject: [PATCH 46/50] fix extra s in yaml_utils.R --- flepimop/R_packages/config.writer/R/yaml_utils.R | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/flepimop/R_packages/config.writer/R/yaml_utils.R b/flepimop/R_packages/config.writer/R/yaml_utils.R index bbe8a4692..9a62f07a6 100644 --- a/flepimop/R_packages/config.writer/R/yaml_utils.R +++ b/flepimop/R_packages/config.writer/R/yaml_utils.R @@ -301,7 +301,7 @@ print_value1 <- function(value_type, value_dist, value_mean, space3 <- rep(" ", indent_space + 4) %>% paste0(collapse = "") print_val <- "" - if (value_type == "timeseriess" && !is.null(value_type)){ + if (value_type == "timeseries" && !is.null(value_type)){ print_val <- paste0(print_val, space, "timeseries: ", value_mean$timeseries, "\n") From 7f97490747c2d4676de66fd97dc1d3039e86dc1e Mon Sep 17 00:00:00 2001 From: saraloo <45245630+saraloo@users.noreply.github.com> Date: Fri, 3 Nov 2023 11:58:11 -0400 Subject: [PATCH 47/50] fix typo --- batch/SLURM_inference_job.run | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/batch/SLURM_inference_job.run b/batch/SLURM_inference_job.run index 22f7c2c52..d6b0e5445 100644 --- a/batch/SLURM_inference_job.run +++ b/batch/SLURM_inference_job.run @@ -177,7 +177,7 @@ if [[ $S3_UPLOAD == "true" ]]; then export FILENAME=$(python -c "from gempyor import file_paths; print(file_paths.create_file_name(run_id='$FLEPI_RUN_INDEX', prefix='$FLEPI_PREFIX/$FLEPI_RUN_INDEX', inference_filepath_suffix='chimeric/intermediate', - iference_filename_prefix='%09d.'% $FLEPI_SLOT_INDEX, + inference_filename_prefix='%09d.'% $FLEPI_SLOT_INDEX, index=$FLEPI_BLOCK_INDEX, ftype='$type', extension='csv'))") From 16f81ae845aad337117ddfda94375f2176551efe Mon Sep 17 00:00:00 2001 From: Joseph Lemaitre Date: Fri, 3 Nov 2023 19:49:16 +0100 Subject: [PATCH 48/50] fix the seeding bug dirtily (need some error message --- flepimop/gempyor_pkg/src/gempyor/seeding_ic.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py b/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py index d1b46c2c6..64e3a1b1e 100644 --- a/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py +++ b/flepimop/gempyor_pkg/src/gempyor/seeding_ic.py @@ -34,6 +34,8 @@ def _DataFrame2NumbaDict(df, amounts, setup) -> nb.typed.Dict: n_seeding_ignored_before = 0 n_seeding_ignored_after = 0 + + #id_seed = 0 for idx, (row_index, row) in enumerate(df.iterrows()): if row["place"] not in setup.spatset.nodenames: raise ValueError( @@ -42,6 +44,7 @@ def _DataFrame2NumbaDict(df, amounts, setup) -> nb.typed.Dict: if (row["date"].date() - setup.ti).days >= 0: if (row["date"].date() - setup.ti).days < len(nb_seed_perday): + nb_seed_perday[(row["date"].date() - setup.ti).days] = ( nb_seed_perday[(row["date"].date() - setup.ti).days] + 1 ) @@ -51,6 +54,7 @@ def _DataFrame2NumbaDict(df, amounts, setup) -> nb.typed.Dict: seeding_dict["seeding_destinations"][idx] = setup.compartments.get_comp_idx(destination_dict) seeding_dict["seeding_places"][idx] = setup.spatset.nodenames.index(row["place"]) seeding_amounts[idx] = amounts[idx] + #id_seed+=1 else: n_seeding_ignored_after += 1 else: @@ -230,7 +234,15 @@ def draw_seeding(self, sim_id: int, setup) -> nb.typed.Dict: raise NotImplementedError(f"unknown seeding method [got: {method}]") # Sorting by date is very important here for the seeding format necessary !!!! + print(seeding.shape) seeding = seeding.sort_values(by="date", axis="index").reset_index() + print(seeding) + mask = (seeding['date'].dt.date > setup.ti) & (seeding['date'].dt.date <= setup.tf) + seeding = seeding.loc[mask].reset_index() + print(seeding.shape) + print(seeding) + + # TODO: print. amounts = np.zeros(len(seeding)) if method == "PoissonDistributed": @@ -240,6 +252,7 @@ def draw_seeding(self, sim_id: int, setup) -> nb.typed.Dict: elif method == "FolderDraw" or method == "FromFile": amounts = seeding["amount"] + return _DataFrame2NumbaDict(df=seeding, amounts=amounts, setup=setup) def load_seeding(self, sim_id: int, setup) -> nb.typed.Dict: From 738af679121ac1e34ca90334d8a15061f263c8d0 Mon Sep 17 00:00:00 2001 From: saraloo <45245630+saraloo@users.noreply.github.com> Date: Sun, 5 Nov 2023 17:07:26 -0500 Subject: [PATCH 49/50] postprocessing edits for breaking improvements --- postprocessing/groundtruth_source.R | 12 +- postprocessing/plot_predictions.R | 4 +- .../run_sim_processing_FluSightExample.R | 149 +- postprocessing/sim_processing_source.R | 1532 +++++++++-------- 4 files changed, 849 insertions(+), 848 deletions(-) diff --git a/postprocessing/groundtruth_source.R b/postprocessing/groundtruth_source.R index 53f4bc701..d92f191d5 100644 --- a/postprocessing/groundtruth_source.R +++ b/postprocessing/groundtruth_source.R @@ -51,7 +51,7 @@ get_rawcoviddata_state_data <- function(fix_negatives = TRUE){ return(state_dat) } - +## IS THIS STILL NEEDED?? @@ -67,8 +67,8 @@ clean_gt_forplots <- function(gt_data){ filter(source != "US") gt_long <- gt_data %>% - pivot_longer(cols = -c(date, source, FIPS), names_to = "target", values_to = "incid") %>% - group_by(source, FIPS, date, target)%>% + pivot_longer(cols = -c(date, source, subpop), names_to = "target", values_to = "incid") %>% + group_by(source, subpop, date, target)%>% summarise(incid = sum(incid)) %>% ungroup() %>% filter(grepl("incid", target, ignore.case = TRUE)) @@ -76,7 +76,7 @@ clean_gt_forplots <- function(gt_data){ gt_long_tmp <- gt_long %>% as_tibble() %>% mutate(incid = fix_NAs(incid)) %>% - group_by(source, FIPS, target) %>% + group_by(source, subpop, target) %>% arrange(date) %>% mutate(incid=cumsum(incid))%>% ungroup() %>% @@ -102,10 +102,10 @@ clean_gt_forplots <- function(gt_data){ gt_long <- gt_long %>% rename(time=date, USPS=source) gt_long <- gt_long %>% - rename(subpop=FIPS, outcome_name = target, outcome = incid) + rename(outcome_name = target, outcome = incid) gt_data <- gt_data %>% - rename(subpop=FIPS, time=date, USPS=source) + rename(time=date, USPS=source) return(gt_data) } diff --git a/postprocessing/plot_predictions.R b/postprocessing/plot_predictions.R index a2ae5592e..0625d8b73 100644 --- a/postprocessing/plot_predictions.R +++ b/postprocessing/plot_predictions.R @@ -56,6 +56,7 @@ gt_cl <- NULL if (any(outcomes_time_=="weekly")) { # Incident gt_data_st_week <- get_weekly_incid(gt_data %>% dplyr::select(time, subpop, USPS, paste0("incid", outcomes_gt_[outcomes_time_gt_=="weekly"])) %>% mutate(sim_num = 0), + # gt_data_st_week <- get_weekly_incid(gt_data %>% dplyr::select(time, subpop, USPS, paste0("incid", outcomes_gt_[outcomes_time_gt_=="weekly"])) %>% mutate(sim_num = 0), outcomes = outcomes_gt_[outcomes_time_gt_=="weekly"]) # Cumulative @@ -158,7 +159,8 @@ forecast_st_plt <- forecast_st %>% mutate(target_type = paste0(incid_cum, outcome)) pltdat_truth <- dat_st_cl2 %>% - filter(aggr_target) %>% rename(gt = value) %>% + # filter(aggr_target) %>% + rename(gt = value) %>% mutate(target = gsub("incid", "inc", target)) %>% rename(target_type = target) %>% filter(USPS %in% unique(forecast_st_plt$USPS)) %>% diff --git a/postprocessing/run_sim_processing_FluSightExample.R b/postprocessing/run_sim_processing_FluSightExample.R index 4aaa90569..84676ad25 100644 --- a/postprocessing/run_sim_processing_FluSightExample.R +++ b/postprocessing/run_sim_processing_FluSightExample.R @@ -10,9 +10,7 @@ gc() library(inference) library(tidyverse) library(doParallel) - - - +gempyor <- reticulate::import("gempyor") # SETUP ------------------------------------------------------------------- @@ -25,48 +23,61 @@ flepimop_local_dir <- "../flepiMoP" # ~ Main Run Options ----------------------------------------------------------- -pull_gt <- TRUE -full_fit <- FALSE +pull_gt <- FALSE +full_fit <- TRUE # ~ Round ----------------------------------------------------------------- -round_num <- 3 -fch_date <- "Jan15" -config_subname <- "2022_Jan15" +round_num <- 4 #actually don't think we need this? +# fch_date <- "Jan15" +# config_subname <- "training" +config_name <- "config_SMH_Flu_2023_R1_medVax_H3_training.yml" +config <- flepicommon::load_config(config_name) +#I THINK WANT TO REORGANISE - JUST SAVE BY CONFIG # ~ Application ----------------------------------------------------------- -smh_or_fch <- "fch" #"fch" or "smh" -disease <- "flu" # covid19 or flu -repo <- "../../shared/SMH_Flu" -subdir <- NULL #used for testing purposes - -smh_or_fch <- tolower(smh_or_fch) -if(smh_or_fch == "fch"){ subdir <- file.path("FCH", fch_date) } #"excluding_vacchosp" #NULL # can be changed to add subanalysis +smh_or_fch <- ifelse(grepl("FCH", config_name), "fch", "smh") #"fch" or "smh" +disease <- config$disease # covid19 or flu +# repo <- "../../shared/SMH_Flu" +repo <- "../runs-flepi" +subdir <- "test" #NULL #used for testing purposes +if(smh_or_fch == "fch"){ subdir <- file.path("FCH", fch_date) }# can be changed to add subanalysis (I DON'T LIKE THIS AND THE ABOVE LINE) # ~ Scenarios ------------------------------------------------------------- -scenarios <- c("highVE_optImm", "highVE_pesImm", "lowVE_optImm", "lowVE_pesImm") # include all, it will subset later based on what you put in `scenario_num` -scenario_s3_buckets <- c("20221220T173349", "20230115T202608", "20221220T174219", "20221220T174814") # automatically pull from s3 if the data are not local already -override_pull_from_s3 <- c(FALSE, FALSE, FALSE, FALSE) # !!!! VERY IMPORTANT - LEAVE FALSE UNLESS YOU ARE REWRITING THE CURRENT S3 DATA !!!! +## THIS HAS TO BE EDITED FOR EVERY ROUND - what are the scenarios +if (disease == "flu"){ + scenarios <- c("highVax_H3", "highVax_H1", "medVax_H3", "medVax_H1", "lowVax_H3", "lowVax_H1") # include all, it will subset later based on what you put in `scenario_num` + fch_scenario_num = 3 + scenario_s3_buckets <- c("20221220T173349", "20230115T202608", "20231103T130842", "20221220T174814","20221220T174814","20221220T174814") # automatically pull from s3 if the data are not local already + override_pull_from_s3 <- c(FALSE, FALSE, FALSE, FALSE) # !!!! VERY IMPORTANT - LEAVE FALSE UNLESS YOU ARE REWRITING THE CURRENT S3 DATA !!!! +} else if (disease == "covid19"){ + scenarios <- c("65Boo_lowIE") # include all, it will subset later based on what you put in `scenario_num` + fch_scenario_num = 1 + scenario_s3_buckets <- c("20221220T173349") # automatically pull from s3 if the data are not local already + override_pull_from_s3 <- c(FALSE) # !!!! VERY IMPORTANT - LEAVE FALSE UNLESS YOU ARE REWRITING THE CURRENT S3 DATA !!!! +} -scenario_num = 1:4 # which scenarios to process right now -fch_scenario_num = 2 if(tolower(smh_or_fch) == "fch"){ scenario_num <- fch_scenario_num +}else{ + # scenario_num = 1:6 # which scenarios to process right now (ONLY FOR SMH) + scenario_num = 3 } n_weeks <- 41 # ~ Config Specifics ------------------------------------------------------ subname <- NA subname_all <- NA +config_subname <- stringr::str_extract(config_name, paste0("(?<=", scenarios[scenario_num], "_).*?(?=\\.yml)")) -# ~ Outcomes to Include (for processing and plotting) --------------------------------------------------- -outcomes_ <- c("I","C","H","D") -outcomes_time_ <- c("weekly","weekly","weekly","weekly") -outcomes_cum_ <- c(FALSE, FALSE, FALSE, FALSE) - -# ~ Calibration ----------------------------------------------------------- -outcomes_calibrate = c(FALSE, FALSE, TRUE, FALSE) # match outcomes_ -n_calib_days = 14 # need one for each outcome to calibrate +# # ~ Outcomes to Include (for processing and plotting) --------------------------------------------------- +# outcomes_ <- c("I","C","H","D") +# outcomes_time_ <- c("weekly","weekly","weekly","weekly") +# outcomes_cum_ <- c(FALSE, FALSE, FALSE, FALSE) +# +# # ~ Calibration ----------------------------------------------------------- +# outcomes_calibrate = c(FALSE, FALSE, TRUE, FALSE) # match outcomes_ +# n_calib_days = 14 # need one for each outcome to calibrate # ~ Other Run Options ----------------------------------------------------- plot_samp <- FALSE @@ -81,21 +92,10 @@ keep_vacc_compartments <- FALSE likelihood_sims <- FALSE - - - - - - # OTHER SETUP ------------------------------------------------------------- proj_dir <- getwd() - -# subset scenarios -if(tolower(smh_or_fch) == "fch"){ - scenario_num <- fch_scenario_num -} scenarios <- scenarios[scenario_num] scenario_s3_buckets <- scenario_s3_buckets[scenario_num] # automatically pull from s3 if the data are not local already override_pull_from_s3 <- override_pull_from_s3[scenario_num] # !!!! VERY IMPORTANT - LEAVE FALSE UNLESS YOU ARE REWRITING THE CURRENT S3 DATA !!!! @@ -104,12 +104,6 @@ override_pull_from_s3 <- override_pull_from_s3[scenario_num] # !!!! VERY IMPORTA geodata_file_path = file.path(config$data_path, config$subpop_setup$geodata) - - - - - - # SUBMISSION & PROCESSING SPECIFICS ---------------------------------------------------- ## -- "outcomes_" are for processing. we want more than we submit for diagnostics. @@ -125,7 +119,9 @@ if (smh_or_fch == "fch" & disease == "flu"){ outcomes_ <- c("I","C","H","D") outcomes_time_ <- c("weekly","weekly","weekly","weekly") outcomes_cum_ <- c(FALSE, FALSE, FALSE, FALSE) - outcomes_calibrate = c(FALSE, FALSE, TRUE, FALSE) + outcomes_cumfromgt = c(FALSE, FALSE, FALSE, FALSE) + outcomes_calibrate = c(FALSE, FALSE, FALSE, FALSE) + n_calib_days = 14 # need one for each outcome to calibrate } # Flu Projections (Flu SMH: https://github.com/midas-network/flu-scenario-modeling-hub) @@ -140,18 +136,20 @@ if (smh_or_fch == "smh" & disease == "flu"){ outcomes_time_ <- c("weekly","weekly","weekly","weekly") outcomes_cum_ <- c(TRUE, TRUE, TRUE, TRUE) outcomes_cumfromgt = c(FALSE, FALSE, FALSE, FALSE) - outcomes_calibrate = c(FALSE, FALSE, TRUE, FALSE) + outcomes_calibrate = c(FALSE, FALSE, FALSE, FALSE) + n_calib_days = 14 # need one for each outcome to calibrate } # COVID-19 Forecasts (COVID-19 FCH: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/README.md#Data-formatting) if (smh_or_fch == "fch" & disease == "covid19"){ select_submission_targets <- function(data_comb){ - targets <- c(paste0(1:20, " wk ahead cum death"), - paste0(1:20, " wk ahead inc death"), - paste0(1:8, " wk ahead inc case"), - paste0(0:130, " day ahead inc hosp")) - + # targets <- c(paste0(1:20, " wk ahead cum death"), + # paste0(1:20, " wk ahead inc death"), + # paste0(1:8, " wk ahead inc case"), + # paste0(0:130, " day ahead inc hosp")) + targets <- c(paste0(0:130, " day ahead inc hosp")) + data_comb <- data_comb %>% filter(type != "point-mean" & !(is.na(quantile) & type == "quantile")) %>% mutate(quantile = round(quantile, 3)) %>% @@ -175,13 +173,14 @@ if (smh_or_fch == "fch" & disease == "covid19"){ outcomes_cum_ <- c(FALSE, FALSE, FALSE, TRUE) outcomes_cumfromgt = c(FALSE, FALSE, FALSE, TRUE) outcomes_calibrate = c(FALSE, FALSE, TRUE, FALSE) # match outcomes_ + n_calib_days = 14 # need one for each outcome to calibrate } # COVID-19 Projections (COVID-19 SMH: https://github.com/midas-network/covid-scenario-modeling-hub) if (smh_or_fch == "smh" & disease == "covid19"){ select_submission_targets <- function(data_comb){ data_comb %>% - filter(grepl("inc hosp|inc death|cum hosp|cum death|peak size|peak time", target)) + filter(grepl("inc hosp|inc death|cum hosp|cum death", target)) } forecast_date_name <- "model_projection_date" outcomes_ <- c("I","C","H","D") @@ -189,12 +188,11 @@ if (smh_or_fch == "smh" & disease == "covid19"){ outcomes_cum_ <- c(TRUE, TRUE, TRUE, TRUE) outcomes_cumfromgt = c(FALSE, FALSE, FALSE, FALSE) outcomes_calibrate = c(FALSE, FALSE, TRUE, FALSE) + n_calib_days = 14 # need one for each outcome to calibrate } - - # Source Code and Functions ----------------------------------------------- # determine if local repo or pulling from github @@ -221,11 +219,6 @@ source(paste0(source_loc, "/postprocessing/sim_processing_source.R")) #........................................................................................................ - -# Get Config for details -config_name <- paste0(paste(na.omit(c("config", toupper(smh_or_fch), paste0("R", round_num), scenarios[1], subname_all[1], config_subname)), collapse="_"), ".yml") -config <- flepicommon::load_config(config_name) - # change n_weeks if FCH (limit to 12 weeks) projection_date <- lubridate::as_date(config$end_date_groundtruth)+1 # first day after groundtruth cutoff forecast_date <- lubridate::as_date(config$start_date)+21 # date to start plotting from @@ -236,21 +229,27 @@ if (tolower(smh_or_fch)=="fch") { n_weeks <- 4 end_date <- lubridate::as_date(projection_date + n_weeks*7) - 1 } + point_est <- 0.5 # alternative: "mean" -compartment_types = c("vacc","variant","agestrat") # types of compartments, other than standard SEIR +compartment_types = c("vacc","variant","agestrat","season") # types of compartments, other than standard SEIR +# compartment_types = c("vacc","variant","agestrat") # types of compartments, other than standard SEIR keep_which_compartments <- c("variant") # types of compartments, other than standard SEIR -scenario_ids = paste0(c(LETTERS[1:4]), "-", lubridate::as_date(config$end_date_groundtruth)+1)[scenario_num] +scenario_ids = paste0(c(LETTERS[1:6]), "-", lubridate::as_date(config$end_date_groundtruth)+1)[scenario_num] scenario_names <- scenarios scenarios_all <- scenarios -variants_ <- config$seir$compartments$variant_type -vacc_ <- config$seir$compartments$vaccination_stage +variants_ <- config$compartments$variant_type +vacc_ <- config$compartments$vaccination_stage county_level <- FALSE plot_projections <- TRUE save_reps <- smh_or_fch=="smh" & !full_fit # create the repo where everything will be saved -round_directory <- do.call(file.path, as.list(na.omit(c(repo, paste0("R",round_num), subdir)))) +# round_directory <- do.call(file.path, as.list(na.omit(c(repo, paste0("R",round_num), subdir)))) +round_directory <- do.call(file.path, + as.list(na.omit(c(repo, + stringr::str_extract(config_name, paste0("(?<=", "config", "_).*?(?=\\.yml)")), # save results in config name + subdir)))) dir.create(round_directory, recursive = TRUE, showWarnings = FALSE) print(round_directory) @@ -259,9 +258,6 @@ scenario_dir <- file.path(round_directory, scenarios_all) lapply(scenario_dir, dir.create, recursive = TRUE) - - - # PULL SIMS FROM S3 ------------------------------------------------------- #check if data have already been pulled @@ -280,7 +276,11 @@ if (any(pull_from_s3)) { scn <- scen_to_repull[i] # pull s3 bucket - sys_call_s3 <- paste0('aws s3 cp --recursive s3://idd-inference-runs/USA-', scenario_s3_buckets[scn], '/model_output/hosp ', scenario_dir[scn], '/hosp --exclude="*" --include="*/final/*"') + sys_call_s3 <- paste0('aws s3 cp --recursive s3://idd-inference-runs/USA-', scenario_s3_buckets[scn], + '/model_output/', + # paste(config$name,config$seir_modifiers$scenarios,config$outcome_modifiers$scenarios,sep="_"), + ' ', + scenario_dir[scn], ' --exclude="*" --include="*hosp/global/final/*"') system(sys_call_s3) } # stopCluster(cl) @@ -288,15 +288,13 @@ if (any(pull_from_s3)) { - - # LOAD GROUND TRUTH ------------------------------------------------------- Sys.setenv(CONFIG_PATH = config_name) Sys.setenv(FLEPI_PATH = source_loc) -if (disease == "flu"){ +if (disease == "flu" & pull_gt){ source(paste0(source_loc, "/datasetup/build_flu_data.R")) -} else if (disease == "covid19"){ +} else if (disease == "covid19" & pull_gt){ source(paste0(source_loc, "/datasetup/build_covid_data.R")) } @@ -336,8 +334,7 @@ peak_ram_ <- peakRAM::peakRAM({ print(scenarios_all[scenario_num]) scenario_dir <- paste0(round_directory, "/", scenarios_all[i], "/") - #source("postprocessing/process_sims_parallel_NEW.R", local=TRUE) - tmp_out_ <- process_sims(scenario_num = scenario_num, + tmp_out_ <- process_sims(config_name,scenario_num = scenario_num, scenarios_all = scenarios_all, scenario_names = scenario_names, scenario_ids = scenario_ids, @@ -368,7 +365,7 @@ peak_ram_ <- peakRAM::peakRAM({ plot_samp = plot_samp, gt_data = gt_data, geodata_file = geodata_file_path, - death_filter = config$outcome_modifiers$scenarios, + # death_filter = config$outcome_modifiers$scenarios, summarize_peaks = (smh_or_fch == "smh"), save_reps = save_reps) tmp_out <- list(tmp_out, tmp_out_) diff --git a/postprocessing/sim_processing_source.R b/postprocessing/sim_processing_source.R index 8ddb5c49d..5999c745d 100644 --- a/postprocessing/sim_processing_source.R +++ b/postprocessing/sim_processing_source.R @@ -30,86 +30,93 @@ combine_and_format_sims <- function(outcome_vars = "incid", end_date = opt$end_date, geodata, death_filter = opt$death_filter) { - - res_subpop_all <- arrow::open_dataset(sprintf("%shosp",scenario_dir), - partitioning = c("location", "seir_modifiers_scenario", "outcome_modifiers_scenario", "config", "lik_type", "is_final")) %>% - select(time, subpop, outcome_modifiers_scenario, starts_with(outcome_vars)) %>% - filter(time>=forecast_date & time<=end_date) %>% - collect() %>% - filter(stringr::str_detect(outcome_modifiers_scenario, death_filter)) %>% - mutate(time=as.Date(time)) %>% - group_by(time, subpop, outcome_modifiers_scenario) %>% - dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% - ungroup() - - if (quick_run){ - res_subpop_all <- res_subpop_all %>% filter(sim_num %in% 1:20) - } - gc() - - # ~ Subset if testing - if (testing){ - res_subpop_all <- res_subpop_all %>% filter(sim_num %in% sample(.$sim_num, 10, replace = FALSE)) - } - - - # pull out just the total outcomes of interest - cols_aggr <- expand_grid(a="incid",b=outcomes_) %>% mutate(d=paste0(a,b)) %>% pull(d) - cols_aggr <- cols_aggr[cols_aggr %in% colnames(res_subpop_all)] - - if(!keep_all_compartments & !keep_variant_compartments & !keep_vacc_compartments){ - res_subpop_all <- res_subpop_all %>% - select(time, subpop, outcome_modifiers_scenario, sim_num, all_of(cols_aggr)) - - } else if (keep_variant_compartments){ - # pull out just the variant outcomes - cols_vars <- expand_grid(a="incid",b=outcomes_, c=paste0("_", variants_)) %>% mutate(d=paste0(a,b,c)) %>% pull(d) - cols_vars <- cols_vars[cols_vars %in% colnames(res_subpop_all)] - res_subpop_all <- res_subpop_all %>% - select(time, subpop, outcome_modifiers_scenario, sim_num, all_of(cols_vars)) - } else if (keep_all_compartments){ - # remove the aggregate outcomes - res_subpop_all <- res_subpop_all %>% - select(-all_of(cols_vars), -all_of(cols_aggr)) - } else if (keep_vacc_compartments){ - # pull out just the variant outcomes - cols_vars <- expand_grid(a="incid",b=outcomes_, c=paste0("_", vacc_)) %>% mutate(d=paste0(a,b,c)) %>% pull(d) - cols_vars <- cols_vars[cols_vars %in% colnames(res_subpop_all)] - res_subpop_all <- res_subpop_all %>% - select(time, subpop, outcome_modifiers_scenario, sim_num, all_of(cols_vars)) - } - - - # Merge in Geodata - - if(county_level){ - res_state <- res_subpop_all %>% - inner_join(geodata %>% select(subpop, USPS)) %>% - group_by_at(c("USPS", "time", "sim_num", compartment_types)) %>% - summarise(across(starts_with("incid"), sum)) %>% - as_tibble() - } else { - res_state <- res_subpop_all %>% - inner_join(geodata %>% select(subpop, USPS)) - } - rm(res_subpop_all) - - # ~ Add US totals - res_us <- res_state %>% - group_by(time, sim_num, outcome_modifiers_scenario) %>% - summarise(across(starts_with("incid"), sum)) %>% - as_tibble() %>% - mutate(USPS = "US") - res_state <- res_state %>% - bind_rows(res_us) - rm(res_us) - - return(res_state) + + dirs <- list.dirs(path = scenario_dir, recursive = TRUE, full.names = TRUE) + dirs <- dirs[str_detect(dirs, '/hosp')][1] + res_subpop_all <- arrow::open_dataset(dirs, + partitioning = c("lik_type", "is_final")) %>% + select(time, subpop, starts_with(outcome_vars)) %>% + # select(time, subpop, outcome_modifiers_scenario, starts_with(outcome_vars)) %>% + filter(time>=forecast_date & time<=end_date) %>% + collect() %>% + # filter(stringr::str_detect(outcome_modifiers_scenario, death_filter)) %>% + mutate(time=as.Date(time)) %>% + # group_by(time, subpop, outcome_modifiers_scenario) %>% + group_by(time, subpop) %>% + dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% + ungroup() + + if (quick_run){ + res_subpop_all <- res_subpop_all %>% filter(sim_num %in% 1:20) + } + gc() + + # ~ Subset if testing + if (testing){ + res_subpop_all <- res_subpop_all %>% filter(sim_num %in% sample(.$sim_num, 10, replace = FALSE)) + } + + # pull out just the total outcomes of interest + cols_aggr <- expand_grid(a="incid",b=outcomes_) %>% mutate(d=paste0(a,b)) %>% pull(d) + cols_aggr <- cols_aggr[cols_aggr %in% colnames(res_subpop_all)] + cols_aggr <- "incidH_14to15" + if(!keep_all_compartments & !keep_variant_compartments & !keep_vacc_compartments){ + res_subpop_all <- res_subpop_all %>% + # select(time, subpop, outcome_modifiers_scenario, sim_num, all_of(cols_aggr)) + select(time, subpop, sim_num, all_of(cols_aggr)) + + + } else if (keep_variant_compartments){ + # pull out just the variant outcomes + cols_vars <- expand_grid(a="incid",b=outcomes_, c=paste0("_", variants_)) %>% mutate(d=paste0(a,b,c)) %>% pull(d) + cols_vars <- cols_vars[cols_vars %in% colnames(res_subpop_all)] + res_subpop_all <- res_subpop_all %>% + # select(time, subpop, outcome_modifiers_scenario, sim_num, all_of(cols_vars)) + select(time, subpop, sim_num, all_of(cols_vars)) + } else if (keep_all_compartments){ + # remove the aggregate outcomes + res_subpop_all <- res_subpop_all %>% + select(-all_of(cols_vars), -all_of(cols_aggr)) + } else if (keep_vacc_compartments){ + # pull out just the variant outcomes + cols_vars <- expand_grid(a="incid",b=outcomes_, c=paste0("_", vacc_)) %>% mutate(d=paste0(a,b,c)) %>% pull(d) + cols_vars <- cols_vars[cols_vars %in% colnames(res_subpop_all)] + res_subpop_all <- res_subpop_all %>% + # select(time, subpop, outcome_modifiers_scenario, sim_num, all_of(cols_vars)) + select(time, subpop, sim_num, all_of(cols_vars)) + } + + + # Merge in Geodata + + if(county_level){ + res_state <- res_subpop_all %>% + inner_join(geodata %>% select(subpop, USPS)) %>% + group_by_at(c("USPS", "time", "sim_num", compartment_types)) %>% + summarise(across(starts_with("incid"), sum)) %>% + as_tibble() + } else { + res_state <- res_subpop_all %>% + inner_join(geodata %>% select(subpop, USPS)) + } + rm(res_subpop_all) + + # ~ Add US totals + res_us <- res_state %>% + # group_by(time, sim_num, outcome_modifiers_scenario) %>% + group_by(time, sim_num) %>% + summarise(across(starts_with("incid"), sum)) %>% + as_tibble() %>% + mutate(USPS = "US") + res_state <- res_state %>% + bind_rows(res_us) + rm(res_us) + + return(res_state) } - load_simulations <- function(geodata, sim_directory = arguments$args, forecast_date = opt$forecast_date, @@ -120,25 +127,28 @@ load_simulations <- function(geodata, keep_compartments = TRUE, testing = FALSE){ - res_subpop <- arrow::open_dataset(sprintf("%s/hosp", sim_directory), - partitioning =c("location", - "seir_modifiers_scenario", - "outcome_modifiers_scenario", - "config", - "lik_type", - "is_final")) %>% - select(time, subpop, starts_with("incid"), outcome_modifiers_scenario)%>% - filter(time>=forecast_date & time<=end_date)%>% - collect() %>% - filter(stringr::str_detect(outcome_modifiers_scenario, death_filter))%>% - mutate(time=as.Date(time)) %>% - group_by(time, subpop, outcome_modifiers_scenario) %>% - dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% - ungroup() %>% - pivot_longer(cols=starts_with("incid"), - names_to = c("outcome",compartment_types), - names_pattern = "(.*)_(.*)_(.*)_(.*)", values_to = "value") %>% - filter(!is.na(outcome)) + + dirs <- list.dirs(path = scenario_dir, recursive = TRUE, full.names = TRUE) + dirs <- dirs[str_detect(dirs, '/hosp')][1] + res_subpop <- arrow::open_dataset(dirs, + partitioning = c("lik_type", "is_final")) %>% + # select(time, subpop, starts_with("incid"), outcome_modifiers_scenario)%>% + select(time, subpop, starts_with("incid"))%>% + filter(time>=forecast_date & time<=end_date)%>% + collect() %>% + # filter(stringr::str_detect(outcome_modifiers_scenario, death_filter))%>% + # filter(stringr::str_detect(death_filter))%>% + mutate(time=as.Date(time)) %>% + group_by(time, subpop) %>% + # group_by(time, subpop, outcome_modifiers_scenario) %>% + dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% + ungroup() %>% + pivot_longer(cols=starts_with("incid"), + names_to = c("outcome",compartment_types), + names_pattern = paste0(paste(rep("(.*)_",length(compartment_types)), sep="", collapse=""),"(.*)"), + values_to = "value") %>% + # names_pattern = "(.*)_(.*)_(.*)_(.*)", values_to = "value") %>% + filter(!is.na(outcome)) res_subpop <- res_subpop %>% pivot_wider(names_from = outcome, values_from = value) @@ -169,11 +179,12 @@ load_simulations <- function(geodata, res_state <- res_subpop %>% inner_join(geodata %>% select(subpop, USPS)) - if (keep_compartments){ - res_state_long <- res_subpop_long %>% - inner_join(geodata %>% select(subpop, USPS)) - } - rm(res_subpop_long, res_subpop) + # if (keep_compartments){ + # res_state_long <- res_subpop_long %>% + # inner_join(geodata %>% select(subpop, USPS)) + # } + # rm(res_subpop_long, res_subpop) + rm(res_subpop) } # ADD US TOTAL @@ -207,13 +218,6 @@ load_simulations <- function(geodata, } - - - - - - - trans_sims_wide <- function(geodata, sim_directory = arguments$args, forecast_date = opt$forecast_date, @@ -291,8 +295,6 @@ trans_sims_wide <- function(geodata, } - - load_simulations_orig <- function(geodata, sim_directory = arguments$args, forecast_date = opt$forecast_date, @@ -302,24 +304,24 @@ load_simulations_orig <- function(geodata, keep_compartments = TRUE, testing = FALSE){ - res_subpop <- arrow::open_dataset(sprintf("%s/hosp", sim_directory), - partitioning =c("location", - "seir_modifiers_scenario", - "outcome_modifiers_scenario", - "config", - "lik_type", - "is_final")) %>% - select(time, subpop, starts_with("incid"), outcome_modifiers_scenario)%>% + dirs <- list.dirs(path = scenario_dir, recursive = TRUE, full.names = TRUE) + dirs <- dirs[str_detect(dirs, '/hosp')][1] + res_subpop <- arrow::open_dataset(dirs, + partitioning = c("lik_type", "is_final")) %>% + # select(time, subpop, starts_with("incid"), outcome_modifiers_scenario)%>% filter(time>=forecast_date & time<=end_date)%>% collect() %>% - filter(stringr::str_detect(outcome_modifiers_scenario, death_filter))%>% + # filter(stringr::str_detect(outcome_modifiers_scenario, death_filter))%>% mutate(time=as.Date(time)) %>% - group_by(time, subpop, outcome_modifiers_scenario) %>% + # group_by(time, subpop, outcome_modifiers_scenario) %>% + group_by(time, subpop) %>% dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% ungroup() %>% pivot_longer(cols=starts_with("incid"), names_to = c("outcome",compartment_types), - names_pattern = "(.*)_(.*)_(.*)_(.*)", values_to = "value") %>% + names_pattern = paste0(paste(rep("(.*)_",length(compartment_types)), sep="", collapse=""),"(.*)"), + values_to = "value") %>% + # names_pattern = "(.*)_(.*)_(.*)_(.*)", values_to = "value") %>% filter(!is.na(outcome)) res_subpop_long <- res_subpop @@ -568,8 +570,6 @@ calibrate_outcome <- function(outcome_calib = "incidH", - - # MISC -------------------------------------------------------------------- # Assign point estimate @@ -1023,658 +1023,660 @@ combine_and_format_scenarios <- function( # RUN PROCESSING - All ---------------------------------------------------- process_sims <- function( - scenario_num, - scenarios_all, - scenario_names, - scenario_ids, - proj_id, - projection_date, - forecast_date, - end_date, - smh_or_fch, - round_num, - subname_all, - config_subname, - round_directory, - full_fit = FALSE, - testing = FALSE, - quick_run = FALSE, - outcomes_ = c("I","C","H","D"), - outcomes_time_ = c("weekly","weekly","weekly","weekly"), - outcomes_cum_ = c(TRUE, TRUE, TRUE, TRUE), - outcomes_cumfromgt = c(FALSE, FALSE, TRUE, FALSE), - outcomes_calibrate = c(FALSE, FALSE, TRUE, FALSE), - n_calib_days = 0, - likelihood_prune = FALSE, - keep_variant_compartments = keep_variant_compartments, - keep_vacc_compartments = keep_vacc_compartments, - keep_all_compartments = keep_all_compartments, - variants_ = variants_, - vacc_ = vacc_, - geodata_file = "data/geodata_2019_statelevel.csv", - death_filter = "med", - plot_samp, - gt_data, - summarize_peaks = FALSE, - save_reps = FALSE) { - - - - # SETUP ------------------------------------------------------------------- - # print(scenarios_all) - print(scenarios_all[scenario_num]) - - opt <- list() - errors <- list() - scenario <- scenarios_all[scenario_num] #"baseline_lowVac" - scenario_name <- scenario_names[scenario_num] - scenario_id <- scenario_ids[scenario_num] - opt$scenario <- scenario - opt$scenario_name <- scenario_name - opt$projection_date <- projection_date - opt$forecast_date <- opt$projection_date # same as projection date unless FULL fit, which gets fixed below - opt$end_date <- end_date - - config_name <- paste0(paste(na.omit(c("config", toupper(smh_or_fch), paste0("R", round_num), scenario, subname_all[1], config_subname)), collapse="_"), ".yml") - config <- flepicommon::load_config(config_name) - - if (smh_or_fch=="fch") { - scenario <- proj_id - opt$scenario <- proj_id - } - - #...................................................... - - print( opt$scenario ) - - opt$args <- scenario_dir <- paste0(round_directory, "/", opt$scenario, "/") - out_sub_dir <- NA - - if (testing) out_sub_dir <- "testing" - if (quick_run) out_sub_dir <- "quick" - if (full_fit) opt$forecast_date <- forecast_date - opt$projection_date <- lubridate::as_date(opt$projection_date) - opt$forecast_date <- lubridate::as_date(opt$forecast_date) - forecast_date <- opt$forecast_date - - - reich_locs <- read_csv("https://raw.githubusercontent.com/reichlab/covid19-forecast-hub/master/data-locations/locations.csv") - - - if (full_fit){ - if(!(exists('forecast_date') & !is.na(forecast_date) & !is.null(forecast_date))){ - opt$forecast_date <- "2020-01-01" - }else{ - opt$forecast_date <- forecast_date - } - } - - opt$projection_date <- lubridate::as_date(opt$projection_date) - opt$forecast_date <- lubridate::as_date(opt$forecast_date) - - variants_ <- opt$variants - - #...................................................... - - opt$geodata <- geodata_file #"data/geodata_2019_statelevel.csv" #geodata_territories_2019_statelevel.csv" - opt$death_filter <- death_filter #"med" - opt$outfile <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario, ifelse(full_fit, "_FULL", ""),ifelse(likelihood_prune, "_LLprune",""), ".csv") - opt$vaccfile <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario, "_vaccdata", ifelse(full_fit, "_FULL", ""), ".csv") - opt$vaccsumm <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario, "_vaccsummary", ifelse(full_fit, "_FULL", ""), ".csv") - opt$indiv_sims <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario, ifelse(full_fit, "_FULL", ""), ".parquet") - - opt$outdir <- ifelse(!is.na(out_sub_dir), paste0(round_directory, out_sub_dir), file.path(round_directory)) - opt$reichify <- TRUE - dir.create(opt$outdir, recursive = TRUE, showWarnings = FALSE) - print(opt$outdir) - - projections_file_path <- file.path(opt$outdir, opt$outfile) - projections_file_path - - opt$forecast_date <- as.Date(opt$forecast_date) - opt$end_date <- as.Date(opt$end_date) - - # Functions --------------------------------------------------------------- - - # Load Data --------------------------------------------------------------- - - # ~ Geodata - geodata <- suppressMessages(readr::read_csv(opt$geodata, col_types = readr::cols(subpop=readr::col_character()))) - - # ~ Ground truth - if (!exists("gt_data")){ - gt_data <- readr::read_csv(file.path(round_directory, "gt_data_clean.csv")) + config_name, + scenario_num, # setup : change + scenarios_all, # setup: change + scenario_names, #set up : change + scenario_ids, # setup: change used once + proj_id, # change setup? + projection_date, + forecast_date, + end_date, + smh_or_fch, + round_num, + subname_all, + config_subname, + round_directory, + full_fit = FALSE, + testing = FALSE, + quick_run = FALSE, + outcomes_ = c("I","C","H","D"), + outcomes_time_ = c("weekly","weekly","weekly","weekly"), + outcomes_cum_ = c(TRUE, TRUE, TRUE, TRUE), + outcomes_cumfromgt = c(FALSE, FALSE, TRUE, FALSE), + outcomes_calibrate = c(FALSE, FALSE, TRUE, FALSE), + n_calib_days = 0, + likelihood_prune = FALSE, + keep_variant_compartments = keep_variant_compartments, + keep_vacc_compartments = keep_vacc_compartments, + keep_all_compartments = keep_all_compartments, + variants_ = variants_, + vacc_ = vacc_, + geodata_file = "data/geodata_2019_statelevel.csv", + # death_filter = "med", + plot_samp, + gt_data, + summarize_peaks = FALSE, + save_reps = FALSE) { + + + + # SETUP ------------------------------------------------------------------- + # print(scenarios_all) + print(scenarios_all[scenario_num]) + + opt <- list() + errors <- list() + scenario <- scenarios_all[scenario_num] #"baseline_lowVac" + scenario_name <- scenario_names[scenario_num] + scenario_id <- scenario_ids[scenario_num] + opt$scenario <- scenarios_all[scenario_num] #"baseline_lowVac" + opt$scenario_name <- scenario_names[scenario_num] + opt$projection_date <- projection_date + opt$forecast_date <- opt$projection_date # same as projection date unless FULL fit, which gets fixed below + opt$end_date <- end_date + + # config_name <- paste0(paste(na.omit(c("config", toupper(smh_or_fch), paste0("R", round_num), scenario, subname_all[1], config_subname)), collapse="_"), ".yml") + config <- flepicommon::load_config(config_name) + + # if (smh_or_fch=="fch") { + # scenario <- proj_id + # opt$scenario <- proj_id + # } + + #...................................................... + + print( opt$scenario ) + + opt$args <- scenario_dir <- paste0(round_directory, "/", opt$scenario, "/") + out_sub_dir <- NA + + if (testing) out_sub_dir <- "testing" + if (quick_run) out_sub_dir <- "quick" + if (full_fit) opt$forecast_date <- forecast_date + opt$projection_date <- lubridate::as_date(opt$projection_date) + opt$forecast_date <- lubridate::as_date(opt$forecast_date) + forecast_date <- opt$forecast_date + + + reich_locs <- read_csv("https://raw.githubusercontent.com/reichlab/covid19-forecast-hub/master/data-locations/locations.csv") + + + if (full_fit){ + if(!(exists('forecast_date') & !is.na(forecast_date) & !is.null(forecast_date))){ + opt$forecast_date <- "2020-01-01" + }else{ + opt$forecast_date <- forecast_date } - - - # Projections ----------------------------------------------------------- - - res_state <- combine_and_format_sims(outcome_vars = paste0("incid", outcomes_), - scenario_dir = opt$args, - quick_run = quick_run, - testing = testing, - outcomes_ = outcomes_, - keep_variant_compartments = keep_variant_compartments, - keep_vacc_compartments = keep_vacc_compartments, - keep_all_compartments = keep_all_compartments, - variants_ = variants_, - vacc_ = vacc_, - county_level=FALSE, - forecast_date = opt$forecast_date, - end_date = opt$end_date, - geodata = geodata, - death_filter = opt$death_filter) - - if(exists("res_state")){ - print(paste("Successfully combined sims for:", scenario)) + } + + opt$projection_date <- lubridate::as_date(opt$projection_date) + opt$forecast_date <- lubridate::as_date(opt$forecast_date) + + # variants_ <- opt$variants + opt$variants <- variants_ + + #...................................................... + + # opt$death_filter <- death_filter #"med" + opt$outfile <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario, ifelse(full_fit, "_FULL", ""),ifelse(likelihood_prune, "_LLprune",""), ".csv") + opt$vaccfile <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario, "_vaccdata", ifelse(full_fit, "_FULL", ""), ".csv") + opt$vaccsumm <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario, "_vaccsummary", ifelse(full_fit, "_FULL", ""), ".csv") + opt$indiv_sims <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario, ifelse(full_fit, "_FULL", ""), ".parquet") + + opt$outdir <- ifelse(!is.na(out_sub_dir), paste0(round_directory, out_sub_dir), file.path(round_directory)) + opt$reichify <- TRUE + dir.create(opt$outdir, recursive = TRUE, showWarnings = FALSE) + print(opt$outdir) + + projections_file_path <- file.path(opt$outdir, opt$outfile) + projections_file_path + + opt$forecast_date <- as.Date(opt$forecast_date) + opt$end_date <- as.Date(opt$end_date) + + # Functions --------------------------------------------------------------- + + # Load Data --------------------------------------------------------------- + + # ~ Geodata + geodata <- suppressMessages(readr::read_csv(geodata_file, col_types = readr::cols(subpop=readr::col_character()))) + + # ~ Ground truth + if (!exists("gt_data")){ + gt_data <- readr::read_csv(file.path(round_directory, "gt_data_clean.csv")) + } + + + # Projections ----------------------------------------------------------- + + res_state <- combine_and_format_sims(outcome_vars = paste0("incid", outcomes_), + scenario_dir = opt$args, + quick_run = quick_run, + testing = testing, + outcomes_ = outcomes_, + keep_variant_compartments = keep_variant_compartments, + keep_vacc_compartments = keep_vacc_compartments, + keep_all_compartments = keep_all_compartments, + variants_ = variants_, + vacc_ = vacc_, + county_level=FALSE, + forecast_date = opt$forecast_date, + end_date = opt$end_date, + geodata = geodata, + death_filter = config$outcome_modifiers$scenarios) + + if(exists("res_state")){ + print(paste("Successfully combined sims for:", scenario)) + } else { + errors <- append(errors, "res_state not created.") + stop("res_state not created.") + } + + # + # # ~ Individual Sims & Likelihoods ----------------------------------------- + # + # if (likelihood_prune) { + # + # # add sim_id to sims + # sim_ids <- tibble(filename = list.files(sprintf("%s/hosp",opt$args), recursive = TRUE)) + # sim_ids <- sim_ids %>% + # separate(filename, into=c(letters), sep= "[/]", remove=FALSE) %>% + # mutate(sim_id = as.integer(substr(g, 1, 9))) %>% + # select(sim_id) %>% + # mutate(sim_num = seq_along(sim_id)) + # + # res_state <- res_state %>% + # mutate(sim_num=as.integer(sim_num)) %>% + # left_join(sim_ids) + # + # # Pull Likelihood for pruning runs + # res_llik <- arrow::open_dataset(sprintf("%s/llik",opt$args), + # partitioning =c("location", + # "seir_modifiers_scenario", + # "outcome_modifiers_scenario", + # "config", + # "lik_type", + # "is_final")) %>% + # select(filename, subpop, seir_modifiers_scenario, outcome_modifiers_scenario, ll)%>% + # collect() %>% + # distinct() %>% + # filter(stringr::str_detect(outcome_modifiers_scenario, config$outcome_modifiers$scenarios))%>% + # separate(filename, into=c(letters[1:9]), sep= "[/]", remove=FALSE) %>% + # mutate(sim_id = as.integer(substr(i, 1, 9))) %>% + # as_tibble() + # + # + # res_llik %>% filter(subpop=='06000') %>% + # ggplot(aes(x=sim_id, y=ll)) + + # geom_point() + # + # res_llik %>% filter(subpop=='06000') %>% + # ggplot(aes(y=ll)) + + # geom_histogram() + # + # res_llik %>% filter(subpop=='06000') %>% + # mutate(lik = log(-ll)) %>% + # ggplot(aes(y=lik)) + + # geom_histogram() + # + # res_lik_ests <- res_llik %>% + # mutate(lik = log(-ll)) %>% + # group_by(subpop) %>% + # mutate(mean_ll = mean(ll), + # median_ll = median(ll), + # low_ll = quantile(ll, 0.025), + # high_ll = quantile(ll, 0.975)) %>% + # mutate(mean_lik = mean(lik), + # median_lik = median(lik), + # low_lik = quantile(lik, 0.025), + # high_lik = quantile(lik, 0.975)) %>% + # mutate(below025_ll = llhigh_lik) + # + # # to exclude the same number from each state, we will use quantile approximates + # n_excl <- ceiling(nrow(sim_ids)*(1-likelihood_prune_percentkeep)) + # + # res_lik_ests <- res_lik_ests %>% + # group_by(subpop, seir_modifiers_scenario, outcome_modifiers_scenario) %>% + # arrange(ll) %>% + # mutate(rank = seq_along(subpop), + # excl_rank = rank<=n_excl) %>% + # ungroup() + # + # # res_lik_ests %>% + # # group_by(subpop) %>% + # # summarise(n_excl_ll = sum(below025_ll), + # # n_excl_lik = sum(below025_lik)) %>% View + # # res_lik_ests %>% + # # group_by(sim_id) %>% + # # summarise(n_excl_ll = sum(below025_ll), + # # n_excl_lik = sum(below025_lik)) %>% View + # + # res_lik_excl <- res_lik_ests %>% + # select(subpop, sim_id, exclude=excl_rank, ll, lik) + # + # res_state <- res_state %>% left_join(res_lik_excl) #%>% select(-outcome_modifiers_scenario) + # + # # Save it + # # arrow::write_parquet(res_state_indivs, file.path(opt$outdir, opt$indiv_sims)) + # # If pruning by LLik + # res_state <- res_state %>% + # filter(!exclude) %>% + # select(-sim_id, -exclude) %>% + # group_by(time, subpop, USPS, outcome_modifiers_scenario) %>% + # dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% + # ungroup() + # + # } + # + # + # + # # ~ Plot some sims ------------------------------ + # + # plot_samp = ifelse(smh_or_fch=="smh", plot_samp, FALSE) + # if (plot_samp) { + # + # gt_data_wUS <- gt_data %>% + # bind_rows(gt_data %>% + # group_by()) + # + # plot_sims <- function(state_ = "MD", res_state_long=res_state_long, gt_data = gt_data_wUS, samp_=NULL){ + # + # if (is.null(samp_)){ + # samp_ <- sample(unique(res_state_long$sim_num), 10, replace=FALSE) + # } + # + # print( + # cowplot::plot_grid( + # ggplot() + + # geom_line(data=res_state_long %>% filter(sim_num %in% samp_) %>% + # filter(USPS == state_) %>% + # filter(outcome == "incidD"), + # aes(x=time, y=value, color=sim_num)) + + # # geom_point(data = gt_data %>% filter(source == state_) %>% rename("value"=incidD, "USPS"=source, "time"=Update), + # # aes(x=time, y=value), alpha=.25, pch=20) + + # ggtitle(paste0(state_, " - incidD")), + # ggplot() + + # geom_line(data=res_state_long %>% filter(sim_num %in% samp_) %>% + # filter(USPS == state_) %>% + # filter(outcome == "incidC"), + # aes(x=time, y=value, color=sim_num)) + + # # geom_point(data = gt_data %>% filter(source == state_) %>% rename("value"=incidC, "USPS"=source, "time"=Update), + # # aes(x=time, y=value), alpha=.25, pch=20) + + # ggtitle(paste0(state_, " - incidC")), + # res_state_long %>% filter(sim_num %in% samp_) %>% + # filter(USPS == state_) %>% + # filter(outcome == "incidI") %>% + # ggplot(aes(x=time, y=value, color=sim_num)) + + # geom_line() + ggtitle(paste0(state_, " - incidI")), + # align="hv", axis = "lr", nrow=3)) + # + # } + # + # states_ <- sort(unique(res_state_long$USPS)) + # pdf(file= paste0(opt$outdir, paste0("SampleSims_",opt$scenario,".pdf"))) + # samp_ <- sample(unique(res_state_long$sim_num), 10, replace=FALSE) + # sapply(states_, plot_sims, res_state_long=res_state_long, gt_data = gt_data, samp_=samp_) + # dev.off() + # + # # samp_ <- sample(unique(res_state_long$sim_num), 10, replace=FALSE) + # # plot_sims(state_ = "US", res_state_long=res_state_long, gt_data = gt_data, samp_) + # plot_sims(state_ = "CA", res_state_long=res_state_long, gt_data = gt_data, samp_) + # # plot_sims(state_ = "MD", res_state_long=res_state_long, gt_data = gt_data, samp_) + # } + # + # + + # GET SIM OUTCOMES ------------------------------------------------------------------- + + use_obs_data_forcum <- ifelse(any(outcomes_cumfromgt),TRUE, FALSE) + gt_data_2 <- gt_data + # colnames(gt_data_2) <- gsub("cumI", "cumC", colnames(gt_data_2)) + gt_data_2 <- gt_data_2 %>% mutate(cumH = 0) # incidH is only cumulative from start of simulation + + # outcomes_gt_ <- outcomes_[outcomes_!="I"] + # outcomes_cum_gt_ <- outcomes_cum_[outcomes_!="I"] + # + # gt_data_2 <- gt_data_2 %>% + # select(USPS, subpop, time, paste0("incid", outcomes_gt_), paste0("cum", outcomes_[outcomes_cum_gt_])) + + # ~ Weekly Outcomes ----------------------------------------------------------- + + if (any(outcomes_time_=="weekly")) { + + # Incident + weekly_incid_sims <- get_weekly_incid(res_state, outcomes = outcomes_[outcomes_time_=="weekly"]) + weekly_incid_sims_formatted <- format_weekly_outcomes(weekly_incid_sims, point_est=0.5, opt) + + if(exists("weekly_incid_sims_formatted")){ + print(paste("Successfully created weekly incidence for:", scenario)) } else { - errors <- append(errors, "res_state not created.") - stop("res_state not created.") + errors <- append(errors, "weekly incidence not created.") + stop("res_state not created.") } - - - # ~ Individual Sims & Likelihoods ----------------------------------------- - - if (likelihood_prune) { - - # add sim_id to sims - sim_ids <- tibble(filename = list.files(sprintf("%s/hosp",opt$args), recursive = TRUE)) - sim_ids <- sim_ids %>% - separate(filename, into=c(letters), sep= "[/]", remove=FALSE) %>% - mutate(sim_id = as.integer(substr(g, 1, 9))) %>% - select(sim_id) %>% - mutate(sim_num = seq_along(sim_id)) - - res_state <- res_state %>% - mutate(sim_num=as.integer(sim_num)) %>% - left_join(sim_ids) - - # Pull Likelihood for pruning runs - res_llik <- arrow::open_dataset(sprintf("%s/llik",opt$args), - partitioning =c("location", - "seir_modifiers_scenario", - "outcome_modifiers_scenario", - "config", - "lik_type", - "is_final")) %>% - select(filename, subpop, seir_modifiers_scenario, outcome_modifiers_scenario, ll)%>% - collect() %>% - distinct() %>% - filter(stringr::str_detect(outcome_modifiers_scenario, opt$death_filter))%>% - separate(filename, into=c(letters[1:9]), sep= "[/]", remove=FALSE) %>% - mutate(sim_id = as.integer(substr(i, 1, 9))) %>% - as_tibble() - - - res_llik %>% filter(subpop=='06000') %>% - ggplot(aes(x=sim_id, y=ll)) + - geom_point() - - res_llik %>% filter(subpop=='06000') %>% - ggplot(aes(y=ll)) + - geom_histogram() - - res_llik %>% filter(subpop=='06000') %>% - mutate(lik = log(-ll)) %>% - ggplot(aes(y=lik)) + - geom_histogram() - - res_lik_ests <- res_llik %>% - mutate(lik = log(-ll)) %>% - group_by(subpop) %>% - mutate(mean_ll = mean(ll), - median_ll = median(ll), - low_ll = quantile(ll, 0.025), - high_ll = quantile(ll, 0.975)) %>% - mutate(mean_lik = mean(lik), - median_lik = median(lik), - low_lik = quantile(lik, 0.025), - high_lik = quantile(lik, 0.975)) %>% - mutate(below025_ll = llhigh_lik) - - # to exclude the same number from each state, we will use quantile approximates - n_excl <- ceiling(nrow(sim_ids)*(1-likelihood_prune_percentkeep)) - - res_lik_ests <- res_lik_ests %>% - group_by(subpop, seir_modifiers_scenario, outcome_modifiers_scenario) %>% - arrange(ll) %>% - mutate(rank = seq_along(subpop), - excl_rank = rank<=n_excl) %>% - ungroup() - - # res_lik_ests %>% - # group_by(subpop) %>% - # summarise(n_excl_ll = sum(below025_ll), - # n_excl_lik = sum(below025_lik)) %>% View - # res_lik_ests %>% - # group_by(sim_id) %>% - # summarise(n_excl_ll = sum(below025_ll), - # n_excl_lik = sum(below025_lik)) %>% View - - res_lik_excl <- res_lik_ests %>% - select(subpop, sim_id, exclude=excl_rank, ll, lik) - - res_state <- res_state %>% left_join(res_lik_excl) #%>% select(-outcome_modifiers_scenario) - - # Save it - # arrow::write_parquet(res_state_indivs, file.path(opt$outdir, opt$indiv_sims)) - # If pruning by LLik - res_state <- res_state %>% - filter(!exclude) %>% - select(-sim_id, -exclude) %>% - group_by(time, subpop, USPS, outcome_modifiers_scenario) %>% - dplyr::mutate(sim_num = as.character(seq_along(subpop))) %>% - ungroup() - + + + # Calibrate + outcomes_calib_weekly <- outcomes_[outcomes_calibrate & outcomes_time_=="weekly"] + if (length(outcomes_calib_weekly)>0 & n_calib_days>0){ + weekly_incid_sims_calibrations <- calibrate_outcome(outcome_calib = paste0("incid", outcomes_calib_weekly), + weekly_outcome = TRUE, + n_calib_days = n_calib_days, + gt_data = gt_data, + incid_sims_formatted = weekly_incid_sims_formatted, + incid_sims = weekly_incid_sims, + projection_date = projection_date, + quick_run = quick_run, testing = testing, + keep_variant_compartments = keep_variant_compartments, + keep_vacc_compartments = keep_vacc_compartments, + keep_all_compartments = keep_all_compartments, + variants_ = NULL, vacc_ = NULL, + death_filter = config$outcome_modifiers$scenarios, + opt = opt, + geodata = geodata, + scenario_dir = scenario_dir) + + weekly_incid_sims <- weekly_incid_sims_calibrations$incid_sims_recalib + + weekly_incid_sims_recalib_formatted <- format_weekly_outcomes( + weekly_inc_outcome = weekly_incid_sims %>% filter(outcome_name %in% paste0("incid", outcomes_calib_weekly)), + point_est=0.5, opt) + weekly_incid_sims_formatted <- weekly_incid_sims_formatted %>% + filter(!(outcome %in% paste0("incid", outcomes_calib_weekly))) %>% + bind_rows(weekly_incid_sims_recalib_formatted) + rm(weekly_incid_sims_calibrations) } - - - - # ~ Plot some sims ------------------------------ - - plot_samp = ifelse(smh_or_fch=="smh", plot_samp, FALSE) - if (plot_samp) { - - gt_data_wUS <- gt_data %>% - bind_rows(gt_data %>% - group_by()) - - plot_sims <- function(state_ = "MD", res_state_long=res_state_long, gt_data = gt_data_wUS, samp_=NULL){ - - if (is.null(samp_)){ - samp_ <- sample(unique(res_state_long$sim_num), 10, replace=FALSE) - } - - print( - cowplot::plot_grid( - ggplot() + - geom_line(data=res_state_long %>% filter(sim_num %in% samp_) %>% - filter(USPS == state_) %>% - filter(outcome == "incidD"), - aes(x=time, y=value, color=sim_num)) + - # geom_point(data = gt_data %>% filter(source == state_) %>% rename("value"=incidD, "USPS"=source, "time"=Update), - # aes(x=time, y=value), alpha=.25, pch=20) + - ggtitle(paste0(state_, " - incidD")), - ggplot() + - geom_line(data=res_state_long %>% filter(sim_num %in% samp_) %>% - filter(USPS == state_) %>% - filter(outcome == "incidC"), - aes(x=time, y=value, color=sim_num)) + - # geom_point(data = gt_data %>% filter(source == state_) %>% rename("value"=incidC, "USPS"=source, "time"=Update), - # aes(x=time, y=value), alpha=.25, pch=20) + - ggtitle(paste0(state_, " - incidC")), - res_state_long %>% filter(sim_num %in% samp_) %>% - filter(USPS == state_) %>% - filter(outcome == "incidI") %>% - ggplot(aes(x=time, y=value, color=sim_num)) + - geom_line() + ggtitle(paste0(state_, " - incidI")), - align="hv", axis = "lr", nrow=3)) - - } - - states_ <- sort(unique(res_state_long$USPS)) - pdf(file= paste0(opt$outdir, paste0("SampleSims_",opt$scenario,".pdf"))) - samp_ <- sample(unique(res_state_long$sim_num), 10, replace=FALSE) - sapply(states_, plot_sims, res_state_long=res_state_long, gt_data = gt_data, samp_=samp_) - dev.off() - - # samp_ <- sample(unique(res_state_long$sim_num), 10, replace=FALSE) - # plot_sims(state_ = "US", res_state_long=res_state_long, gt_data = gt_data, samp_) - plot_sims(state_ = "CA", res_state_long=res_state_long, gt_data = gt_data, samp_) - # plot_sims(state_ = "MD", res_state_long=res_state_long, gt_data = gt_data, samp_) - } - - - - # GET SIM OUTCOMES ------------------------------------------------------------------- - - use_obs_data_forcum <- ifelse(any(outcomes_cumfromgt),TRUE, FALSE) - gt_data_2 <- gt_data - # colnames(gt_data_2) <- gsub("cumI", "cumC", colnames(gt_data_2)) - gt_data_2 <- gt_data_2 %>% mutate(cumH = 0) # incidH is only cumulative from start of simulation - - # outcomes_gt_ <- outcomes_[outcomes_!="I"] - # outcomes_cum_gt_ <- outcomes_cum_[outcomes_!="I"] - # - # gt_data_2 <- gt_data_2 %>% - # select(USPS, subpop, time, paste0("incid", outcomes_gt_), paste0("cum", outcomes_[outcomes_cum_gt_])) - - # ~ Weekly Outcomes ----------------------------------------------------------- - - if (any(outcomes_time_=="weekly")) { - - # Incident - weekly_incid_sims <- get_weekly_incid(res_state, outcomes = outcomes_[outcomes_time_=="weekly"]) - weekly_incid_sims_formatted <- format_weekly_outcomes(weekly_incid_sims, point_est=0.5, opt) - - if(exists("weekly_incid_sims_formatted")){ - print(paste("Successfully created weekly incidence for:", scenario)) - } else { - errors <- append(errors, "weekly incidence not created.") - stop("res_state not created.") - } - - - # Calibrate - outcomes_calib_weekly <- outcomes_[outcomes_calibrate & outcomes_time_=="weekly"] - if (length(outcomes_calib_weekly)>0 & n_calib_days>0){ - weekly_incid_sims_calibrations <- calibrate_outcome(outcome_calib = paste0("incid", outcomes_calib_weekly), - weekly_outcome = TRUE, - n_calib_days = n_calib_days, - gt_data = gt_data, - incid_sims_formatted = weekly_incid_sims_formatted, - incid_sims = weekly_incid_sims, - projection_date = projection_date, - quick_run = quick_run, testing = testing, - keep_variant_compartments = keep_variant_compartments, - keep_vacc_compartments = keep_vacc_compartments, - keep_all_compartments = keep_all_compartments, - variants_ = NULL, vacc_ = NULL, - death_filter = death_filter, - opt = opt, - geodata = geodata, - scenario_dir = scenario_dir) - - weekly_incid_sims <- weekly_incid_sims_calibrations$incid_sims_recalib - - weekly_incid_sims_recalib_formatted <- format_weekly_outcomes( - weekly_inc_outcome = weekly_incid_sims %>% filter(outcome_name %in% paste0("incid", outcomes_calib_weekly)), - point_est=0.5, opt) - weekly_incid_sims_formatted <- weekly_incid_sims_formatted %>% - filter(!(outcome %in% paste0("incid", outcomes_calib_weekly))) %>% - bind_rows(weekly_incid_sims_recalib_formatted) - rm(weekly_incid_sims_calibrations) - } - - - # Cumulative - weekly_cum_outcomes_ <- outcomes_[outcomes_cum_ & outcomes_time_=="weekly"] - if (length(weekly_cum_outcomes_)>0) { - weekly_cum_sims <- get_cum_sims(sim_data = weekly_incid_sims %>% - mutate(agestrat="age0to130") %>% - rename(outcome = outcome_name, value = outcome) %>% - filter(outcome %in% paste0("incid", weekly_cum_outcomes_)), - obs_data = gt_data_2, - gt_cum_vars = paste0("cum", outcomes_[outcomes_cumfromgt]), # variables to get cum from GT - forecast_date = lubridate::as_date(opt$forecast_date), - aggregation="week", - loc_column = "USPS", - use_obs_data = use_obs_data_forcum) - - weekly_cum_sims_formatted <- format_weekly_outcomes( - weekly_cum_sims %>% rename(outcome_name = outcome, outcome = value), - point_est = 0.5, - opt = opt) - - if(exists("weekly_cum_sims_formatted")){ - print(paste("Successfully created weekly cumulative for:", scenario)) - } else { - errors <- append(errors, "weekly cumulative not created.") - stop("res_state not created.") - } - } + + + # Cumulative + weekly_cum_outcomes_ <- outcomes_[outcomes_cum_ & outcomes_time_=="weekly"] + if (length(weekly_cum_outcomes_)>0) { + weekly_cum_sims <- get_cum_sims(sim_data = weekly_incid_sims %>% + mutate(agestrat="age0to130") %>% + rename(outcome = outcome_name, value = outcome) %>% + filter(outcome %in% paste0("incid", weekly_cum_outcomes_)), + obs_data = gt_data_2, + gt_cum_vars = paste0("cum", outcomes_[outcomes_cumfromgt]), # variables to get cum from GT + forecast_date = lubridate::as_date(opt$forecast_date), + aggregation="week", + loc_column = "USPS", + use_obs_data = use_obs_data_forcum) + + weekly_cum_sims_formatted <- format_weekly_outcomes( + weekly_cum_sims %>% rename(outcome_name = outcome, outcome = value), + point_est = 0.5, + opt = opt) + + if(exists("weekly_cum_sims_formatted")){ + print(paste("Successfully created weekly cumulative for:", scenario)) + } else { + errors <- append(errors, "weekly cumulative not created.") + stop("res_state not created.") + } } - - - # ~ Daily Outcomes ----------------------------------------------------------- - - if (any(outcomes_time_=="daily")) { - - # Incident - daily_incid_sims <- get_daily_incid(res_state, outcomes = outcomes_[outcomes_time_=="daily"]) - daily_incid_sims_formatted <- format_daily_outcomes(daily_incid_sims, point_est=0.5, opt) - - if(exists("daily_incid_sims_formatted")){ - print(paste("Successfully created daily incidence for:", scenario)) - } else { - errors <- append(errors, "daily incidence not created.") - stop("res_state not created.") - } - - # Calibrate - outcomes_calib_daily <- outcomes_[outcomes_calibrate & outcomes_time_=="daily"] - if (length(outcomes_calib_daily)>0 & n_calib_days>0){ - daily_incid_sims_calibrations <- calibrate_outcome(outcome_calib = paste0("incid", outcomes_calib_daily), - weekly_outcome = FALSE, - n_calib_days = n_calib_days, - gt_data = gt_data, - incid_sims_formatted = daily_incid_sims_formatted, - incid_sims = daily_incid_sims, - projection_date = projection_date, - quick_run = quick_run, testing = testing, - keep_variant_compartments = keep_variant_compartments, - keep_vacc_compartments = keep_vacc_compartments, - keep_all_compartments = keep_all_compartments, - variants_ = NULL, vacc_ = NULL, - death_filter = death_filter, - opt = opt, - geodata = geodata, - scenario_dir = scenario_dir) - daily_incid_sims <- daily_incid_sims_calibrations$incid_sims_recalib - - daily_incid_sims_recalib_formatted <- format_daily_outcomes( - daily_inc_outcome = daily_incid_sims %>% filter(outcome_name %in% paste0("incid", outcomes_calib_daily)), - point_est=0.5, opt) - daily_incid_sims_formatted <- daily_incid_sims_formatted %>% - filter(!(outcome %in% paste0("incid", outcomes_calib_daily))) %>% - bind_rows(daily_incid_sims_recalib_formatted) - rm(daily_incid_sims_calibrations) - } - - # Cumulative - daily_cum_outcomes_ <- outcomes_[outcomes_cum_ & outcomes_time_=="daily"] - if (length(daily_cum_outcomes_)>0){ - daily_cum_sims <- get_cum_sims(sim_data = daily_incid_sims %>% - mutate(agestrat="age0to130") %>% - rename(outcome = outcome_name, value = outcome) %>% - filter(outcome %in% paste0("incid", daily_cum_outcomes_)), - obs_data = gt_data_2, - gt_cum_vars = paste0("cum", outcomes_[outcomes_cumfromgt]), # variables to get cum from GT - forecast_date = lubridate::as_date(opt$forecast_date), - aggregation="day", - loc_column = "USPS", - use_obs_data = use_obs_data_forcum) - - daily_cum_sims_formatted <- format_daily_outcomes( - daily_cum_sims %>% rename(outcome_name = outcome, outcome = value), - point_est=0.5, - opt = opt) - - if(exists("daily_cum_sims_formatted")){ - print(paste("Successfully created daily cumulative for:", scenario)) - } else { - errors <- append(errors, "daily cumulative not created.") - stop("res_state not created.") - } - } + } + + + # ~ Daily Outcomes ----------------------------------------------------------- + + if (any(outcomes_time_=="daily")) { + + # Incident + daily_incid_sims <- get_daily_incid(res_state, outcomes = outcomes_[outcomes_time_=="daily"]) + daily_incid_sims_formatted <- format_daily_outcomes(daily_incid_sims, point_est=0.5, opt) + + if(exists("daily_incid_sims_formatted")){ + print(paste("Successfully created daily incidence for:", scenario)) + } else { + errors <- append(errors, "daily incidence not created.") + stop("res_state not created.") } - - - - # ~ Combine Daily, Weekly, Cum ---------------------------------------------- - - all_sims_formatted <- mget(objects(pattern = "_sims_formatted$")) %>% - data.table::rbindlist() %>% - as_tibble() - - - - - - # SAVE REPLICATES ----------------------------------------------- - - if (save_reps) { - - weekly_reps <- weekly_incid_sims %>% - mutate(time = lubridate::as_date(time)) %>% - filter(time >= lubridate::as_date(projection_date) & time <= lubridate::as_date(end_date)) %>% - filter(sim_num %in% sample(unique(weekly_incid_sims$sim_num), ifelse(quick_run, 20, 100), replace = FALSE)) %>% - pivot_wider(names_from = sim_num, values_from = outcome, names_prefix = "sim_") %>% - mutate(age_group = "0-130", - scenario_id = scenario_id, scenario_name=scenario_name) %>% - mutate(model_projection_date=opt$forecast_date) %>% - rename(target_end_date=time) %>% - mutate(location=as.character(cdlTools::fips(USPS))) %>% - mutate(location = ifelse(USPS=="US", "US", location)) %>% - mutate(location=stringr::str_pad(location, width=2, side="left", pad="0")) %>% - mutate(ahead=round(as.numeric(target_end_date - model_projection_date)/7)) %>% - mutate(target = recode(outcome_name, "incidI"="inf", "incidC"="case", "incidH"="hosp", "incidD"="death")) %>% - mutate(target=sprintf(paste0("%d wk ahead inc ", target), ahead)) %>% - pivot_longer(cols=dplyr::starts_with("sim_"), names_to = "sample", values_to = "value") %>% - mutate(sample = gsub("sim_", "", sample)) %>% - as_tibble() %>% - mutate(age_group = "0-130", - scenario_id = scenario_id, scenario_name=scenario_name, model_projection_date=projection_date) %>% - select(scenario_id, scenario_name, model_projection_date, target, - target_end_date, sample, location=USPS, value, age_group) - - replicate_file <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario_name, "_100reps.parquet") - arrow::write_parquet(weekly_reps, file.path(opt$outdir, replicate_file)) - - if(exists("weekly_reps")) { - print(paste("Successfully created 'weekly_reps' for:", scenario)) - } else { - errors <- append(errors, "'weekly_reps' not created.") - stop("'weekly_reps' not created.") - } + + # Calibrate + outcomes_calib_daily <- outcomes_[outcomes_calibrate & outcomes_time_=="daily"] + if (length(outcomes_calib_daily)>0 & n_calib_days>0){ + daily_incid_sims_calibrations <- calibrate_outcome(outcome_calib = paste0("incid", outcomes_calib_daily), + weekly_outcome = FALSE, + n_calib_days = n_calib_days, + gt_data = gt_data, + incid_sims_formatted = daily_incid_sims_formatted, + incid_sims = daily_incid_sims, + projection_date = projection_date, + quick_run = quick_run, testing = testing, + keep_variant_compartments = keep_variant_compartments, + keep_vacc_compartments = keep_vacc_compartments, + keep_all_compartments = keep_all_compartments, + variants_ = NULL, vacc_ = NULL, + death_filter = config$outcome_modifiers$scenarios, + opt = opt, + geodata = geodata, + scenario_dir = scenario_dir) + daily_incid_sims <- daily_incid_sims_calibrations$incid_sims_recalib + + daily_incid_sims_recalib_formatted <- format_daily_outcomes( + daily_inc_outcome = daily_incid_sims %>% filter(outcome_name %in% paste0("incid", outcomes_calib_daily)), + point_est=0.5, opt) + daily_incid_sims_formatted <- daily_incid_sims_formatted %>% + filter(!(outcome %in% paste0("incid", outcomes_calib_daily))) %>% + bind_rows(daily_incid_sims_recalib_formatted) + rm(daily_incid_sims_calibrations) } - - - - - - # PEAK SUMMARY ------------------------------------------------------------- - # currently only incidH - - if (summarize_peaks) { - peak_timing <- weekly_incid_sims %>% - filter(outcome_name=="incidH") %>% - rename(incidH = outcome) %>% - group_by(USPS, sim_num) %>% - mutate(sim_peak_size = max(incidH, na.rm=TRUE)) %>% - mutate(is_peak = as.integer(incidH==sim_peak_size)) %>% - ungroup() %>% - group_by(USPS, time) %>% - summarise(prob_peak = mean(is_peak, na.rm=TRUE)) %>% - as_tibble() %>% - group_by(USPS) %>% - arrange(time) %>% - mutate(cum_peak_prob = cumsum(prob_peak)) %>% - ungroup() - - peak_timing <- peak_timing %>% - mutate(time = lubridate::as_date(time)) %>% - filter(time >= lubridate::as_date(projection_date) & time <= lubridate::as_date(end_date)) %>% - mutate(age_group = "0-130", - quantile = NA, type = "point", - outcome_name = "incidH", - scenario_id = scenario_id, scenario_name=scenario_name) %>% - mutate(model_projection_date=opt$forecast_date) %>% - rename(target_end_date=time) %>% - mutate(location=as.character(cdlTools::fips(USPS))) %>% - mutate(location = ifelse(USPS=="US", "US", location)) %>% - mutate(location=stringr::str_pad(location, width=2, side="left", pad="0")) %>% - mutate(ahead=round(as.numeric(target_end_date - model_projection_date)/7)) %>% - mutate(target = recode(outcome_name, "incidI"="inf", "incidC"="case", "incidH"="hosp", "incidD"="death")) %>% - mutate(target=sprintf(paste0("%d wk ahead peak time ", target), ahead)) %>% - as_tibble() %>% - mutate(age_group = "0-130", - model_projection_date=projection_date, - forecast_date = forecast_date) %>% - select(model_projection_date, target, - target_end_date, quantile, type, - location = USPS, value=cum_peak_prob, age_group) - - # PEAK SIZE - - peak_size <- weekly_incid_sims %>% - filter(outcome_name=="incidH") %>% - group_by(USPS, sim_num, outcome_name) %>% - summarise(peak_size = max(outcome, na.rm=TRUE)) %>% - as_tibble() %>% - mutate(age_group = "0-130") %>% - rename(outcome = peak_size) %>% - group_by(USPS, outcome_name, age_group) %>% - summarize(x=list(enframe(c(quantile(outcome, probs=c(0.01, 0.025, seq(0.05, 0.95, by = 0.05), 0.975, 0.99), na.rm=TRUE), - mean=mean(outcome, na.rm=TRUE)), "quantile","outcome"))) %>% - unnest(x) %>% - pivot_wider(names_from = quantile, names_prefix = "quant_", values_from = outcome) %>% - mutate(forecast_date=opt$forecast_date) %>% - mutate(location=as.character(cdlTools::fips(USPS))) %>% - mutate(location = ifelse(USPS=="US", "US", location)) %>% - mutate(location=stringr::str_pad(location, width=2, side="left", pad="0")) %>% - mutate(target = recode(outcome_name, "incidI"="inf", "incidC"="case", "incidH"="hosp", "incidD"="death")) %>% - mutate(target = paste0("peak size ", target)) %>% - pivot_longer(cols=dplyr::starts_with("quant_"), names_to = "quantile", values_to = "value") %>% - mutate(type="quantile") %>% - mutate(quantile2=suppressWarnings(readr::parse_number(quantile)/100)) %>% - mutate(type=replace(type, grepl("mean", quantile),"point")) %>% - as_tibble() %>% - mutate(target_end_date=NA, - forecast_date = forecast_date, - model_projection_date = projection_date) %>% - select(model_projection_date, target, - target_end_date, quantile = quantile2, type, location=USPS, value, age_group) - - if (point_est!="mean"){ - peak_size <- change_point_est(dat = peak_size, point_estimate = point_est) - } - - peaks_ <- peak_timing %>% - full_join(peak_size) %>% - rename(USPS = location) %>% - left_join(reich_locs %>% select(location, USPS = abbreviation)) %>% - mutate(age_group = "0-130") %>% - filter(location %in% reich_locs$location) %>% - select(-USPS) %>% - as_tibble() %>% - mutate(forecast_date = forecast_date) + + # Cumulative + daily_cum_outcomes_ <- outcomes_[outcomes_cum_ & outcomes_time_=="daily"] + if (length(daily_cum_outcomes_)>0){ + daily_cum_sims <- get_cum_sims(sim_data = daily_incid_sims %>% + mutate(agestrat="age0to130") %>% + rename(outcome = outcome_name, value = outcome) %>% + filter(outcome %in% paste0("incid", daily_cum_outcomes_)), + obs_data = gt_data_2, + gt_cum_vars = paste0("cum", outcomes_[outcomes_cumfromgt]), # variables to get cum from GT + forecast_date = lubridate::as_date(opt$forecast_date), + aggregation="day", + loc_column = "USPS", + use_obs_data = use_obs_data_forcum) + + daily_cum_sims_formatted <- format_daily_outcomes( + daily_cum_sims %>% rename(outcome_name = outcome, outcome = value), + point_est=0.5, + opt = opt) + + if(exists("daily_cum_sims_formatted")){ + print(paste("Successfully created daily cumulative for:", scenario)) + } else { + errors <- append(errors, "daily cumulative not created.") + stop("res_state not created.") + } } - - - - - # PUT TOGETHER AND SAVE --------------------------------------------------- - - full_forecast <- all_sims_formatted %>% - as_tibble() %>% - filter(target_end_date<=opt$end_date) %>% - mutate(age_group = "0-130") %>% - filter(location %in% reich_locs$location) %>% - select(-USPS, -outcome) - - if (!full_fit) { - full_forecast <- full_forecast %>% - filter(target_end_date >= lubridate::as_date(forecast_date) | (target == "peak size hosp")) + } + + + + # ~ Combine Daily, Weekly, Cum ---------------------------------------------- + + all_sims_formatted <- mget(objects(pattern = "_sims_formatted$")) %>% + data.table::rbindlist() %>% + as_tibble() + + + + + + # SAVE REPLICATES ----------------------------------------------- + + if (save_reps) { + + weekly_reps <- weekly_incid_sims %>% + mutate(time = lubridate::as_date(time)) %>% + # filter(time >= lubridate::as_date(projection_date) & time <= lubridate::as_date(end_date)) %>% + # filter(sim_num %in% sample(unique(weekly_incid_sims$sim_num), ifelse(quick_run, 20, 100), replace = FALSE)) %>% + filter(sim_num %in% sample(unique(weekly_incid_sims$sim_num), ifelse(quick_run, 20, 3), replace = FALSE)) %>% + pivot_wider(names_from = sim_num, values_from = outcome, names_prefix = "sim_") %>% + mutate(age_group = "0-130", + scenario_id = scenario_id, scenario_name=scenario_name) %>% + mutate(model_projection_date=opt$forecast_date) %>% + rename(target_end_date=time) %>% + mutate(location=as.character(cdlTools::fips(USPS))) %>% + mutate(location = ifelse(USPS=="US", "US", location)) %>% + mutate(location=stringr::str_pad(location, width=2, side="left", pad="0")) %>% + mutate(ahead=round(as.numeric(target_end_date - model_projection_date)/7)) %>% + mutate(target = recode(outcome_name, "incidI"="inf", "incidC"="case", "incidH"="hosp", "incidD"="death")) %>% + mutate(target=sprintf(paste0("%d wk ahead inc ", target), ahead)) %>% + pivot_longer(cols=dplyr::starts_with("sim_"), names_to = "sample", values_to = "value") %>% + mutate(sample = gsub("sim_", "", sample)) %>% + as_tibble() %>% + mutate(age_group = "0-130", + scenario_id = scenario_id, scenario_name=scenario_name, model_projection_date=projection_date) %>% + select(scenario_id, scenario_name, model_projection_date, target, + target_end_date, sample, location=USPS, value, age_group) + + replicate_file <- paste0(opt$projection_date, "-JHU_IDD-CovidSP-", opt$scenario_name, "_100reps.parquet") + arrow::write_parquet(weekly_reps, file.path(opt$outdir, replicate_file)) + + if(exists("weekly_reps")) { + print(paste("Successfully created 'weekly_reps' for:", scenario)) + } else { + errors <- append(errors, "'weekly_reps' not created.") + stop("'weekly_reps' not created.") } - - if (summarize_peaks){ - full_forecast <- full_forecast %>% full_join(peaks_) + } + + + + + + # PEAK SUMMARY ------------------------------------------------------------- + # currently only incidH + + if (summarize_peaks) { + peak_timing <- weekly_incid_sims %>% + filter(outcome_name=="incidH") %>% + rename(incidH = outcome) %>% + group_by(USPS, sim_num) %>% + mutate(sim_peak_size = max(incidH, na.rm=TRUE)) %>% + mutate(is_peak = as.integer(incidH==sim_peak_size)) %>% + ungroup() %>% + group_by(USPS, time) %>% + summarise(prob_peak = mean(is_peak, na.rm=TRUE)) %>% + as_tibble() %>% + group_by(USPS) %>% + arrange(time) %>% + mutate(cum_peak_prob = cumsum(prob_peak)) %>% + ungroup() + + peak_timing <- peak_timing %>% + mutate(time = lubridate::as_date(time)) %>% + filter(time >= lubridate::as_date(projection_date) & time <= lubridate::as_date(end_date)) %>% + mutate(age_group = "0-130", + quantile = NA, type = "point", + outcome_name = "incidH", + scenario_id = scenario_id, scenario_name=scenario_name) %>% + mutate(model_projection_date=opt$forecast_date) %>% + rename(target_end_date=time) %>% + mutate(location=as.character(cdlTools::fips(USPS))) %>% + mutate(location = ifelse(USPS=="US", "US", location)) %>% + mutate(location=stringr::str_pad(location, width=2, side="left", pad="0")) %>% + mutate(ahead=round(as.numeric(target_end_date - model_projection_date)/7)) %>% + mutate(target = recode(outcome_name, "incidI"="inf", "incidC"="case", "incidH"="hosp", "incidD"="death")) %>% + mutate(target=sprintf(paste0("%d wk ahead peak time ", target), ahead)) %>% + as_tibble() %>% + mutate(age_group = "0-130", + model_projection_date=projection_date, + forecast_date = forecast_date) %>% + select(model_projection_date, target, + target_end_date, quantile, type, + location = USPS, value=cum_peak_prob, age_group) + + # PEAK SIZE + + peak_size <- weekly_incid_sims %>% + filter(outcome_name=="incidH") %>% + group_by(USPS, sim_num, outcome_name) %>% + summarise(peak_size = max(outcome, na.rm=TRUE)) %>% + as_tibble() %>% + mutate(age_group = "0-130") %>% + rename(outcome = peak_size) %>% + group_by(USPS, outcome_name, age_group) %>% + summarize(x=list(enframe(c(quantile(outcome, probs=c(0.01, 0.025, seq(0.05, 0.95, by = 0.05), 0.975, 0.99), na.rm=TRUE), + mean=mean(outcome, na.rm=TRUE)), "quantile","outcome"))) %>% + unnest(x) %>% + pivot_wider(names_from = quantile, names_prefix = "quant_", values_from = outcome) %>% + mutate(forecast_date=opt$forecast_date) %>% + mutate(location=as.character(cdlTools::fips(USPS))) %>% + mutate(location = ifelse(USPS=="US", "US", location)) %>% + mutate(location=stringr::str_pad(location, width=2, side="left", pad="0")) %>% + mutate(target = recode(outcome_name, "incidI"="inf", "incidC"="case", "incidH"="hosp", "incidD"="death")) %>% + mutate(target = paste0("peak size ", target)) %>% + pivot_longer(cols=dplyr::starts_with("quant_"), names_to = "quantile", values_to = "value") %>% + mutate(type="quantile") %>% + mutate(quantile2=suppressWarnings(readr::parse_number(quantile)/100)) %>% + mutate(type=replace(type, grepl("mean", quantile),"point")) %>% + as_tibble() %>% + mutate(target_end_date=NA, + forecast_date = forecast_date, + model_projection_date = projection_date) %>% + select(model_projection_date, target, + target_end_date, quantile = quantile2, type, location=USPS, value, age_group) + + if (point_est!="mean"){ + peak_size <- change_point_est(dat = peak_size, point_estimate = point_est) } - + + peaks_ <- peak_timing %>% + full_join(peak_size) %>% + rename(USPS = location) %>% + left_join(reich_locs %>% select(location, USPS = abbreviation)) %>% + mutate(age_group = "0-130") %>% + filter(location %in% reich_locs$location) %>% + select(-USPS) %>% + as_tibble() %>% + mutate(forecast_date = forecast_date) + } + + + + + # PUT TOGETHER AND SAVE --------------------------------------------------- + + full_forecast <- all_sims_formatted %>% + as_tibble() %>% + filter(target_end_date<=opt$end_date) %>% + mutate(age_group = "0-130") %>% + filter(location %in% reich_locs$location) %>% + select(-USPS, -outcome) + + if (!full_fit) { full_forecast <- full_forecast %>% - mutate(scenario_id = scenario_id, scenario_name = scenario_name, model_projection_date = projection_date) %>% - select(scenario_id, scenario_name, model_projection_date, target, - target_end_date, quantile, type, location, value, age_group) - - - # ---- Save it all - - dir.create(opt$outdir, recursive = TRUE, showWarnings = FALSE) - print(file.path(opt$outdir, opt$outfile)) - opt$outfile <- gsub(".csv", ".parquet", opt$outfile) - arrow::write_parquet(full_forecast, file.path(opt$outdir, opt$outfile)) - - paste0("Outputs saved to : ", file.path(opt$outdir, opt$outfile)) - - - if (exists("full_forecast")) { - print(paste("Successfully created 'full_forecast' for:", scenario)) - } else { - errors <- append(errors, "'full_forecast' not created.") - stop("'full_forecast' not created.") - } - - return(errors) + filter(target_end_date >= lubridate::as_date(forecast_date) | (target == "peak size hosp")) + } + + if (summarize_peaks){ + full_forecast <- full_forecast %>% full_join(peaks_) + } + + full_forecast <- full_forecast %>% + mutate(scenario_id = scenario_id, scenario_name = scenario_name, model_projection_date = projection_date) %>% + select(scenario_id, scenario_name, model_projection_date, target, + target_end_date, quantile, type, location, value, age_group) + + + # ---- Save it all + + dir.create(opt$outdir, recursive = TRUE, showWarnings = FALSE) + print(file.path(opt$outdir, opt$outfile)) + opt$outfile <- gsub(".csv", ".parquet", opt$outfile) + arrow::write_parquet(full_forecast, file.path(opt$outdir, opt$outfile)) + + paste0("Outputs saved to : ", file.path(opt$outdir, opt$outfile)) + + + if (exists("full_forecast")) { + print(paste("Successfully created 'full_forecast' for:", scenario)) + } else { + errors <- append(errors, "'full_forecast' not created.") + stop("'full_forecast' not created.") + } + + return(errors) } From a80a672d1f4de3e7113705e416880cd2a1de2751 Mon Sep 17 00:00:00 2001 From: Alison Hill <34223923+alsnhll@users.noreply.github.com> Date: Thu, 9 Nov 2023 00:02:56 -0500 Subject: [PATCH 50/50] improved error message for problems with timeseries parameter file dates --- flepimop/gempyor_pkg/src/gempyor/parameters.py | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/flepimop/gempyor_pkg/src/gempyor/parameters.py b/flepimop/gempyor_pkg/src/gempyor/parameters.py index 674506e8d..e2a63eb49 100644 --- a/flepimop/gempyor_pkg/src/gempyor/parameters.py +++ b/flepimop/gempyor_pkg/src/gempyor/parameters.py @@ -71,17 +71,20 @@ def __init__( print("loaded dates:", df.index) raise ValueError( f"""ERROR loading file {fn_name} for parameter {pn}: - the 'date' index of the provided file does not cover the whole config time span from - {ti}->{tf}, where we have dates from {str(df.index[0])} to {str(df.index[-1])}""" + the 'date' entries of the provided file do not include all the days specified to be modeled by + the config. the provided file includes {len(df.index)} days between {str(df.index[0])} to {str(df.index[-1])}, + while there are {len(pd.date_range(ti, tf))} days in the config time span of {ti}->{tf}. The file must contain entries for the + the exact start and end dates from the config. """ ) - # check the date range, need the lenght to be equal if not (pd.date_range(ti, tf) == df.index).all(): print("config dates:", pd.date_range(ti, tf)) print("loaded dates:", df.index) raise ValueError( f"""ERROR loading file {fn_name} for parameter {pn}: - the 'date' index of the provided file does not cover the whole config time span from - {ti}->{tf}""" + the 'date' entries of the provided file do not include all the days specified to be modeled by + the config. the provided file includes {len(df.index)} days between {str(df.index[0])} to {str(df.index[-1])}, + while there are {len(pd.date_range(ti, tf))} days in the config time span of {ti}->{tf}. The file must contain entries for the + the exact start and end dates from the config. """ ) self.pdata[pn]["ts"] = df