forked from ZouJiu1/Mask_face_recognitionZ
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_pairs.py
127 lines (116 loc) · 4.26 KB
/
create_pairs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
import os
import itertools
from PIL import Image
import os
import dlib
import cv2
pwd = os.path.join(os.path.abspath('./'), 'Datasets')
from config_mask import config
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(config['predicter_path'])
def preprocess(image_path):
image = dlib.load_rgb_image(image_path)
# print(image_path)
face_img, TF = None, 0
# 人脸对齐、切图
dets = detector(image, 1)
if len(dets) == 1:
faces = dlib.full_object_detections()
faces.append(predictor(image, dets[0]))
images = dlib.get_face_chips(image, faces, size=config['image_size'])
image = np.array(images[0]).astype(np.uint8)
face_img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# 生成人脸mask
dets = detector(image, 1)
if len(dets) == 1:
point68 = predictor(image, dets[0])
landmarks = list()
INDEX = [0, 2, 14, 16, 17, 18, 19, 24, 25, 26]
eyebrow_list = [19, 24]
eyes_list = [36, 45]
eyebrow = 0
eyes = 0
for eb, ey in zip(eyebrow_list, eyes_list):
eyebrow += point68.part(eb).y
eyes += point68.part(ey).y
add_pixel = int(eyes / 2 - eyebrow / 2)
for idx in INDEX:
x = point68.part(idx).x
if idx in eyebrow_list:
y = (point68.part(idx).y - 2 * add_pixel) if (point68.part(idx).y - 2 * add_pixel) > 0 else 0
else:
y = point68.part(idx).y
landmarks.append((x, y))
belows = []
for i in range(2, 15, 1):
belows.append([point68.part(i).x, point68.part(i).y])
belows = np.array(belows)
colors = [(200, 183, 144), (163, 150, 134), (172, 170, 169), \
(167, 168, 166), (173, 171, 170), (161, 161, 160), \
(170, 162, 162)]
cl = np.random.choice(len(colors), 1)[0]
cv2.fillConvexPoly(face_img, belows, colors[cl])
return 111
else:
return None
else:
return None
def samechoice(lists, path, allsame, f, num):
length = len(lists)
count = 0
for i in range(100000):
dir = lists[i%length]
dir_path = os.path.join(path, dir)
files = [os.path.join(dir_path, dp) for dp in os.listdir(dir_path)]
if len(files)==1:
continue
choice = tuple(np.random.choice(files, 2, replace=False))
cho = (choice[1], choice[0])
r1 = preprocess(cho[0])
r2 = preprocess(cho[1])
if (r1 == None) or (r2 == None):
continue
if (choice in allsame) or (cho in allsame):
continue
else:
allsame.add(choice)
f.write(choice[0]+' '+choice[1]+' 1\n')
count += 1
if count==num:
return
def notsamechoice(lists, path, allnotsame, f, num):
count = 0
for i in range(100000):
for i in itertools.combinations(lists, 2):
dir_pathone = os.path.join(path, i[0])
dir_pathtwo = os.path.join(path, i[1])
filesone = [os.path.join(dir_pathone, dp) for dp in os.listdir(dir_pathone)]
filestwo = [os.path.join(dir_pathtwo, dp) for dp in os.listdir(dir_pathtwo)]
choiceone = np.random.choice(filesone, 1)[0]
choicetwo = np.random.choice(filestwo, 1)[0]
choice = (choiceone, choicetwo)
cho = (choicetwo, choiceone)
r1 = preprocess(cho[0])
r2 = preprocess(cho[1])
if (r1==None) or (r2==None):
continue
if (choice in allnotsame) or (cho in allnotsame):
continue
else:
allnotsame.add(choice)
f.write(choice[0] + ' ' + choice[1] + ' 0\n')
count += 1
if count == num:
return
path = os.path.join(pwd, 'tmp')
lists = [os.path.join(path, i) for i in os.listdir(path)]
allsame = set()
allnotsame = set()
f = open(os.path.join(pwd, 'testpairs.txt'), 'w')
Kfold = 10
num = 300
for i in range(Kfold):
samechoice(lists, path, allsame, f, num)
notsamechoice(lists, path, allnotsame, f, num)
f.close()