-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
156 lines (133 loc) · 4.84 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch.nn as nn
import torch
import torch.nn.functional as F
class SelfAttention(nn.Module):
def __init__(self, channels, size):
super(SelfAttention, self).__init__()
self.channels = channels
self.size = size
self.mha = nn.MultiheadAttention(channels, 4, batch_first=True)
self.ln = nn.LayerNorm([channels])
self.ff_self = nn.Sequential(
nn.LayerNorm([channels]),
nn.Linear(channels, channels),
nn.GELU(),
nn.Linear(channels, channels),
)
def forward(self, x):
x = x.view(-1, self.channels, self.size * self.size).swapaxes(1, 2)
x_ln = self.ln(x)
attention_value, _ = self.mha(x_ln, x_ln, x_ln)
attention_value = attention_value + x
attention_value = self.ff_self(attention_value) + attention_value
return attention_value.swapaxes(2, 1).view(-1, self.channels, self.size, self.size)
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels, mid_channels=None, residual=False):
super().__init__()
self.residual = residual
# if not mid_channels:
# mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.GroupNorm(1, out_channels),
nn.GELU(),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.GroupNorm(1, out_channels),
)
def forward(self, x):
if self.residual:
return F.gelu(x + self.double_conv(x))
else:
return self.double_conv(x)
class Down(nn.Module):
def __init__(self, in_channels, out_channels, emb_dim=256):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, in_channels, residual=True),
DoubleConv(in_channels, out_channels),
)
self.emb_layer = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_dim,
out_channels
),
)
def forward(self, x, t):
x = self.maxpool_conv(x)
emb = self.emb_layer(t)[:, :, None, None]
return x + emb
class Up(nn.Module):
def __init__(self, in_channels, out_channels, emb_dim=256):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
self.conv = nn.Sequential(
DoubleConv(in_channels, in_channels, residual=True),
DoubleConv(in_channels, out_channels),
)
self.emb_layer = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_dim,
out_channels
),
)
def forward(self, x, skip_x, t):
x = self.up(x)
x = torch.cat([skip_x, x], dim=1)
x = self.conv(x)
emb = self.emb_layer(t)[:, :, None, None].repeat(1, 1, x.shape[-2], x.shape[-1])
return x + emb
class UNet(nn.Module):
def __init__(self, c_in=3, c_out=3, time_dim=256, device="cpu"):
super().__init__()
self.device = device
self.time_dim = time_dim
self.inc = DoubleConv(c_in, 64)
self.down1 = Down(64, 128)
self.sa1 = SelfAttention(128, 32)
self.down2 = Down(128, 256)
self.sa2 = SelfAttention(256, 16)
self.down3 = Down(256, 256)
self.sa3 = SelfAttention(256, 8)
self.bot1 = DoubleConv(256, 512)
self.bot2 = DoubleConv(512, 512)
self.bot3 = DoubleConv(512, 256)
self.up1 = Up(512, 128)
self.sa4 = SelfAttention(128, 16)
self.up2 = Up(256, 64)
self.sa5 = SelfAttention(64, 32)
self.up3 = Up(128, 64)
self.sa6 = SelfAttention(64, 64)
self.outc = nn.Conv2d(64, c_out, kernel_size=1)
def pos_encoding(self, t, channels):
inv_freq = 1.0 / (
10000
** (torch.arange(0, channels, 2, device=self.device).float() / channels)
)
pos_enc_a = torch.sin(t.repeat(1, channels // 2) * inv_freq)
pos_enc_b = torch.cos(t.repeat(1, channels // 2) * inv_freq)
pos_enc = torch.cat([pos_enc_a, pos_enc_b], dim=-1)
return pos_enc
def forward(self, x, t):
t = t.unsqueeze(-1).type(torch.float)
t = self.pos_encoding(t, self.time_dim)
x1 = self.inc(x)
x2 = self.down1(x1, t)
x2 = self.sa1(x2)
x3 = self.down2(x2, t)
x3 = self.sa2(x3)
x4 = self.down3(x3, t)
x4 = self.sa3(x4)
x4 = self.bot1(x4)
x4 = self.bot2(x4)
x4 = self.bot3(x4)
x = self.up1(x4, x3, t)
x = self.sa4(x)
x = self.up2(x, x2, t)
x = self.sa5(x)
x = self.up3(x, x1, t)
x = self.sa6(x)
output = self.outc(x)
return output