-
-
Notifications
You must be signed in to change notification settings - Fork 65
/
4_bgv_basics.py
113 lines (95 loc) · 4.31 KB
/
4_bgv_basics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from seal import *
import numpy as np
def print_vector(vector):
print('[ ', end='')
for i in range(0, 8):
print(vector[i], end=', ')
print('... ]')
def example_bgv_basics():
parms = EncryptionParameters (scheme_type.bgv)
poly_modulus_degree = 8192
parms.set_poly_modulus_degree(poly_modulus_degree)
parms.set_coeff_modulus(CoeffModulus.BFVDefault(poly_modulus_degree))
parms.set_plain_modulus(PlainModulus.Batching(poly_modulus_degree, 20))
context = SEALContext(parms)
keygen = KeyGenerator(context)
secret_key = keygen.secret_key()
public_key = keygen.create_public_key()
relin_keys = keygen.create_relin_keys()
encryptor = Encryptor(context, public_key)
evaluator = Evaluator(context)
decryptor = Decryptor(context, secret_key)
batch_encoder = BatchEncoder(context)
slot_count = batch_encoder.slot_count()
row_size = slot_count / 2
print(f'Plaintext matrix row size: {row_size}')
pod_matrix = [0] * slot_count
pod_matrix[0] = 1
pod_matrix[1] = 2
pod_matrix[2] = 3
pod_matrix[3] = 4
x_plain = batch_encoder.encode(pod_matrix)
x_encrypted = encryptor.encrypt(x_plain)
print(f'noise budget in freshly encrypted x: {decryptor.invariant_noise_budget(x_encrypted)}')
print('-'*50)
x_squared = evaluator.square(x_encrypted)
print(f'size of x_squared: {x_squared.size()}')
evaluator.relinearize_inplace(x_squared, relin_keys)
print(f'size of x_squared (after relinearization): {x_squared.size()}')
print(f'noise budget in x_squared: {decryptor.invariant_noise_budget(x_squared)} bits')
decrypted_result = decryptor.decrypt(x_squared)
pod_result = batch_encoder.decode(decrypted_result)
print_vector(pod_result)
print('-'*50)
x_4th = evaluator.square(x_squared)
print(f'size of x_4th: {x_4th.size()}')
evaluator.relinearize_inplace(x_4th, relin_keys)
print(f'size of x_4th (after relinearization): { x_4th.size()}')
print(f'noise budget in x_4th: {decryptor.invariant_noise_budget(x_4th)} bits')
decrypted_result = decryptor.decrypt(x_4th)
pod_result = batch_encoder.decode(decrypted_result)
print_vector(pod_result)
print('-'*50)
x_8th = evaluator.square(x_4th)
print(f'size of x_8th: {x_8th.size()}')
evaluator.relinearize_inplace(x_8th, relin_keys)
print(f'size of x_8th (after relinearization): { x_8th.size()}')
print(f'noise budget in x_8th: {decryptor.invariant_noise_budget(x_8th)} bits')
decrypted_result = decryptor.decrypt(x_8th)
pod_result = batch_encoder.decode(decrypted_result)
print_vector(pod_result)
print('run out of noise budget')
print('-'*100)
x_encrypted = encryptor.encrypt(x_plain)
print(f'noise budget in freshly encrypted x: {decryptor.invariant_noise_budget(x_encrypted)}')
print('-'*50)
x_squared = evaluator.square(x_encrypted)
print(f'size of x_squared: {x_squared.size()}')
evaluator.relinearize_inplace(x_squared, relin_keys)
evaluator.mod_switch_to_next_inplace(x_squared)
print(f'noise budget in x_squared (with modulus switching): {decryptor.invariant_noise_budget(x_squared)} bits')
decrypted_result = decryptor.decrypt(x_squared)
pod_result = batch_encoder.decode(decrypted_result)
print_vector(pod_result)
print('-'*50)
x_4th = evaluator.square(x_squared)
print(f'size of x_4th: {x_4th.size()}')
evaluator.relinearize_inplace(x_4th, relin_keys)
evaluator.mod_switch_to_next_inplace(x_4th)
print(f'size of x_4th (after relinearization): { x_4th.size()}')
print(f'noise budget in x_4th (with modulus switching): {decryptor.invariant_noise_budget(x_4th)} bits')
decrypted_result = decryptor.decrypt(x_4th)
pod_result = batch_encoder.decode(decrypted_result)
print_vector(pod_result)
print('-'*50)
x_8th = evaluator.square(x_4th)
print(f'size of x_8th: {x_8th.size()}')
evaluator.relinearize_inplace(x_8th, relin_keys)
evaluator.mod_switch_to_next_inplace(x_8th)
print(f'size of x_8th (after relinearization): { x_8th.size()}')
print(f'noise budget in x_8th (with modulus switching): {decryptor.invariant_noise_budget(x_8th)} bits')
decrypted_result = decryptor.decrypt(x_8th)
pod_result = batch_encoder.decode(decrypted_result)
print_vector(pod_result)
if __name__ == "__main__":
example_bgv_basics()