-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIBKR_Tax.py
208 lines (148 loc) · 5.89 KB
/
IBKR_Tax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %% [markdown]
# # IBKR Tax
# %%
import pandas as pd
# %%
from currency_converter import CurrencyConverter
c = CurrencyConverter(fallback_on_missing_rate=True)
# %% [markdown]
# # Read Data
# %% [markdown]
# Requirements:
# - English activity statement
# - Year of activity statement 2020 and older
# %%
myfile = "MY_ACTIVITY_STATEMENT.csv"
# %% [markdown]
# https://stackoverflow.com/questions/27020216/import-csv-with-different-number-of-columns-per-row-using-pandas/57824142#57824142
# %%
### Loop the data lines
with open(myfile, 'r') as temp_f:
# get No of columns in each line
col_count = [ len(l.split(",")) for l in temp_f.readlines() ]
### Generate column names (names will be 0, 1, 2, ..., maximum columns - 1)
column_names = [i for i in range(0, max(col_count))]
### Read csv
df = pd.read_csv(myfile, header=None, delimiter=",", names=column_names)
# %% [markdown]
# # Trades
# %%
df_trades = df[df.iloc[:,0] == "Trades"].dropna(how='all', axis=1)
df_trades, df_trades.columns = df_trades.iloc[1:] , df_trades.iloc[0]
df_trades.columns.name = None
# %%
# obtain asset type
try:
df_trades[['Asset','Category']] = df_trades["Asset Category"].str.split("-", expand=True).copy()
except:
df_trades["Asset"] = df_trades["Asset Category"]
# remove subheader
df_trades = df_trades[(df_trades["Realized P/L"]!="Realized P/L") & ~(df_trades["Header"].str.contains("SubTotal|Total"))].copy()
# convert dtypes
df_trades["Realized P/L"] = df_trades["Realized P/L"].astype(float)
# remove empty rows
df_trades = df_trades[df_trades["Realized P/L"].notnull()] #df_trades["Realized P/L"]!=0) &
# convert to datetime
df_trades["Date/Time"] = pd.to_datetime(df_trades["Date/Time"], infer_datetime_format=True)
df_trades = df_trades.reset_index(drop=True)
# %%
# convert to EUR using ECB rates
df_trades["P/L [€]"] = df_trades.apply(lambda row: c.convert(
row["Realized P/L"] , row.Currency, date=row["Date/Time"]), axis=1)
df_trades["P [€]"] = df_trades["P/L [€]"].apply(lambda row: row if row > 0 else 0)
df_trades["L [€]"] = df_trades["P/L [€]"].apply(lambda row: row if row < 0 else 0)
# %%
PL_TradesDet = df_trades.groupby(["Currency", "Asset"]).sum()
PL_Trades = df_trades.groupby(["Asset"]).sum()
# %% [markdown]
# # P/L Forex
# %% [markdown]
# ## Not fully tested
# %% [markdown]
# ### Only applies if every position is closed and opened during the year (i.e. Options)
# %% [markdown]
# Use > Realized & Unrealized Performance Summary > Forex
# %%
assets = df_trades.Asset.unique()
results = []
for asset in assets:
try:
df_asstes = df_trades[df_trades.Asset == asset].copy()
df_asstes["Basis"] = df_asstes["Basis"].astype(float)
df_asstes["Basis [€]"] = df_asstes.apply(lambda row: c.convert(
row["Basis"] , row.Currency, date=row["Date/Time"]), axis=1)
currencies = df_asstes.Currency.unique()
for curr in currencies:
df_curr = df_asstes[df_asstes.Currency==curr].copy()
open_position = df_curr["Basis"].round(2).sum()
pl_forex = df_curr["Basis [€]"].round(2).sum()
avg_rate = df_asstes.apply(lambda row: c.convert(
1 , row.Currency, date=row["Date/Time"]), axis=1).mean()
results.append([curr, avg_rate, pl_forex, open_position, asset])
#results.append([curr, pl_forex, open_position, asset])
except Exception as e:
print(f"Failed for {asset} with error: {e}")
df_forex = pd.DataFrame(results).T
df_forex, df_forex.columns = df_forex.iloc[1:] , df_forex.iloc[0]
df_forex = df_forex.T
df_forex.columns = ["Average Rate", "PL_Forex [€]", "Open Position", "Asset"]
#df_forex.columns = ["PL_Forex [€]", "Open Position", "Asset"]
df_forex.index.name = None
df_forex["PL_Forex_ADJ [€]"] = df_forex["PL_Forex [€]"] - df_forex["Open Position"]
df_forex.loc[:,:] = df_forex.loc[:,:].apply(pd.to_numeric, errors = 'ignore')
df_forex.loc['Column_Total'] = df_forex.sum(numeric_only=True, axis=0)
PL_Forex = df_forex
PL_Forex
# %% [markdown]
# # Dividend
# %%
def process_df(df):
# set first row as header
df, df.columns = df.iloc[1:] , df.iloc[0]
# remove rows with sum
df = df[~df.Currency.str.contains("Total")]
# conver dtypes
df["Amount"] = df["Amount"].astype(float)
# convert to datetime
df["Date"] = pd.to_datetime(df["Date"], infer_datetime_format=True)
# convert to EUR using ECB rates
df["Amount [€]"] = df.apply(lambda row: c.convert(row["Amount"] , row["Currency"], date=row["Date"]), axis=1)
# label CFD dividens
df["Description"] = df["Description"].str.replace(" ","")
df[['Symbol','TrashCol']] = df["Description"].str.split("(", n=1, expand=True).copy()
df[['Country','TrashCol']] = df["TrashCol"].str.split(")", n=1, expand=True).copy()
df["Country"] = df["Country"].str.extract(r'(^\D+)').fillna("CFD")
df["Asset"] = "Stocks"
df.loc[df.Symbol.str.endswith("n"), "Asset"] = "CFDs"
# remove index from column names
df.columns.name = None
df.reset_index(drop=True)
return df
# %%
df_div = df[df.iloc[:,0] == "Dividends"].dropna(how='all', axis=1)
df_wtax = df[df.iloc[:,0] == "Withholding Tax"].dropna(how='all', axis=1)
df_871 = df[df.iloc[:,0] == "871(m) Withholding"].dropna(how='all', axis=1)
# %%
df_div = process_df(df_div)
df_wtax = process_df(df_wtax) if not df_wtax.empty else df_wtax
# %%
df_871 = process_df(df_871) if not df_871.empty else df_871
df_871["Asset"] = "CFDs"
df_wtax = df_wtax.append(df_871)
# %%
WithholdingTax = df_wtax.groupby(["Currency", "Asset", "Country"]).sum() if not df_871.empty else df_871
Dividends = df_div.groupby(["Currency", "Asset", "Country"]).sum()
# %% [markdown]
# # Results
# %%
WithholdingTax if not df_871.empty else "No Withholding Tax"
# %%
Dividends
# %%
PL_Trades
# %%
PL_TradesDet
# %%
# %%