diff --git a/ai-trustworthy/shap/SHAP_kernel_explainer.ipynb b/ai-trustworthy/shap/SHAP_kernel_explainer.ipynb
new file mode 100644
index 0000000..b1b9d82
--- /dev/null
+++ b/ai-trustworthy/shap/SHAP_kernel_explainer.ipynb
@@ -0,0 +1 @@
+{"cells":[{"cell_type":"code","execution_count":29,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":117921,"status":"ok","timestamp":1648016482750,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"},"user_tz":-540},"id":"yW3rc1XIgXRs","outputId":"04bb6cc6-94a0-4637-efad-bcabf05fab01"},"outputs":[{"output_type":"stream","name":"stdout","text":["Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (1.3.5)\n","Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (1.19.5)\n","Collecting numpy\n"," Downloading numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB)\n","\u001b[K |████████████████████████████████| 15.7 MB 4.1 MB/s \n","\u001b[?25hRequirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (0.22.2.post1)\n","Collecting scikit-learn\n"," Downloading scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (24.8 MB)\n","\u001b[K |████████████████████████████████| 24.8 MB 65.0 MB/s \n","\u001b[?25hRequirement already satisfied: nltk in /usr/local/lib/python3.7/dist-packages (3.7)\n","Requirement already satisfied: tensorflow in /usr/local/lib/python3.7/dist-packages (2.4.4)\n","Collecting tensorflow\n"," Downloading tensorflow-2.8.0-cp37-cp37m-manylinux2010_x86_64.whl (497.5 MB)\n","\u001b[K |████████████████████████████████| 497.5 MB 29 kB/s \n","\u001b[?25hRequirement already satisfied: lightgbm in /usr/local/lib/python3.7/dist-packages (3.3.2)\n","Requirement already satisfied: seaborn in /usr/local/lib/python3.7/dist-packages (0.11.2)\n","Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (2.8.2)\n","Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (2018.9)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)\n","Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn) (3.1.0)\n","Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn) (1.4.1)\n","Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn) (1.1.0)\n","Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.7/dist-packages (from nltk) (2022.3.15)\n","Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from nltk) (4.63.0)\n","Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from nltk) (7.1.2)\n","Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.2.0)\n","Requirement already satisfied: keras-preprocessing>=1.1.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.1.2)\n","Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (3.3.0)\n","Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (3.17.3)\n","Requirement already satisfied: libclang>=9.0.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (13.0.0)\n","Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.32.0)\n","Requirement already satisfied: gast>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.3.3)\n","Requirement already satisfied: wrapt>=1.11.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.12.1)\n","Requirement already satisfied: keras<2.9,>=2.8.0rc0 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (2.8.0)\n","Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from tensorflow) (57.4.0)\n","Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.24.0)\n","Requirement already satisfied: tf-estimator-nightly==2.8.0.dev2021122109 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (2.8.0.dev2021122109)\n","Requirement already satisfied: h5py>=2.9.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (2.10.0)\n","Requirement already satisfied: absl-py>=0.4.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.15.0)\n","Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.6.3)\n","Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.1.0)\n","Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (3.7.4.3)\n","Requirement already satisfied: tensorboard<2.9,>=2.8 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (2.8.0)\n","Requirement already satisfied: flatbuffers>=1.12 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.12)\n","Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.7/dist-packages (from astunparse>=1.6.0->tensorflow) (0.37.1)\n","Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.0.1)\n","Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.4.6)\n","Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.35.0)\n","Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard<2.9,>=2.8->tensorflow) (3.3.6)\n","Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.8.1)\n","Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.6.1)\n","Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard<2.9,>=2.8->tensorflow) (2.23.0)\n","Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (0.2.8)\n","Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (4.8)\n","Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (4.2.4)\n","Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow) (1.3.1)\n","Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard<2.9,>=2.8->tensorflow) (4.11.3)\n","Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.9,>=2.8->tensorflow) (3.7.0)\n","Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (0.4.8)\n","Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (1.24.3)\n","Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (2.10)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (2021.10.8)\n","Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (3.0.4)\n","Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow) (3.2.0)\n","Requirement already satisfied: matplotlib>=2.2 in /usr/local/lib/python3.7/dist-packages (from seaborn) (3.1.3)\n","Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n","Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.2->seaborn) (1.4.0)\n","Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.2->seaborn) (3.0.7)\n","Installing collected packages: numpy, scikit-learn, tensorflow\n"," Attempting uninstall: numpy\n"," Found existing installation: numpy 1.19.5\n"," Uninstalling numpy-1.19.5:\n"," Successfully uninstalled numpy-1.19.5\n"," Attempting uninstall: scikit-learn\n"," Found existing installation: scikit-learn 0.22.2.post1\n"," Uninstalling scikit-learn-0.22.2.post1:\n"," Successfully uninstalled scikit-learn-0.22.2.post1\n"," Attempting uninstall: tensorflow\n"," Found existing installation: tensorflow 2.4.4\n"," Uninstalling tensorflow-2.4.4:\n"," Successfully uninstalled tensorflow-2.4.4\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","machine-learning-datasets 0.1.16.4 requires matplotlib<4.0.0,>=3.2.2, but you have matplotlib 3.1.3 which is incompatible.\n","machine-learning-datasets 0.1.16.4 requires scikit-learn<0.23.0,>=0.22.2.post1, but you have scikit-learn 1.0.2 which is incompatible.\n","datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.\n","alibi 0.5.8 requires scikit-learn<0.25.0,>=0.20.2, but you have scikit-learn 1.0.2 which is incompatible.\n","alibi 0.5.8 requires tensorflow<2.5.0,>=2.0.0, but you have tensorflow 2.8.0 which is incompatible.\n","albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.\u001b[0m\n","Successfully installed numpy-1.21.5 scikit-learn-1.0.2 tensorflow-2.8.0\n"]},{"output_type":"display_data","data":{"application/vnd.colab-display-data+json":{"pip_warning":{"packages":["numpy","sklearn","tensorflow"]}}},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Requirement already satisfied: machine-learning-datasets in /usr/local/lib/python3.7/dist-packages (0.1.16.4)\n","Collecting scikit-learn<0.23.0,>=0.22.2.post1\n"," Using cached scikit_learn-0.22.2.post1-cp37-cp37m-manylinux1_x86_64.whl (7.1 MB)\n","Requirement already satisfied: pathlib2<3.0.0,>=2.3.5 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (2.3.7.post1)\n","Requirement already satisfied: statsmodels<0.11.0,>=0.10.2 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (0.10.2)\n","Requirement already satisfied: alibi<0.6.0,>=0.5.5 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (0.5.8)\n","Requirement already satisfied: numpy<2.0.0,>=1.19.5 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (1.21.5)\n","Collecting matplotlib<4.0.0,>=3.2.2\n"," Downloading matplotlib-3.5.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (11.2 MB)\n","\u001b[K |████████████████████████████████| 11.2 MB 4.3 MB/s \n","\u001b[?25hRequirement already satisfied: pycebox<0.0.2,>=0.0.1 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (0.0.1)\n","Requirement already satisfied: tqdm<5.0.0,>=4.41.1 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (4.63.0)\n","Requirement already satisfied: scipy<2.0.0,>=1.4.1 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (1.4.1)\n","Requirement already satisfied: aif360<0.4.0,>=0.3.0 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (0.3.0)\n","Requirement already satisfied: mlxtend<0.15.0,>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (0.14.0)\n","Requirement already satisfied: pandas<2.0.0,>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (1.3.5)\n","Requirement already satisfied: seaborn<0.12.0,>=0.11.1 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (0.11.2)\n","Requirement already satisfied: opencv-python<5.0.0,>=4.5.1 in /usr/local/lib/python3.7/dist-packages (from machine-learning-datasets) (4.5.5.64)\n","Requirement already satisfied: typing-extensions>=3.7.2 in /usr/local/lib/python3.7/dist-packages (from alibi<0.6.0,>=0.5.5->machine-learning-datasets) (3.7.4.3)\n","Requirement already satisfied: scikit-image!=0.17.1,<0.19,>=0.14.2 in /usr/local/lib/python3.7/dist-packages (from alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.18.3)\n","Collecting tensorflow<2.5.0,>=2.0.0\n"," Using cached tensorflow-2.4.4-cp37-cp37m-manylinux2010_x86_64.whl (394.5 MB)\n","Requirement already satisfied: dill<0.4.0,>=0.3.0 in /usr/local/lib/python3.7/dist-packages (from alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.3.4)\n","Requirement already satisfied: attrs<21.0.0,>=19.2.0 in /usr/local/lib/python3.7/dist-packages (from alibi<0.6.0,>=0.5.5->machine-learning-datasets) (20.3.0)\n","Requirement already satisfied: requests<3.0.0,>=2.21.0 in /usr/local/lib/python3.7/dist-packages (from alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2.23.0)\n","Requirement already satisfied: Pillow<9.0,>=5.4.1 in /usr/local/lib/python3.7/dist-packages (from alibi<0.6.0,>=0.5.5->machine-learning-datasets) (7.1.2)\n","Requirement already satisfied: spacy[lookups]<4.0.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2.2.4)\n","Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib<4.0.0,>=3.2.2->machine-learning-datasets) (1.4.0)\n","Requirement already satisfied: pyparsing>=2.2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib<4.0.0,>=3.2.2->machine-learning-datasets) (3.0.7)\n","Collecting fonttools>=4.22.0\n"," Downloading fonttools-4.31.2-py3-none-any.whl (899 kB)\n","\u001b[K |████████████████████████████████| 899 kB 43.4 MB/s \n","\u001b[?25hRequirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from matplotlib<4.0.0,>=3.2.2->machine-learning-datasets) (21.3)\n","Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.7/dist-packages (from matplotlib<4.0.0,>=3.2.2->machine-learning-datasets) (2.8.2)\n","Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib<4.0.0,>=3.2.2->machine-learning-datasets) (0.11.0)\n","Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from mlxtend<0.15.0,>=0.14.0->machine-learning-datasets) (57.4.0)\n","Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas<2.0.0,>=1.1.5->machine-learning-datasets) (2018.9)\n","Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from pathlib2<3.0.0,>=2.3.5->machine-learning-datasets) (1.15.0)\n","Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.21.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.24.3)\n","Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.21.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (3.0.4)\n","Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.21.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2.10)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.21.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2021.10.8)\n","Requirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image!=0.17.1,<0.19,>=0.14.2->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2.6.3)\n","Requirement already satisfied: imageio>=2.3.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image!=0.17.1,<0.19,>=0.14.2->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2.4.1)\n","Requirement already satisfied: tifffile>=2019.7.26 in /usr/local/lib/python3.7/dist-packages (from scikit-image!=0.17.1,<0.19,>=0.14.2->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2021.11.2)\n","Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/lib/python3.7/dist-packages (from scikit-image!=0.17.1,<0.19,>=0.14.2->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.3.0)\n","Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn<0.23.0,>=0.22.2.post1->machine-learning-datasets) (1.1.0)\n","Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.9.0)\n","Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.0.6)\n","Requirement already satisfied: thinc==7.4.0 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (7.4.0)\n","Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (3.0.6)\n","Requirement already satisfied: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.1.3)\n","Requirement already satisfied: srsly<1.1.0,>=1.0.2 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.0.5)\n","Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.0.0)\n","Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2.0.6)\n","Requirement already satisfied: blis<0.5.0,>=0.4.0 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.4.1)\n","Requirement already satisfied: spacy-lookups-data<0.2.0,>=0.0.5 in /usr/local/lib/python3.7/dist-packages (from spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.1.0)\n","Requirement already satisfied: importlib-metadata>=0.20 in /usr/local/lib/python3.7/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (4.11.3)\n","Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=0.20->catalogue<1.1.0,>=0.0.7->spacy[lookups]<4.0.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (3.7.0)\n","Requirement already satisfied: patsy>=0.4.0 in /usr/local/lib/python3.7/dist-packages (from statsmodels<0.11.0,>=0.10.2->machine-learning-datasets) (0.5.2)\n","Requirement already satisfied: absl-py~=0.10 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.15.0)\n","Requirement already satisfied: h5py~=2.10.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2.10.0)\n","Requirement already satisfied: google-pasta~=0.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.2.0)\n","Requirement already satisfied: flatbuffers~=1.12.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.12)\n","Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (3.17.3)\n","Requirement already satisfied: wheel~=0.35 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.37.1)\n","Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.3.3)\n","Requirement already satisfied: astunparse~=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.6.3)\n","Requirement already satisfied: tensorboard~=2.4 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2.8.0)\n","Requirement already satisfied: tensorflow-estimator<2.5.0,>=2.4.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (2.4.0)\n","Requirement already satisfied: wrapt~=1.12.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.12.1)\n","Requirement already satisfied: keras-preprocessing~=1.1.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.1.2)\n","Requirement already satisfied: opt-einsum~=3.3.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (3.3.0)\n","Requirement already satisfied: termcolor~=1.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.1.0)\n","Requirement already satisfied: grpcio~=1.32.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.32.0)\n","Collecting numpy<2.0.0,>=1.19.5\n"," Using cached numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl (14.8 MB)\n","Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.35.0)\n","Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.8.1)\n","Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.6.1)\n","Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.0.1)\n","Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (3.3.6)\n","Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.4.6)\n","Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (4.8)\n","Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.2.8)\n","Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (4.2.4)\n","Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (1.3.1)\n","Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (0.4.8)\n","Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow<2.5.0,>=2.0.0->alibi<0.6.0,>=0.5.5->machine-learning-datasets) (3.2.0)\n","Installing collected packages: numpy, fonttools, matplotlib, tensorflow, scikit-learn\n"," Attempting uninstall: numpy\n"," Found existing installation: numpy 1.21.5\n"," Uninstalling numpy-1.21.5:\n"," Successfully uninstalled numpy-1.21.5\n"," Attempting uninstall: matplotlib\n"," Found existing installation: matplotlib 3.1.3\n"," Uninstalling matplotlib-3.1.3:\n"," Successfully uninstalled matplotlib-3.1.3\n"," Attempting uninstall: tensorflow\n"," Found existing installation: tensorflow 2.8.0\n"," Uninstalling tensorflow-2.8.0:\n"," Successfully uninstalled tensorflow-2.8.0\n"," Attempting uninstall: scikit-learn\n"," Found existing installation: scikit-learn 1.0.2\n"," Uninstalling scikit-learn-1.0.2:\n"," Successfully uninstalled scikit-learn-1.0.2\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","yellowbrick 1.4 requires scikit-learn>=1.0.0, but you have scikit-learn 0.22.2.post1 which is incompatible.\n","imbalanced-learn 0.8.1 requires scikit-learn>=0.24, but you have scikit-learn 0.22.2.post1 which is incompatible.\n","datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.\n","albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.\u001b[0m\n","Successfully installed fonttools-4.31.2 matplotlib-3.5.1 numpy-1.19.5 scikit-learn-0.22.2.post1 tensorflow-2.4.4\n"]},{"output_type":"display_data","data":{"application/vnd.colab-display-data+json":{"pip_warning":{"packages":["matplotlib","mpl_toolkits","numpy","sklearn","tensorflow"]}}},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Requirement already satisfied: shap in /usr/local/lib/python3.7/dist-packages (0.40.0)\n","Requirement already satisfied: lime in /usr/local/lib/python3.7/dist-packages (0.2.0.1)\n","Requirement already satisfied: slicer==0.0.7 in /usr/local/lib/python3.7/dist-packages (from shap) (0.0.7)\n","Requirement already satisfied: cloudpickle in /usr/local/lib/python3.7/dist-packages (from shap) (1.3.0)\n","Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from shap) (1.3.5)\n","Requirement already satisfied: tqdm>4.25.0 in /usr/local/lib/python3.7/dist-packages (from shap) (4.63.0)\n","Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from shap) (1.4.1)\n","Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from shap) (1.19.5)\n","Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from shap) (0.22.2.post1)\n","Requirement already satisfied: packaging>20.9 in /usr/local/lib/python3.7/dist-packages (from shap) (21.3)\n","Requirement already satisfied: numba in /usr/local/lib/python3.7/dist-packages (from shap) (0.51.2)\n","Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>20.9->shap) (3.0.7)\n","Requirement already satisfied: scikit-image>=0.12 in /usr/local/lib/python3.7/dist-packages (from lime) (0.18.3)\n","Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from lime) (3.5.1)\n","Requirement already satisfied: tifffile>=2019.7.26 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.12->lime) (2021.11.2)\n","Requirement already satisfied: pillow!=7.1.0,!=7.1.1,>=4.3.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.12->lime) (7.1.2)\n","Requirement already satisfied: imageio>=2.3.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.12->lime) (2.4.1)\n","Requirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.12->lime) (2.6.3)\n","Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.12->lime) (1.3.0)\n","Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lime) (4.31.2)\n","Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lime) (1.4.0)\n","Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lime) (0.11.0)\n","Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.7/dist-packages (from matplotlib->lime) (2.8.2)\n","Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib->lime) (3.7.4.3)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7->matplotlib->lime) (1.15.0)\n","Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->shap) (1.1.0)\n","Requirement already satisfied: llvmlite<0.35,>=0.34.0.dev0 in /usr/local/lib/python3.7/dist-packages (from numba->shap) (0.34.0)\n","Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from numba->shap) (57.4.0)\n","Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->shap) (2018.9)\n","Collecting matplotlib==3.1.3\n"," Using cached matplotlib-3.1.3-cp37-cp37m-manylinux1_x86_64.whl (13.1 MB)\n","Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.1.3) (0.11.0)\n","Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.1.3) (3.0.7)\n","Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.1.3) (1.4.0)\n","Requirement already satisfied: numpy>=1.11 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.1.3) (1.19.5)\n","Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.1.3) (2.8.2)\n","Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib==3.1.3) (3.7.4.3)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.1->matplotlib==3.1.3) (1.15.0)\n","Installing collected packages: matplotlib\n"," Attempting uninstall: matplotlib\n"," Found existing installation: matplotlib 3.5.1\n"," Uninstalling matplotlib-3.5.1:\n"," Successfully uninstalled matplotlib-3.5.1\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","yellowbrick 1.4 requires scikit-learn>=1.0.0, but you have scikit-learn 0.22.2.post1 which is incompatible.\n","machine-learning-datasets 0.1.16.4 requires matplotlib<4.0.0,>=3.2.2, but you have matplotlib 3.1.3 which is incompatible.\n","albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.\u001b[0m\n","Successfully installed matplotlib-3.1.3\n"]},{"output_type":"display_data","data":{"application/vnd.colab-display-data+json":{"pip_warning":{"packages":["matplotlib","mpl_toolkits"]}}},"metadata":{}}],"source":["!pip install --upgrade pandas numpy scikit-learn nltk tensorflow lightgbm seaborn\n","!pip install --upgrade machine-learning-datasets\n","!pip install --upgrade shap lime\n","!pip install matplotlib==3.1.3"]},{"cell_type":"code","execution_count":30,"metadata":{"executionInfo":{"elapsed":7,"status":"ok","timestamp":1648016482750,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"},"user_tz":-540},"id":"-Jp4HkkOgoLq"},"outputs":[],"source":["import math\n","import machine_learning_datasets as mldatasets\n","import pandas as pd\n","import numpy as np\n","import re\n","import nltk\n","from nltk.probability import FreqDist\n","from sklearn.model_selection import train_test_split\n","from sklearn.pipeline import make_pipeline\n","from sklearn import metrics, svm\n","from sklearn.feature_extraction.text import TfidfVectorizer\n","import lightgbm as lgb\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","import shap\n","import lime\n","import lime.lime_tabular\n","from lime.lime_text import LimeTextExplainer"]},{"cell_type":"code","execution_count":31,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":748,"status":"ok","timestamp":1648016483492,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"},"user_tz":-540},"id":"gVgsWMVckHJO","outputId":"ce601c55-39ec-4ae8-ec81-c9d1aa728116"},"outputs":[{"output_type":"stream","name":"stderr","text":["[nltk_data] Downloading package stopwords to /root/nltk_data...\n","[nltk_data] Package stopwords is already up-to-date!\n","[nltk_data] Downloading package punkt to /root/nltk_data...\n","[nltk_data] Package punkt is already up-to-date!\n"]}],"source":["nltk.download('stopwords')\n","nltk.download('punkt')\n","from nltk.corpus import stopwords\n","from nltk.tokenize import word_tokenize"]},{"cell_type":"code","execution_count":32,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":563},"executionInfo":{"elapsed":692,"status":"ok","timestamp":1648016484183,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"},"user_tz":-540},"id":"eE7oyYPQgxGb","outputId":"dc648b88-821b-4448-82ee-9fb1a5797416"},"outputs":[{"output_type":"stream","name":"stdout","text":["https://github.com/PacktPublishing/Interpretable-Machine-Learning-with-Python/raw/master/datasets/chocolate-ratings.zip downloaded to /content/data/chocolate-ratings.zip\n","/content/data/chocolate-ratings.zip uncompressed to /content/data/chocolate-ratings\n","1 dataset files found in /content/data/chocolate-ratings folder\n","parsing /content/data/chocolate-ratings/chocolate.csv\n"]},{"output_type":"execute_result","data":{"text/plain":[" company company_location review_date country_of_bean_origin \\\n","0 5150 U.S.A 2019 Madagascar \n","1 5150 U.S.A 2019 Dominican republic \n","2 5150 U.S.A 2019 Tanzania \n","3 A. Morin France 2012 Peru \n","4 A. Morin France 2012 Bolivia \n","... ... ... ... ... \n","2219 Zotter Austria 2014 Blend \n","2220 Zotter Austria 2017 Colombia \n","2221 Zotter Austria 2018 Belize \n","2222 Zotter Austria 2018 Congo \n","2223 Zotter Austria 2018 Blend \n","\n"," cocoa_percent rating counts_of_ingredients beans \\\n","0 76.0 3.75 3 have_bean \n","1 76.0 3.50 3 have_bean \n","2 76.0 3.25 3 have_bean \n","3 63.0 3.75 4 have_bean \n","4 70.0 3.50 4 have_bean \n","... ... ... ... ... \n","2219 80.0 2.75 4 have_bean \n","2220 75.0 3.75 3 have_bean \n","2221 72.0 3.50 3 have_bean \n","2222 70.0 3.25 3 have_bean \n","2223 75.0 3.00 3 have_bean \n","\n"," cocoa_butter vanilla lecithin salt \\\n","0 have_cocoa_butter have_not_vanila have_not_lecithin have_not_salt \n","1 have_cocoa_butter have_not_vanila have_not_lecithin have_not_salt \n","2 have_cocoa_butter have_not_vanila have_not_lecithin have_not_salt \n","3 have_cocoa_butter have_not_vanila have_lecithin have_not_salt \n","4 have_cocoa_butter have_not_vanila have_lecithin have_not_salt \n","... ... ... ... ... \n","2219 have_cocoa_butter have_not_vanila have_not_lecithin have_salt \n","2220 have_cocoa_butter have_not_vanila have_not_lecithin have_not_salt \n","2221 have_cocoa_butter have_not_vanila have_not_lecithin have_not_salt \n","2222 have_cocoa_butter have_not_vanila have_not_lecithin have_not_salt \n","2223 have_cocoa_butter have_not_vanila have_not_lecithin have_not_salt \n","\n"," sugar sweetener_without_sugar first_taste \\\n","0 have_sugar have_not_sweetener_without_sugar cocoa \n","1 have_sugar have_not_sweetener_without_sugar cocoa \n","2 have_sugar have_not_sweetener_without_sugar rich cocoa \n","3 have_sugar have_not_sweetener_without_sugar fruity \n","4 have_sugar have_not_sweetener_without_sugar vegetal \n","... ... ... ... \n","2219 have_not_sugar have_sweetener_without_sugar waxy \n","2220 have_sugar have_not_sweetener_without_sugar strong nutty \n","2221 have_sugar have_not_sweetener_without_sugar muted \n","2222 have_sugar have_not_sweetener_without_sugar fatty \n","2223 have_sugar have_not_sweetener_without_sugar fatty \n","\n"," second_taste third_taste fourth_taste \n","0 blackberry full body NaN \n","1 vegetal savory NaN \n","2 fatty bready NaN \n","3 melon roasty NaN \n","4 nutty NaN NaN \n","... ... ... ... \n","2219 cloying vegetal NaN \n","2220 marshmallow NaN NaN \n","2221 roasty accessible NaN \n","2222 mild nuts mild fruit NaN \n","2223 earthy cocoa NaN \n","\n","[2224 rows x 18 columns]"],"text/html":["\n","
\n","
\n","
\n","\n","
\n"," \n"," \n"," | \n"," company | \n"," company_location | \n"," review_date | \n"," country_of_bean_origin | \n"," cocoa_percent | \n"," rating | \n"," counts_of_ingredients | \n"," beans | \n"," cocoa_butter | \n"," vanilla | \n"," lecithin | \n"," salt | \n"," sugar | \n"," sweetener_without_sugar | \n"," first_taste | \n"," second_taste | \n"," third_taste | \n"," fourth_taste | \n","
\n"," \n"," \n"," \n"," 0 | \n"," 5150 | \n"," U.S.A | \n"," 2019 | \n"," Madagascar | \n"," 76.0 | \n"," 3.75 | \n"," 3 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_not_lecithin | \n"," have_not_salt | \n"," have_sugar | \n"," have_not_sweetener_without_sugar | \n"," cocoa | \n"," blackberry | \n"," full body | \n"," NaN | \n","
\n"," \n"," 1 | \n"," 5150 | \n"," U.S.A | \n"," 2019 | \n"," Dominican republic | \n"," 76.0 | \n"," 3.50 | \n"," 3 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_not_lecithin | \n"," have_not_salt | \n"," have_sugar | \n"," have_not_sweetener_without_sugar | \n"," cocoa | \n"," vegetal | \n"," savory | \n"," NaN | \n","
\n"," \n"," 2 | \n"," 5150 | \n"," U.S.A | \n"," 2019 | \n"," Tanzania | \n"," 76.0 | \n"," 3.25 | \n"," 3 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_not_lecithin | \n"," have_not_salt | \n"," have_sugar | \n"," have_not_sweetener_without_sugar | \n"," rich cocoa | \n"," fatty | \n"," bready | \n"," NaN | \n","
\n"," \n"," 3 | \n"," A. Morin | \n"," France | \n"," 2012 | \n"," Peru | \n"," 63.0 | \n"," 3.75 | \n"," 4 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_lecithin | \n"," have_not_salt | \n"," have_sugar | \n"," have_not_sweetener_without_sugar | \n"," fruity | \n"," melon | \n"," roasty | \n"," NaN | \n","
\n"," \n"," 4 | \n"," A. Morin | \n"," France | \n"," 2012 | \n"," Bolivia | \n"," 70.0 | \n"," 3.50 | \n"," 4 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_lecithin | \n"," have_not_salt | \n"," have_sugar | \n"," have_not_sweetener_without_sugar | \n"," vegetal | \n"," nutty | \n"," NaN | \n"," NaN | \n","
\n"," \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n","
\n"," \n"," 2219 | \n"," Zotter | \n"," Austria | \n"," 2014 | \n"," Blend | \n"," 80.0 | \n"," 2.75 | \n"," 4 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_not_lecithin | \n"," have_salt | \n"," have_not_sugar | \n"," have_sweetener_without_sugar | \n"," waxy | \n"," cloying | \n"," vegetal | \n"," NaN | \n","
\n"," \n"," 2220 | \n"," Zotter | \n"," Austria | \n"," 2017 | \n"," Colombia | \n"," 75.0 | \n"," 3.75 | \n"," 3 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_not_lecithin | \n"," have_not_salt | \n"," have_sugar | \n"," have_not_sweetener_without_sugar | \n"," strong nutty | \n"," marshmallow | \n"," NaN | \n"," NaN | \n","
\n"," \n"," 2221 | \n"," Zotter | \n"," Austria | \n"," 2018 | \n"," Belize | \n"," 72.0 | \n"," 3.50 | \n"," 3 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_not_lecithin | \n"," have_not_salt | \n"," have_sugar | \n"," have_not_sweetener_without_sugar | \n"," muted | \n"," roasty | \n"," accessible | \n"," NaN | \n","
\n"," \n"," 2222 | \n"," Zotter | \n"," Austria | \n"," 2018 | \n"," Congo | \n"," 70.0 | \n"," 3.25 | \n"," 3 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_not_lecithin | \n"," have_not_salt | \n"," have_sugar | \n"," have_not_sweetener_without_sugar | \n"," fatty | \n"," mild nuts | \n"," mild fruit | \n"," NaN | \n","
\n"," \n"," 2223 | \n"," Zotter | \n"," Austria | \n"," 2018 | \n"," Blend | \n"," 75.0 | \n"," 3.00 | \n"," 3 | \n"," have_bean | \n"," have_cocoa_butter | \n"," have_not_vanila | \n"," have_not_lecithin | \n"," have_not_salt | \n"," have_sugar | \n"," have_not_sweetener_without_sugar | \n"," fatty | \n"," earthy | \n"," cocoa | \n"," NaN | \n","
\n"," \n","
\n","
2224 rows × 18 columns
\n","
\n","
\n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":32}],"source":["# Loading the data\n","chocolateratings_df = mldatasets.load(\"chocolate-bar-ratings\")\n","chocolateratings_df"]},{"cell_type":"code","execution_count":33,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":363},"executionInfo":{"elapsed":6,"status":"ok","timestamp":1648016484183,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"},"user_tz":-540},"id":"9yAitXXSg74n","outputId":"a564b660-b9d0-401d-9252-d8e23011f18f"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" first_taste second_taste third_taste fourth_taste\n","80 oily vegetal nutty cocoa\n","81 oily vanilla melon cocoa\n","82 rich sour mild smoke NaN\n","83 fruity sour NaN NaN\n","84 high roast high astringnet NaN NaN\n","85 smokey savory NaN NaN\n","86 sandy roasty nutty NaN\n","87 roasty brownie nutty NaN\n","88 red wine rich cocoa long NaN\n","89 creamy fruit cocoa NaN"],"text/html":["\n"," \n","
\n","
\n","\n","
\n"," \n"," \n"," | \n"," first_taste | \n"," second_taste | \n"," third_taste | \n"," fourth_taste | \n","
\n"," \n"," \n"," \n"," 80 | \n"," oily | \n"," vegetal | \n"," nutty | \n"," cocoa | \n","
\n"," \n"," 81 | \n"," oily | \n"," vanilla | \n"," melon | \n"," cocoa | \n","
\n"," \n"," 82 | \n"," rich | \n"," sour | \n"," mild smoke | \n"," NaN | \n","
\n"," \n"," 83 | \n"," fruity | \n"," sour | \n"," NaN | \n"," NaN | \n","
\n"," \n"," 84 | \n"," high roast | \n"," high astringnet | \n"," NaN | \n"," NaN | \n","
\n"," \n"," 85 | \n"," smokey | \n"," savory | \n"," NaN | \n"," NaN | \n","
\n"," \n"," 86 | \n"," sandy | \n"," roasty | \n"," nutty | \n"," NaN | \n","
\n"," \n"," 87 | \n"," roasty | \n"," brownie | \n"," nutty | \n"," NaN | \n","
\n"," \n"," 88 | \n"," red wine | \n"," rich cocoa | \n"," long | \n"," NaN | \n","
\n"," \n"," 89 | \n"," creamy | \n"," fruit | \n"," cocoa | \n"," NaN | \n","
\n"," \n","
\n","
\n","
\n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":33}],"source":["# Set aside the text features for using them on the NLP model later.\n","tastes_df = chocolateratings_df[['first_taste', 'second_taste', 'third_taste', 'fourth_taste']]\n","chocolateratings_df = chocolateratings_df.drop(['first_taste', 'second_taste', 'third_taste', 'fourth_taste'], axis=1)\n","tastes_df.head(90).tail(10)"]},{"cell_type":"code","execution_count":34,"metadata":{"id":"g9aZ4lXLg77J","executionInfo":{"status":"ok","timestamp":1648016484183,"user_tz":-540,"elapsed":5,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"outputs":[],"source":["#Change to 'Other' category if the number of items are fewer than 3.3333%\n","chocolateratings_df = mldatasets.make_dummies_with_limits(chocolateratings_df, 'company_location', 0.03333)\n","chocolateratings_df = mldatasets.make_dummies_with_limits(chocolateratings_df, 'country_of_bean_origin', 0.03333)"]},{"cell_type":"code","execution_count":35,"metadata":{"id":"aBHxZqH-g791","executionInfo":{"status":"ok","timestamp":1648016484183,"user_tz":-540,"elapsed":5,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"outputs":[],"source":["chocolateratings_df = chocolateratings_df.drop(['beans'], axis=1)\n","binary_features = ['cocoa_butter', 'vanilla', 'lecithin', 'salt', 'sugar', 'sweetener_without_sugar']\n","chocolateratings_df[binary_features] = chocolateratings_df[binary_features].apply(lambda x: np.where(x.str.contains('_not_'), 0, 1))"]},{"cell_type":"code","execution_count":36,"metadata":{"id":"ZN8dobDkg8AL","executionInfo":{"status":"ok","timestamp":1648016484184,"user_tz":-540,"elapsed":5,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"outputs":[],"source":["stop = stopwords.words('english')"]},{"cell_type":"code","execution_count":37,"metadata":{"id":"4MW27lTng8Cr","executionInfo":{"status":"ok","timestamp":1648016484184,"user_tz":-540,"elapsed":5,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"outputs":[],"source":["trans_dict = {'?':'', '&':'', 'overly intense':'intensest',\\\n"," 'overly sweet':'sweetest', 'overly tart':'tartest',\\\n"," 'sl. bitter':'bitterness', 'sl. burnt':'burntness',\\\n"," 'sl. sweet':'sweetness', 'sl. dry':'dryness',\\\n"," 'sl. chalky':'chalkiness', 'sl. Burnt':'burntness',\\\n"," 'hints fruit':'fruitiness', 'hint fruit':'fruitiness',\\\n"," 'high acid':'acidic', 'high acidity':'acidic',\\\n"," 'moderate acidity':'acid', 'high roast':'roast',\\\n"," 'astringcy':'astringent', 'astringnet':'astringent',\\\n"," 'full body':'robust', 'astringency':'astringent',\\\n"," 'high astringent':'acidic', 'rich cocoa':'rich',\\\n"," 'mild bitter':'bitterish', 'fruit long':'fruit',\\\n"," 'base cocoa':'basic', 'basic cocoa':'basic', '-like':'',\\\n"," 'smomkey':'smokey', 'true':'real', '(n)':'', '/':' ',\\\n"," '-':' ', ' +':' ' }\n","trans_regex = re.compile(\"|\".join(map(re.escape, trans_dict.keys( ))))"]},{"cell_type":"code","execution_count":38,"metadata":{"id":"pOqvLgq_g8FB","executionInfo":{"status":"ok","timestamp":1648016484737,"user_tz":-540,"elapsed":558,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"outputs":[],"source":["tastes_s = tastes_df.replace(np.nan, '', regex=True).\\\n"," agg(' '.join, axis=1).str.strip().str.lower().\\\n"," apply(lambda s: trans_regex.sub(lambda match:\\\n"," trans_dict[match.group(0)], s)).\\\n"," apply(lambda s: ' '.join([word for word in s.split()\\\n"," if word not in (stop)]))"]},{"cell_type":"code","execution_count":39,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":7,"status":"ok","timestamp":1648016484737,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"},"user_tz":-540},"id":"QJZLmxOmxAqq","outputId":"412ae969-edc8-450c-e0fa-4abd4d46e6bc"},"outputs":[{"output_type":"stream","name":"stdout","text":["0 cocoa blackberry robust\n","1 cocoa vegetal savory\n","2 rich fatty bready\n","3 fruity melon roasty\n","4 vegetal nutty\n"," ... \n","2219 waxy cloying vegetal\n","2220 strong nutty marshmallow\n","2221 muted roasty accessible\n","2222 fatty mild nuts mild fruit\n","2223 fatty earthy cocoa\n","Length: 2224, dtype: object\n"]}],"source":["print(tastes_s)"]},{"cell_type":"code","execution_count":40,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":6,"status":"ok","timestamp":1648016484737,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"},"user_tz":-540},"id":"1aWmyDLm1Lqd","outputId":"1fcd4c43-8dbd-4c22-837e-31e797592f9a"},"outputs":[{"output_type":"stream","name":"stdout","text":["['cocoa', 'rich', 'fatty', 'roasty', 'nutty', 'sweet', 'sandy', 'sour', 'intense', 'mild', 'fruit', 'sticky', 'earthy', 'spice', 'molasses', 'floral', 'spicy', 'woody', 'coffee', 'berry', 'vanilla', 'creamy']\n"]}],"source":["tastewords_fdist = FreqDist(word for word in word_tokenize(tastes_s.str.cat(sep=' ')))\n","tastewords_df = pd.DataFrame.from_dict(tastewords_fdist, orient='index').rename(columns={0:'freq'})\n","commontastes_l = tastewords_df[tastewords_df.freq > 74].index.to_list()\n","print(commontastes_l)"]},{"cell_type":"code","execution_count":41,"metadata":{"id":"FtauWyjJ1LtM","executionInfo":{"status":"ok","timestamp":1648016484737,"user_tz":-540,"elapsed":5,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"outputs":[],"source":["chocolateratings_df['tastes'] = tastes_s "]},{"cell_type":"code","execution_count":42,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":6,"status":"ok","timestamp":1648016484738,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"},"user_tz":-540},"id":"LPY4HSNL6C9S","outputId":"7092bb08-a62d-4b7c-a706-100ed8b11fe5"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","RangeIndex: 2224 entries, 0 to 2223\n","Data columns (total 25 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 company 2224 non-null object \n"," 1 review_date 2224 non-null int64 \n"," 2 cocoa_percent 2224 non-null float64\n"," 3 rating 2224 non-null float64\n"," 4 counts_of_ingredients 2224 non-null int64 \n"," 5 cocoa_butter 2224 non-null int64 \n"," 6 vanilla 2224 non-null int64 \n"," 7 lecithin 2224 non-null int64 \n"," 8 salt 2224 non-null int64 \n"," 9 sugar 2224 non-null int64 \n"," 10 sweetener_without_sugar 2224 non-null int64 \n"," 11 company_location_Canada 2224 non-null uint8 \n"," 12 company_location_France 2224 non-null uint8 \n"," 13 company_location_Other 2224 non-null uint8 \n"," 14 company_location_U.S.A 2224 non-null uint8 \n"," 15 company_location_U.k. 2224 non-null uint8 \n"," 16 country_of_bean_origin_Blend 2224 non-null uint8 \n"," 17 country_of_bean_origin_Dominican_republic 2224 non-null uint8 \n"," 18 country_of_bean_origin_Ecuador 2224 non-null uint8 \n"," 19 country_of_bean_origin_Madagascar 2224 non-null uint8 \n"," 20 country_of_bean_origin_Nicaragua 2224 non-null uint8 \n"," 21 country_of_bean_origin_Other 2224 non-null uint8 \n"," 22 country_of_bean_origin_Peru 2224 non-null uint8 \n"," 23 country_of_bean_origin_Venezuela 2224 non-null uint8 \n"," 24 tastes 2224 non-null object \n","dtypes: float64(2), int64(8), object(2), uint8(13)\n","memory usage: 236.9+ KB\n"]}],"source":["chocolateratings_df.info() "]},{"cell_type":"code","execution_count":43,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":5,"status":"ok","timestamp":1648016484738,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"},"user_tz":-540},"id":"oHr1jazH6ESd","outputId":"97123719-0dfd-4991-d0ea-361e09a8ecd0"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","RangeIndex: 2224 entries, 0 to 2223\n","Data columns (total 46 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 company 2224 non-null object \n"," 1 review_date 2224 non-null int64 \n"," 2 cocoa_percent 2224 non-null float64\n"," 3 rating 2224 non-null float64\n"," 4 counts_of_ingredients 2224 non-null int64 \n"," 5 cocoa_butter 2224 non-null int64 \n"," 6 vanilla 2224 non-null int64 \n"," 7 lecithin 2224 non-null int64 \n"," 8 salt 2224 non-null int64 \n"," 9 sugar 2224 non-null int64 \n"," 10 sweetener_without_sugar 2224 non-null int64 \n"," 11 company_location_Canada 2224 non-null uint8 \n"," 12 company_location_France 2224 non-null uint8 \n"," 13 company_location_Other 2224 non-null uint8 \n"," 14 company_location_U.S.A 2224 non-null uint8 \n"," 15 company_location_U.k. 2224 non-null uint8 \n"," 16 country_of_bean_origin_Blend 2224 non-null uint8 \n"," 17 country_of_bean_origin_Dominican_republic 2224 non-null uint8 \n"," 18 country_of_bean_origin_Ecuador 2224 non-null uint8 \n"," 19 country_of_bean_origin_Madagascar 2224 non-null uint8 \n"," 20 country_of_bean_origin_Nicaragua 2224 non-null uint8 \n"," 21 country_of_bean_origin_Other 2224 non-null uint8 \n"," 22 country_of_bean_origin_Peru 2224 non-null uint8 \n"," 23 country_of_bean_origin_Venezuela 2224 non-null uint8 \n"," 24 tastes_cocoa 2224 non-null int64 \n"," 25 tastes_rich 2224 non-null int64 \n"," 26 tastes_fatty 2224 non-null int64 \n"," 27 tastes_roasty 2224 non-null int64 \n"," 28 tastes_nutty 2224 non-null int64 \n"," 29 tastes_sweet 2224 non-null int64 \n"," 30 tastes_sandy 2224 non-null int64 \n"," 31 tastes_sour 2224 non-null int64 \n"," 32 tastes_intense 2224 non-null int64 \n"," 33 tastes_mild 2224 non-null int64 \n"," 34 tastes_fruit 2224 non-null int64 \n"," 35 tastes_sticky 2224 non-null int64 \n"," 36 tastes_earthy 2224 non-null int64 \n"," 37 tastes_spice 2224 non-null int64 \n"," 38 tastes_molasses 2224 non-null int64 \n"," 39 tastes_floral 2224 non-null int64 \n"," 40 tastes_spicy 2224 non-null int64 \n"," 41 tastes_woody 2224 non-null int64 \n"," 42 tastes_coffee 2224 non-null int64 \n"," 43 tastes_berry 2224 non-null int64 \n"," 44 tastes_vanilla 2224 non-null int64 \n"," 45 tastes_creamy 2224 non-null int64 \n","dtypes: float64(2), int64(30), object(1), uint8(13)\n","memory usage: 601.7+ KB\n"]}],"source":["chocolateratings_df = mldatasets.make_dummies_from_dict(chocolateratings_df,\\\n"," 'tastes', commontastes_l)\n","chocolateratings_df.info() "]},{"cell_type":"code","execution_count":44,"metadata":{"id":"ZaiJlhFp1LwT","executionInfo":{"status":"ok","timestamp":1648016484738,"user_tz":-540,"elapsed":4,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"outputs":[],"source":["rand = 9\n","y = chocolateratings_df['rating'].\\\n"," apply(lambda x: 1 if x >= 3.5 else 0)\n","X = chocolateratings_df.drop(['rating','company'], axis=1).copy()\n","X_train, X_test, y_train, y_test = train_test_split(X, y,\\\n"," test_size=0.33, random_state=rand)"]},{"cell_type":"code","execution_count":45,"metadata":{"id":"H5Lhv9cW1Ly6","executionInfo":{"status":"ok","timestamp":1648016484738,"user_tz":-540,"elapsed":4,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"outputs":[],"source":["X_train_nlp = tastes_s[X_train.index]\n","X_test_nlp = tastes_s[X_test.index]"]},{"cell_type":"markdown","metadata":{"id":"NlqLfDljf8_W"},"source":["# **Local interpretation for a single prediction at a time using LimeTabularExplainer**"]},{"cell_type":"code","execution_count":46,"metadata":{"id":"AkZDkcji2725","colab":{"base_uri":"https://localhost:8080/","height":785},"executionInfo":{"status":"ok","timestamp":1648016486630,"user_tz":-540,"elapsed":1896,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}},"outputId":"16ddf378-e475-42c0-c8ff-89437c929e4b"},"outputs":[{"output_type":"display_data","data":{"text/plain":[""],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAuMAAALICAYAAADVFv5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZzN9eLH8ffs+27GMpaRbaxRyBJFpESLtKeIsUaWsoREpBQuGbKVtKnbJpVWlXS7SpTsOzGMMfs+Z/n+/ujeuT/ZBnPO95w5r+fj0SPne77nzDt9nXn7zOf7+XgZhmEIAAAAgNN5mx0AAAAA8FSUcQAAAMAklHEAAADAJJRxAAAAwCSUcQAAAMAklHEAAADAJJRxAAAAwCROLeNvvPGGevXqpSZNmmj8+PHnPXfFihVq3769rrrqKk2YMEElJSVOSgkAAAA4h1PLeFxcnIYOHao777zzvOf98MMPWrJkiVasWKFvv/1WR48e1fz5852UEgAAAHAOp5bxG2+8UV26dFFkZOR5z/voo4/Uu3dv1atXTxERERo6dKg+/PBDJ6UEAAAAnMMl54zv3btXiYmJpY8bNGigU6dOKTMz08RUAAAAQPlyyTJeUFCg0NDQ0sdhYWGSpPz8fLMiAQAAAOXO1+wAZxMcHKy8vLzSx//9dUhIyEW9T2Zmvux2o1yzwb3FxIQqPT3vwifCo3Bd4O+4JnA2XBdlY7HatWFrioot9kt+j60H0uXr46XRdzcvx2Tl59tvv9Hs2c+pffsOevHFWZf1Xi5ZxuvVq6fdu3ere/fukqRdu3apUqVKioqKuqj3sdsNyjjOwDWBs+G6wN9xTeBsuC4ubM+RTL32+W55eUneXl6X/D6tEuNc8vd7w4b1GjlymFq2bK2RI5+47Pdzahm3Wq2y2Wyy2+2y2WwqLi6Wj4+PfH1Pj3HbbbdpwoQJ6tmzp+Li4rRo0SLdcccdzowKAACAi5SdV6yDJ3IlSePuv0r1a5x/0Q53dPXVrdSvX5KSkoYoKCjost/PqXPGFy1apGbNmmnJkiX6+OOP1axZMy1atEgpKSlq0aKFUlJSJEkdO3bUgAED9NBDD+n6669XfHy8RowY4cyoAAAAuEjLPtmh977bL0kKCnDJCRiX7IsvPlNeXp6CgoI0YsTocinikuRlGIbrjf+Xk/T0PJf88QbMExsbprS0XLNjwMVwXeDvuCZwNlwX/2MYhmxn6VjPvblZdruhR7o3VHxsiLwuY5qKK1m58hXNmTNLAwcO1dCh/xsg9vb2UkxM6HleeWEV668sAAAAcLiXV2/XL7tOnvW5JldEq3rc5RVUV7Js2ctasOAf6tr1JiUlDSn396eMAwAA4KKkZhSoakyw2jaucsZzTa6INiFR+TMMQy+/vECLFyere/eemjZt5hn3OZYHyjgAAAB0IqNAKz/fJYvtwksSnsgsUKNa0erRLsHxwUySk5Otjz56X7feeoemTJkuHx8fh3wdyjgAAAB0ICVbu45kqW71CAX4nn+Nj3rxEWrTuLKTkjmXYRgyDEMREZF6/fV3VKlSrLy9HbfmCWUcAADAw23Zm6Zfdv41B3zALQ0VFxVsciJz2O12zZo1Q3a7oQkTJisuzvF/4XDq0oYAAABwPau+2aut+9MVGeqvsGB/s+OYwm63a8aMp7Vq1ZsKDAxw2tdlZBwAAMADpWUVKjWzQJJUXGJT2yZVNKBHI5NTmcNms2nq1En6+OMP1b//ID366EinLctIGQcAAPBAc9/9XScyCkofB/l7bi185pmn9PHHH2rIkOEaOHCoU9dH99zfdQAAAA9WbLGpWZ0Y9WibIEmqUbnirA1+sTp37qJatRLUr1+S0782ZRwAAMBDhYf4q271CLNjmKKkpERbtvyqa65pq44dO6ljx06m5OAGTgAAAHiU4uJijR49XEOHDtCRI4dNzcLIOAAAwGWwWO16efU25RSUmB3louTku1fe8lJYWKhRo4Zp48afNGnSVNWsWcvUPJRxAACAy5CZV6wte08pvlKIIkPdZ1nAxFpRatkgzuwYTlVQkK8RI4bo119/0dNPz9Btt/UyOxJlHAAAoCzsdkOfbzyivELLaccLiv56fNM1NdW+aVUzoqGMvvhirbZs+VUzZsxS9+49zY4jiTIOAABQJsfS8vTut/vk7eWlv++OHujvo8oeumulO7n99jvVpElT1avXwOwopSjjAAAAZWAYhiRp4K2N1Lqh47dJR/nIzs7ShAmPa9SoJ1SvXgOXKuISq6kAAACggsrIyFBS0sPatOlnnTx50uw4Z8XIOAAAqJBsdrvs9vJ7P2s5vhcc79SpNA0c2E/Hjv2pefMWqW3b9mZHOivKOAAAqHCOpeVp6opNstrKv0H7eDtvq3RcmlOn0tS/fx+lpqZqwYLFatWqjdmRzokyDgAAKpzM3GJZbXZd37yaYiICy+U9Q0ICVFJsVePa0eXyfnCcsLBw1avXQE8/PUMtWlxtdpzzoowDAIAKq13TqqobXz7bvcfGhiktLbdc3guOcezYUYWFhSk8PEIvvjjP7Dhlwg2cAAAAcHtHjhzWI488qAkTHjc7ykVhZBwAALitwmKrvtr0p0osp88NT8sqNCkRzHDw4AENHPiwrFarRowYY3aci0IZBwAAbmv3kSx99MNB+Xh7yetv91WGBvkpOizAnGBwmn379mjgwH7y8vLS0qUrVbduPbMjXRTKOAAAcFv/3Yhn0kMtVatKmMlp4GyGYWjKlIny8fHR0qUrlJBwhdmRLhplHAAAAG7Jy8tLs2bNlc1mU82atcyOc0m4gRMAALg0u2HIYrWd9R+r3TA7Hkzw++9b9PzzM2S32xUfX91ti7jEyDgAAHBx89/bqq370897DhvxeI5ff/1Fw4cPUkxMrAYOHKqoqCizI10WyjgAAHBpqRkFqh4bqmsaxZ31+eBAP1WLDXFyKphh48af9NhjQ1W1alUtXvyq2xdxiTIOAABc1ImMAr22dpfSc4p1dYNY3dI2wexIMNG//vWDRo16VDVq1NTixa8qJqaS2ZHKBXPGAQCASzqYkqPdf2bpiqphat3w7KPi8BxeXt5q0CBRS5eurDBFXGJkHAAAuKAte9K0cWeqJKnfLQ1VOSrY5EQwy/HjKapatZratm2vNm3ayevvC8q7OUbGAQCAy3ln3T79sT9dUWEBCg/2NzsOTPLFF5+pZ89u+u67dZJU4Yq4xMg4AAAwmdVm194/s05bprDIYlObxlWU1LORiclgpk8//ViTJ49X8+ZXqVWr1mbHcRjKOAAAMNWm3Se15OMdZxwPCvAxIQ1cwUcfva+pUyepVatrNG/eQgUFVdxpSpRxAABgqhKLXZI0/M6mp01JqREXalYkmGjXrp16+umJatu2vebOTVZgYKDZkRyKMg4AAFxCrcphig6v2MULF5aY2FDPPTdbnTp1UUBAgNlxHI4bOAEAAGC6N99cqR07tkmSbrrpFo8o4hIj4wAAwAR/nszTm1/ultVuKCe/xOw4MNnSpYuUnDxPd955txo1amJ2HKdiZBwAADjdvmPZ2nM0W/6+3qoSHaz2TasoMtQzRkLxP4ZhaOHC+UpOnqcePW7ThAlPmR3J6RgZBwAATvXLrpPavCdNkjTo1saKoIR7JMMwNH/+HL366lLdfvudmjx5mnx8PG8FHco4AABwqje/2qPcghLFRgYqOJAq4qlsNpsOHNinu+66VxMmPCVvb8+csMGfAAAAUGbFFpv2Hs2S3X7p72Gx2nR983j16dag/ILBbdjtduXn5yssLEwvvjhPvr5+FXJnzbKijAMAgDJb9+tR/fO7/Zf9PkEBVBBPZLfb9cwzU7R9+1a99trbFXozn7LiTwIAACgTu91QQbFVkjTxoasv+X285MWGPh7IZrNpypQn9cknq5WUNESBgUFmR3IJlHEAAHBBhmFo/OKfdCq7SD7eXqpTLcLsSHAjVqtVkyaN0+eff6qhQ0do4MChZkdyGZRxAABwQYYhncouUuOEKF3forrZceBm5s17UZ9//qkee2yM+vVLMjuOS6GMAwCA89p5KEMfrD8gSapXI1JXN4g1ORHczYMP9lXt2nXUq9ddZkdxOZ65hgwAACizHYcztT8lR83qxKhZnRiz48BNFBcX6/XXX5XNZlPlylUo4ufAyDgAALggH28vjbzrSrNjwE0UFhZq5Mhh+vnnn5SY2FCtWrUxO5LLoowDAIBzslht2rwnTdHh7JKJsikoyNeIEUO0efMmTZ36LEX8ApimAgAAzumjHw7qeHoBG/SgTPLy8jR0aJK2bPlVM2bM0q233mF2JJfHyDgAADgrq82uL3/5U20bV1GT2swVx4UdPHhA+/bt1fPPz1GXLt3MjuMWKOMAAOA0NrtdNpshq80um91QtUrskojzs1hK5Ofnr6ZNm+mzz75ReHi42ZHcBmUcAACUstntGrvoJ2XmFpce8/b2MjERXF1GRroGD35Ed999n3r3vpcifpEo4wAAoJTVaigzt1hNr4hRg5qR8vbyUtsmVcyOBReVlnZSgwb1U0rKMVWvXtPsOG6JMg4AgAf7fd8pffzjIUmGJMlu/+t4Yq1I3XxNLdNywfWlpqZq4MCHdfLkSS1YsEQtW7Y2O5JboowDAODBth3M0JHUXDVKiC491rxuJW7YxHkVFhZowIA+yshI18KFy9SixVVmR3JblHEAADzA0ZN5+mn7if+Mf//P3qNZCvT30ai72dAHZRcUFKz77++jJk2uVNOmzcyO49Yo4wAAeIB1m4/qu99S5O975hYjdatHmJAI7ujw4YPKzs5Ws2bNdd99fcyOUyFQxgEAqEDyiyzafyz7jOOnsosUEeqvuY9ea0IqVAT79+/ToEH9FBQUrA8//FS+vtTI8sDvIgAAFcj73x/Qd1uOnfW5qjGsF45Ls2fPbg0a1E8+Pj76xz+SKeLliN9JAADchGEYKrHaz3tOYbFVEaH+Gt7rzHm8lSICHRUNFdjOnds1ePAjCggI1NKlK1SrVm2zI1UolHEAANyAYRhaumaH/r0j9YLnVo4K0hXV2HgF5ePdd99WcHCIlixZoRo1WEu8vFHGAQBwA//adkL/3pGqa5tWveB0k4SqFHFcPsMw5OXlpSefnKLMzAzFxVU2O1KFRBkHAMDF5RdZ9PbXe1WveoT63pzI9vRwuE2bftY//vGi5s9fpOjoGIq4A525vhEAAHApp7KKVFBs1Y2talDE4XAbN/6kRx8dqIKCfNlsNrPjVHiUcQAA3IS3F0UcjvXjjz9oxIjBqlGjppYtW6nY2DizI1V4lHEAAADop59+1MiRQ1W7dh0tXfqaoqNjzI7kESjjAAAAUL169dWlSzctWfKqIiOjzI7jMSjjAAAAHmzTpp9lsVhUqVKsZs58UeHhEWZH8iiUcQAAXIjVZldxie20fywX2OgHuFRr1nykgQP7asWK5WZH8VgsbQgAgIs4lVWoics2nrN8s5IKytOHH76nadMmq3XrNnrwwYfMjuOxKOMAALiIrPwSWax2dWhWVVX+trGPv6+PGtZiHi/Kx7vvvq1nn52q9u07aPbslxQYGGh2JI9FGQcAwCRfbfpTP207Ufq42PLXms6tEuPU5ApWsoBjZGSka968F3XddZ30wgvz5O/vb3Ykj0YZBwDAJFv2pCktq1B14v93w1x8bKhqVQkzMRUquujoGK1Y8ZYSEmrLz48ibjbKOAAAJoqPDdXIu640OwY8wNKlixQYGKQ+ffqqXr0GZsfBf7CaCgAAQAVmGIaSk+cpOXmedu/eKcMwzI6E/4eRcQAAnMBuGNpzJKt0Xrgk5RZaFBLoZ2IqVHSGYWjevNlasWKZ7rijtyZNmiovL1blcSWUcQAAnGD/sWzNenvLGceb161kQhp4itmzn9Mbb7ymu+66TxMmTJa3N5MiXA1lHACAcmI3DFksZ18jPK/QIknqe3OiasSFlh6vEh181vOB8lC9ek098MDDevzx8YyIuyjKOAAA5WThh9u0eU/aec+pHhuq2lXDnZQInshut+vgwQOqU6eu7r33AbPj4AIo4wAAlJO0rEJVqxSi9k2rnPX5IH9f1aoSetbngPJgs9k0ZcqT+uabr/T++2tUrVq82ZFwAZRxAAAuQWpmgV75dOdpW9efyChQk9rRuvmaWiYmg6eyWCyaPHmcPv/8Mw0b9hhF3E1QxgEAuASHT+Rq79Fs1a8eocCAv76dhof4q23js4+KA45ksZRo/Pgx+uabrzRy5BPq27e/2ZFQRpRxAADOI7egRF/+8qesttNvzDyRXiBJ6nNTouIrhZgRDSj1z3+u0jfffKUnnnhSDzzwkNlxcBEo4wAAnMe2Axn69KfD8vf1PmM1iujwAEWGsp04zHf33fcrIeEKtWt3rdlRcJEo4wAAj2Kx2rT7SJas9nPvQhiRlq/s7EJJ0qETuZKkaQOuUVxkkFMyAmVRWFigWbOe1ZAhwxUXV5ki7qYo4wAAj/KvbSf02ue7L+o1XpIC/X0cEwi4BPn5eRo+fLB++22zrr22o2644UazI+ESUcYBAB6l5D+b8jxxb/PSGy//LioqWJmZBaWPQ4P8FB7MdBS4htzcXA0blqTt2//QzJkvUsTdHGUcAOCRalYJU0ig31mfi40NU1og3yLhenJysjVkyADt3r1Ls2bNpYhXAHzSAAAAuAmbzS7DMDRnznx17NjJ7DgoB5RxAIDHWPnFbv2+75TZMYCLlpmZqZCQEEVFRemNN96Vt7e32ZFQTvg/CQDwGBt3nJCPt5c6tYhX8DnmiwOuJi3tpB555AFNmfKkJFHEKxj+bwIAKryMnCL987t9KrHY1aJerPp0a3DGmuGAK0pNPaH+/fsoNfWEeve+x+w4cACGBQAAFd6mXSe19t9HFODvoxpxoWbHAcrk2LGjGjiwr7Kzs7Ro0XJdeWULsyPBASjjAIAKqcRi0+4/s2SzGzp6Kl+SNGdYewUxPQVuwG63a9SoR5WTk6OXX35VTZo0NTsSHIRPJABAhbT+9xS99fXe0sd+vt7y9WF2JtyDt7e3Jk+eJj8/XyUmNjI7DhyIMg4AcCtWm10Wq/2C5xUUWSVJ4x+4Sn6+3ooI8ZefL2Ucrm3//n3auPFfuv/+h9S0aTOz48AJKOMAALdhNwyNe/knZeYWl+l8L0m1q4ZTwuEW9uzZrUGD+snX10c9etym8PAIsyPBCSjjAAC3YbcbyswtVpMrotWoVvQFz4+NDKSIwy3s3Lldgwc/osDAIC1ZsoIi7kEo4wAAt1O/eqRuuqam2TGAcvHHH1s1dOgAhYaGaunS11S9eg2zI8GJGC4AAAAw0YED+xQZGanly1+niHsgRsYBAC7reHq+fvj9uOyGIUml/wYqgvz8PIWEhOq223qpW7fuCgwMNDsSTMDIOADAZf2w9bg+//mIvv89Rd//nqIfth5XUICv4mNDzI4GXJZ///tf6t79Bm3evEmSKOIejJFxAICpDh7PUXZeyVmfS80oUICfjxaNvs7JqQDH2bBhvUaPflS1aiUoIaG22XFgMso4AMA0BUVWTX9tk843+SQqLMBpeQBH++67dXriicdUt249LVq0XJGRUWZHgsko4wAAhzIMQ0UltrM+l1dkkSHp5jY11Sox7qznRIXx43tUDNu2/aHHHx+hxMRGWrhwmcLDw82OBBdAGQcAONTqDQf18Y+HzntObGSQEqpQTFCxNWrUWEOHjtDdd9+v0NBQs+PARVDGAQAOdSq7SCGBvrqlbcJZn/f18VLrc4yKAxXBF198pqZNr1S1avF65JGBZseBi6GMAwAu6Nstx7T+t5RLeu2p7EIFBfiySQ880vvvv6vp06fo9tvv1JQp082OAxdEGQcAXNBve0/pZFah6le/+C26I0P9lViLm9TgeVatelPPPfeM2rfvqPHjJ5sdBy6KMg4AHmjbwXRtO5BR5vNTTuWrSnSQHrvrSgemAiqO119fodmzn9P119+gWbPmyt/f3+xIcFGUcQDwQB9vOKT9KdkK8PMp82ua1Y1xYCKg4igpKdFnn32sLl26aebMF+Xn52d2JLgwyjgAuDGb3a6dhzNlsdov6nV5hRY1qhWlMfe2cFAywDNZrVb5+/tr8eIVCg4Olq8vVQvnxxUCAG5s6750vfTBH5f02upxLK0GlBfDMJScPE87d27X3LnJrCGOMqOMA4AbsdsNFVv+t4FObqFFkjTsjiaqFBF0Ue9VJTq4XLMBnsowDM2d+4JWrnxFvXrdxWg4LgpXCwC4kRdXbdGuI1lnHK9ROUxxkRdXxgFcPsMwNGvWs3r77dd1zz33a9y4SfL29jY7FtwIZRwA3Mip7CLVqhKmNo0qlx4LDfJTbARbxgNmmD9/jt5++3X16dNXo0ePk5eXl9mR4GYo4wDg4lZ9s1e7jmRKkjJzi1W/RqS6tWYDHcAVdOvWXUFBQUpKGkIRxyWhjAOAi/tl10l5eUk148IUHRZ42qg4AOezWq367rtv1KVLNyUmNlRiYkOzI8GNObWMZ2VlaeLEifrxxx8VFRWl0aNHq2fPnmecV1JSounTp+vrr7+W1WrVVVddpalTp6pyZb4BAajYsvKK9dUvf8pmN0qPFRRZ1aphnB7pzjd8wGwWi0UTJ47Vl1+u1auvvqUWLa4yOxLcnFPL+LRp0+Tn56cff/xRO3fu1KBBg5SYmKh69eqddt5rr72m3377TR9//LHCwsI0efJkPfPMM1qwYIEz4wKA023Zk6a1G48owM9H//2Jt7e3VKtymLnBAKikpETjxo3WunVfafTosRRxlAunlfGCggJ9+eWXWrNmjUJCQtSyZUt17txZq1ev1uOPP37auUePHtW1116rSpUqSZK6d++umTNnOisqAJjmv+Phzw9uq/AQts8GXEVxcbEGDBimdeu+0bhxE3XffX3MjoQKwmll/NChQ/Lx8VHt2rVLjyUmJuqXX34549zevXtrxowZSk1NVXh4uNasWaOOHTte9NeMiWFDC5wpNpYRRpzJVa6L0NC/VkWJiQlVZFiAyWk8m6tcE3AN69dv0XfffafnnntOffpQxFF+nDoyHhp6ejkOCwtTfn7+GecmJCSoatWq6tixo3x8fFS/fn1Nnjz5or9menqe7P9v3iUQGxumtLRcs2PAxbjKdWGz25WRWSDpr88vS1GJyYk8l6tcEzCfYRjy8vJSw4YttH79eoWExHBtoJS3t9dlD/46bVX64OBg5eXlnXYsLy9PISEhZ5w7depUlZSUaOPGjfrtt9/UtWtXJSUlOSsqAJhi+spf9e63+yT99QEPwFz5+XkaPPgRbdiwXtJfg4VAeXNaGU9ISJDNZtOhQ4dKj+3atUt169Y949xdu3bpjjvuUGRkpPz9/dWnTx9t3bpVGRkZzooLAE6Xnl2kuvERGnxbY4UG+ZkdB/BoOTk5GjKkvzZt+lkFBQVmx0EF5rRpKsHBweratavmz5+v6dOna+fOnfrmm2+0atWqM85t2rSpVq9erWuuuUaBgYF66623FBcXp+joaGfFBQCH2p+SrTe/3HPaVLr8IotqVg5V64Ys4wqYKTs7S0OG9NeePXv0wgvz1LlzF7MjoQJz2si4JE2ZMkVFRUVq166dxowZo6efflr16tXTpk2b1KJFi9Lzxo4dK39/f914441q27atvv/+eyUnJzszKgA41L6j2Tp0IlcRoQGKDg9UdHigmtetpFaJcWZHAzxaXl6ekpL6au/ePZoz5yWKOBzOyzCMCnuHIzdw4u+4KQtnY8Z18elPh/T+9weUPKqjggLYDNnV8FnhuQzD0AsvzNS113ZQu3YdTnuO6wJ/Vx43cPIdAACcyDAMff9bilZvOKS4yCD5+zn1B5QAzuHkyVQVFxerRo2aGjv2SbPjwINQxgGgHB1JzVV6dtE5n9+4M1U/7zypxrWjldSjkXy8KeOA2U6cOK6kpL7y8/PTP/+5Wj4+PmZHggehjANAOXr29V9VYrWf83lvLy/ded0VurlNLXl7sXwhYLZjx45q4MC+ys7OUnLyUoo4nI4yDgDlpLDYqhKrXdc1r6brm8ef9ZywYD9Fhwc6ORmAszly5LAGDuyrgoICLV78qho3bmp2JHggyjgAlIP1v6doxdpdkqTo8EDVqsJW6oCrmz9/toqKCrVkyQolJjY0Ow48FGUcAMrBf+eJ39elHuuEA25iypQZSks7qSuuqGN2FHgwyjgAnMWWPWla/eNBqYyro2bll8hLUteWNRyaC8Dl2b17l5Yte1nTps1UWFiYwsL4KRbMRRkHgLPYcShTx9Ly1fSKmDKdHx0eqPjYEAenAnA5duzYpsGD+ysoKEgZGemKj69udiSAMg4A5xLo76MRvZuZHQNAOdi69TcNHZqk8PBwLV36GkUcLoMFbgEAQIW2ZctmDR78iKKiorR8+esUcbgURsYBeJy8Qov2/JlV+jj8RJ5ycgpPO+dkVuHfXwbATYWHhysxsZFmzpytypW5wRquhTIOwON8+MMBfbv52AXPi41kPXDAnR08eEAJCbVVp05dLV/+urzYaAsuiDIOwCMYhqHCYqskqaDIqogQf426+0pJUlRUiDIz8894TVRYgFMzAig/69d/pzFjhmv06LG6774+FHG4LMo4AI/wwfoD+vSnw6WP4yKDVLPyX0uaxcaGKc2fW2iAimLduq80duxo1a9fX9279zQ7DnBelHEAHiE9p0ihQX7q0S5BklSrcqi5gQA4xBdfrNWTTz6uxo2baMGCpQoPDzc7EnBelHEAFdaGrcf11aY/Jf21Q2ZokJ9ubMWmPEBFlZqaqsmTx6lZs+ZasGCxQkL4SzdcH2UcQIW17WC6TmYWqlFClCpFBCqxVpTZkQA4UOXKlTVv3iI1b95CQUHBZscByoQyDqBCsNnt+uRfh5VfZCk9dvhErqLCAjT8TjbuASqy9957R9HRMercuYvatm1vdhzgolDGAVQIx08VaPWGg/L39ZaPz/9uxmxRr5KJqQA42qpVb+i556arc+eu6tTpBlZNgduhjANwe9l5xdpxOFOSlNSzka5uEGdyIgDOsHLlK5ozZ5Y6deqi55+fTRGHW6KMA3B7q9bt08YdqZKk4AA+1gBPsHz5Yr300ni2ek0AACAASURBVFx17XqTnn32Bfn5+ZkdCbgkfNcC4NZKLDYVFltVOTpYI+5sqirR3LQFVHSGYSgjI0Pdu/fUtGkz5etLnYH74uoF4LYycoo0fvG/ZbXZlVAlTFVjQsyOBMCBDMNQZmaGoqNj9Pjj42W32+Xj42N2LOCysOUcALeVW2CR1WZXh2ZV9eCNDcyOA8CBDMPQnDnP6557blda2kl5eXlRxFEhUMYBuL3m9SrpimrssgdUVIZh6Pnnp+v111eoS5duqlQp1uxIQLlhmgoAAHBZdrtdM2Y8rffff1cPPdRPo0aNZdUUVCiUcQAA4LLeeGOF3n//XfXvP0iPPjqSIo4KhzIOAABcVu/e9yg8PEK33daLIo4KiTnjAADApVgsFr388gLl5+cpODhEt99+J0UcFRZlHAAAuIySkhI98cRIvfzyAm3YsN7sOIDDMU0FAAC4hOLiYo0ZM0IbNnyv8eMnqVu37mZHAhyOMg4AAExXWFiokSOH6eeff9KkSVPVu/c9ZkcCnIIyDgAATJeRka5Dhw7o6adn6LbbepkdB3AayjgAt7Ru81F9+cufZscAcJkKCwsVGBio+Pjq+uijzxQUFGx2JMCpuIETgFvauj9duQUWtWlUWVdUizA7DoBLkJOTo4ED+2ru3FmSRBGHR6KMA3BbcVFBGnhrY0WE+JsdBcBFys7O0qBBfbVz5w61aNHS7DiAaZimAgAAnCojI0ODB/fToUMHNXfuAnXocJ3ZkQDTUMYBuJz07CIdOpFz3nOy80ok9gAB3I7NZtPQoQN0+PAhzZu3SG3btjc7EmAqyjgAl/Pa57u07WDGBc9rlBDlhDQAypOPj48GDhyqsLBQtWrVxuw4gOko4wBcSnGJTYUlViVUCVO/7g3Pe26liEAnpQJwuY4fT9HOnTvUuXMXde7cxew4gMugjANwGcfS8vT0q7/IZjfUOCFKNeJCzY4EoBwcPfqnkpIeVmFhgVq3bqPQUP5sA/9FGQfgMrLzS2SzG+pydXV1uLKa2XEAlIPDhw9p4MC+Kioq1KJFyyniwN9QxgG4hE9/OqTvf0uRJLVMjGNUHKgADhzYr0GD+spqtWrJktfUoEGi2ZEAl0MZB+ASft+XrmKLTe2aVKGIAxXEunVfyW43tHTpStWtW8/sOIBLoowDcBk14kI1oEcjs2MAuEw2m00+Pj7q33+Q7rijt2JiKpkdCXBZ7MAJAADKzfbtf+jOO3to//598vLyoogDF0AZB2Aqu93QtgPpyiu0mB0FwGX6/fctGjSon0pKShQYyNKjQFlQxgGYau/RLM1593edyChQcKCf2XEAXKLNmzdpyJD+ioqK0SuvvKH4+OpmRwLcAnPGAZjGbjeUU/DXiPiAHg3VskGcyYkAXIrt2//Q0KFJqlq1qhYvflVxcZXNjgS4Dco4ANO8vHqbNu1OkyRVjQmRv5+PyYkAXIo6deqpZ8/bNHjwo8wRBy4SZRyAadJzilU1Jljd29RSrcphZscBcJF++WWjEhMbKSwsTBMnPm12HMAtUcYBONXqDQf16+6TkqTUzEI1qBmp9k2rmpwKwMVat+4rjR07Wrff3kuTJk01Ow7gtijjAJzqt72nlFNgUd34CMVFBatNI+aWAu7miy/W6sknH1fjxk302GOPmx0HcGuUcQBOV7tKmB7t1dTsGAAuwaeffqzJk8erefOr9NJLLyskhB1zgcvB0oYAAKBMioqKlJw8Ty1btlZy8hKKOFAOGBkHAAAXZBiGAgMDtWzZSkVHx7CpD1BOGBkHAADn9dZbK/Xss1NlGIaqVYuniAPliDIOAADOacWK5Zo161mlp6fLarWaHQeocCjjAADgrJYufVn/+McL6tatu55/fo78/PzMjgRUOJRxAABwhiVLFio5+R/q0eM2zZgxiyIOOAg3cAJwipNZhVq8eruOncpXZKi/2XEAXEDjxk111133avz4yfLx8TE7DlBhUcYBOMWxk3k6eDxHDWtFqcOV1cyOA+AsDMPQtm1/qGnTZmrfvoPat+9gdiSgwmOaCgCH27wnTd//niJJurtTXV1VP9bkRAD+zm63a+bMZ/TQQ/do27Y/zI4DeAxGxgE43OoNB5VyKl+xkYGKCg8wOw6Av7Hb7XrmmSn68MN/6uGH+6tx4yZmRwI8BmUcQLmy2uzafjBDFqu99FhBkUXN6sRo+J3NTEwG4GxsNpumTHlSn3yyWklJQzR06Ah5eXmZHQvwGJRxAOXqj/3peumDM3/E3TAh2oQ0AC7k++/X6ZNPVmvo0BEaOHCo2XEAj0MZB1AuCoqsstntyi4okSQNv7OpYiOCSp+vHB1sVjQA59G5c1ctX/66rr66ldlRAI9EGQdw2XYeztSLb2+R8f+OxVcKUVwUBRxwRSUlJZo2bbIefLCvEhMbUsQBE1HGAVy2rNxiGZJubZ+gsGB/hQT5KjYy6IKvA+B8RUVFGjNmhH78cb2uuqqlEhMbmh0J8GiUcQDlpm2TKqrMaDjgsgoLCzVy5DD9/PNPeuqpZ9Sr111mRwI8HmUcAAAPUFCQrxEjhmjz5k2aNm2meva83exIAEQZBwDAI/j6+ik4OFgzZszSzTf3MDsOgP+gjAMAUIHl5GTLbrcrMjJK8+YtYg1xwMVQxgEAqKCysjI1eHB/+fv767XX3qaIAy7I2+wAAACg/GVkpCsp6WEdOLBPgwYNo4gDLoqRcQCXxWqzq6jEanYMAP9PWtpJDRrUTykpxzR//stq06ad2ZEAnANlHMBlefHtLdpzNFuS5OPNyBvgCp5+epKOHz+uBQuWqGXL1mbHAXAelHEAlyUjt1i1q4apW+uaigkPNDsOAEkTJ05RWtpJXXllC7OjALgA5owDuCRHT+Zp6qu/KDO3WFWiQ9S6YWXmpAImOnr0T82bN1t2u13VqsVTxAE3QRkHcEkOncjV4dRcNUqIVrumVcyOA3i0w4cPqX//Pvrgg3eVknLM7DgALgLTVABclj431lelyCCzYwAe68CB/Ro4sK9sNpuWLl2p6tVrmB0JwEVgZBwAADe1d+9u9e/fR5K0bNlK1a/fwOREAC4WZRzARTt2Kl8Hj+eYHQPweFlZmQoNDdPy5StVp05ds+MAuARMUwFw0RZ88IdSMwrk7eWlwAA+RgBny8rKVGRklFq1aqMPPvhEfn5+ZkcCcIkYGQdwUQqKLCousapFvUp6cVg7hQZRAgBn+u23zerR40atXfuJJFHEATfHkBaAMvt2yzG98cVuGZLCQ/wVGRpgdiTAo/z66y969NFBio2N1VVXtTQ7DoByQBkHUCapGQV655u9alAzUlc3iNOVdWPMjgR4lI0bf9Jjjw1RtWrxWrz4VcXGxpkdCUA5oIwDOKfXPt+lvf/Z6j4nv0S+Pt5K6tlYUWGMiAPOlJJyTCNGDFbNmrW0ePGrio7mL8NARUEZB3BOm/ekKdDfR7Uqh6lapRB1al6NIg6YoFq1eE2Y8JSuv76zIiOjzI4DoBxRxgGcV5PaMerTjbWLATOsW/eVYmMrq2nTZrr99jvNjgPAAVhNBQAAF7R27Sd64omRWrw42ewoAByIMg7gDCUWmzbvSZPFajc7CuCR1qz5SBMnjlXz5i30/POzzY4DwIGYpgLgDP/ekaoVa3dJkkKC+JgAnOnDD9/TtGmT1bp1G/3jH8kKCgo2OxIAB+K7LIAz/HdEfMKDV6lOtQiT0wCewzAM/fDD92rX7lrNnv2SAgMDzY4EwMEo4wDOqUp0sLy9vcyOAXiE4uJiBQQE6PnnZ8swJH9/f7MjAXAC5owDAGCyV19dpgcfvEs5Odny8/OniAMehDIOAICJlixZqHnzXlSdOnUVHBxidhwATsY0FQAATGAYhhYunK+lSxepR4/bNHXqs/Lx8TE7FgAno4wDAGCCN95YoaVLF+mOO3pr0qSpFHHAQ1HGAQAwQbdu3VVQUKCkpCHy9mbWKOCp+NMP4DRHUnN1+ESu2TGACslut+ujj96X1WpVXFxlDRo0jCIOeDhGxgGcZu4/f1d2Xon8fL3l78uPzYHyYrPZ9MwzT+mjj95XUFCwunW72exIAFwAZRzAaaxWu9o0qqx7bqinAH/KOFAebDabpkx5Up98sloDBw7VjTfeZHYkAC6CMg7gDCFBfooIYZ1joDxYLBZNnjxOn3/+mYYNe0xJSUPMjgTAhVDGAQBwoMOHD+r777/TY489rn79BpgdB4CLoYwDAOAAdrtd3t7eqlu3vj76aK0qV65sdiQALohbuAEAKGdFRUUaPnyQVq16Q5Io4gDOiZFxwAOkZhTo601HZTeMC55bbLE5IRFQcRUWFuixx4bql182qmtXbtQEcH6UccAD/LwzVd9sPqrQID95eZ3/3OAAX9WuGuacYEAFk5+fpxEjBmvLls165pnn1KPHbWZHAuDiKOOAG9t3NFsZuUUXPO/PtHxJ0j+GXytv7wu0cQCXxGKxaOjQJG3btlUzZ76obt26mx0JgBugjANuymK16bk3N5dp6on014i36OGAw/j5+enGG2/WQw/10w033Gh2HABugjIOuCHDMJSdVyK7Yahb6xrq0KzaBV8THuIv7wvNUQFw0TIzM3X06J9q2rSZHnjgIbPjAHAzlHHADX35y596Z90+SVJ0WKCqVQoxORHgmTIy0jVoUD+dOnVKn332tYKCgs2OBMDNUMYBN5SZWyxfHy890LW+WibGmR0H8EhpaSc1aFA/paQc07x5iyjiAC4JZRxwUz4+3rquebzZMQCPlJp6QklJD+vUqTQlJy/V1Ve3MjsSADdFGQcA4CK98cYKZWSka9Gi5bryyhZmxwHgxijjAABcpBEjxqhXr7tVu/YVZkcB4Oa8zQ4AAIA7OHTowH9u1kyTn58fRRxAuWBkHACAC9i/f58GDuwru92urKwsVaoUa3YkABUEI+MAAJzHnj27NWDAQ/L29tLy5a+rbt16ZkcCUIE4tYxnZWVp2LBhat68uTp16qQ1a9ac89zt27frgQceUIsWLdSuXTu99tprTkwKuB7DMJSTX6Ls/BKVWGxmxwE8wu7du5SU9JD8/f21bNnruuKKOmZHAlDBOHWayrRp0+Tn56cff/xRO3fu1KBBg5SYmKh69U4fZcjIyNCAAQM0YcIE3XTTTSopKVFqaqozowIuZ+3GI3rvu/2lj0MCmWUGOFpsbKyaNLlSTz75lOLjq5sdB0AF5LTv5gUFBfryyy+1Zs0ahYSEqGXLlurcubNWr16txx9//LRzV6xYoWuvvVa33nqrJMnf31+hoaHOigq4pMzcYvn7euueznUlSVVj2HUTcJSdO3cqIqKyoqNjlJy8xOw4ACowp01TOXTokHx8fFS7du3SY4mJidq3b98Z5/7222+KiIjQvffeq7Zt22rw4MFKSUlxVlTAZfn5eqvTVdXV6arqSqwVZXYcoEL65ZeNuvXWW/XSS3PMjgLAAzh1ZPzvo9thYWHKz88/49zU1FTt2LFDr7zyiho0aKAXXnhBo0eP1qpVqy7qa8bEMJqOM8XGhpkd4ZIEBfnJy8vLbfO7On5fIUnr16/X8OGDVLNmTY0aNYLrAmfgmkB5c1oZDw4OVl5e3mnH8vLyFBJy5o/aAwIC1LVrVzVr1kySNGzYMLVp00a5ubkKCyv7H4L09DzZ7cblBUeFEhsbprS0XLNjXJLCQosMw3Db/K7Mna8LlJ8ffvheY8YMV0JCbb333j9lt/tzXeA0fFbg77y9vS578Ndp01QSEhJks9l06NCh0mO7du1S3bp1zzi3QYMGpz328vJydDwAgAcrKMjXU09NUJ06dbVkyQrFxMSYHQmAh3BaGQ8ODlbXrl01f/58FRQU6Ndff9U333yj22677Yxze/Xqpa+//lo7d+6UxWLRwoULdfXVV1/UqDgAAGUVHByihQuXavHiFYqM5H4MAM5T5jK+e/duTZs2TQMGDNDJkyclSV9//bV27NhR5i82ZcoUFRUVqV27dhozZoyefvpp1atXT5s2bVKLFi1Kz2vbtq1GjRqlgQMHql27djpy5Ihmz559Ef9ZAABc2Nq1n2jlylckSQ0bNlZ4eLjJiQB4mjLNGd+wYYOGDBmijh076t///reKi4slSUeOHNEHH3yghQsXlumLRUZGnvXcli1basuWLacdu//++3X//feX6X2Biq64xKZiNvoBytXHH3+op5+eqKuuaqn7739Ivr6s3Q/A+co0Mj5v3jyNHz9eycnJ8vPzKz3eunVrbd261WHhAEglFptGJ2/Qhq3H5ePj1E1zgQrrgw/+qSlTnlSrVm300kuLKeIATFOmT5+9e/fquuuuO+N4RESEsrOzyz0UgP8ptthUWGxTq8Q43XA1OwACl+udd97SzJnT1L59R82Z85ICAgLMjgTAg5WpjEdERCg1NVXVq59eBHbs2KEqVao4JBjgyaw2u+a885uy8kpKl+esXyNS9WtEmpwMcH/e3t66/vobNGvWXPn7+5sdB4CHK9PPvHv06KEXXnhBJ06ckJeXl6xWq37++Wc9//zzZ10NBcDlyS+0aNeRLAX4+yihapjaNq6spldEmx0LcGspKcckSXfdda/mzl1AEQfgEso0Mj5y5EiNHz9enTp1kmEYuuWWW2QYhnr06KEhQ4Y4OiNQIe07lq1//XH8rM8VW+ySpI5XVlOnFvHOjAVUOIZhaMmShXr11aV64413VbduffavAOAyylTG/fz8NHv2bI0cOVLbt2+X3W5Xo0aNlJCQ4OB4QMX13ZZj+mn7CYUFn310Ljo8QNVjz9yhFkDZGYah5OR5WrbsZfXsebtq165jdiQAOE2ZyviCBQvUv39/1ahRQzVq1Cg9XlRUpGXLlunRRx91WECgoth2MF15hZbSx2lZhYoJD9SsIe1MTAVUXIZhaO7cF7Ry5Svq1esuTZo0Vd7erEgEwLWUqYwnJyfrvvvuU1BQ0GnHCwsLlZycTBkHLuBUVqHmvPP7GccTqrCrLOAon3/+qVaufEX33HO/xo2bRBEH4JLKVMYNwzjr/LqdO3cqIiKi3EMBFYndMJSR+9dGWfd0rqtmdWJKn4sKY0k1wFFuvPFm2e2GunfvwRxxAC7rvGW8RYsW8vLykpeXl2644YbTPszsdruKi4t17733Ojwk4M5Wfb1XX/96VJJUKSJQVWOYBw44is1m08KF83X33fepcuUquuWWnmZHAoDzOm8Zf+qpp2QYhp588kmNGjVKYWH/+5G6n5+f4uPj1aJFC4eHBNxZVl6xIkL81fv6Omp6RcyFXwDgklitVj311AR99tkaVapUSffd18fsSABwQect43fccYckqXr16mrRooX8/PycEgpwV/lFFs1553cVFFtLj2XlFismIlDtm1Y1MRlQsVksFk2cOFZffrlWjz46kiIOwG2Uac5469atS3+dlpYmi8Vy2vPVqlUr31SAmzqVVaSDx3NUr3pE6XzwWpVD1TiBDXsAR7FYSjRu3BitW/eVRo8eq4ceesTsSABQZmUq43l5eXrmmWe0du3aM4q49NeNnAD+56bWNdWifqzZMQCPUFhYqKNH/9S4cRMZEQfgdsq0ztNzzz2nXbt2KTk5WQEBAZo9e7bGjh2rKlWqaO7cuY7OCADAGYqKilRSUqLw8Ai98ca7FHEAbqlMI+Pr16/XnDlz1LJlS3l7e6tx48bq3r27YmNj9c477+imm25ydE7AFHa7oa3701VksV74ZEnp2UUOTgRAkgoLCzRixBCFhIRq7twF8vc/+062AODqylTGc3NzS+eFh4WFKSsrS7Vq1VLz5s01adIkhwYEzHTgeI7mv7/1ol8XEsTNzoCj5Ofnafjwwfrtt8165pnnWEMcgFsrUxmvUaOG/vzzT1WrVk116tTRp59+qmbNmumrr75i0x9UaBarXZI0oEdD1a4aXqbXBPj5KDo80JGxAI+Vk5OjRx9N0vbt2zRz5mx163az2ZEA4LKUqYz36tVLu3fv1jXXXKOkpCQNHjxYb775pux2uyZOnOjojIDpYsLZrAdwBePGjdKOHTv0wgvz1LlzF7PjAMBlK1MZ79u3b+mv27Ztq7Vr12rbtm2qVauWGjRo4KhsAACcZvjwUUpPT1eHDteZHQUAykWZyvjfVatWrXQO+aeffqpbbrmlXEMBZkrPLtJLH2xVscWuEovN7DiAx0tPP6Vvv/1avXvfq0aNmpgdBwDK1QXLuNVq1cGDB+Xr66vatWuXHv/66681b948HTx4kDKOCuV4Rr6OpOapYa0ohQX7KdDfVzUrh5kdC/BIJ0+matCgfjp+/Ljat++oqlXZZA5AxXLeMr5v3z4NGjRIKSkpkqQbbrhBU6dO1ahRf83Zu+uuu7RkyRKnBAUc5dfdJ/XHgYzSx5m5xZKkOzpcobrVuUEZMMuJE8eVlNRX6elpWrhwKUUcQIV03jL+4osvqnr16po0aZLWrFmjzz77TPv27VOPHj20cOFChYaGOisn4DCf/nRYR9PyTluOsEp0sCpFsiIKYJZjx44qKelh5eRka9Gi5bryyhZmRwIAhzhvGf/jjz+0ZMkSNW7cWFdffbU+++wz9e/fX3fddZez8gEOY7XZtXV/uvIKLWqUEK2Rd11pdiQA/7Ft21YVFORr8eJX1bhxU7PjAIDDnLeMp6enq3LlypKk8PBwBQUFqWXLlk4JBjjariOZWvDBH5KkBjUiTU4DQJJKSkrk7++vbt26q23baxUeXrb1/QHAXXmf70kvLy95e3uf9tjX95IWYAFczn839Bl2R1M9fHOiyWkA7Nu3R7fddpP+/e9/SRJFHIBHOG+zNgxDN9xwQ+lWwwUFBbr11lvP2Hp48+bNjksIOFiliED5+pz376UAHGz37l0aPLiffH19VblyFbPjAIDTnLeMz5w501k5AAAeaseObRo8uL+CgoK0ZMkK1aqVYHYkAHCa85bxO+64w1k5AAAe6M8/j2jgwH4KDw/X0qWvKT6+utmRAMCpmAAOADBNfHx13Xffg+rV6y7WEQfgkSjjAACn+/XXX1SlSlXFx1fXsGGPmR0HAEzDXWsAAKf61782aOjQAXruuWfMjgIApmNkHBWGxWrT7/vSZbXZz3lOWHi2cnMKJUmHTuQ6KxqA//jhh+81ZsxwJSRcoalTWSQAACjjqDC27D2ll1dvv6jXeEkKCeSPAeAM69Z9rbFjR6l+/fpatGi5IiLYbAsAytxC3nzzTb311ls6evSoPvnkE9WoUUNLlixR9erV1b17d0dmBC7IYrUrK69EkvT4vc0VHR541vOio0OUkZFf+jjI30cRoQFOyQh4MrvdrtdeW66GDRspOXkpG/oAwH+UqYyvWLFCy5YtU1JSkmbPnl16PC4uTm+++SZlHKZ7/q3NOpCSI0mqEh18zjIeGxsqfxnOjAZ4PMMw5O3trZdeelne3j4KDQ01OxIAuIwy3cC5atUqTZ8+XQ8//LB8fHxKjzdu3Fj79u1zWDigrLLzilUnPlzDezU9ZxEH4HwfffS+Hn10oIqLixUeHkERB4C/KdPIeEpKiurVq3fmi319VVRUVO6hgLJYsXaXdh3JlCRl5pYosVaUWtSPNTkVgP967713NH36FLVp0052+7lvrAYAT1amkfEaNWpox44dZxz//vvvVadOnXIPBZTF1v2nZBiGrqgartYN43Rt06pmRwLwH6tWvaHp06eoQ4frNG/eIgUFBZkdCQBcUplGxh955BFNmzZNhYV/LQm3ZcsWrV69WsuWLdOzzz7r0IDA+TSsFaW+Nzc0OwaA/+edd97Sc89NV6dOXTRr1hz5+fmbHQkAXFaZyvidd94pm82muXPnqrCwUGPHjlVcXJwmTpzIzZsAgNO0aHG17rzzbo0fP1l+fn5mxwEAl1bmpQ3vvvtu3X333crIyJBhGIqJiXFkLgCAGzEMQxs3/qRrrmmr+vUbaPLkaWZHAgC3UKY54zNmzNC2bdskSdHR0RRxAEApwzD00ktzNHjwI/r222/MjgMAbqVMZfyPP/5Q7969dfPNN2vRokU6evSoo3MBANyAYRiaM+d5vfLKUvXufY+uv76z2ZEAwK2UeZ3xr776Sj179tSaNWvUtWtX3XfffXr77beVnZ3t6IwAABdkt9v1/PPT9frrK3TffQ9q4sSn5e1dpm8rAID/KPOnZo0aNTR06FB99tlneu+999S8eXMtWrRIHTp0cGQ+AICL2r59m95992099NAjGjt2ory8vMyOBABup8w3cP5/VqtVJSUlslgsp+3ICTjDweM5Wv7pTmXnl5gdBfBoTZs201tvvacGDRpSxAHgEpV5ZPzgwYOaP3++brzxRj3wwAM6dOiQxo0bpx9//NGR+YAzHD6Rq5RT+bqqXqzas9EP4FRWq1VPPTVB69d/K0lKTGxEEQeAy1CmkfFevXpp586datiwoe6//37dcsstio1l23GY64Eb6ysyNMDsGIDHsFgsevLJJ/TVV5+rdu066tixk9mRAMDtlamMd+jQQS+88ILq1Knj6DwAABdUUlKisWNH6bvvvtGYMePUp08/syMBQIVQpjI+atQoR+cAzqu4xKbf95+SzWboQEqO2XEAj2KxlGj06OHasOF7jR8/Sffe+6DZkQCgwjhnGZ8+fbpGjx6t4OBgTZ8+/bxvMmnSpHIPBvx/G3emasXaXaWPfX28FeDHzcOAM/j6+qlGjRqaNGmqeve+x+w4AFChnLOM7969W1artfTXgJksVrskaeJDVys0yE8hgX4KCrikxYAAlFFhYYEyMjIUH19d48Yx6AIAjnDONvP666+f9deAmWIjgxQe7G92DKDCy8vL0/Dhg3TixHF99NFaBQRwszQAOEKZljZcsGCBCgsLzzheVFSkBQsWlHsoAIB5cnJyNGRIf/3xx+8aNWosRRwAHKhMZTw5OVkFBQVnHC8sLFRycnK5h/o/9u48zsay8eP498yZxWxmzBhLlpBhWYSA6AAAIABJREFUkGXKTkLLo1D6UST7MrZQyJ4oiUQh0oxdQvTY0iZaLYWQR0Nk38Y6ZjfLuX9/eJon2QYz5z7L5/169Xo597nnnO/M3PGda677uoC/i1nzu1b9dMjsGIBbuHQpXj17dlZs7O+aOHGKHn+8idmRAMCl5WjSrWEY193UITY2VkFBQbkeCvi73/48pwA/bz1UtagCfb3MjgO4tKlTJ+vAgf1699339dBDD5sdBwBc3k3LeGRkpCwWiywWix555JGrCrnNZtPly5fVpk2bPA8J3F8qRM82LGt2DMDlvfzyYDVr1kKRkQ+YHQUA3MJNy/ioUaNkGIaGDx+ul19+WYGBgdnPeXl5qVixYoqMjMzzkACAvBMXF6cPPpiqIUNGKCAggCIOAHZ00zL+zDPPSJKKFy+uyMhIeXkxRQAAXMmpUycVFdVJFy6cV5s2LygioqLZkQDArdywjMfHxys4OFiSVK5cOSUnJ9/wRf46DwDgPE6cOK5u3TooMTFRM2fOoYgDgAluWMbr1Kmjn376SaGhoapdu/Z1b+D868bO2NjYPA0J93UpOV02w+wUgOs5cuSwoqI6KS0tVdHRc1Wx4v1mRwIAt3TDMj5//vzslVIWLFhgt0DAX36JjdPMVXskSZ6e1/4wCODO2Ww25c+fX1OnzlT58hFmxwEAt3XDMl6zZs3r/hmwl0tJ6ZKkto+Gq0ZEIZPTAK4hLi5OhQoVUunSZbR06Up5eORouwkAQB7J0TrjBw4ckIeHh8qUKSNJ2rhxo1asWKHw8HB169ZNVqs1T0PCPcxY+R8dOZ2Q/TglLVOSVOf+IvLPx83DwN3auzdWPXt2Vrt2ndStW0+KOAA4gBz9TTx8+PDseeGnTp1S7969denSJS1atEjvvfdengaE+/jtz3PytHqobLEglS0WpCr3happnXvl55OjnxkB3MSePbsVFdVJ+fL56vHHnzA7DgDgv3LUcg4ePKiKFa/cZf/VV1+pSpUqiomJ0ZYtWzR8+HANHDgwT0PCfVS9r6Cea8zmPkBu2rVrh/r06a6goGBFR89TsWLFzY4EAPivHJXxrKys7DXGN2/erIcfvrJFcsmSJXXu3Lm8SwcAuCuJiYnq27enChQIVUzMPBUpUtTsSACAv8nRNJVy5cpp8eLF2rZtmzZv3qyHHnpI0pUbgQoUKJCnAQEAdy4wMFBjx47X7NkLKOIA4IByVMYHDRqkZcuWqX379mratKnKly8vSdqwYYOqVKmSpwEBALdv06Yf9c03X0mSGjRopEKFCpucCABwPTmaplKjRg1t3rxZSUlJ2WuPS1Lr1q3l6+ubZ+EAALfvhx++1cCB/VSuXIQaNXqUFa8AwIHleJkKq9WqfPny6Y8//pDFYlHJkiVVvDg3AQGAI9mwYZ0GDx6gcuXKa8aMGIo4ADi4HJXxzMxMTZo0SYsWLVJGRoYMw5C3t7fatWunl19+OfvmTgCAeb766gsNHz5IlSpV1vTpMQoMDDQ7EgDgFnJUxidOnKi1a9dqzJgxevDBByVJ27Zt0+TJk2UYhoYMGZKnIeH6MjJtstkMs2MATi02do+qVo3UtGkz5e8fYHYcAEAO5KiMf/bZZxo3blz2kobSlWUNQ0JCNHLkSMo47trqjYeUmWWoUukQs6MATicpKUkBAQHq33+g0tPT5ePjY3YkAEAO5Wg1lcTERJUoUeKa4yVKlFBCQsJ1PgLIuSOnE/X5liOqX6UoZRy4TcuWLdEzzzyhEyeOy2KxUMQBwMnkqIxHRERo4cKF1xxfsGCBKlSokOuh4F72HL4gw5BaNbzP7CiAU/n44wV6883RioioqIIFw8yOAwC4AzmapvLKK68oKipKmzZtUrVq1SRJO3fu1JkzZxQTE5OnAeHaDpy4pMOnEyVJ+bxY9QHIqfnzZ+vddyeqcePHNGHCJHl5eZsdCQBwB3K8zviXX36pjz/+WAcPHpQkNWnSRG3btlXhwmwkgTs3eelOpaVnyc/HU1arxew4gFNYu3aN3n13ov71ryc1duwEVrQCACd2yzJ+4sQJbdy4URkZGWrWrJnCw8PtkQsuyDAMxSelX7VqSkamTQ2r3aNWDe+T1SNHs6YAt9e48SPq12+AOnToIk/PHG8XAQBwQDf9W3zr1q2KiopSamrqlZM9PTV+/Hg1a9bMLuHgWr7beVILv9p3zfH8/t7yy8fIHnAzhmFo2bIlatq0ufz9A9SlS5TZkQAAueCmZXzKlCmqVauWxowZIx8fH02ePFkTJ06kjOOOXEq6LEnq/ERE9jGLxaKqZUPNigQ4BcMwNGnSeH300XxdvnxZ7dt3MjsSACCX3LSM//HHH/roo4+y54UPHTpUy5Yt06VLlxQUFGSXgHA9D1W9x+wIgNOw2WyaMGGsli79WM8/317t2nU0OxIAIBfddJJuQkKCQkP/N2rp5+enfPnysbY4ANiBzWbTG2+8pqVLP1bHjl01ePBwWSzc6AwAruSWd/7s27fvmlHw/fv3X1XIK1WqlPvJ4FK+2HJEO/efMzsG4FTOnz+njRt/UPfuvdS7dz+KOAC4oFuW8a5du8owjKuO9e7dO/vPFotFsbGxuZ8MLsNmGFr23Z/y9bHqfnbYBG4pMzNTVqtVYWGF9MknKxUcXMDsSACAPHLTMr5+/Xp75YALSUrN0O4/z8v23x/i/vpZ7l81Suqp+qVNTAY4voyMDA0bNkgFCxbUkCEjKeIA4OJuWsaLFStmrxxwId9sO6bVGw9fczzQnx0CgZtJT0/X4MEv6bvvNmjgwKFMSwEAN8BuEch1GVk2WT0sejOqdvYxD4sUmj+fiakAx5aWlqaBA/tp48YfNGzYKLVu3dbsSAAAO6CMI1ddSEjT74cuytvLqkLBvmbHAZyCYRh65ZX+2rTpR40a9Yb+7/+eNTsSAMBOKOPINb/9eV6zPvtdGZk2dX4y4tYfAEDSlRvhW7Vqrccff0LNm7cwOw4AwI4o48gV2/ae0YyV/1HxsAD1alFJRUP9zY4EOLzExETt3PmrHnroYT38cGOz4wAATHDTTX/+6cKFC9q1a5fS09PzKg+c1J8nL8nL00MjOzxIEQdyICHhknr27KJBg/rp7NkzZscBAJgkR2U8KSlJ/fv3V926ddWmTRvFxcVJkkaNGqVp06blaUA4NsMwtOqnQ9p98II8LBZ5e1nNjgQ4vIsXLyoqqrP++GOvJkx4V2FhhcyOBAAwSY7K+DvvvKO4uDitWLFC+fL9b0WMRo0aad26dXkWDo4vLT1Lq346pPjEy2zoA+TAhQvnFRXVUQcPHtB7781Qw4ZMTwEAd5ajOeMbNmzQ+++/rwoVKlx1/L777tOxY8fyJBgcz55DFxSfdPmqY+mZNklS83ql9K+aJc2IBTiVr776XMeOHdW0aR+qVq06ZscBAJgsR2U8ISFBBQpcuwtccnKyrFamJbiD5LQMTVq684bP5/djQx/gZgzDkMViUZs27fTQQw1VvHgJsyMBABxAjsp45cqVtX79enXq1Omq40uWLFFkZGRe5IKDSEnLUMrlTCWlZkiSWtQvrTr3F7nqHKuHRSFs6APc0MmTJzR48MsaPXqsypYtRxEHAGTLURl/+eWX1bVrVx04cEBZWVmaN2+e9u/fr927d+ujjz7K64wwSerlTA14f2P2VBRJCg70URib+QA5dvz4MXXv3lFJSUlKTU0zOw4AwMHkqIw/8MADWrJkiebMmaOSJUtq8+bNqlixopYsWaLy5cvndUaYJC09S+mZNtW7v4jKlQyWp9VDkeEFzY4FOI0jRw6re/eOunw5TdHRc1WhQiWzIwEAHEyON/0pX768JkyYkJdZ4KDKFg/SQ1XuMTsG4FSOHz+mbt3aKzMzSzExC1SuHAMXAIBr5aiMx8fH3/T54ODgXAkDAK6iYMEw1ahRW1279tB995U1Ow4AwEHlqIzXrl1bFovlhs/HxsbmWiAAcGZ//LFPRYoUVf78+TVu3ESz4wAAHFyOyviCBQuuepyZmanff/9dixcv1ksvvZQnwQDA2eze/Zt69+6mWrXq6J13ppgdBwDgBHJUxmvWrHnNsbp166pEiRJatmyZmjdvnuvBYK74pMvauveM2TEAp7Fz56/q06e7ChQI0YABg82OAwBwEjm+gfN6KlSooG3btuVWFjiQNRsP69sdJySxoQ9wK9u3b9WLL/ZQWFiYYmLmq3DhIrf+IAAAdBdlPDk5WfPnz1eRIvyj44oysmwK8vfWqE41VCDQx+w4gMPKysrSm2+OUdGiRfXhh3MVFlbI7EgAACeSozIeGRl51Q2chmEoLS1Nvr6+euedd/IsHMzl4WGhiAO3YLVaNW3aTPn6+iokJNTsOAAAJ5OjMj5q1KirHlssFoWEhKhq1aoKCgrKk2AA4Mi+/36DfvrpRw0b9qqKFStudhwAgJO6ZRnPzMxUSkqKHn30URUuXNgemWBH3+04obWbj1xzPCk1Q3757uqWAsBlffPNVxo6dKDKl6+g1NQU+fsHmB0JAOCkbtm2PD09NXHiRDVs2NAOcWBvfxyLV1JahqqXC7vmubLF+a0H8E9ffrlWI0YMVqVKlTV9egxFHABwV3I09Fm1alXt2bNHxYoVy+s8sJMsm03Lvv1TB05cUpC/t7o2q2h2JMDhrV27Wq++OlSRkQ9o6tSZFHEAwF3LURl/7rnnNGHCBJ08eVL333+/fH19r3q+UqVKeRIOeefMxVR9vfWYAny9VCOC1R+AnChQIER16z6kiRPfla+vn9lxAAAuwGIYhnGjJ4cNG6YRI0aoevXqN34Bi0WxsbF5Eu5unT+fJJvthp+e2zp/KU1bfj+tT78/qKinKqp2RfdZnjIsLFBnzyaaHQMO5lbXxaFDB1W6dBlJV1aT+vvqUnBN/F2B6+G6wD95eFgUGnp3vyW96cj4ypUrNWjQIK1fv/6u3gSO5d8/HNTmPaclsaEPcCuLFi3QpEnjNWPGLNWuXZciDgDIVTct438NmjNX3LVkZtkUFpxPw9s9qKAA1hEHbmTu3FmaMuUdPfro43rwwRv/hhAAgDt1yznjjAK5Jk+rB0UcuIno6BmaMWOqmjR5UmPHvi1PT5b6BADkvlv+61KvXr1bvoijzhkHgDuxfftWzZgxVc2aPa0xY8bJarWaHQkA4KJuWcZff/115c+f3x5ZAMAhPPhgDU2ZMkMPPdRQHh4eZscBALiwW5bxxo0bKzQ01B5ZAMA0hmHo/fff06OPPq4KFSrp4Ycbmx0JAOAGblrGc3u+eHx8vEaMGKGNGzeqQIECGjBggJo3b37D89PT0/X0008rOTlZP/zwQ65mcReZWTZ98u0BpaRlZh87eDJB3l6M9gF/sdlsGjfudS1btlgeHh6qUIG9EwAA9pGj1VRyy+uvvy4vLy9t3LhRsbGx6tGjhyIiIhQeHn7d82fPnq2QkBAlJyfnag53cvJcsr7ZdlyBfl7y8boy79VikSqWCjE5GeAYsrKyNHjwYC1btlidO3dX7979zI4EAHAjNy3je/fuzbU3SklJ0ddff601a9bI399f1atXV+PGjbVq1SoNGjTomvOPHTum1atXa+jQoXr11VdzLYe76vCvCD1YPszsGIBDyczM1OjRI/TZZ6sUFdVbvXr1ZQUpAIBd2W2trsOHD8tqtap06dLZxyIiIrR169brnj927FgNGDBA+fLlu+P3vNsdkVxBUoZNkhQUlE9hYYEmp3EMfB3wl/T0dKWmJmnw4MHq37+/2XHgYPi7AtfDdYHcZrcynpKSooCAq8txYGDgdaegrFu3TllZWXrsscf0888/3/F7nj+fJJstd6faOIuElHRdTs/SqfNXvr6XLqWxha/YyhhXZGSkKyUlRUFBwXr77akqUiSY6wJX4e8KXA/XBf7Jw8Ny14O/divjfn5+SkpKuupYUlKS/P39rzqWkpKiiRMnKjo62l7RXM7Z+FQN/XCz/j7l38uTX70D0pXR8Fde6a+4uDgtXLhEXl7eZkcCALgxu5XxUqVKKSsrS4cPH1apUqUkXZmTXrZs2avOO3LkiE6cOKEXXnhBkpSRkaHExETVq1dPS5cuVfHixe0V2WklpWbIMKTHqpdQycIB8vaycsMmICktLU0DBryoTZt+0ogRoyniAADT2XVk/LHHHtPUqVM1duxYxcbGav369VqyZMlV54WHh+u7777Lfrxjxw69/vrrWrFihUJCKJS38sWWI/pq6zFJUoVSBVStbEGTEwGOITU1Rf3799bWrT9r9Og31aJFS7MjAQAguy42/dprryktLU1169bVwIEDNXr0aIWHh2vbtm2KjIyUJHl6eiosLCz7v6CgIHl4eCgsLIwtqXNg79F42WyGGj1QTOHFg8yOAziMt956Q9u2/aI33hhPEQcAOAyLkduLiTsQd7yB891PdikpNV2vdqxhdhSHxM037isu7rT27PmPGjd+9JrnuC7wT1wTuB6uC/xTbtzAyTaMAFxWQsIlffjhdGVlZalw4SLXLeIAAJjJbnPGkXfiLqboj2PxkqQLiWny9uRnLODixYvq2bOLDh48oAYNGrLFPQDAIVHGXcCSb/Zr15/nsx9XvS/UxDSA+S5cOK8ePTrr6NEjmjJlBkUcAOCwKONOLiE5XcmXM1WycIBe/L/KkqTgAB+TUwHmOXv2jHr06KyTJ09o6tSZqlWrjtmRAAC4Icq4Ezt1PlkjY36WISmiZLAKBvmaHQkw3fHjxxQfH6/p02P04IPcyAwAcGyUcSeWmJIhQ1KTWiX1UJWiZscBTJWamiJfXz9FRj6otWvXydfXz+xIAADcEmXcyVxISNPkT3YpLT1TGZk2SVKl0iEqGupvcjLAPMeOHVVUVCdFRfXWM8+0oogDAJwGZdzJnLmYqpPnknV/mRAF+/vIx9uqMkXzmx0LMM3hwwfVvXsnZWSkq0KFimbHAQDgtlDGncj2fWf03Y4TkqQna92riHsLmJwIMNeffx5QVFQnGYahmJj5Cg8vb3YkAABuC2XciazbekwHTyWqeFiACofwa3i4t/j4i+rWrYOsVqtiYuarTJn7zI4EAMBto4w7mbLF8mtw2wfMjgGYLji4gHr2fFG1a9fRvfeWNjsOAAB3hDIOwKns3r1LNptNVatGqnXrtmbHAQDgrrBvupO4lHRZ6f9dPQVwVzt2bFfPnl00fvwbMgzD7DgAANw1yrgTOBqXqJff36jDpxPl6cm3DO5p69af1bt3dxUsGKb33vtAFovF7EgAANw1pqk4gcTUDElSs7r3ql5lNveB+9myZZNeeqm37rmnuKKj56pgwTCzIwEAkCsYZnUi95cOVeECrKIC97N69QqVKFFSs2bNp4gDAFwKI+MAHFZWVpasVqvGjHlTqampyp8/yOxIAADkKkbGATikdeu+VNu2rXThwgV5eXlTxAEALokyDsDhfP75Gg0dOlC+vr7y9vY2Ow4AAHmGMg7AoaxevUIjRgxWZOSDmjEjRgEBAWZHAgAgz1DGATiMr776XK+9Nly1atXRtGkfys/P3+xIAADkKW7gdGDxSZeVnpGl+MTLZkcB7OKBB6rr2Wef18CBQ+Tj42N2HAAA8hxl3EEdOpWgN+Zvu+qYFxv+wEV9//0G1avXQGFhhTR8+Ciz4wAAYDeUcQeV9N+Nfp6qV0qFCvjK19tT9xYJNDkVkPvmzInW1KmTNXToSLVp087sOAAA2BVl3MFVLhOq+4qxpBtcj2EYio6eoQ8+mKYnnmimVq3amB0JAAC7o4wDsDvDMDR9+hTNmjVTzZu30OjRb8pqtZodCwAAu6OMA7C7U6dO6uOPF+j//u9ZjRw5Rh4e3A8BAHBPlHEAdmMYhiwWi+65p5gWL/5UJUrcSxEHALg1/hUEYBc2m03jxo3RokULJEn33luaIg4AcHv8Swggz2VlZWnMmJFatmyJzp8/a3YcAAAcBtNUAOSpzMxMjRo1TJ9/vkZRUb3Vq1dfsyMBAOAwKOMA8oxhGBoxYrC++upz9enzkrp372l2JAAAHAplHECesVgsqlYtUhUqVFKnTl3NjgMAgMOhjDugT749oJ9+O3XlgcXcLMCduHz5sg4d+lMRERX1/PPtzY4DAIDD4gZOB7Tv6EV5eXro8RolVLJQgNlxgNuSlpaml17qra5d2+vChQtmxwEAwKFRxh1U8bAAtXkkXF6e7EoI55GamqK+fXtoy5ZNeuWV4QoJCTE7EgAADo1pKgByRXJykvr27amdO3/V2LET1LTpU2ZHAgDA4VHGAeSKjz9eqF27duittybpX/96wuw4AAA4Bco4gFzRuXN31axZW1WrRpodBQAAp8GccQdzMfGyMjJtZscAcuTChQsaNKifzpyJk6enJ0UcAIDbRBl3IH+euKSB0zfq+NlkeXnyrYFjO3/+nLp376gff/xeR44cNjsOAABOiWkqDiQxNUOS1KJ+adW9v4jJaYAbO3MmTj16dNapU6c0bdqHqlGjltmRAABwSpRxB7Fk/X5t3H1lo58qZUNVMNjX5ETA9Z0+fUrdu3fS+fNnNWNGjB54oLrZkQAAcFrMhXAQe49clI+3VY/XKKFiBdnoB47L29tHoaGhmjlzDkUcAIC7xMi4AylZKFBtHgk3OwZwXadOnVTBggUVEhKiuXMXyWKxmB0JAACnx8g4gFs6dOigOnRoo3HjXpckijgAALmEkXETHY1L1KFTCZKu3LwZkj+fyYmAax048Id69OgiSXrhhQ4mpwEAwLVQxk009/O9OhKXmP246n2hJqYBrrVv31717NlZnp6eio6er9Kly5gdCQAAl0IZN1GmzabKZULV6YkISVJQgLfJiYD/ycjI0IABL8rb20fR0fN0772lzI4EAIDLoYybJC09UwnJ6SpW0F8FAn3MjgNcw8vLS+PHT1ZISIiKFStudhwAAFwSN3CaZPl3fyopJUONH6DkwLHs2LFdCxfOkyRVrlyFIg4AQB6ijJvgyOlEbfj1hB6tXkLlSgSbHQfItnXrFvXq1U2ffrpUqakpZscBAMDlUcZNcCY+VZL0UNWiJicB/mfTpp/04os9VKxYcc2evVC+vn5mRwIAwOUxZ9xO4pMu698/HFRmpk3nEtIkSazUDEfx44/fa+DAvipVqoxmzpyjkJAQsyMBAOAWKON2svfoRf302ymF5veR1eqh0kXzs644HMa5c2dVtmw5ffDBLAUFMXUKAAB7oYzbwdG4RO09clGSNKB1NRUN9Tc5EXDFxYsXVaBAAT3zTCs1b95Cnp78lQAAgD0xZzyPnb6QonELt+uHXafkabXIP5+X2ZEASdLnn69R06aPaPfuXZJEEQcAwAT865uHbDZDc9bGysvTQyM7VldIYD755eNLDvOtWvVvjR49QtWr19R995U1Ow4AAG6LkfE8tOvPczpw4pLaPBKu4mEBFHE4hOXLl+q114arVq06mjp1pvz8mDYFAIBZKON5KPVypiQpvHiQyUmAK37+ebPGjn1NDz30sKZM+UC+vr5mRwIAwK0xVAu4kRo1amno0JFq2fI5eXl5mx0HAAC3x8g44AaWLFmkU6dOysPDQ23atKOIAwDgICjjeeS7HSf07a8nzI4BN2cYhj74YJrGj39DS5d+bHYcAADwD0xTySOfbzmipNQMlS0WpKAAH7PjwA0ZhqFp0yZrzpwYPfXUM+rb92WzIwEAgH+gjOehB8qFqVuzimbHgBsyDEOTJ0/QwoXz1LLlcxoxYrQ8PPhFGAAAjoYyDrigtLRUbd36i9q0eUFDhoyUxWIxOxIAALgOyjjgQmw2mzIzM+Xr66fZsxfIz8+fIg4AgAPj99aAi8jKytLo0SM0YEBfZWZmyt8/gCIOAICDo4wDLiAzM1MjRw7R6tUrVLlyFVmtVrMjAQCAHGCaCuDkMjIyNHz4K1q37kv16zdAXbpEmR0JAADkEGUccHJjx76mdeu+1MCBQ9S+fWez4wAAgNtAGQec3PPPt1PlylXUqlUbs6MAAIDbxJxxwAmlpqbqs89WSZIiIipSxAEAcFKMjOeyy+lZ2rbvjFIvZ5odBS4qJSVZ/fr10vbtW1WuXITKlStvdiQAAHCHKOO57Nf9ZzV7bawkKTjAx+Q0cDVJSUl68cUo7d69S2+++TZFHAAAJ0cZzwWGYejcpTRlZtl0/lKaJGlkh+oqXTTQ5GRwJQkJCerTp7tiY/do/PhJeuyxJmZHAgAAd4kyngt+/eOcpq/YfdWx0Pw+bLiCXLVjxzb98cdeTZw4RY0aPWJ2HAAAkAso47kgKTVdkvTCY+Xk7+up/H7eCmKKCnKJzWaTh4eHHn64sdas+VqFChU2OxIAAMglrKaSix4oF6baFYuoYqkQs6PARZw7d1YvvNBKmzb9KEkUcQAAXAwj44CDiouLU1RUR505c0ZeXt5mxwEAAHmAMg44oFOnTioqqpMuXDivGTNiFBn5oNmRAABAHqCMAw7mwoXz6tq1vRISEjRz5hxVrlzV7EgAACCPUMYBBxMcXECPPvovNWnypCpWvN/sOAAAIA9RxgEHcejQQXl6eqpEiZIaMGCw2XEAAIAdsJoK4AAOHPhDXbu217Bhg2QYhtlxAACAnVDGAZPt3Rurbt06yGq1auzY8WwWBQCAG6GMAybas2e3oqI6KV8+X82evVClSpUxOxIAALAj5ozfoT+OxSt6zR5lZRlKz8wyOw6c1PTpUxQYGKjo6HkqVqy42XEAAICdUcbv0PGzSbqQcFl1KhWRt5eHgvy9FRzAxiy4PePHT1ZqaooKFy5idhQAAGACyvhdat24rPL7U8KRc7/8skUff7xA48dPVv78+ZU/f36zIwEAAJMwZxywo02bflTfvj10/PgxpaSkmB0HAACYjDIO2MkPP3yr/v17q1SpMoqJWaCQkBCzIwEAAJNRxgE7+O67DRowoJ/Cw8srOnquChQoYHYkAADgACjjgB0UL15C9es/pA8/nKvYjsXJAAAgAElEQVSgoGCz4wAAAAdBGQfy0O+//0eGYahs2XC9994MBQYGmh0JAAA4EMo4kEdWrvxUL7zwrFat+rfZUQAAgINiacM7MH3Fbu05dOHKA3Yux3V88slijRs3RnXr1leTJk3NjgMAABwUZfwO7Dsar5D8+VSzQiEF+nqZHQcOZtGiBZo4cZwaNGioiROnyMfHx+xIAADAQTFN5Q5FlAzWU/VKy2JhaBz/c+TIIU2ePEGNGz+mSZOmUsQBAMBNMTIO5KJ77y2t6Oh5qlKlmry8+K0JAAC4OUbGgbtkGIZmznxf3367XpL04IM1KOIAACBHKOPAXTAMQ1OnTtbMme9r06YfzY4DAACcDNNUboNhGDoTn6osm2F2FDgAwzA0adJ4ffTRfD37bBsNGzbK7EgAAMDJUMZvw5bf4xSz5ndJkren1eQ0MJNhGBo//g0tXfqxnn++vQYPHs7NvAAA4LZRxm9DUmqGJKnzExGKLBdmchqYzcPDqg4duujll1+hiAMAgDtCGb8DkeXCFMD64m4pKytLZ8+eUZEiRTV48HBJoogDAIA7xg2cQA5lZmZqxIhX1L59ayUkXJLFYqGIAwCAu0IZB3IgIyNdQ4cO0Jdffq62bTsof/4gsyMBAAAXwDQV4BbS09M1ePBL+u67DRo0aJjatetodiQAAOAiKOM5tO/oRe0/fsnsGDBBdPQMfffdBg0bNkqtW7c1Ow4AAHAhlPEcmr7iP0pKzZCfj6d8vJjd4046d+6mihUrqXHjx8yOAgAAXAytMoeybIYaVC2qSS/WkxdrjLu8lJRkTZo0XikpyfL3D6CIAwCAPEEZvw3eXlb5eFHEXV1SUpJ69+6ujz9eqJ07d5gdBwAAuDCmqQB/k5BwSb17d9fevb9rwoTJqlu3vtmRAACAC6OM38Lvhy9o1me/K/VypixiTWlXFh9/UT17dtWBA/v1zjtT1bBhY7MjAQAAF0cZv4VjZ5IUn5SuBlWLqn6VombHQR5KSEhQYmKC3ntvuurXb2B2HAAA4AYo49dx8lyy1mw6rCybodPnUyRJrRuHy9eHL5crSkhIUGBgoEqWvFcrV34uLy9vsyMBAAA3wQ2c17HrwDn9/Hucjp9JUpbNpsplQrlx00XFxcWpffvn9P7770kSRRwAANgVQ7038VrnGpRwF3by5AlFRXXSxYsXVL/+w2bHAQAAbogyDrd0/Pgxde/eUUlJSZo5c64qV65idiQAAOCG7DpNJT4+Xn369FG1atXUqFEjrVmz5rrnzZo1S82aNVNkZKQaN26sWbNm5Xk2wzB06nyyTpxL1qXk9Dx/P5gnPT1dPXp0VkpKsqKjKeIAAMA8dh0Zf/311+Xl5aWNGzcqNjZWPXr0UEREhMLDw686zzAMTZgwQeXLl9fRo0fVtWtXFS1aVE2bNs2zbN/tPKmFX+3Lfmz1sMjDwlKGrsjb21uDBg1TsWLFVa5cebPjAAAAN2a3Mp6SkqKvv/5aa9askb+/v6pXr67GjRtr1apVGjRo0FXndu/ePfvPZcqU0SOPPKJff/01T8t4cmqGJCmqeUV5eFgUkj+fvDy5v9WV7N+/T7/8EqeaNRuoUaNHzI4DAABgvzJ++PBhWa1WlS5dOvtYRESEtm7detOPMwxD27ZtU+vWrfMs28TFO/TnyUuSpOoRheRppYS7mr17f1fPnl0UGBio5cs/k4+Pj9mRAAAA7DsyHhAQcNWxwMBAJScn3/Tjpk2bJpvNppYtW972e4aGBtz6JEn7jsWr9D351fCBEipaJOi23weObceOHerRo7MCAgK0ZMkSFS9e0OxIcEBhYYFmR4CD4ZrA9XBdILfZrYz7+fkpKSnpqmNJSUny9/e/4cd89NFHWrlypT7++GN5e9/++s/nzyfJZjNufaIhVSgZrHoVC+ns2cTbfh84rp07f1WfPt1VoECIoqPnqVSpUnyPcY2wsECuC1yFawLXw3WBf/LwsOR48PeGr5FLWW6pVKlSysrK0uHDh7OP7d27V2XLlr3u+cuXL1d0dLTmz5+vIkWK2CklXM2mTT+pYMEwzZ69UPfcU8zsOAAAAFexWxn38/PTY489pqlTpyolJUXbt2/X+vXr9fTTT19z7urVq/Xuu+9q7ty5KlGihL0iwoWkp19ZnrJXr7766KNlKlyYH+gAAIDjseudiq+99prS0tJUt25dDRw4UKNHj1Z4eLi2bdumyMjI7PPee+89xcfHq1WrVoqMjFRkZKRGjRplz6hwYhs3/qinn26iw4cPymKxKDCQ+X0AAMAx2XWd8eDgYM2YMeOa49WrV9eOHTuyH2/YsCHPsySlZmRv7mMoB/PK4RS+/36DBg3qr/vuC1dwcAGz4wAAANyUXcu4Ixn24WYlp2VmP/bytJqYBrlh/fqvNWTIAJUvX0EffDBL+fOzMg4AAHBsblvGk9MyVb18mKpHFJKHxaJKpUPMjoS78PPPmzV48MuqVKmypk+PYWoKAABwCm5bxiXpnoL+qlmhsNkxkAuqVKmmF17oqB49esvf/+6WGAIAALAXtpqEU9uwYZ0SExPl6+urAQMGU8QBAIBToYzDaX3yyWINGNBXc+ZEmx0FAADgjrj1NBU4r0WLFmjixHF6+OFG6tWrr9lxAAAA7ojblfGE5HRt/+Os2TFwF+bOnaUpU97Ro48+rrfeekdeXt5mRwIAALgjblfGv9t5Qit/PCRJCsmfz+Q0uF2JiYlaunSRmjR5UmPHvi1PT7e7hAEAgAtxuyaTlXVlg5+p/R9SgK+XyWmQU4Zx5fsWGBio+fOXKDQ0lCIOAACcnlvewGmRKOJOxDAMvffeOxo3bowMw1DhwoUp4gAAwCW4ZRmH8zAMQxMnvqX582dLsmSPkAMAALgCtxhe3Lr3jBZ9vU82Q0rPyLoyNA6HZ7PZ9NZbb2jZssV64YWOGjRoqCwWvnkAAMB1uEUZP3I6UYkpGWr4QDFJ0j2h/iYnQk6MHz9Wy5YtVufO3dWv3wCKOAAAcDluUcYlyWq1qP3j5c2OgdtQv34DhYSEqEePPhRxAADgkpgzDoeSkZGhrVt/liQ1aNBQPXu+SBEHAAAuizIOh5GRka6hQweoR4/OOnTooNlxAAAA8pzbTFOBY0tPT9crr/TX999/q1deGa7SpcuYHQkAACDPUcZhurS0NA0Y8KI2bfpJI0aM1rPPtjE7EgAAgF1QxmG6deu+1ObNGzV69Jtq0aKl2XEAAADshjIO0zVr9rTCw8spIqKi2VEAAADsihs4YYrExET169dT+/btlcVioYgDAAC3RBmH3SUkXFLPnl20adNGnTx5wuw4AAAApmGaCuzq4sWL6tmziw4ePKDJk6eqQYNGZkcCAAAwDWUcdnPx4kV1795Bx44d1ZQpM1S37kNmRwIAADAV01RgN35+frr33lKaNu1DijgAAIAYGYcdxMWdVr58+RQUFKxJk6aZHQcAAMBhuPzIeEJyuhJT0s2O4bZOnDiuLl3aafDgl2UYhtlxAAAAHIpLj4xn2Wwa8uFmXU7Pkq+PS3+qDunYsaOKiuqkpKQk9e07QBaLxexIAAAADsWlG6rNJl1Oz1LtSoX1rxolzY7jVg4fPqju3TspIyNdMTHzWEccAADgOly6jP+leFiA7i0SaHYMt2EYhkaPHqmsrCzFxMxXeHh5syMBAAA4JLco47Avi8WiceMmKi0tTWXK3Gd2HAAAAIfl8jdwwn5iY/fo7bfHyWaz6Z57ilHEAQAAboEyjlyxe/dviorqrG+//UYXLpw3Ow4AAIBToIzjru3Y8at69uysoKAgzZ69UAULhpkdCQAAwClQxnFXtm37Rb17d1PBgmGaPfsj3XNPMbMjAQAAOA3KOO5KZmamSpUqpVmzFqhw4cJmxwEAAHAqrKaCOxIXF6fChQurdu26qllzuTw8+LkOAADgdtGgcNu+/Xa9mjd/TOvXfy1JFHEAAIA7RIvCbVm37ku98kp/lSsXoRo1apsdBwAAwKlRxpFjn3++RkOHDtT991fRzJlzlD9/frMjAQAAODXKOHLkwIH9GjlyiKpVe0AzZsQoICDA7EgAAABOjxs4kSNly4brjTcmqHHjR+Xr62t2HAAAAJfAyDhuavnyJfrPf3ZLkpo2bU4RBwAAyEWUcdzQwoXzNHbsaC1dusjsKAAAAC6JaSq4rjlzojV16mQ9+ui/NGrUG2bHAQAAcEmUcVzFMAxFR8/QBx9M0xNPNNMbb4yXpyeXCQAAQF5gmgquYrPZFBu7R82bt9DYsRMo4gAAAHmIpgVJV0bEU1KS5e8foIkT35PV6snOmgAAAHmMtgUZhqG33x6nzp1fUHJykry8vCniAAAAdkDjcnM2m03jxo3R4sULVatWHfn5+ZsdCQAAwG0wTcWNZWVl6Y03Rmnlyk/VpUuU+vZ9WRaLxexYAAAAboMy7sZmzJiqlSs/VY8efdSz54sUcQAAADujjLux555rq0KFCqt167ZmRwEAAHBLzBl3MxkZ6Vq0aIGysrJUuDBFHAAAwEyMjLuRy5cva9Cgfvrxx+9Vpsx9qlOnntmRAAAA3Bpl3E2kpaXp5Zf7aPPmjRo5cjRFHAAAwAFQxt1AamqK+vXrpW3bftHo0W+qRYuWZkcCAACAKONu4dChg4qN3aOxYyeoadOnzI4DAACA/6KMu7CMjAx5eXmpYsX79dln6xQcXMDsSAAAAPgbVlNxUZcuxatTp7b65JPFkkQRBwAAcECMjLugixcvqmfPLjp48ICKFClidhwAAADcAGXcxZw/f05RUZ11/PhRTZnygerWrW92JAAAANwAZdyFpKWlqVu3Djp16pSmTftQNWvWNjsSAAAAboIy7kLy5cun5557XuXLV9ADD1Q3Ow4AAABugTLuAk6cOK5z586qatVIPf98e7PjAAAAIIco407u6NEjiorqJIvFotWrv5SXl7fZkQAAAJBDlHEndujQQUVFdVJmZoY++GAORRwAAMDJUMad1IEDf6hHjy4yDEMxMfNVtmw5syMBAADgNlHGndSSJYvk4WFRdPQClS5dxuw4AAAAuAPswOlkDMOQJA0ZMlILFiyliAMAADgxyrgT+e23nerYsY3Onz8nLy8vFS16j9mRAAAAcBco405ix47t6tmziy5evKiMjAyz4wAAACAXUMadwNatW9SrVzcVKlRYs2cvVJEiRc2OBAAAgFxAGXdw27b9ohdf7KFixYpr9uyFKlSosNmRAAAAkEso4w6udOkyevjhxoqJma/Q0IJmxwEAAEAuoow7qJ07f1VGRoZCQwvq7bffVUhIiNmRAAAAkMso4w7oq6++UNeu7TVr1kyzowAAACAPUcYdzNq1azRs2EBVqVJN7dt3NjsOAAAA8pBLl/FN/zltdoTbsmrVvzVy5GA9+GANTZ8erYCAALMjAQAAIA+5dBlfu/mwJCkkv4+pOXIiPv6iJk58S7Vq1dHUqTPl5+dvdiQAAADkMU+zA+QlL08PTX+5gXx9HP/TDA4uoDlzPtK995aSj4/j//AAAACAu+f4LfVuWOTwRXzBgjmyWDzUvn0nlStX3uw4AAAAsCOXnqbi6GbNmqnJk9/W7t27ZBiG2XEAAABgZ449bOyiDMPQzJnv68MPp+vJJ5vr9dffksViMTsWAAAA7IwyboLp06do1qyZeuqpZ/Taa2NltVrNjgQAAAATUMZNUKhQYbVq1VrDh78mDw9mCgEAALgryridGIahw4cPqXTpMnruuedlGAZTUwAAANwcw7J2YLPZNHbsa3r++ZY6duyoJFHEAQAAQBnPa1lZWRo9eoQ+/fQTvfBCBxUvXsLsSAAAAHAQTFPJQ5mZmXr11aH64ovP1KtXX0VF9WZEHAAAANko43no3/9epi+++Ez9+g1Qly5RZscBAACAg6GM56GWLZ9TkSJF1aBBQ7OjAAAAwAExZzyXXb58WW++OVpxcXGyWq0UcQAAANwQZTwXpaamqn//Xlq+fKl+/XWr2XEAAADg4JimkktSUpLVr18vbd++VaNHv6knnmhmdiQAAAA4OMp4LkhKStKLL0Zp9+5devPNt/Xkk83NjgQAAAAnQBnPBZmZGUpPv6zx4yfpsceamB0HAAAAToIyfhcSEi4pXz5fBQcX0MKFn8hqtZodCQAAAE6EGzjv0IULF9StWweNHDlEkijiAAAAuG2U8Ttw7txZdevWQUePHtEzz7QyOw4AAACcFNNUblNcXJyiojrqzJkzmjbtQ9WoUcvsSAAAOA3DMJSUdEmpqUmy2bLMjnNbzpzxkM1mMzsGTOLp6a0CBcJkteZufaaM3wbDMDRgwIs6d+6sZsyIUWTkg2ZHAgDAqVy8eFYWi0UhIYVltXrKYrGYHSnHPD09lJlJGXdHhmEoOTlBFy+eVcGCRXP1tSnjt8FisWjYsFGy2bJUpUo1s+MAAOB00tPTVLhwcVkszJSF87BYLPL3z6+kpPhcf23+T8iBI0cO6+OPF0iS7r+/MkUcAIA7ZlDE4ZTy6rc4jIzfwsGDf6pHj07KzMxSkybNFBISYnYkAAAAuAjK+E0cOPCHoqI6y2KxKCZmPkUcAAAX1KpVc3l7e8vLy1uZmRlq06admjdvkf38wYMH9P77U3Ty5DFlZRkqX768+vYdoMKFi2Sf8/XXX2jx4oW6fPmy8uXzVYkSJdSrV38VKVLkem/pEGw2m/r06a4xY8apUKHCZsfJkbS0NI0bN0b79sXKarWqT5+XVK/eQ9ect2zZEq1duzr78cmTJ9S8+dPq23dA9rHLly+ra9f28vHx0ezZCyVJK1YsV2Jigjp06JL3n8x/UcZvYO/eWPXs2VleXt6KiZmnUqXKmB0JAADkkbFjJ6hMmbI6ePCAunRppzp16qlgwTAlJCTopZf66KWXXtHjjz+uzEybli5dpAEDXtT8+Uvk6empNWtWaunSRXrrrUkqUaKkJOnXX7fpwoVzuV7GMzMz5emZO/Xt22+/UenSZW67iOdmhtu1ePFC+fv7a+nSlTp27Kj69OmuJUtWyM/P76rznn22jZ59to2kK3lbtHjiml3So6NnqFKl+3XgwP7sY82bt1Dbti3VsuVz8vcPyPtPSJTxGzpw4A/5+vrpww/nqmTJe82OAwAA7KBMmbIKDMyvs2fPqGDBMH366VJFRj6gxo0fzT6ndesX9M03X+ubb75SkyZNNXdujIYMGZldxCXpgQeqX/f1k5KSNHXqJO3d+7ssFg9VrVpNAwYM0ZtvjlZERAW1bNlakq56/Oabo2W1WnX06BGlpKSoYcPGSki4pH79BkqSLl2KV9u2LbV8+Wfy9PRUdPQM7dy5XenpGSpbtqwGDhx2TVmVpNWrV6hTp27Zjxcv/kjr13+trKxMeXv7aNCgoQoPLy9Jql+/ujp37q7NmzeqVq06atu2vaZNe1d//rlf6enpioysrr59X5bVar3p69yt9evXaeTI0ZKkEiVKKiKigrZs2XTV9+efNm78QaGhBRURUTH72K5dO3T8+FG1bv2CDhyYkn3c09NTNWvW1vr16/TUU8/kSuZbceky7nUHu2KmpqbI19dPzZo9rUceeVy+vr55kAwAAEjSxt2n9NNvp/LktetXKap6lW9vGbrfftupoKBglS1bTpL055/7r7twQ6VKlXXgwH5dvHhBZ87EqWLF+3P0+lOnTpKvr6/mzVssDw8PxcfnbHWO/fv/0PvvR8vX11enT59Wjx4d1bt3f3l6emrdui9Vr16D/77uLPn7+ysm5srCEzNmTNXChXPVo0efq14vMzNTu3f/pooVK2Ufa9KkqZ5/vp0kaevWnzVx4luKjp6X/byPj49mzbryuuPHv6Fq1R7Q0KGvymazacyYkVq7drWeeuqZW77OX7Zu/VnTp0+55rgkPfFEU7Vu/cI1x+PiTqtw4f99TwsVKqIzZ07f9Gu3du1qNW3aPPtxamqqpkyZpAkTJuvYsaPXnF+pUmVt2bKRMp4bej5d6dYn/c327Vs1aFB/TZz4nqpXr0kRBwDATYwcOUSGYejEieN6443x8vLyknRlfenctGnTj5o16yN5eFxZUSY4ODhHH9ew4SPZvaRIkSIqVeo+bdmyUfXrP6zPP/9M/fpdmQu9ceMPSk5O1nffbZAkZWSkq2zZ8GteLz4+Xl5envLxyZd9bN++WC1cOFcJCZfk4eFxTVF94olm2X/+6acfFBu7R0uWLJJ0ZS73X9NdbvU6f6lRo5bmzfs4R5//nTp37py2b9+q4cNHZx+bPn2K/u//nlVYWKHrZgsNLagzZ87kaa6/c+kyXiTETzZbzv4n+uWXLerXr5eKFi3KtBQAAOykXuXbH73OC3/NGd+w4RuNGzdGlStXVUhIqMqWLac9e3Zfc/7vv/9HzzzTSgUKhCgsrJBiY/eoZs3ad/z+Vqv1qs6Snn75quf9/K4eIHzyyWb64ovPVLRoMSUnJ6lq1UhJkmFIAwcO1YMP1rjp+/n4+Cg9PT37cUZGhl59dYjefz9G5ctH6Ny5s2rR4omrPsbX9+9TXQyNG/eOihUrftU5OXmdv9zJyHjhwkUUF3dKBQoUkCSdOXP6hlOCJOmLLz5TnTr1rvqhZ/fundqyZaPmzZul9PR0JSYmqGPHNpo/f4mkK197Hx+fG75mbmOhT135KbVv3x4qXry4Zs1a4DR3FAMAgNzVuPGjqlGjthYunCdJatnyOf3663Zt2PBN9jlLly5SUlJi9g2BHTt21bRpk3XixPHsc3bu/FW///6fa16/bt2HtHjxguwR97+mqRQrVkJ79+6RdGU099dft98058MPN9auXTu0ZMlHeuKJZtlrYNev30BLly7S5ctpkqSUlGQdPnzomo8PDAxUgQIhOnXqpKQrBTQrKyu7A/3738tu+v716jXQRx/NV1ZWVvbncfLkidt6nb9Gxq/33/WKuCQ1avSIVq36tyTp2LGjio39XbVr17nhe3z++Wo1bfrUVcfmz1+i5cvXaPnyNRo9+k2VKVM2u4hL0uHDh7KnKdmD25fxffv2qn//3ipVqoxiYhYoNLSg2ZEAAICJevZ8UZ9/vlrnzp1T/vxBevfd6VqzZoVatnxKzz77tHbt2qnJk9/PXlGkRYuWatu2g0aOHKy2bVuqXbtntWLF8ut2ir59ByglJUXt27dWx47Pa968GEnSU0+10JkzZ9Su3bOaNOmtq+ZyX0++fPlUv/7D+uqrz9Wkyf+mj7Rr10n33Reubt06qGPHNurVq5uOHLm2jEtSgwaN9PPPmyVJ/v4B6tq1h7p376AuXdrdcqpu//4DZbV6qFOn59WhQ2sNHNhXZ8+eve3XuV1t23ZQYmKiWrduocGDX9LgwcPl5+cvSZo1a6ZWrlyefe5vv+1Uamqqata8cVm/nl9+2aKGDRvnau6bsRi5PRnKgZw/n3TLaSo2m01z5kTr2WfbKCgoZ/O24LzCwgJ19myi2THgYLgu8E9cE3nn9OkjKlLEOaeDenp6KDPTZnaMXHPy5AmNHj1CH344N892l3Q2R44c1sSJ4/T++9HXff6f16+Hh0WhoXe3BKLbjoxv2PCNTp48IQ8PD3Xr1pMiDgAA3Mo99xRTmzbtdP78ObOjOIwzZ05r4MChdn1Ptyzja9eu1qBB/W540wAAAIA7aNz4URUsGGZ2DIdRo0ZtlS5t340e3a6Mr1z5qUaOHKLq1WtmLxoPAAAAmMGtyviyZUs0evQI1alTT1OnzvzHEj0AACDvWWQYrjPvGu4jr26zdJsynpGRoRUrlqtBg4Z6993pypcv360/CAAA5Cpv73yKjz+nzMyMPCs3QG4zDEPJyQny9PTO9dd26U1//pKZmSkvLy/NnDlHvr755OWV+19IAABwawUKhCkp6ZIuXIiTzZZldpzb4uHhIZuNUX135enprQIFcn9+vcuX8ZiYmdqxY5vee2+G8ufPb3YcAADcmsViUWBgsAIDnW8VM5a8RF6w6zSV+Ph49enTR9WqVVOjRo20Zs2a655nGIYmTpyoWrVqqVatWpo4ceId/Spr4cJ5mj79PYWEhMrDw21m5AAAAMBJ2HVk/PXXX5eXl5c2btyo2NhY9ejRQxEREQoPD7/qvKVLl+qbb77RqlWrZLFY1LlzZxUvXlzPP//8bb3f4sUL1aJFS7366uuyWq25+akAAAAAd81uZTwlJUVff/211qxZI39/f1WvXl2NGzfWqlWrNGjQoKvOXblypbp06aIiRYpIkjp37qxly5bddhlv27ad2rbtyKg4ruLhwS5juBbXBf6JawLXw3WBv8uN68FuZfzw4cOyWq0qXbp09rGIiAht3br1mnP379+viIiIq87bv3//bb9n//597ywsXNrdblsL18R1gX/imsD1cF0gt9ltyDglJUUBAVdfwIGBgUpOTr7luYGBgUpJSWEJJAAAALgUu5VxPz8/JSUlXXUsKSlJ/v7+1z337yU9KSlJfn5+slj41RAAAABch93KeKlSpZSVlaXDhw9nH9u7d6/Kli17zbnh4eHau3fvVef98yZPAAAAwNnZdWT8scce09SpU5WSkqLt27dr/fr1evrpp6859+mnn9bcuXMVFxenuLg4zZ07V88884y9ogIAAAB2YTHsOBE7Pj5ew4cP16ZNmxQcHKyBAweqefPm2rZtm7p3764dO3ZI+t8648uXL5cktWrVSq+88grTVAAAAOBS7FrGAQAAAPwPC3ADAAAAJqGMAwAAACahjAMAAAAmoYwDAAAAJnHaMh4fH68+ffqoWrVqatSokdasWXPd8/5amaXW/7d3/0Ex538cwJ9FW6gRKiLSuWwXdW0/dJVI5KRTV3QjMfKrSHfopOIy43TompvU3Tia3GrGj3Eath9nGhfXya/mQjqdpE4nMcmPo0Sl/Xz/uK/9ln7tOu3i+3zM7Iz9fN6f3ec7L83Lu/endXaGs7MzEhMT+UmebzFl6yItLQ0fffQRJBIJPD09kQK1dFEAAA7xSURBVJaWpuakpE7K1sVzzc3N8Pb2xqRJk9SUkDRBlbooLS1FcHAwJBIJXF1dkZ6ersakpE7K1kVzczM2btwIV1dXTJgwAcuXL0dtba2a05I67N27FwEBARg/fjxiYmK6Hbtnzx64ubnB3t4esbGxaG5u7vH1+76qoOr25ZdfQkdHB6dPn8aVK1cQFhYGKyurDh8OdPDgQeTl5SEzMxNaWlpYtGgRzMzMEBQUpKHk1JuUrQtBEJCQkACxWIwbN25gyZIlMDU1hY+Pj4aSU29Sti6e2717NwYPHtzuk4Dp7aNsXdy/fx9Lly5FbGwsZsyYgebmZjZdbzFl6yI9PR3FxcXIysqCgYEB4uLisHnzZnz33XcaSk69xcTEBOHh4SgoKEBTU1OX4woKCpCamor09HSYmJggIiICKSkpWLt2bbev/0aujDc2NuLYsWNYtWoVBgwYAEdHR3h6eiIzM7PDWJlMhsWLF2PYsGEYOnQoFi1ahCNHjmggNfU2Vepi2bJlGDduHPr27Yt33nkHU6dOxYULFzSQmnqbKnUBANXV1cjKykJoaKiak5I6qVIXe/bswcSJE+Hr6wuRSAR9fX2MGTNGA6mpt6lSFzdv3sTEiRNhZGQEXV1dzJw5E9euXdNAaupt06dPx7Rp02BoaNjtOJlMhjlz5sDS0hIDBw5EeHi4Uj3nG9mMV1VVoU+fPrCwsFAcs7KyQkVFRYex165dg5WVVbtx/MfydlKlLtoSBAFFRUV49913ezsiaYCqdREfH4/IyEjo6empKyJpgCp1UVxcjIEDB2Lu3LlwcXHB8uXLcevWLXXGJTVRpS7mzJmDCxcuoLa2Fk+ePEF2dja3tv2fe7HnFIvFuHv3Lh48eNDtdW9kM97Y2Ah9ff12xwwMDDr9kfKLYw0MDNDY2Mh9428hVeqirW+//RZyuRyzZ8/uzXikIarUxc8//4zW1lZ4eXmpKx5piCp1UVtbC5lMhvXr1yM/Px9mZmaIjIxUV1RSI1XqYvTo0TA1NcWkSZPg4OCAyspKrFy5Ul1R6TXUWc8JoMc+5I1sxvv374+GhoZ2xxoaGjBgwIBOx7b9IjQ0NKB///7Q0tLq9ZykXqrUxXN79+6FTCZDamoqRCJRb0ckDVC2LhobG5GYmIgvvvhCnfFIQ1T5fqGrqwsvLy/Y2tpCV1cXK1euxMWLF1FfX6+uuKQmqtTFpk2b0NzcjMLCQhQXF8PLywvLli1TV1R6Db1YP8//3F0fAryhzfjo0aPR2tqKqqoqxbGysrJOtxlYWlqirKys3biubtqiN5sqdQEAGRkZihsthg0bpqaUpG7K1sVff/2FmpoaBAcHw83NDZ9++inq6urg5uaGmzdvqjk19TZVvl+IxeJ2z7mY8/ZSpS7Kysrg7+8PQ0NDiEQiLFiwACUlJbh//74aE9PrxNLSElevXlU8Lysrg5GREQYNGtTtdW9kM96/f394eXkhJSUFjY2NOH/+PI4fPw4/P78OY/38/CCVSlFbW4va2lpIpVL4+/trIDX1NlXqIisrC0lJSZBKpRg5cqQG0pK6KFsXlpaWyM/Ph0wmg0wmQ3x8PIYMGQKZTAZTU1MNpafeosr3i4CAAOTl5eHKlStoaWnBjh074ODgoPgRNL09VKkLGxsbZGZmor6+Hi0tLdi/fz9MTEwwePBgDSSn3vTs2TM0NTVBLpejtbUVTU1NePbsWYdxfn5+yMjIQEVFBR49eoTvv/9euZ5TeEM9ePBAWLFihfD+++8LkydPFrKysgRBEITffvtNsLOzU4yTy+VCQkKC4OTkJDg5OQkJCQmCXC7XVGzqZcrWxZQpUwRra2vBzs5O8YiLi9NUbOplytZFW+fOnRPc3d3VGZPUTJW62LdvnzBx4kTB0dFRCAsLE27duqWJyKQGytbF/fv3hcjISOGDDz4QHBwchLlz5wqXLl3SVGzqRSkpKcLYsWPbPVJSUoSamhrBzs5OqKmpUYz94YcfBBcXF0EikQgxMTFCU1NTj6+vJQi8k5GIiIiISBPeyG0qRERERERvAzbjREREREQawmaciIiIiEhD2IwTEREREWkIm3EiIiIiIg1hM05EREREpCFsxomIXoHCwkKIxeI3+tP3PD09sXv37m7HHD58GBKJRE2JiIjefmzGiYj+KyYmBmKxuMPjypUrmo4GAFiwYIEi0/jx4/Hhhx9i586daG1tfSWvn5GRgXnz5imei8Vi5Obmthszc+ZM5OXlvZL3607br79EIoGvry8OHz78Uq/z4hyIiF4nfTUdgIjodeLq6oqvv/663bFBgwZpKE1HAQEBiIyMRFNTE/Lz8xEfHw9tbW2Ehob+69dW5mO89fT0oKen96/fSxnx8fHw8PDAkydPcPToUcTGxsLY2Bju7u5qeX8iInXgyjgRURsikQjGxsbtHn379oVUKsWsWbNgZ2cHd3d3bNiwAY8ePeryderr6xEVFQUXFxfY2Nhg6tSp2LNnT7vzcXFxcHFxgUQiwfz58/H777/3mK9fv34wNjaGmZkZ5s+fDxcXFxw/fhwA8PDhQ0RHR8PJyQm2trYICQnBtWvXlM7UdpuKp6cnAGDVqlUQi8WK5223qVy/fh1isRhXr15tl/HgwYNwdnZGS0sLAKCiogKhoaGQSCRwcXFBZGQk6urqepyrgYEBjI2NMWrUKCxfvhyGhoY4ffq04nxJSQkWL14MZ2dn2NvbIygoCBcvXmw3n87mAAAnTpxAQEAAbGxs4OnpiaSkJDQ3N/eYiYjoVWMzTkSkBC0tLaxfvx45OTn45ptvUFJSgs2bN3c5fvv27SgvL8euXbuQm5uLLVu2YOjQoQAAQRAQGhqK2tpa7Nq1CzKZDI6Ojli4cCHu3LmjUi5dXV1F0xsTE4NLly5hx44dOHToEPT09LB06VI8ffq0x0wvysjIAPDP6vSpU6cUz9uysLCAjY0NsrOz2x3Pzs6Gt7c3dHR0cOfOHQQHB8PS0hIZGRmQSqVobGxEeHg45HK5UnNsbW3F0aNH8ffff6Nv3//9QPfx48fw9fXF/v37cejQIbz33nsIDQ3FgwcPup1DQUEB1q5di+DgYPz000/YsmULcnNzkZSUpFQeIqJXidtUiIjaKCgoaHeDooODA9LS0hASEqI4ZmZmhqioKISHhyMhIQHa2h3XNWpqamBtbQ1bW1sAwIgRIxTnzp07h7KyMpw9e1ax5WP16tX45ZdfkJmZiWXLlvWYUy6X49SpUzh16hQWLlyIqqoqnDhxAnv37oWTkxMAIDExER4eHsjOzkZgYGC3mV70fMvK89Xprvj6+kIqleLzzz+HlpYWbt26haKiIkRGRgIADhw4ACsrK0RFRSmuSUhIwIQJE3D58mVFls6sW7cOsbGxaGpqQmtrKwwNDREYGKg47+Li0m58XFwcjh07hpMnT8LPz6/LOezcuRNLlizB7NmzAQCjRo1CVFQUoqKisG7dOmhpaXWZiYjoVWMzTkTUhqOjY7sV7+fN8tmzZ5GamorKykrU19dDLpejpaUFdXV1na4uBwUFYdWqVSgtLYWbmxumTJmCCRMmAABKS0vx5MmTDs1kU1MTqquru833448/4siRI4rVcF9fX0RERODMmTPQ1taGnZ2dYqyBgQHGjh2LioqKHjO9LB8fHyQkJKCoqAhOTk7IycmBmZkZ7O3tFXMtKirq9Dew3Lhxo8dm3N3dHbdv38a2bduwZMkSmJubK87fu3cPycnJKCwsxN27dyGXy/H06VPcvn2728ylpaUoKSlBWlqa4tjza+vq6mBiYqLql4GI6KWxGSciaqNfv37tGj7gn1XusLAwfPLJJ/jss89gaGiIP/74A5GRkYqm+EWTJ0/GiRMncPLkSZw7dw5hYWGYMWMGtm7dCrlcDiMjI+zbt6/Ddfr6+t3m8/b2RkREBEQiEUxMTNCnT58e5/R8pbe7TC9ryJAhcHV1RXZ2NpycnJCdnY1Zs2YpzsvlckyePBnR0dGdXtsdIyMjmJubw9zcHMnJyfD394e1tTXGjBkDAIiOjsa9e/cQGxuLESNGQCQSISQkpMu/k7aZIiIiMGPGjA7nlLmJlYjoVeKecSKiHly+fBktLS2IjY2FRCKBhYWFUnu7Bw8ejI8//hjbtm3DV199hSNHjqC5uRnjxo3D3bt3oa2trWg2nz96alANDAxgbm4OU1PTdo34mDFjIJfLUVxcrDjW0NCA8vJyRfPaXabO6OjoKLWv29fXF7m5ubh8+TLKy8vh6+urODdu3DhUVFRg+PDhHeba03882jI3N8f06dORmJioOHb+/HnMnz8fHh4esLS0xIABAzrcGNrZHKytrfHnn392yGNubt5uTzoRkTqwGSci6oG5uTnkcjnS09NRXV2NnJwcpKend3tNcnIy8vLyUFVVhcrKShw7dgwjR46ESCSCq6sr7O3tER4ejl9//RXV1dW4ePEiUlJSUFRU9FIZR48ejalTp2Ljxo0oKirC1atXsXbtWujr6ytWqrvL1JkRI0bg7NmzqKurw8OHD7t872nTpqGlpQUbNmyAjY0NLCwsFOfmzZuH+vp6rFmzBpcuXUJ1dTXOnDmDuLg4NDQ0qDTHkJAQ5Ofno6SkBMA/N5BmZWWhoqICJSUlWLNmDXR0dHqcw8qVK5GTk4Pk5GSUl5ejsrISubm5HX6lJRGROrAZJyLqgZWVFTZs2ACpVAofHx8cOnQI69at6/YakUiEpKQk+Pn5ISgoCI8fP8bOnTsB/LNtJDU1Fc7OzoiLi4O3tzdWr16N69ev/6v9ylu3boWtrS1WrFiBwMBAPH36FGlpaYp9791l6kx0dDQKCwvh4eEBf3//Lsf169cPXl5eKCsra7cqDgBDhw7FgQMHoK2tjaVLl8LHxwebNm2CSCTq8j8BXbGysoKrqyu2b98OANiyZQsaGxsVv3t99uzZHW5K7WwO7u7u2LVrFwoLCxEYGIjAwECkpqZi+PDhKuUhInoVtARBEDQdgoiIiIjo/xFXxomIiIiINITNOBERERGRhrAZJyIiIiLSEDbjREREREQawmaciIiIiEhD2IwTEREREWkIm3EiIiIiIg1hM05EREREpCFsxomIiIiINOQ/gMrmZBzRtMIAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Accuracy_train: 0.7315\t\tAccuracy_test: 0.6975\n","Precision_test: 0.6771\t\tRecall_test: 0.4483\n","ROC-AUC_test: 0.7450\t\tF1_test: 0.5394\t\tMCC_test: 0.3433\n"]}],"source":["orig_plt_params = plt.rcParams\n","sns.set()\n","svm_mdl = svm.SVC(probability=True, gamma='auto', random_state=rand)\n","fitted_svm_mdl = svm_mdl.fit(X_train, y_train)\n","y_train_svc_pred, y_test_svc_prob, y_test_svc_pred =\\\n"," mldatasets.evaluate_class_mdl(fitted_svm_mdl, X_train,\\\n"," X_test, y_train, y_test)"]},{"cell_type":"code","execution_count":47,"metadata":{"id":"SbSan2PJCE4C","colab":{"base_uri":"https://localhost:8080/","height":49,"referenced_widgets":["d83bdc54c79044c5b6f653d353e8f2a0","072ec8672aa94dc681515317eb3a9184","04d6797308c3438996c4b8d36ba67c33","432f07d69ac142169ea955273bd06525","20b8f146340f45a080f872d4a195d9bb","87f72b7193dc4152887098d596e9ef32","3335b295ece04fcc82634513cdac04bc","612e76609d4c47fe86e309f7949aeaa2","52670231994e4b24aa336c9668ceb4e1","9211d9c1dd0a41df8a7a45c76b1231e0","75f1ed3efa054aca9189b32c5776b478"]},"executionInfo":{"status":"ok","timestamp":1648016697148,"user_tz":-540,"elapsed":210522,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}},"outputId":"27259e6b-7ca3-4927-9b41-ded5ad80b3b3"},"outputs":[{"output_type":"display_data","data":{"text/plain":[" 0%| | 0/734 [00:00, ?it/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"d83bdc54c79044c5b6f653d353e8f2a0"}},"metadata":{}}],"source":["np.random.seed(rand)\n","X_train_summary = shap.kmeans(X_train, 10)\n","shap_svm_explainer = shap.KernelExplainer(fitted_svm_mdl.predict_proba, X_train_summary)\n","shap_svm_values_test = shap_svm_explainer.shap_values(X_test, nsamples=200, l1_reg=\"num_features(20)\")"]},{"cell_type":"code","source":["print(shap_svm_explainer.expected_value)\n","print(np.asarray(shap_svm_values_test).shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"u2YRBKf09kmS","executionInfo":{"status":"ok","timestamp":1648016697148,"user_tz":-540,"elapsed":8,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}},"outputId":"53d4f7e0-16e1-4a62-ad16-1984760db3a6"},"execution_count":48,"outputs":[{"output_type":"stream","name":"stdout","text":["[0.63011796 0.36988204]\n","(2, 734, 44)\n"]}]},{"cell_type":"code","source":["shap.summary_plot(shap_svm_values_test[1], X_test, plot_type=\"dot\")"],"metadata":{"id":"RwTN_9tf9hwq","colab":{"base_uri":"https://localhost:8080/","height":588},"executionInfo":{"status":"ok","timestamp":1648016698321,"user_tz":-540,"elapsed":1179,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}},"outputId":"3c054dba-ce7c-44e4-aa9f-187a11493d77"},"execution_count":49,"outputs":[{"output_type":"display_data","data":{"text/plain":[""],"image/png":"iVBORw0KGgoAAAANSUhEUgAAApMAAAI7CAYAAACwWRB+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5hU1cHH8e8tU3dme++UXZZepElAUDAgKjHEREIMJDZMrNgSEVNMYoxijaAxxfIaOxYUMbFLkaJ0WHpne5ndnXrnlvePWWZ3aSoKCDmf5/GRufXc2Ttzf/fcc85IlmVZCIIgCIIgCMIxkE92AQRBEARBEIRTlwiTgiAIgiAIwjETYVIQBEEQBEE4ZiJMCoIgCIIgCMdMhElBEARBEAThmIkwKQiCIAiCIBwzESYFQRAEQRC+Rc455xy2bNnSYdrEiRNZtmwZDz/8MG+//fYXbuOvf/0rf/nLX45XETtQT8heBEEQBEEQhK/thhtuONlFOIQIk4IgCIIgCKeIX//61/Tq1YtLL72UlpYWZsyYwdatW8nKyiIrK4u0tDR+9atfAVBdXc2VV17J3r17KSws5OGHH8blcn3jZRJhUhAEQRAE4Vvm+uuvx+FwxF/v2rXrkGVmz55NYmIi77zzDj6fj4kTJzJ27Nj4/PXr1/PKK6/g9Xq5/PLLefPNN/nRj370jZdVhElB+BaorW05KftNSXHT2Bg8Kfv+ukTZT7yFC99n9Ohz0DTpZBflmJyq7zuIsp8MGRne47NhaWLH19arh13skUceobS0NP564sSJhyyzbNkyZs6cCUBycjJjxozpMH/48OEkJiYC0KdPH/bs2fN1Sn5EogOOIPwPU1XlZBfhmImynxxJSYknuwjH7FR+30XZhWPRvmZTURQMwzgu+xFhUhAEQRAE4YSRDvrv2A0ePJg33ngDgObmZt5///2vXbpjIcKkIAiCIAjCKeiaa66hvr6ecePGcc0119CrVy88Hs8JL4doMykIgiAIgnDCfHFt5AcffHDItFdfjbWtHDJkSHyay+XigQcewOFw4Pf7+fGPf8wll1wCwHXXXddh/YNff5NEmBQEQRAEQTgFNTc3c+WVV2IYBpFIhAsuuIBhw4ad8HKIMCkIgiAIgnDCfHOjIaSlpcVrLE8m0WZSEARBEARBOGaiZlIQBEEQBOGEOTXHaT0aUTMpCIIgCIIgHDMRJgVBEARBEIRjJsKkIAiCIAiCcMxEm0lBEARBEIQTRrSZFARBEARBEIQ4UTMpCIIgnFDRsMGqp/YQqIrQ6ex0ikemd5i/9qNGqj+qJjXfRb8pBSh2mXBTlB3v11K1ppmMHh7KJuSg2GU0v44jUUWSvri2x9BNwk1RnEm243VogvAlnH41kyJMCoIgfEtZdUGsuZsgKwH5om6xaZZF9NVtWA1hbBeXIKc4T3IpvzzNr1P+RiXlr1ZiaBYAFSubSCp0k9LJDcDVL2m8uiORBMXFtPe2Iil7qVzVjG9nML6dypVNrH12P44klUiTTlKhi85jMuh8Tvphg6IeMVn/0n62vlWNFjQoHJ7K8Fu7Ismn30VdEE4GESYFQRBOsGh1EG1TI7ay5A6BxowaBKYvxFpTg3pmDtE3thJslFAx8H6wl50RD67le0ne3wBA5OlyvB9djKQe2mIpUh1Cb9ZJKPGesOM6GtOweG9GOY0HQqFltf4f/NVhUjq5Wfh5kFd3OAAI2Gz8tyCHovk7MCPWYbcZadIBaNoTYtW/9rBxfjXd7upNfopMoh2qqg2Sk2SW3rOZqtXN8fX2LGqgZnwLWb0Tj98BC8L/EBEmBUEQviHmixuxNtYiX1iCNDD3sMuE3t9P1ZT3kKM68uBs0uaNR5IlTM2kYtRbeLZVARDe3EAANyCho2K+sIv6tGy6+tpCkbmlEWNtHeqAzA77qF1QwZbbVmHpFq4uHnInF5M9qSgeXF/ZobC2XuL8IpMhmebxeTMOEmmKxoOkZJhYSlsAXvnPPWx5u5p15RGkAb2wWh9Zu3TjiEHyYDrwdFIuBb/fSyTBTudEG01+CYcdumyN4Dlo+dpyESaFk+X0qxEXYVIQBOFrklbsw3xrK+Zjq1AIoz62AJscJmjPIHzpKNx3fwcAY0sj4Z+9gzMaq1Gzlu8j/Np21BQ7jkcX0GvbCqK4qaQbdgIESIjvI6A6SGjSCCgOnEZsfRshnDNeQH/n+g7l2TN7C5YeC2Gh7X62/2E90UaNwmtKeeWtJvR7VnNGJMoDo/vwh19nUZpsEd4fJLitBW+fFGwp9q/9ntRv8aMFDdzpdpbM2kawPorDLbFfV7GbJl7diF9S/VUR/FURMoCLt+/m49ws0sIaF+7e94X7MQCl9b8fb92FvbXGU5dge14OLaaTkM2GJxzpsN7sT02W1hn8+VyZcSWn38VdEE4kESYFQTg9aTrYv5mvOEs3QZYO38buprdRn/0cDTsWNhpIIkgBmBaF4Y0Y/1hJoDGM9chotl+7hKKI3mH1mptXoAdNPCjYScRLPUnsp4EcVHR0VDRVZtpV5/ODRZsYsKUKl+In39hLElWoK3U+GPQSVpdsSm8pw/bv1eSs3cM+Zxqa0tZ+sHlNI8HtLSh//JxsXwCw+OW85eypyyHFUc22j3QMU8ae7aTfS8OxZ8TaYppRE9n21Qb+WPXYDja+XQuAM1kl7GsNz8DqvFTG7K8+6A22oLU2clh1HcOq6770vgxZQjEtJIgHSQDVgs77q4g47IcESQtQmyPUN+hc84bMq3nVtOwL0+nsdDL7J6PK8eIIwnFw+p1cIkwKgnBakVpCJE6ahX3FNir6lyG9chOq1/Gl11eXbkHdXklkTF+srGTCD64kfO9n4FBw/XYo2GTUIdkoJSlYzRGkZ1fTQgIyBgYyQQ48OpVoIBcVC23uNt5Iz6OsKtyxrIA/qGBhI4wdL9louGigEAlwomERZWXnQtZ2yiHNF2ZQeRUVcja6ZFAq1zH+pzO4ZsmHDF28Edcn8zD0dDKx445GWJ9cFN+Xb2EtKxd/TKlew3caF7HJ3YNtrjKUxZWUSyBbscCoVYVpXFyHvSyRlb9ZS2BviNR+yQz8TU9YpLPRWcl/vYmUJlsMyo6FN8u02LOkAVO3yO2XxOZ5VaAqAPEgeeB4pcM9tW6X3OoddrYmJ5LnD1IQCB5m4Y7s5pEfgyuWdUiQPFCOoTX19Kn38XFhLos+rSFZi7JzYQP3De2DkeHi3xMs+mV94e4FQUCESUE4rIqKCiZMmMD8+fPJyhJXlG+SXNWI5bBhpRzciq2dsIZc04SZlwbKQbViuoFc0QCJrb2YTRN5fwNmmhfcDpzPfox9xTYAcldtonLoHaR4ZcyMJMI/OYvID87k/o1OFu0xGW+r54pRHiSnjbWVJn97sRZtn8as+fPpdPtzVJcOJry2NQwFdbRffQCY+GQvlKXjHJZOmEw07NgI05U1NJCEGf9qlTCwoyNz2d+eBBQaKORAzYSBhNX6bwsJAykeJGldSsJia05s6JzCmmawLGQsKpVcgmlBHp73PPuMXqzyZCNbBgObVyHrdlyGduj7algM9K3AhkFAaeuYI7fLYxawZG2IvU/s4KcbVqHJKmtWFLFibA1S1GLzMx/x7qi+3NS3M78oDbOyAr6zbAf5u2KdghyywZFaYTYoKu8V5DCkpg6Pbhw632Hn/n49CKkqsmly9catlDS1HGFrbSKShMM6NFR+UX2q2zDQTZN/lXXhqvVb8JgmxY3NLE1w88fF8NCZGoYqU5QRC8aRsElTs0m1HzYsaMTULUZdlERu0aE3K5GQSSRkkpiqEvQbmCZ4EpXDlsPQLVp8Bt4UBUO3CPlNElMVWiLg1yA3UaKpMUooYOBKOPw2hFOJqJkUhG8FXddRVXH6AmzxSby5W6E0yeTC4hPTmeKrMi14fptCv0dfYtTz87BkidBlYwjcfSmYJs7nFyLXNhMd1BX7O6twvrwYucGPkZNC88NXoI/qhe3Dddg+3Yzj5cWo+xsgOwX5zTtI/NnD2DbsxUxOwPf67chVvg77zq6tpak2C3NHgKRlT9Fy91u8PHUGrz5zP30rdxNOTCA65RyK/7GZJ8LNVHqTePCc85n9xr+w1tYDSQCksoc09mEh4TezqNkYQtq4A50UEgghA1V0IYed+MjASQt2DFR0qsilgU6AhEKYUGtbyABtw/ooGPjIwkMofqlRiLA1NZNNmelc+9YyLl64kQQzigwoRpjeFRvZ6ezM7oTYZ8GUFPY7ssnXg6zKzI01KGxPkjAlGSwoCu+kypaDJclEZQlbaw2fBGQ+V84E3wacZixI65bCTld+fDPj1mzn7dIC5iyPvb5gX1PsH5aFrTaA7nUfsmuAVE3jB+u2U2t34NEPrXXcluQl1Pq5NmWZDSlJXypMWpIEloXFV79Mn7d7PwNdThbnZpETDHHejn0szc+mdkeYOR/WYwLKkCSuGqzwxOMNPJ+ahl9VyQ57mFhdx+6Harl1Vi5qu5ue5YsCzJvbjKyZONMUrFoNLBg4NhFfagIuF+w0FJrCFs6oifphLaFGneR0FX+Tjh6FUDcPzxhJhHUodemM2bQXh2xx5thEFEWiqNRBYYmTvft0NmzUKCxQ6dG9ra2rYVq8u9KgJWhx7gCVZE/bOxPVLd75TEfTYdxAlQTn6RduhBNLsqzD3M4J33rBYJAnnniCDz/8kMbGRrKyspgxYwbdu3fn0Ucf5cMPPyQcDtOvXz9uvfVWsrOzgVgIe+aZZ3jrrbeoq6sjJSWF6667jjFjxqDrOk8++SRvvfUWzc3NlJWVcfPNN9O1a1cAli9fzuzZs9mzZw+KojBo0CBuvfVWUlNTj1rWzz77jGuuuYY777yTxx9/nGAwyFlnncVtt92G2x0bW87n8/HII4+wbNkyIpEIAwcO5NZbbyUtLQ2ACy+8kAkTJvDZZ5+xceNGZs6cyejRo494LACvvfYazz//PNXV1eTl5XH99dczdOhQAP72t7+xevVqevXqxeuvvw7AxRdfzLRp0wAYOXIkgUAAp9OJJElMnTqVK6644hv+K7aprf3iC+bhVAVhxBtOmrTYxeC+oRpTux3uMn54GRneY973V/H7z1Se/lyn5c6pHab7f/9j5Gof7jkLgFgokA76SrIkCf/vJuH97fOHbLe6Z2emnDmJnamZTF84n5+n+4h8tpekyqq2ZehEMzkA2AlSyGpe7TWYH6xffsTymkjsoxcSNmRMoqjkswaVKAA6NuroTDrb2cYglIMizLPD+vDM8H6UNuzh0RdewPJnIrWrJ4siE8aBiUQQGxYSLqKoWNjQsRPFApw0YCHT2Fr+g+WxBVkNsTjxLCwptn3FjOIwddyOKvrUbWFx0kgiclto9Zj1jG78EAnwyTnUOtKoVjKpc8Q+xxagmjpnNa6Lr9NgS2BVUmm8BjNkk/nJ5O+CTcEejnLtsrV0q2/CsCnYI1EMWSKc6MaUJZA71g9KhokSNdCdh44HWeF28UDf7hit60zZtJ3+9Y1H/Dt9HSaxmstGu417+/ck3BpiJ23dSX4gSGVOFqYSqwXUTRN/jpP3NRdau9A4traBboEQge/l8efzYsvWNxj88c8NmFbsnMjwB+NnhwUsy0wDSWKbTaFeVRnoa+E77Xroa7KM3TR5MSeDKkdbOMwJh/lRVX38tSTD+J+n8+zcIK39ubhsqpe+vWO1pH+br/HW8tiMvHSJ2b90oiixktz7coSF62PfE93yZWZdeXzHKj1R3zPftIyM4zSslnRpx9fWs8dnPyeQqNo5Rf3hD3+gtraWOXPmkJuby759sV6P999/P1u2bOHJJ5/E6/Uya9Yspk+fzrPPPouiKMyZM4eFCxfyl7/8ha5du1JTU0Nzc+yL7P/+7/+YP38+Dz/8MLm5uTz55JNcc801zJ07F4/Hg91u57bbbqNbt274fD5uv/12Zs2axd133/2F5TUMg08++YQXXniBSCTCrbfeyoMPPsgdd9yBZVnccsstFBUV8eKLL6KqKvfeey8zZ87ksccei2/j9ddf5/7776dbt25EIpGjHstrr73G008/zb333kvXrl1ZsmQJt956K8899xwFBQUArFy5ktGjR7NgwQLKy8u54oorGDJkCP369eP5559nwoQJzJ0794Q85k5OdmGzffWP4+c7TZq0ttrIVU0Obsn4ao/BjtsXZjsr6nUiqoTfbsejtT1+9azcDhUN8dcHB8kD07wfrTtkOsASZzb/7dYPgGsuupwxq5+koHZNfL4FhFprFgE03BjY2J949BsgGQsJGbW1fs1BFD9pJBMLqVEcmICKTgpV8bAKsCMjhT9872wsWWJXRip3j2/kkZdeporSeKlsmCiEqCYZg9jfK4SElwhRVHRk7OhESKQLK6lzJmNF3KgHvT8NFKLqUboHNrLVXUJUdmDINjxaAwNaNrDB1atDkATwy2l8mDiGAf71uEyTwlAthdTyoTqIsOIk5FCI2m3sjGbSyV9DlSuJ1enFhBQbtqjJq927MLS6CjISQJUZt7ycHrWxwKdEYueiYlq4fQHCXhe6o2OYtBQZ/QiDhecGQ9y+cj0tNhthRaGsqfmwy31VBlDrdpIVDMeD3YFS7fe440ESYEeil371jexX2j5HDXaV940EOOij5TZMPk/00FIjxz9HO3cF4kESwJQklNa/W1SW4u1D5daShA5qxhGyKSiahcvoeFNY7ej4KN0yYfs2Mx4kASorJcacEytH+b624Lm/zkJ2JpCRHDuAjXva2u5u3meSlOzBbju+tZMn4ntGOHlEmDwFNTQ08O677/Liiy+Sl5cHQEFBAaZpMn/+fB544AEyM2Pjzt18882cc845bNiwgd69e/Pyyy/z5z//mZKSEgCysrLiYenNN99k6tSpFBcXA3DllVfyxhtvsGjRIsaNG0e/fv3iZUhPT2fKlCncddddX7rc119/PR6PB4/Hw7Rp05g+fTq33347mzZtory8nDlz5mC32+PLjhkzhurq6nj5LrroIsrKygBwOBxHPZbnn3+eK664gtLS2AV8+PDhDBw4kP/85z/xGsaioiIuvvhiAHr37k23bt0oLy/vcJwnis8XOqb1ChVIdzqpC8cuBGemRait/fbVTI7IUlleZWPS5Bt59f8ewN46tE3LsDLk6iYSWts4WoqMZMQCyYFHlpZdxT/+DDwfb0Ay2z3KlCSWnjkkvg9Lltl3+TgKX18I+oHAKmHQVgNm2DQePHMsfzz3Ys4v/5zOjbWHfSxqtrZWjJUixk86DvxYKNTQGRMFHZUMdmOhEMGDjo2g3YbVLizVO1PwUkctxRjYD5QeGXCh4cfV+trAgZ8ILtxoyFiAwjr1O+xLyCDVCuCNaPGjij1CNwGFeqmAqNwWNrzREIu8Z+FXDx1H0QL6BFeTYGqYrfsGsKHRrLqIOGQsWWZFVmc2peQStDniAeidLvnsTvNi8yrQOlC68zBtHzWnnUiCgyN2iT5KV+m0iEZa5DDtPY8gSuxCdrQopAD2dkMRtVfQEiQhGiVgi50n3XxN2A0TZyRCuDXAZRQ7oF3rCYdpkhvR+CAtmSabyjWFVvxzlJJs4HJKhMKxc2dNipeMsEbnRJN9Nje0HprRem5t8Ljp4w+SEo2iKQoRVSUhqnOR5OffCS5qArHlu8tRcovtVO3VMA2QFSjrobBsvUQkYiFJUFDQ9pSjbyfYXhFbt1O2hBkJUFsbewf6dZZ4f3VsXu9imSaf/8u+3cdE1Ex2ZB10Jp4OjQxEmDwFVVTEviGKioo6TG9sbETTtHjABHC73aSmplJdXU1+fj6hUIjCwsLDbre6uprc3LaBlmVZJicnh+rq2DAe5eXlzJ49m61btxIOh7Esi2Dwi3tbHnDgUTtAbm4umqbh8/moqKggGo3y3e9+t8PyDoeDqqqqeEDMyWmr/WlsbDzqsVRUVHDvvfcya9as+DTDMOIhG2KBuD2n00kgEPjSx/NtkOGCd86P8M4emZIki7Pzvp1tJn/VT6dHsknN4D7s/cV9ZL33GUZxJtq5seCu98hHrm0iOqgE+9It6N3ysJLc2JZtITqsDL13EXqPQmwrt2Pkp6Hsq8fz3b58NzGHf70dpc608ZOsFnr1SSX8l8nYrv8nAHUUY7aGSTeN7ChWMX56Fu85ttA50owERMb0QWrwY1+5AwOZJrLxk46GE0nVUHQDOy24qMVHDn4y4sdVdcH38FiNOObvwUUTDurJ2b+FH67owcuD+pHWEuDG9z7EQG2NDgdGRYyxEwWcZLOXAnbioRkNO7sZGF8mrMbK35DgJmJTwQKP2Ywn1FYlpSkqsqGTGg5iNw3smorf2xYkJcvAkmL7lYAkwxfrZY4dUKiwZ9AiebDrFopfp8mr0nxBV5S3d7TP0/SqamDcht0s7lkQn/Zuny7031FJhj92Q2RKUocgGb8p4NCL5rG0cTxAB+qcdirdbpCgf73vkGXabz9Vix52O0nRKDeuKWdDajI5wRClTS0gwcSzbWhZCSQkyPTpbaP5DYu3t4DXNBhf00CvPBl5ZDoZXvheWdtRJCcr3HxjMhvKNexJChtMO52TYXQx1DebLN5o4E2Q2KHJBDQLuyLTxZbGh683EwhYdOukMKR3Mr2HJHCzKvHy+tgN1C9HZdDc6KJyj8berWEKSpzkFNq5OcdG+eYoBXkqXTq33Tj97FwbXXJkWoIWI/uoKO1ucK6bYKd3JwMtanF2XxEDhK9PnEWnoAOBb8+ePXTu3Dk+PSUlBbvdTkVFRfxRbjAYpKGhgaysLFJSUnA6nezZs+ewISwrK4vKysr4a9M0qaysjIe5GTNmMHr0aO655x48Hg8LFy5k+vTpX7rcVVVV5OfHGvFXVFRgt9tJTk4mOzsbl8vFBx98gCwfuf9l+3lfdCw5OTlMmzYt3n7yqzpaOb5tCj0WV/X48rWRJ0tb56BUQld2vHHQJgyO/zvUpzj+b71fp7Z/D+qKPqhr/LUnw0uf2hbW/kQnoOsktY4pqU0aQfTNFajvrsNFE+HOhTC+B/Zre1GW4KDMYQOyqNs8GymqY3litXOSL0D49Z1E39+HMjAT75QefNjs5F+PbWXeM3/BqUeJJlgYPz+b6KYm1JH5OKb1ITp7Kbb5e3BRg53YzcjzL93Lr+cNw61FKTLXAyad+ZztDIlnMwtwEyWFXRSyPn5cNWoGTZadpNbe2KlaE7UuL4asELDbQZIIkIEmB/BqYUKqnUaHm+6B9YQjmTSSSGVCEktLchm6NXbjuTUnha5VzbGeUBLsdRTRJbwNB7VUqPlsdHeOt21UTIs+g1SKZ3YheEUuH0/+lGjIAAmyU0P0uKo3joE5LFoapMlm54e9ZH529TCMgMHiW9bQsLljDVSLw05iRCMqSR3GgfwiXxQ0VSA7rJEdjr1POode0CxgR7KXtECI5KjOkaRFNEZW1gDQdWwGZ1xRhOrs+Ez7qYnQFLZIUCWikYyj9qrOSFcYNSJ2Xg1rv59EmQlDY+/z2R3WkDmnTyqaZuFydfzu+Unf2LvgUGP/zym0k1PY1pYyK1MlK/PQS7kkSZzV+/CXeEWRGN1PXP6Fb444m05Bqamp8VD3u9/9jpycnHibyfPPP5/HH3+czp074/V6efDBBykuLqZnz55IksQPf/hDHnnkEbKzs+nSpUu8nWFJSQkXXHABzzzzDP379yc3N5enn34awzAYPnw4AIFAAI/HQ0JCAlVVVTz11FNfqdyPPvooM2fORNM0nnjiCcaPH48sy/To0YOSkhLuu+8+pk2bRnJyMo2NjSxfvpyxY8cedltfdCyTJ0/miSeeoKCggNLSUiKRCJs2bSI5OTn+GP9okpOTkWWZvXv3iqGBvuVUGZIO+sGW5qdvwP7eGqwEJ64RPQ6/osOG5WirybGSE3D8rBeOn/WKTzsnGeZP6MGQzHsZ17Kby3/eiZTCZNq3XpOGFmBJIFttYUVBJzEcIJX9uIiFqwiuDo+3FAwMScGuatCu0szUHbTgRcJPKj6yzEoym6ppUBPZY+XhS4w9emt0JtDobPuFHFNWsCcHsXxJ1CYlMPfM7gzcXolqWnSqaQFVwpZkJ1qvsTahP1W2HFL1WnZ16UG0ToqXQZFNcm6PdVRzZ7s455Xh1K9uxNspgdX7ljFgYg8KalsYVQJtBZdREmVKrujCx3/YEi+TIcHcfl2R7DLDtu2ntLJjZ5qjBcYDtZkRCZxfIoMe7mImAwXNAVrsNjhKmKztlMGoc70U90ogpZP7iMslOWPNH47HQBKKIuFynQ4PPIX/RSJMnqJ+85vf8Pjjj3PVVVfR1NRETk4OM2bM4KabbuKvf/0rU6ZMQdM0+vTpwwMPPIDS2pj8l7/8JW63m1tuuYX6+nrS0tK4/vrrKSkpYcqUKUSjUa699lr8fj+lpaU8+uijeDyx8QBnzJjBQw89xD//+U+Ki4sZP348a9asOVox4xRFYfjw4UyaNIlAIMCIESPitZqyLHP//ffz+OOP89Of/pSmpiZSUlIYMmTIEcPkFx3L97//fWw2G7///e+pqKhAVVXKysq48cYbv1R5nU4nV199NXfccQeRSISf/vSnXH755V9qXeFbQFXQxg342puRJHhgWBSGpQKH77RjnZGH/sQPCFz/Aomh3UhAC2lYOPCfOxze/RQJE9+IwdgW7gckJCxsRAlaLowbzkGf24S6s5ooNqqIPVXQsKPjooY8Ms0K8rRagnjRWhy0eO08MXYAP1qykbSWMHYzQkFkN/x2Io687tS/Ws13Nu1FbR3uRzEtim4oI/OifDaPfp1m3UOdLYMuka1kPjsCIyuF/c/sILw7SNb383HktoVUR6qd3HNab6i+4NcN8wen8J1burD1PzXUrG9BseA3ciUjbi3hs31d+fu9exm8txaXEWsx+EX1/xKwoCifXg0+SpqPrV2f3TRJO8zA5QD2BIUzriqi8zkZh50vCMfH6XfTIIYGEo67A0MDLVu27GQX5VvrZDVOP1UbxsO3r+xWMIr1+nr0Z9YRblCxX9od5/X90dfVISkScvdUgme/gGNjrClJbFggF45f9sV1S3+M/1vF9t9uR2sdezKJAF5ivW7TqMZJkHX0YEVxAb/++WgCbgepLV/QZvMAACAASURBVEHWrXme5FXrkIZ3xX/fVLCpmBb85dlmht2zEMW0QIbeT51J0qA02FWLefVzuBvq4MZzCU8+60sf48KF7zNx4kVf6n1vqQgTadFJK0lAkiVMw+LVy1cTqf/ynWssIKgomFh4jbb2wAeG9TlmEoz6TSlZvRIPeZz9bfVtO9+/ilO17MetA440pcNryXrmuOznRBI1k4IgCN8AyW1Dmtwf++T+tH/qrvZu6+jlfv8SzCfXoM9ZQ3hfCCnPi/3nPcHjRJ42lMT3g/g+qUXFjAdJAOQQW7v3I7hBYV+eh5DThmRaXLljO7a/T+bgbmOyBLf/NJGm7kNpWlZP4qDUWJAEKM5AfucGwhxf3lwn7S/FkeboVwqSEKu/SThoiBxdkqjyuMhvObTzX4+Lc3Am2tDCBhte2I9lQlppAvVbOr5DuQOTyRuY8pXKIgjfFNGbWxCOYMSIEYed3r9/f6ZMmXLYeYLwv0ZSZJQr+pN163Cq11QhZ7qQnLGvYUmWyHr5HNL3Bah/age1z20iZJi8PriEz74/jX+X+mi84EPGL97BqLV7cA7KoNt9R3+UnzQwjaSBaSfi0L6QM8mGYpcx2o2Lml7mIW9QMp1HZyDJ8MFvN+HbeegwWYpDwojEHqKplhUPklFJosLlpChV5juTsike2Rbcyy7IxtBM/FVh3rtjE5ZhIcmQe0YyQ2/ofMg+BEE4diJMCt+IhQsXHnW+eMQtCG0kVUYpPPQRmiRJqAUesu7sQ9adfXhvn0xpWOKmIgOPLZku744muLwe96A0nN0OHUPy20ySJYbf1pVF927F0C0GXlFEtwuzOyyT1tXTFiZbe+Bk901k4LRiaje2sG9pI/s/9+FKsZE3NottxemMyrczrPDQuh2HN3Z5c6fZGfdATxq2Bug+Koeo49s/8oFwujsd6iI7EmFSEAThW2pMfsdxQ52liThLT60Q2V7+kBQueWUQlgmycugFdeBVRdg9KqEGjbIJ2SR3cqPYYq0jkwpcdB2biRE149OGHLKFw0vtnEBq5wSSM9ynZNs9Qfi2E2FSEARBOGEkSUI6Qp8X1akw4LLD/xDBAQeCpCCcuk6/mknxqRQEQRAEQRCOmaiZFARBEARBOEEO7s19OhA1k4IgCMIJZzRGsPRv52/JC4Lw1YiaSUEQBOGEsUyL3VM+pvHTOpISJApeGo2tLPlkF0sQTiBRMykIgiCcAvRo24+bRQzQAgaLH9/Du3dvp3J9rEezqVuYxon9EbTgjW+TsXAJ6UoVmxxuau9dC4Clm4fUVFbN3syWyUuomr0Zq/WnIS3DwoyKGk1B+DYRNZOCIAinsBYN3tstkeexGJwDTfU6/5hVQ7hRJ2mAl8fUdGpDEqNCTYz+rAldUdi3dhsDJ+fy+b8rUWQYeUMhhUMP/9vjX0d4WwuBdT48g9Jw5LtRVu0h74X3kID8UC2abKMp3J2kV3bQcOMSHFYUzw29cU7oRGDauySW15KAhPyeReDu9wlfNYjdz1RiaSZpPyyk8I99UNziMiacWk7H37AWn0JBEIRTVKQmwKdXv4OrKcyvhp/LPen7yX5xBUNtaczrNZQnwqmEZECCj1xpjDFWceHmjazP6cLyZyUkC0wTFt+3hcK5QwGwLAALSer4KM4yTUwdPnpiJ9U7/ZSdm0Zu79aB1y0LDlp+3182UvXXLWCB5FLwDk3Dub2Svge2BwQVB77yBpQZO8nW/ERRCc5aSWTWcjQcyDhwE0ECpKiB9cTnZBo2miQP9S/uIbjWR/cFo5BtMpZ1aJkBopt9ND+0HsljI2XWd77Jt18QhFYiTAqCIJxEoYjFpu06Gaky+dlHGICxlV+zWLwb8pOgZ6aEeu3zXLJoAwDnbisnNRRABvoB6c27WJpxGeVpGfH13ynrz+bsrlyy6hOalQQCTg8AYUvlg6s+4t95Xem0K0B2IETnESmcfW0hdZVR9l72JiNXf8pZDjdvloAvIZHdy32MOM9L1/vfRK0L0HDJQGonDsKeoOLY2kjVI1vAsog6JGwhg+YPa2hGYaPUgwQrTBNJqC12mrJdNKYlIGmVWFEVzVRINDQkwO+0kR+pQ4klXHRZIWpT6BSsYRvZhMqbqXl7H87ffIxc60cd2wku7o4ky9h6p2Ktq8I/9V1UTMI42FUTJunpkcfhrygIX8Xp12ZShElBEISTJKJZ/OkxP/urY20A+w13csM4G67ZC1C3VRC+ZDjLjHz279DI7GTnyfc1GkLwWZKHX9R8xu8+3RzflsPQmTHmezS63Ny85D8M27uO87atxyYNotGhUuGykxqO0q26nvU5PbDaDVBiKirj579DcmFfVud3B2DXJ43c5E6j/5Jybli5CBNYlNYXAibJAR/+RDefvAWbcvoyoXoxez+uZ9m+PQC4Ihp5LgXJoxLRLZI1LV5OTbKTaIUB8ISjFFf70FUFv+qk3uMhvSGERGz5kF1lQ1IOJfW16LJMXYKLIl89tVISqUaQFtNB+OpPiBoACcjzK2la0ISFRILLxBHV0EmIlYkQ1sLtaLeaqDcMRM4/9OcsBUE4NiJMCl/b9ddfzxlnnMHUqVNPWhmqq6s5//zzmTdvHrm5uSetHMLpT9m8H7m2meiQErCpSHXNqBv2ovcowMro+FOHrtlv437oTW4eM5m/9x1JrqqRX1fFzrwC7pXLWV+fzP5qd3z5ynnbcVw3G10zuOPM79HvjxtZUxQLQ/rSAAVAjiRRoEWpCSkszi/l7O0bAZg46So+6lQKwDtdu/Pmi39lc14fCoIRCoIROjcHyWv2o7bW8kntakcMWWZnWi4KHTu2LGu0sbWwmH6dBlDjTCaoOePzMnwNNDgkml0u1uYVsbK4ND4v5LCzvziFUIqH9D01hNwqsmmRVeNnT4aHvUoCRXtjv8GdFIoFRwsIKzZ0ZExivUOTAhG2pKSxuCgRm6Ezav8GEs0QhiTjJxmvFYX4T21LhLETVBwAaBGTdD0aL1MEO3Z/kNqnd2M+sxf74EyiaxtQS5PIfOVc5CQ7lmlhLqtA8tiRe7fV6ArCN+l0HGdShEnha3vkkUdOdhG+st/97ncoisKdd955sosiHIHto/U4Fqwk2r8TkUkjDr+QZeF88gPULfsJ/2AY+qCuR93mq1sk1OcWMqJmB/lpCpJmELlwENHhsdo4eXctrr//FyvJzccjhjPvkyZ6qn4mTeuO3NCC55YnsX+0HskC7ayetNw7lZTxdyE3+LEUmcioXlhZyZgpHpQaH86Xl7A8tzMP9TobDNhqODljVwUXrFjCx2lZFDTuQOoyDEuKDayxMKeY7154A1M3LOb+j19kxoW30+iwU+mwU9ISICJL7PN6sCQJy17Miz105gwexYAaH6tyO8WPsyIxhY2ZHX+WMNvfwKDd5dR4c+LTDABZpsXlIsPfSHF9BVvTCqnxJLGyIJNtGcl0tkyeHdibtOYgpduD8UfOvoREAg43SlRnY2oRtoCG7lVAkgjaFHYUZdKtrgkksGQJQ5HwpTnpWtHIby8ZRXpzkBsWLEWyYhdWCejWWMVuVxohQ0XFImKpdNrXgGXXKdUqcBqxcJhkBfDTcTihsKQSlG3tzo2OwdgEWnBjooAF2rJaAKJrGqi+8B0cgzMx3tkBNUGcRHD+fhi2X/Q/6vkEYCzdj/H6VqTu6ahTeh623aYgnO5EmBTQdR1VFaeC8A2L6nhv/Ce2jzcQHd6DlkeuAPuRzzNl3W4Sr30CqSVEtHcRjgUrkQDXk9Asy0R+dGjniQ13/ZdRs58DwP7cQnyL7gaHDe9Vc1B2VFNz6Ri+X3IRu5thRLaOa+4Snn7j70CsJkwCnE++T8vDV+B4fRn2j9cjtQ5BM/a+N0jL7cTES6az4YalzPhkHmm+uvi+7Z9sYMEdK/hJgx8AyTBxvr82Pv+fPYdzOWC2BkWHYdK/voW6tDLmlJzB9nQPimly8bq9NNhs7HQ62Oawk+NNY33xmfyq01lUebw0OR1sdjqIWhZ5uoFsWVimybv52YSL8wGoSGrErVg0uVUwLc5dv45ztm1gXu8xBO0ugqbBdYv/w4Ca/Txw9k+x61EiNhvuaAB7NMy2FC9vdSqlJiGJl3v3Yl3XHByGQaY/REWKl6cyzwTgvLSt/GBZeawWMcGJZJok1TQiWwAR7OEITofF6927MnDLflIbmjCkthHoLElCsSx+uHgj9194JjuyUiiobqZZcWIhYZk6+aEGKuRU/LKttVOPnexwPRHLgZMoFhChXWgEIpJCk+rqMM1taESRaVadSJZFghHBki0yzSYMFAKtj78B9E0+9E2+1jPCgYyBctdijPd343hiLB+HE7htqQ1ZggfPjHJmdiyoag+uQP/z0rad6ia2y/sc/gQXhLjT74ZDjDP5P+jCCy/k73//O9OmTWPEiBH897//5V//+hcTJ05k1KhRXHbZZWzcGHt0tn37doYOHUpjY2N8fcuy+N73vsdbb70FwFVXXcU//vGP+Pyqqipuu+02xo4dy9ixY/nTn/5EIBAA4Nlnn+Waa66JL/ub3/yGYcOGEQ7H2lC9++67/PCHP/zCY6irq2P69OmMHDmSiRMn8umnn3aYv3z5cqZOncrZZ5/NmDFjuP3222loaADg6aefZsGCBbz11luMGDGCESNGYBixZ2UfffQRl156KaNGjeLiiy9mwYIFX/n9FWKcLy7C+fISlJomnK9+ivO5T466vPfWp1DL96Hsq48HyQPUdbsOWb7Cb1GxZHf8tRLWULZV4r77Feyfbkap9pFz/yuEVu2hKiDx8nYbk9a3nSdSu/97Zj6L48N18SAJoGAxpGIHf37/RTQUCtsFSYg9kp2Xc8YRh/lIjoS4c9hF9Kvaxc9WfUy3pgBpmo7DtCir8+MNRzFkmY0eF+8me9nmcoAk0TNkYFPdGIoNTYl9RSeYJh+lJePXwxQ1tdC52c8PdlZhM2KhZneim8rkBJAlUGV8bjc/+/7lVHscbLEpfJiSxHkTL+e5bn0YtW0FLW43UVWloKGC6uRM8kMKn/QYSW1uL0bVtzB8RzVTV+3k7J01hG02EiJRztxTi+l20ZSWSGNWCnYMnOFwa5CMcYQ1Llq9mIfnvkRRfSOGHOtQJJkmqm6QX9dMULaRVRXkvr+/jxyWqHN4MCQFU5KpkZMJkIATs0Pv8KhkA1R2k8U2OZ9ypRi/XWV/qod6r5Oo1LHjkmwauNBpUZzYTIMUI4QDk0Qzgg0TB1HsaMRuKQ7UYMb2p6LjQgPDwvxkL9EHVvCLT+zsapHZ0SxzzaJYkLWqA+j3LO2wX3Nd7RHOBkE4vYnqqP9Rr7/+Ovfffz/dunXjoYceYvXq1TzyyCPk5OTw5ptvct111/Haa6/RpUsXSktLWbBgAZMnTwbg888/x+fzMWbMmEO2G4lEuPrqqxk3bhx33XUXmqYxc+ZMZs2axW9/+1uGDBnCY489hqZp2O12li9fTlZWFqtXr2bo0KEsW7aMwYMHf2H577zzThISEpg/fz7hcJhf/epXHebb7XZuu+02unXrhs/n4/bbb2fWrFncfffdTJ06lZ07dx7ymHvp0qX84Q9/YNasWfTt25eNGzdy3XXXkZWVxYABA77mO350yckubLaT83HMyDhOHRHUjveqXpuM92j7isYbv3W8b5ck3JNH4D5o3V1NFi/2GcYlq5egWBaVGRnkfLcvvLG8w3LOdu3mNmTkcd72tRxMlo98X+2KRtDsNjalZlPWUBWf/nb34QQdbmo9KWT5GzusYyLxUrdBvNRtMHP6nsPkXZ91CF0AimXhiUTRJJmR/iBhSWa120HnliaQY+3+vFqUkM3G0Lpq+mgBzt+7h8+LewGQHtYo9IfYnugmKxShGk982yu6dAFFBtOC6tiNnCVJPDJgBBuf/AuDdq6nMimTlwacgyXJJAVbyDCi1HpjY032qG8mqshktITIaWph7PYaSmpqCTic1KanktrcxOBt6+lct583ir8TD35y66PlJC1ETqCR3YmZIElk7g+SGWnCsMnUOJOwtw467g7o6ErHWhoZcJg6ftnCkiSwTJplFwHJSY7RgF+yU5/mJOTxxvdbvMvXNjyRZVFk1BLBgSXFaigP7EHDjkkQGfASBKCZBKLtajqlg24PnJJMxGwro2bJZGR40UMm+w/6m6Zd2hvX8fo8cRw/qyfAqVz2b5poMymcNi666CLKysqwLIvXXnuNhx56iPz8/Pi8559/nkWLFjF+/HgmTJjA3Llz42Fy3rx5nHvuuTidzkO2u3DhQizL4uqrrwbA6XTyi1/8gssuu4yZM2fStWtXEhISWLNmDampqTgcDiZMmMCyZcsYOnQoK1as4Kabbjpq2WtqalixYgWvv/46Ho8Hj8fDlVdeybXXXhtfpl+/fvF/p6enM2XKFO66666jbveFF15g0qRJ9O8fayfVq1cvzjvvPObPn3/cw6TPFzqu2z+SjAwvtbUtx2fjFwwm6bmF2JduITqoK03fG4J1lH3ZfnsJiZc/iuQPE/1OGbZPNmJ5XbQ88HO07oVw0LrFGV66Tu7H4NQ/M6Cxkh9fUYqqWyjXjidpUTnyvnqqfjiS/WVdkPwWPyvRGP+fSmpdHjJCfow0L7IvgOW04f/TT3D/dT7q5gqMjETk2mYA6l0eXu03lFe7Dead/B4s/PfddK+tYE1OF54bMJ4zQntIDTTFyxRQbKzOLcWnyMzr0g+HHmX2B89yyeblPN97F/P6jCPgcDNw7zou/aycLRl9WFbUI1Y7ikH3UIRO9Xupyoi1/UzUolyw/j0mrF8EwAelA9veAMvi9k9ewR2G2pQ07k45j2qvE284iluLUp3ojqVyWYqFSkCRLDRFJTEaIrFuN9d/8hIflgzkwvWfoFgWSzr14dX+o4kqMqoWIa+hmSs/bea8jZ9TVrmXqKwwd9BwSms3MaCmnIisIrXrF+7S2/XallWwLLJ9zRRH68ijFqLQonTHZUZxWhpNiov6FA+pdRqSZWG3DCRitcKpup8WyY6u2IhKNqISVEhpeKUAIa89vh9HUEdr11YywQzjJIqKhdewxZoZWLEbFQkTiVjYl7GIYCOq2EgyfDSRBEAUhYhix2FoSJ2T0a/swz1RjZuXxB5z3z1Io7Y2BC4Z9eZB6A9+Bgk27H8+C//ATPzH6fN0XD+rx9mpWnYRgL88ESb/R+XkxBrh+3w+gsEg06dP79BwXNd1ampqABg7diwPPvggmzZtoqCggA8++IA5c+YcdrsVFRVUVVUxatSoDtMlSaK+vp7MzEwGDRrE8uXLSU1NZfDgwQwePJg//elP7Nu3j6qqKs4444yjlv1AubKzs+PT8vLyOixTXl7O7Nmz2bp1K+FwGMuyCAaDR91uRUUFn332Gf/+97/j00zT7BBMha/A46Rp3h0QiYLD9oWLR8/qSf3m2WCYYFNB08GmHDIYdnu/7q9zU58cbHJOfDGjJJeGz+8HTUe1q6zCQDPArijw3ekQiVILsTLpRixsyTKRHw1vK6umA2DaVO634CHJwLQ8PDPxXm7eaTIgX+Hhsih2WyZNt9yHfNerVG/zs+ScMYzdv5JmRzKjetqYtPA9Jm2O1ZT+eN0nTF73CVFZwWbGws2ulJ0sL+oRP57uvhp2umXGbV3Mp8VnoNmcjC1fFp8/YuvnRFSFyqQ0zti7ljP2rWVfYj4z+17LwP0+DAkUC9alt14EJYlM1cTZHKIi0cPWkiImX3oFrz31GABJ4QDbUx0MvnEGPaormTP337zY/yw61fhQzVjtYZ6vkbLKvQDYTIMzdpbTt2ZLvM2p1a5NpKaoNNucJEbDnFm9BQuJ3XI22WZbE4FU2UeGEbt5SrNaaMRBmtmCzTAJSCp+yYYNk7BsQ7Ks1vjX+rdFolnp2DbS1W7YIQAbBgYyNnSyrUYMJEK4CGFHxUBDIYKdKDZsLpn0v40iYed+kt7dRsAvE8jKxn1jb+y9UpEcscfnP8JgYqfWoNuuEtv+q6HYpg8Cmyw63ghfwel3rogw+T/qwGO95ORkXC4Xc+bMoWfPnodd1uv1MnLkSN58801KSkrIzs6mT5/DNzLPycmhqKiIl1566Yj7Hjx4MHPnziUtLY3zzz+f7t27U11dzTvvvEPPnj3xeDxHXBcgIyM2ZEdVVVW8NrWioqLDMjNmzGD06NHcc889eDweFi5cyPTp0+PzD/fFn52dzQUXXMCUKVOOun/hK/oSQTJOlmP/wVE767RnP9I43+3W77BM+/KoB618YF7rujKxrAkSsgSXlRlcVgagc+CCYOWnYzxxFenABAD6MBB4BuD74/BNLELZU4tRmI7t/bW4nvoQAgaRMX3xpiczrnwR73QfTmLYzy+WvckjY3/MnOwcOvuacclOmlweMlsfowdtds7buAiVtlqe8uwueDUd02qmISERy4iw35aCFIxy+crFzJo/l7Q/PoShxI51YeeS+Lor8wr49QUTAVibW0BqIIBlGPEgCRCx2TFaO84AFNTXEyQZhShOs4VCfyV7PDlgWURUOx/l9uS7e9fgNHWaFBe1Ugq5Zh0KseYGmaEWrNZLj2JZdKlpAEMFZNyWQY2trWOM09BIMoM0ybHhk+ymQcBwkFwXJpigYtokuvj302SmEpSd2K0oaWYzLXhwEsaJhoKFHOvDjV92E+iSQ87oNBw5duyXdENKdWFSAL8YihtoG6ipI/UILSGkI56AgvC/Q4TJ/3GSJDFp0iQefvhhZs6cSWFhIcFgkDVr1tC1a9d4cJswYQJ33HEH69ev58ILLzzi9kaMGMGcOXP417/+xSWXXILb7aa2tpYNGzZw9tlnAzBkyBDuvvtunE4nv/vd75BlmQEDBvw/e3ceF1W9PnD8c2aBYd8FFXPpirtp4VIJrrmguKaZ16WbpmZpkWlJprjc0kpTr1KWaXavmfUzNbFyy9SsNCtUUsxyBxFkUbaBWc7vD3RkFARcQPB5v1689JzzPd/zzJnlPPNdzvDf//6XJ598ssSY/f39eeihh1i4cCHTp08nLy/PbgIQQHZ2Nq6urri4uJCUlMTHH39st93X15dDhw5htVptifWQIUOIioqiWbNmNG/eHKvVyl9//YWqqjRu3BghboapXSNMNLr8/8bkvDYQPyc9l0xWMFv4Z+h0/vXLVzia80l7pjtLZvhhtFbDqoIjKsQ/Q0pUDAdOm8hXtDhiJamON11S/yI+z49vGndEq6oEnz5G37ivmRvcDTenhzn14SycL48XDTl+jO/rNwSgWqaRmEZtaZR8hi0NW9nFGlO/GX0OHrMta7VgUjX8WLMBIQkH0ahgsBR0MVvQc8qlOklOPgWFL39B89UZ0b/Qlk0p3vzbvS5zln/PEbUO9S1nUBQVq1rwflO4PP3FqrHNBFUAjdWM9XIXuaeahUbV4GDNKvhJRSBX44BzjgXnHAvu5ly81Ty8SMFiKei6tl6uNwdncnAqVDPoHDXU2dQZnefVbnIhypuMmRRV0pgxY/jss8+YOHEiycnJGAwGmjVrxqRJk2xlWrdujcFgID4+nnnz5hVbl8Fg4L333mPJkiU8/vjj5OTk4OvrS9euXW3JZEBAADVr1sTV1RUPDw9b/Tt27CjV5BuAf//738yePZuePXvi4+PD8OHD+f33323bIyMjWbBgAR999BF16tQhLCyMAwcO2Lb36dOHffv20blzZ1RVZfv27bRt25apU6eycOFCTp06hUajoV69eowZM6ZM51OIG9JpwdOlYAyoTovlmylY1/5Mtq8bSu+C17+TrRVMgWbVYe0zOJxX+fW0SptaCmEBBRej2LXZnP8hG7NGw1+NgomrXRcunMGqgLnQpKKJ2zfzfa1/0CQ9m/su5rPske7UvJiJo9VK7fQsTnm54mk1MbOdjmqt78dDY8KUbaHuI15k/32JS38FcLFxe9SIlXgeMNrq9artSMuzf6LXQ/Yz7bH+w59aPapj1Ws4/TscOehExLOP0exECtVTL9Hp+N+4mEw0Sj4HwCkPL9J1rtRKLWhp1aASaE1Fo1owqXrc1DwycUZDQevflUTxCosGHKPaYdE64FjXA6WOB5bvTuPg60L+BRO6IE+yPjiCcWsCuOho+GVXzJJICnHbKaqqFndnCyFEOamowemVdWA8SOxXfP51LnHHzDT+h47enRyZ9p3KJ4egw+ljzNrzLa6qhvXtu1HNNZlNNLP98o1Hbh5+RmNBK55ew4TXAggIuHH7wp5tW+i6zUrevtNYBzTF+twjKEkXUV0N4OpoVzYuTaHbRkdMKCiqyv/+kYr1pV3kaXXoLBYU1cr/dW3JiNMnyY/P4URNX/T5Zto6XCTwxzgycMcFIzosZOOEBQ2QT7LOB8vlWwHV6WjA93/dbxizqqpYzuWg8XLE/z4vec1UgMoa+52agJOnPGu37Ki+d0eOU56kZVIIISqxQWFODCq0/HaYSpvaKueygjj/z1qkZpoZ2soFD/f7cVp0jLUXaqAo8EA9yP05E7NeS7duPiUmkgBWRy3OHw0gu1BioAZ4FFm2qbdKTM88diZqaVXNyqMBLnznricvW8Ws1YKqIercMWr9N5S8hByarD+LY6AzXuEPYlkTgFdsGmmrTuGYnwtYSVVcydd64Kbk4tDIC88xjfAaWKfEmBVFQVfDpcRyQoibJ8mkuCu98cYbxd4w/IsvvrCbyS2EuEpRFAY2vTImyz6J6jWxEW3TrWi14OXuQeYTHmgdNDh7lWGSVBm09FVp6Wu+uvxGC34btw/VqlLjQiYewwsm8jnWdKb6c1d/21v3ZGN0T4LjpGDOvnaArPhMvLoE4De0Dlo3PXpfx+uOJURlIWMmhSgnkZGRREZGVnQYQlQ5vl5Xx1K6+ZdvUubV2pfQVY+Qs+4kurpuuDxx/w3L63wN1FnappyiE0LcLEkmhRBClBt9A088XpV7t4p7WdVrmZTf5hZCCCGEEDdNWiaFEEIIWRQOzAAAIABJREFUIcpJVRwzKS2TQgghhBDipkkyKYQQ4rYyWeHJbQ7UX21gxHd65G7GQhSmXPNX+UkyKYQQ4raa/JOO7QlaLuYrfHNGx8s/yYgqIaoySSaFEELcVhtOau2W1x7XFlNSiHuPimL3VxXI10UhhBC3ZMMJDc/udsCsgreDSpbZ/gKZY6kaF0whRNGkZVIIIcRNO5MJz+xywKwWjP9Ky9dQ1DiwrWckoRSiqpJkUgghKqucPFxe+QS3pxahOZZYISH0/taRkicRKCyKk44wIaoqSSZLISYmhrCwMEJCQti+fXux5fbv30+bNlXrp78mTJjAypUr71j5OyU8PJyvv/66osMQ4rZTMnPR7ziE5mQyXqGROK/YjuHrX/F+dArOkz4Gs6Vc40nIKV2Lo5tepnQLATJmstwlJibSu3dvNm3ahL+/f4XEYDabmTNnDnPmzKFdu3YVEkNFWrRo0R0tfyN5eXksX76czZs3k5KSgouLC4888ghjx44lICDAVi44OJhly5bRooX8RJuounQ/xeMS+T/0f5xBAVTs2wMVwGXlDhy3xIKzI9qTyQCY61ZDyTSiPZ8BgNXXjayZQzCs3ok2PgHthUxQIf+h+8la/jzW6t6ljin2QukvhHuTtIC51OWFEJXHXZ1MloaqqlgsFnS6O/NQUlNTMRqN1K9f/47Uf7cym8137JyWhsVi4cUXXyQ1NZXZs2fTsGFDzp8/z4IFC3jqqaf45JNPqFatWrnFU9HnQ1QN+h8O4zJjDTjqcRwSgvPb69EmpAFgru1LzuT+6Hf9gdP//QhWFau7M1YPZ7TJF9EYTXZ1FZfG6c6l2x/zryS7Ze2FTNzHLb1uf8df/8bhgQhUg568Hg+S9d5Y0BTfeZWeB903laaLu0CmRaHaSgOjGpoZeL+FlFyF9jWsOMpEb3HPqRqtkYWVqps7JyeHBQsW0KdPH0JDQxk4cCC///47RqORd955h549e9K5c2cmTpxIUtLVD67Ro0ezbNkyu7qCg4OJjY0FYOnSpTz77LMsWbKExx57jMcee4ylS5fayj755JMADBgwgJCQEFtdwcHBrF69mmHDhtGuXTsOHz5M27ZtSUtLs+2rqqqtVbMk27dv58knn6R9+/Y8+eST7NixA4CDBw8yYMAAuxjy8/NLrC8mJoZevXrRqVMnoqKiyMnJsW3LyMhg5syZ9OzZky5duvDqq6+Smppq27569WoGDBhAaGgoPXv2ZPHixVgsV7utgoOD+eKLLxg+fDihoaE89dRTnDx5ssSYAH799VdGjBhB+/btGTBgAGvXrrVtu9JFv2nTJvr06UOnTp2A65/DuLg4hg4dSmhoKCNHjuTDDz8kPDzctr1w+cTERIKDg9m0aRMDBw4kNDSU5557jgsXLpQY6+bNm/n999+ZN28eTZs2RafTUbNmTd58802cnZ1tr5Mrr5HnnnuOkJAQZs2aZasjKSmJZ599lpCQEAYNGsSBAwfsjrFu3ToGDRpE+/btGTJkCD///LNt29KlSxk7diwLFiyga9euvPTSS6U6x0IUR5OYhseAuegPnIR9x3B/cTm6hDTbbYv1py7g8dwHOK/Zg2JRUVTQXsxBf/rCdYnkrSruUqYAGqMJp3V78X7gxRvWMeI7B6xluigWPNJl8Xq6bTIw9DtHBm11wGItQxVCiLtSqZLJWbNmERcXR3R0NDt37mT+/Pn4+voyb948Dh06xIoVK4iJicHT05OIiAi75Kckv/32G/7+/nzzzTfMnz+f5cuX25LN1atXA7B27Vp2797NqFGjbPtt2LCBN998k127dtGwYUOaNWtGTEyMbfvevXvJzMykc+fONzz+gQMHeP3113n++efZvn07zz33HK+99hpxcXE0b96czz//3C4GBweHG9ZnsVjYtWsXn332GV988QWnT5/m3XffBQoS3JdffhlFUVizZg0xMTE4OzszdepU2/7VqlVj0aJF7Ny5k3nz5vHVV1+xfv16u2Ns3LiRt956i23btuHv789bb71V0mkmISGBCRMm8Pjjj7N9+3aioqJYsmQJ27Zts4t9z549rFq1ii1btlxXR2ZmJi+88AJdu3blu+++Y9KkSXz55ZclHnvr1q18+OGHfP311+Tm5vL++++XuM+ePXto2rQptWrVsluv0+l47LHH+PHHH4Grr5ElS5awe/duXn/9dVvZr776ipdffpnvv/+eNm3aEBUVZdu2bt06Vq5cyezZs9mxYwfjxo1j0qRJnDlzxlbm999/x9fXl02bNpXqHAtxI9r4syiVaNig9vxFyCs+iT2YeutD7n86r+VUVtVrpRHiRu7JMZNpaWls3bqVNWvWULNmTQBq1aqF1Wpl06ZNzJ8/39bdOHHiRDp16sQff/xB8+bNSxVA7dq1efzxxwFo1qwZDRo04MiRIyWOfxs6dCiBgYEAaLVa+vXrx/Llyxk+fDhQkGz26NEDg8Fww3piYmLo1KkTjz76KADt2rWjQ4cObNiwgaZNm5bqMVxrwoQJuLq64urqypgxY4iIiGDKlCnEx8dz5MgRoqOjbUnphAkT6NKlC+fPn8ff398u+W3YsCFhYWH88ssvthZSgOHDh9vGDIaHh9slUMXZvHkzDRo0sLUiNmvWjP79+7N+/Xq6dOlyXexF2b17N05OTgwbNgxFUWjYsCG9e/cucaLLM888g6enJwDdu3e/LjkuSnp6On5+fkVu8/Pzs2uFLk7//v25//77Aejbty+rV68mKysLV1dXVq9ezahRowgKCgIKnvfg4GA2b95s+9ISEBDA0KFDAdDr9SUe71Z4ejqh11dMN7qfn1uFHPd2qFSxhz8EGgWslSej9Au0Hz/Zv3/fgvV+bgR5mYktuZPhxvU7QZNaLrg6lN8FtVK9Zq4hsYu7VYlXr8TEgttN1K5d2259eno6+fn5tgQTwNnZGW9vb86fP1/qAHx9fe2WDQYD2dnZJe5Xo0YNu+XOnTszb948YmNjqVOnDt9//z2ffPJJifWcP3+ehg0b2q0LDAwkPj6+FNEXrfDkkBo1apCfn09GRgaJiYmYTCa6du1qV97R0ZGkpCT8/f359ttv+fTTT0lISMBsNmM2m69LagufM4PBYNeNXpzz58/bPVdQ8Dh37txpW9ZoNDec6JScnExAQACKcvWDv3r16iUeu3C8Tk5OpYrXy8ur2NdRSkoKXl5eZT4uQHZ2Nq6uriQmJvLWW2/xzjvv2MpYLBa7cZileWy3S0ZGbrkdqzA/PzdSUjIr5Ni3qjLGrvlmGh6jo9Fl5pJfyxfdnwkouQWtf6qjHvMDdQrWXcxF1WtRHXQoWg3km1Fy88ulDUMF0Chcevdp8q85v7t3b6d//76kpGSypjM0WGOgbOO/VLoFWqnjZiXbrDCqkZnciyrl9eqvjK+ZKyT28nenEuCq0hpZWInJ5JWk7fTp09SrV8+23svLCwcHBxITE21dkTk5OaSlpdkSEhcXF4xGo22flJSUMgWnucHg72u3OTo60rNnTzZs2ED9+vUJCgoq1aQZf39/zp07Z7cuISHhlmaPJyUl2VpNExMTcXBwwNPTk4CAAJycnPjuu++KfGxJSUlMmzaNt956i0cffRS9Xs+CBQs4fPjwTcdyhb+/P3v27LFbd+3jVBTFLlG8VrVq1UhKSkJVVVu5wmNkb6eHH36Y2bNnc/bsWdu5hIKJMFu3buWRRx6xi7usqlevzpgxY+xaZa91o9efEDfD2rIe6b+8g5+fGxfLeHHVHE3As/sMtNl5NyynArbp3kXF4OGMNdAH3ZGzqIqCYrHaihvDg8leMArVzanEeLwMEP1oHuP23Lj3p3BkZ4cacZAJN0JUOSVeLb29vencuTNz5swhMTERVVU5c+YMCQkJ9OzZk/fff5+UlBSMRiPvvvsuderUoUmTJkBBN+33339Peno62dnZREdHlyk4T09PNBqN3Ti2G+nfvz/btm3j//7v/+jXr1+p9unZsyffffcdP/30k23M4I4dO+jdu3eZYi1s8eLFZGVlkZaWxgcffEBYWBgajYbGjRtTv3593n77bTIyCm7TkZ6ezubNmwHIzc3FarXi5eWFTqfj0KFDt+1eid26dSM+Pp6YmBjMZjNxcXF8+eWX9OnTp9R1hISEkJOTw6pVqzCbzRw9epSNGzfelviu1b17d5o3b87EiROJi4vDYrGQmJjIa6+9RnZ2NqNHj7aV9fHx4fTp02Wqf8iQIXzwwQccPXoUVVUxGo3ExsaWejKTEOXN2qAmaSc+4OLSceS3DcLYraVdvqgCeY80IG3/O1w4v5ILyUX/pR17j4wds7mQ9DGp51aQevx9Mr58lbTYd8n6aHypEskrHv+HSrFZ6zW8HVRJJIWooko1SGvatGm8//77jB49mosXL1K9enUiIyN56aWX+M9//sPw4cPJz8+nefPmzJ8/H6224BPjn//8J3/99Rd9+/bF09OT8ePHlyn5MBgMjB07ltdee428vDyGDRvGyJEjiy1fp04dGjVqRHx8/HVdycVp0aIFUVFRLFiwgKSkJAICApg5cybNmjUrdZyFabVa2rVrx+DBg8nOziYkJISIiAigoKVr3rx5vP/++wwbNoyLFy/i5eVFmzZt6NatG3Xr1mXMmDFMnDgRk8lEcHAw3bp14+jRozcVS2E1a9Zk4cKFLFq0iLfffhsfHx/Gjh3LY489Vuo63NzcWLBgAXPnzmXp0qUEBQXRq1cvtm7desvxXUun07Fo0SI++ugjXnvtNdt9Jh9++GFWrlxpN5Rg3LhxLF26lHfffZcuXbrw2muvlVh/v3790Ov1zJgxg8TERHQ6HQ0bNuTFF288g1WIipbfrw35/Qp+HCEv5hfcXv4Y8s1kTxuE8akbTzgsiurqhKldo5uORwuUZsplHbfKM1ZUCFE2iqqqVeodHhUVhV6vL1VCIW7d4sWLOXLkCEuWLKnoUCq1ihpPVFnHMoHEXhEKj5m84j8Htcz6Xc+Nx06qbOqeRyv/ir3cVNbzDhJ7RbhTYyYvKRPtlt3VeXfkOOWpSg0KO3XqFNu2beOJJ56o6FCqrJ9//pkLFy5gtVr57bffWLduHd26davosIQQFWR8cwtdAwu3TarA9TePrOhEUghx51SZn/SYPHkyP//8M0899RT/+Mc/bOuTkpIYOHBgkfv06NGDyMjIMh0nJCSkyPUtW7a8rT8leDPKI7a//vqL6dOnk5WVhZ+fH8OGDaNXr15lrud2Py9CiIrzv84mTlwy8/clhfoeKi/9oGV3cpVqqxDiNqp6s7mrXDe3EJWRdHOXncRe/orq5i7KkXRo/9XV2wYFOlv5beCNZ6GXh8p63kFirwh3rpv7Zbtld/WdYkpWHvLVUQghxG3VyAvebpuPj6OVBh5WNnQv+WdohbhX3JO/gCOEEEKU1YgGVkY0qPjWSCHEnSfJpBBCCCFEOakqrZGFSTe3EEIIIYS4aZJMCiGEKNHhCzDgeBjKO2Zijld0NEJUZso1f5WfJJNCCCFK1GGTgSuXjKd3l/b3uIUQ9wJJJoUQQpSRwrfHKjoGISon9Zq/qkCSSSGEEGX2V0ZFRyCEuFvIbG4hhBBlpkhThBA3RWZzCyGEEIBSVfrnhBC3TFomhRBClJmp6jWuCFFOqt6bR1omhRBClJleWiaFEJdJy6QQQogys0gyKcRNqYpjJiWZrOJGjx5N69atGTVq1C3XFR4ezrPPPktYWNhtiEwIUZlZK0Ey6fD5Hlxnfw4aDZn//ic81dG2zbBsK04rvgOzhbyBj5AzsQ8oRV/kHTfsxWXaajQXLqFqNahuzqDXYm4USF54K1zeXody4RKKRUV10pM9dRDGf3Uu2Dk7D9dZa9AeOIHu+HmUzFxQQXUxoHo4g1XFOPhRTK2DcPpgC6qLI7rDZ1HSs8gb+AjZM4dgWLYVdsbh/OD95HdoivP8DahuzlhqeqM/eAqrtyu6X/9Gk5SO9T4/8jo1w7B+L0p2HpgtoNNiqemN7vh5UMDi6YomMxfFZMbq4kju+F6Y76+O2+SPUdKzQKdFMeYX3LdGAdXVgJJngnyLrYdWdXLA2LMVhm2xKBdzQKNg9XDB0qAmWC3ofz0OVpX80Cbw3Yw7/EyLiibJpBBCiDK727u5NSfO4z7+QxS1IFCPUUug6wOg1+Ow/QBukf+zldW9tQ5rDW+MQ0Kvr+d0Cm5j3kO5nD0rJgsYLwKgTUzDYftBu3YmJdOC6yufkN+5Odb7/HD59xc4Ld9+Xb3KpRy4lAOAy7yvUPXagroLcX5/M+i0OC/+uqDc5licFm1Ck20s/nH/mYjuz8Tr18cnXH2856/e10mbkYPLrM9Bo9geI4XjUEHJNNotAyg5+Th/sefqequKNjUT7Y/xdsd13HEI5m2A4Z2KjfleIy2TolKZO3cusbGxHDp0iJUrV+Ln58err77KkiVLOH36NFqtllatWjFp0iS8vb0B2Lx5Mx9++CHJyckYDAYefvhhZsyYQUREBElJScyePZs333yT5s2bs2TJEsxmM5988gkxMTGkpaVRr149Xn75ZRo3bgzA3r17WbhwIQkJCeh0Oho0aEB0dHSJsf/666+89957HD9+HEVRCAkJISoqyrZt0aJFnDx5El9fX4YMGcKAAQNs+x47doxFixZx5MgRrFYrDRs2tB3z2LFjzJs3j6NHj+Lu7k54eDj/+te/0Gq1AMyYMYN9+/aRmZmJv78/I0eOpHv37rfzaSmSp6cTen3FvB39/Nwq5Li3g8Rensx2Sx4eTvj53cWXkKNnQb2a8SoWK5xLx++h+yE967ribhcu4lbUc3Is4YbNsEWlBQrgYzaDnxucTy9VuNcmklc4n71gt3yjRPJmKXBnm5pjT+A3sbK93kVZ3MWfBOJWvfLKK/z999923dyxsbFMnjyZBg0akJGRwZQpU3jnnXd44403MBqNTJs2jcWLF9OqVStyc3OJjy/4lvnuu+8W2c29dOlS9u3bx6JFi6hevTobN25k/PjxrFu3Dnd3d6ZPn864ceMIDw/HZDJx8ODBEuM+duwY48ePZ8qUKXTr1g2r1UpcXBwACQkJTJgwgVdffZUePXpw5MgRXnjhBTw8POjSpQsXLlxg9OjRDB8+nLfeegudTsdvv/0GQFZWFs899xyDBg1i0aJFJCQk8OKLL+Lg4MDw4cMBeOCBB3jhhRdwc3Nj27ZtTJ8+naCgIOrVq3dbn5trZWTk3tH6i+Pn50ZKSmaFHPtWSezlzUDh1CkjK5eUlIqLpkT1AvBsUgv9H2cAMD1QB/0DdUhJyURp3wyvQB+0Z1MBsHq5ktGrFZainpM6/ng1qYXucj3XMgf6oLtcj23dfX6k31cNUjLRD+2Ax9YDKEZTsaFaPZwxNa6F409HUQu1EFo9nMl4IRyP306gPZ2C1c+D/LZBGDb+UvDrKe5OaC7lomo1Bckyl39VxaBHc83xLvdYF318TxfM9avj8Mtf15W/4X46DRqz9Yb7qIqCMmtIJXy9V8YvfBVHksl7TIsWLWz/9/X1Zfjw4cycOdO2TqfTcfLkSYKCgvDw8KBly5bF1qWqKmvWrGHBggUEBgYC0LdvX1avXs0PP/xAWFgYer2es2fPkpqaiq+vL8HBwSXGuHbtWkJCQggPD7etu7Lf5s2badCggW1bs2bN6N+/P+vXr6dLly5s2rSJWrVq8a9//cu2b5s2bQD44Ycf0Ov1jBw5EkVRqFu3LsOHD2fVqlW2ZLJv3762/bp168b//vc/fv311zueTApR2Zjv8m5u9Doyts5AtyceUDE/2gg/XUEPhOrnTtquN9AdOIFisWJuXgfV06XYetK3RKH/IR5SMlBQsNT2Q5OVizXQF0tQDfQ/HEZJyUTJzMHq7YopLBi0BTdLMXVsRtq+t9EkZcClHDSnL6DJzMEcVAOcHFGyjZhb1Ud1c0IXdwqrnwfK+YtozqVhat8UXBxJ/34WvikXSfN2Q/VwIefQKVRXA6q3K9q/k7DU8EF79CzaE8mY2wRhremNfk88qgYw5qPJyCHvsRY4rf8Zi4cL1tp+aC5cKui+1ijk9X8YDHr0uw+jOZlccC4uZuHw9e/k9WsLPq4oyRcL4so2ono4Y6npg6lbS/Q/xqP9OwkA84P1QKvB6ueOw7YDKOfSyR3dDb86BYm1qLokmbzHHDlyhCVLlnDs2DGMRiOqqpKTUzBux2AwsHDhQlatWkV0dDQ1a9Zk6NChxXbzZmRkkJOTQ0REBEqhgetms5nk5GQA5s2bx4oVKxg8eDBeXl7069ePIUOG3DDGxMREGjRoUOS28+fPU7NmTbt1gYGB7Ny5E4Bz585x3333FblvUlISAQEBdrEGBgZy/vx5AKxWKx988AFbtmwhNTUVRVHIzc0lPb103VRC3Eu0FR1Aaei0mNs3KXqbqwHzo41KV49eh6ljU7tVhTulTSHFHOMya4AX1gCvEg9jfqBuwX9qeGNpWde2XnV1grrVUC8nZJZmta/u8+D9Bf8GeGJuf7Wu/B4PXld/7rgbT540hTaB0KuPJX9YyeMcTV0ewNTlgevWG//VpcR971UyZlJUOhqN/a1EIyMj6dy5M3PmzMHV1ZXdu3cTERFh2x4cHExwcDAWi4Vdu3YxefJkmjZtSmBg4HV1eXp64uTkRHR0NE2aFP1hGhQUxJtvvomqqsTGxvL8889Tv359WrVqVWzMNWrU4MyZoruU/P392bNnj926hIQE/P39AahevTrbt18/2B0gICCApKQkVFW1JZSF9928eTPr169n8eLF1KtXD41Gw7Bhw1DVu70JRojyJ7+AI4S4Qm5aXsX5+Phw9uxZ23J2djaurq64uLiQlJTExx9/bNuWmprK9u3bycrKQqvV4uZWMF7kShLp4+Njl+QpisLgwYNZuHAhp0+fBiAnJ4effvqJlJQUTCYTMTExZGRkoCgKbm5uKIpyXVJ6rf79+7Nr1y42bdpEfn4+RqOR/fv3AwVdz/Hx8cTExGA2m4mLi+PLL7+kT58+AISFhXHq1Ck+/vhjjEYjJpOJvXv3AtCuXTvy8/NZvnw5JpOJkydPsnLlStu+2dnZaLVavLy8sFqtbNiwgT///PNWTr8QVZa16jWuCFEuVBS7v6pAUaXZpUr7448/mDFjBsnJyVSrVo1x48axYMECUlNTqVOnDmFhYcybN4/9+/dz4cIFpk6dytGjR7FYLPj7+/PUU0/Rs2dPoGDM4dtvv82lS5do1qwZixYtwmw289lnn7FhwwbbDPBmzZrZZohPnDiRP/74g/z8fLy9vXn88ccZNmxYiXH/8ssvttncOp2O0NBQpk2bBsD+/ftZtGgRp06dwsfHhyeffJKBAwfa9o2Pj2fRokW2yUONGzdm8eLFABw9epT58+fz559/4urqSnh4OE8//TQ6nQ6j0cj06dP56aefMBgMhIWFER8fT8uWLRkzZsztfmrsVNTg9Mo5EaSAxF6+qq20n4DzeuNcxhffwXBXqozn/QqJvfzdqQk4ycrrdsvV1Fl35DjlSZJJIe4CkkyWncRevq5NJmc1yWVMyfPp7iqV8bxfIbGXvzuXTE6zW66mziymZOUh3dxCCCHKLE+aIYQQl8kEHFHukpKS7LqlC+vRoweRkZHlHJEQomxUnrl+Aq8QohSq4vcwSSZFuQsICGD37t0VHYYQokysFHRmKYAVJ4cKDkcIcdeQbm4hhBAlSh6Rz5o6mzC+qCF5RH5FhyNEpVUVZ3NLMimEEKJUdBpw1MllQwhhT7q5hRBCCCHKSVVpjSxMkkkhhBBlsvGEhpG7CgZNNveysK23qYIjEkJUJOmvEEIIUWpWq/VyIqkACgfTtQzaLO0SQpSecs1f5SfJpBBCiFI7lAL2F0CF75P0vHdILidC3Kvk3S+EEKLUdForRd0pb/pv+vIPRohKSGZzCyGEuKfFXdcyeYXC7xeqxoVRCFE2kkwKIYQotSGbitui8NEfckkRoiTqNX9VgbzzhRBClEquRYv1BtvPG+WSIsS9SKbgCSGEKBVNCe0oDTxvlGoKIUDuMykqmdGjR9O6dWtGjRp1y3WFh4fz7LPPEhYWdhsiu/tFRUWh1Wp5/fXXKzoUcbuYLThsPYDVwxnL/QEoFiuqsyOqyYLj1lgsNb3QnL8Ijjryw4Jx/GgbmpRLmB+qh+rpgrltAzRnUtHt+xNzk/vQnU7BUtsPS70A9DsPof3lb8yNa0E1D5RT59GkZmHq1BzV4IBh9U70Px3FdH8NrAGeUMMLx5w8NMkX0aRnkxf2EPqdcSh5Jswt6mJ1c0KbZURJTIdMI+aH6kA1T1SNBs3xZKwNa2Ct6Y32WBLk5KFW98LSpBYAmrOpWH3dwdnxtp06qwrHLyoMO9XlhuX++6eWZxpbCXBWcdTetsMLIe5ykkwKIao+ixXvB19Cm5SBytXpI6peCybLde0EhcvYqgjwRJOUYbdeBVStBo2lmBa5WV/Y1eX4y9+2Te6Fijmv3n114b87S/WQro0xv/U/QKfD4cd4rH4eZHz5CpYGNUtV142YrPD4Fgd+Ol9ydphr1dDqSwO1Xa181T2P6i63fHghqqCq1zIpA1yqqLlz5xIbG8tHH31ESEgI/fv3Z9++fYwYMYKOHTvSpUsXpkyZQlpamm2fzZs38/jjjxMaGkrXrl2ZPn06ABERESQlJTF79mxCQkJ47rnnADCbzSxfvpz+/fvToUMHnn76aQ4fPmyrb+/evQwZMoT27dvTuXNnxo0bV2LciYmJPP/883To0IGOHTvyz3/+k5MnT5KRkUHr1q1JSUkB4JdffiE4OJgNGzbYYmnfvj1xcXEAZGRkMHPmTHr27EmXLl149dVXSU1NtR3HaDSyYMECevfuTadOnRg/fjxnzpwBYOXKlXzzzTfExMQQEhJCSEgIFovlVp4OUcEcth1Am5QBXHOHxCISyWvLXKG9JpG8Uq7YRPIGdd0O19aF05SRAAAgAElEQVTrsO8vHH6MB0CTchGnDzbfluPsPqcpVSJZOKpTWRr+e0zaKoS4V8i7vYp65ZVX+Pvvv+26uWNjY5k8eTINGjQgIyODKVOm8M477/DGG29gNBqZNm0aixcvplWrVuTm5hIfX3Bhevfdd4vs5l66dCn79u1j0aJFVK9enY0bNzJ+/HjWrVuHu7s706dPZ9y4cYSHh2MymTh48GCJcS9ZsoSAgADmz5+PVqvl+PHjuLu74+npSf369dm7dy+9evVi79691KpVi3379tGnTx/i4uLQaDQ0btwYVVV5+eWXqV27NmvWrEGn0/HWW28xdepU3nvvPQBmz55NVlYWK1aswN3dneXLl/Piiy+yZs0aRowYwYkTJ8q1m9vT0wm9vmLejn5+bhVy3Nuh1LG3qH1nA7kLOd3nh9NteG7rW1Wg7F+m6vo64ufndMvHv93uidf7Xagyx367yZhJUam1aNHC9n9fX1+GDx/OzJkzbet0Oh0nT54kKCgIDw8PWrZsWWxdqqqyZs0aFixYQGBgIAB9+/Zl9erV/PDDD4SFhaHX6zl79iypqan4+voSHBxcYox6vZ7U1FQSEhKoW7cu9evXt21r3bo1+/bto1evXuzbt4+xY8cyb948VFVl3759BAcHo9FoOHz4MEeOHCE6OhoHh4LfD54wYQJdunTh/PnzODo68u233xITE4OPjw8AzzzzDJ9++ilxcXF256m8ZGTklvsxoeADPiUls0KOfavKFLu/N06T+uL83rcoJguWGt7goMNa3Qvl+Hl0p1OultUoWP090JwraMnEUYfqYiB71GM4bo1Ff+gUqkYDWg2qrzsWH1f0sSev7q9gu9+HqtOgujujScuyC6dQkVJTFVA0moIBjHotVlcnNFm5gIrVy5Wcl/uh5Jtw/HwPlkaBZD7TFW7Dc1tLA3Naa5n1q55sy5Xoi+fjaKV/PSv9a5hISblh0XJ3z7ze7zKVNXZJgEtPksl7yJEjR1iyZAnHjh3DaDSiqio5OTkAGAwGFi5cyKpVq4iOjqZmzZoMHTqU7t27F1lXRkYGOTk5REREoChXLy5ms5nk5GQA5s2bx4oVKxg8eDBeXl7069ePIUOG3DDGF154gWXLlhEREUFubi6dO3fm+eefx9nZmTZt2jBjxgwuXrzIqVOn6Ny5Mx999BF//vkn+/bto1u3bkBBV7nJZKJr1652dTs6OpKUlIROV/CyHzx4sN12s9lMUlJSGc6oqExyJ/Ujd1K/W6rD+HLfWwtCVUFR8PNz48K1F9fL225V7jNdSy5URk83svB0IwuzNhziPxmtiy1nUKwcfiLvdjwMIaqsqnJvycIkmazCNBr7IbGRkZF07tyZOXPm4Orqyu7du4mIiLBtDw4OJjg4GIvFwq5du5g8eTJNmzYlMDDwuro8PT1xcnIiOjqaJk2aFHn8oKAg3nzzTVRVJTY2lueff5769evTqlWrYmP28vJi0qRJTJo0ibNnzzJx4kQ++eQTxo4dS4sWLbh48SJffPEFLVu2RKfT0bp1a77//nvi4uJsXdIBAQE4OTnx3XffXRc3YBsnum7dOry8vIqMQ5GrobgTbvS6qgSvuRCvFP6TUfz2vnXNleFhCCFuM5mAU4X5+Phw9uxZ23J2djaurq64uLiQlJTExx9/bNuWmprK9u3bycrKQqvV4uZW0Lx/JRnz8fGxTVCBgmRr8ODBLFy4kNOnTwOQk5PDTz/9REpKCiaTiZiYGDIyMlAUBTc3NxRFKTK5K2zLli0kJCSgqiqurq7o9XrbPgaDgebNm/Pf//6XNm3aANCqVSs+/fRTfHx8qF27YFxc48aNqV+/Pm+//TYZGQVXvvT0dDZvLpiQ4O3tTffu3ZkzZ46tFTUzM5MdO3bYWmp9fX1JSEjAapX75glxhVJCm0pCtmSSQpREfptbVCpDhgzh8OHDdOjQgUGDBhEZGcn69esJDQ1l0qRJdOly9Z5xqqryxRdfEB4eTmhoKHPnziUqKooaNWoA8PTTT/P111/TsWNHJkyYAMCYMWMIDQ1l4sSJtG/fnn79+rF27VpbArZlyxYGDBhASEgIEydOZMyYMTz00EM3jPno0aOMHj2akJAQnnjiCRo2bMjw4cNt21u3bk12drYtmXzooYcwGo20bn21602j0TBv3jwAhg0bRmhoKE899RS//vqrrczUqVOpXbu27TEMHjyYbdu22Vok+/TpY+tm79Chg8zmFgLQKPBwQPHbA+RWQELckxRVVati970QlUpFDU6vrAPjQWKvCLt3b8evVS9C1xS1VeX73nk09rp7LymV9byDxF4R7tQEnJPKm3bLddQpd+Q45UlaJoUQQpTafcVcXwOdrHd1IimEuHNkAo4oV0lJSQwcOLDIbT169CAyMrKcIxJClEVCtga4diyxyv+65FdEOEKIu4Akk6JcBQQEsHv37pILCiHuSg/4XblLpu1HKdkaZqSxdwUGJUSlUjUm3RQm3dxCCCFKzcVB4ce+edR1txDoYmFHrzwe8KvoqIQQFUlaJoUQQpTJPzxU9vaTbm0hbkZVHFksLZNCCCGEEOKmSTIphBCiRKoKI493xHORmVxplBTipslNy4UQQtyT/D8xkIELF/Oh9mpDRYcjhLiLSDIphBCizH5LrOgIhKicpGVSCCGEQGHP6YqOQQhxt5DZ3EIIIcpOmiKEuClVpTWyMPk4EEIIUWZK1bseCiFukrRMCiGEKLuqeLM8IcpBVXzrSMukEEKIspOWSSHEZZJMVkKjR49m2bJlt6Wu8PBwvv7669tSlxDi3mGRq4cQN0m55q/yk25ucdcxm83odPLSFOJuprVWdAS3h+Z8BoYV21HdnMgd9Rg46ku1n/OsNThuO4jV04W87g/i8PNRNEkZZL/aH1PHZkXuozt4Euc314JGIb9NEIaNv2BuFEh+z2AMq3ejKpD3ZCj5XVsUlP8xHtcZa7BU84Ap/XBbsAnlUg7mZrXR/3wUzfmLYFWx1vDCcp8vuj8TMbVtgKrX4rAjDiUjGzQarH5umEKbkju6K6qPG5gtOL33LQ5bY8GqouSZMLWqT3bk4zit3oWScgnj0PZY7/NDe+gUhvV7sRr0OHwfhyY1E3Lz0KRcAqsKDnpyh4ZiHNsdw/92ovq6k/uvTqDX4fTeNzi9uxEc9Xj6uqFJz8bYuzWqnztKdh65I7ugPXEelzf/D01iOvmdmmIc2gHX1z8Fq0rm20+hyc3DccM+zA1rkjfw0dv1tIvbTFFVtSp231dZc+fOZe3atWi1WnQ6HX5+frz66qssWbKE06dPo9VqadWqFZMmTcLb2xuAzZs38+GHH5KcnIzBYODhhx9mxowZRERE8MMPP6DX69FqtTRv3pwlS5ZgNpv55JNPiImJIS0tjXr16vHyyy/TuHFjAPbu3cvChQtJSEhAp9PRoEEDoqOjS4z9119/5b333uP48eMoikJISAhRUVHs37+f5557jmnTpvHBBx+Qnp7Orl27SEpKYv78+Rw4cACA0NBQXnzxRVxcXABYsmQJW7ZsIS0tDW9vb5544gmGDBkCQGJiIr179yYqKoqVK1dy7tw5HnzwQWbPns3KlSv56quv0Gg0jBw5kkGDBmGxWOjVqxeTJ0+mY8eOtpinTZuGTqdj2rRpt/V5vFZKSuYdrb84fn5uFXbsWyWxl69qKw0UbkV5vXEu41tVXDw347rzbrHiFRKJ7q9zABgHPUrm4tEl1uMyaw3O/ym6R0dVFFJ/n49aw9tuveZsKl5tJ6PJNxeUo+g2KRW4+OWrmBvVxKfJBBTr5Uu0wi0PtjM1vY+M72bhEvk/nJdtvW67ubYfulMpAFhqepOx9hW8ukxHk2UssW6rmxOazFwAcp/ujLFjMzyHLbhhu5u5nj/a0xdQzBbbOlWjQbEWfFOxGhxQNApKTh4AmW+NwPhUp9I+3Fvm5+d2R+r9U5lntxykTrwjxylP0vxTybzyyiv8/ffftG7dmlGjRgEQGxvL5MmTadCgARkZGUyZMoV33nmHN954A6PRyLRp01i8eDGtWrUiNzeX+Ph4AN59913Cw8N59tlnCQsLsx1j6dKl7Nu3j0WLFlG9enU2btzI+PHjWbduHe7u7kyfPp1x48YRHh6OyWTi4MGDJcZ97Ngxxo8fz5QpU+jWrRtWq5W4uDjbdovFwp49e1i1ahU6nY68vDzGjh1L9+7dmTlzJvn5+UydOpV33nmH6dOnA1C3bl2WLVuGr68v+/fv58UXX6Ru3bo8/PDDtnq3b9/OsmXLUFWVZ555hqeeeophw4bxzTffsHfvXl566SVCQ0MJCAigT58+rF+/3pZMZmVlsX37dt5///1bf+JK4OnphF5fMW/HO/WBWR4k9vJktlvycnPCz6/yXULszvuFS3A5kQQw/H4cQ2mel33Hit2kqCq+x8/BA7Wv2eco5F89h8UlWQrg+XciuDoUtPxdcRuaffRxp/Fzc4TY40Vu1yWk2f6vTUjD549TUIpEErAlkgBOsSdwctCWuI/u+Pnr1l1JJAE0Rvvf7XSLO4VbpXvf3Bsq3yeBuE6LFi1s//f19WX48OHMnDnTtk6n03Hy5EmCgoLw8PCgZcuWxdalqipr1qxhwYIFBAYGAtC3b19Wr17NDz/8QFhYGHq9nrNnz5Kamoqvry/BwcElxrh27VpCQkIIDw+3rbt2vwkTJuDq6grAtm3bUFWVsWPHAmAwGHj22Wd5+umnmTp1Klqt1i4BbtWqFY8++ij79u2zSyZHjRqFh4cHAO3atWPPnj3069cPgEcffRR3d3fi4+MJCAigb9++fPzxxyQnJ1OtWjW+/fZbAgMDadas6C6r2ykjI7fkQndAZWwhu0JiL2/2LZMXL+WSklJx0dyM6867Cp5tgtDv/ROAnK4tyS7F82Lo2xbXvceKbll01HGheV24ph6lXnW83Z3RXMq5cmjb/qpGsbVAqgY96a0bYLnPF1+DA8qVhEqvBZPlun0LPRRb42VxiWp+x2ZczMzD+bEWuOz/+/rtD9TG4deCRNPU9D4utm6AV3UvtOfSb1gvgLmmty0ZzX6sBXldmuH1/pZi4wTIb1MfXXwCmos5tu1Wgx6N0QSAxc8dFAVt8kVUReFS+6bkl+P75k594auK95mUZLIKOHLkCEuWLOHYsWMYjUZUVSUnp+DNaTAYWLhwIatWrSI6OpqaNWsydOhQunfvXmRdGRkZ5OTkEBERgVLoRnJms5nk5GQA5s2bx4oVKxg8eDBeXl7069fP1r1cnMTERBo0aFDsdo1Gg7+/v135pKQkOnToYFdOURRSU1OpVq0an332GevWrSM5ORlVVcnLy7vucfn6+tr+bzAY7JavrLtyrgICAmjTpg1fffUVo0aNYv369bbEUwhhz1IVBkgpChlrXsbxq19Q3Z3ID3uoVLsZR3bBUs0Tx2/2o1bzID+0Cdo/zqA7cZ6cl/qAu/N1+6i+7qTv/jdOH2xB1WrIb98Uw5c/YX7wfkwP3Y/j5t8L1vcKxlIvAIDUvW/h8s56LLV8cR3dhayPvoPcfMwP1MHxm99QLmSCXoulbjXMDWvi8ONR8jo1R5Odi27vMTRpmaDVYPX3xPzg/eT1aQ1ATkRvzE1qod96ANXVgOZiDqbW9cl7oh0O3x1ESb5Ifq9WqG5OZGyJwmFrLJZqnjh8H4cmOQOy89AdPg25+eDjTvbrgzCFNsZh4y+ovu7kP1bQwJGxfgquU1eh93IhN8ALbWI6OWO6olisKFlG8vq0RrmYg9MHW9D+fQ5Tx2YY+z+M8/wNKFaV7Mn90VzKxmH7QcxBNTG3rn97nndx20kyWQlpNPbTKCMjI+ncuTNz5szB1dWV3bt3ExERYdseHBxMcHAwFouFXbt2MXnyZJo2bUpgYOB1dXl6euLk5ER0dDRNmjQp8vhBQUG8+eabqKpKbGwszz//PPXr16dVq+IHUNWoUYMzZ84Uu11RFLvktXr16tSuXZvPP/+8yPKxsbH85z//ITo6mqZNm6LVapk8eTK3OgS4f//+zJ8/n3bt2nHixAm71k8hxFVqVZnN7exI3uB2Zd7NFB6MKfxq74qpU/MS97FW9yZ7+mDbclZIY9v/cxrXuq68Wt2LrHn/AsDVz43c8T2vHq/b9T1M+YOuPo68J0NvGEt+15bkdy2ijs4P2Mfs74lxaIeCY3ZtcV35wq49pvmRhmR8Nws/PzeyimlRVA0O5Lw+yG5dTqFzZHVxtB2/qqgK38OuVVU+Du4pPj4+nD171racnZ2Nq6srLi4uJCUl8fHHH9u2paamsn37drKystBqtbi5FTTbX0kifXx87JI8RVEYPHgwCxcu5PTpgh/fzcnJ4aeffiIlJQWTyURMTAwZGRkoioKbmxuKolyXlF6rf//+7Nq1i02bNpGfn4/RaGT//v3Flg8JCcFkMrF8+XKys7NRVZXk5GR27Nhhe8wajQYvLy8UReGHH37gxx9/LNuJLEK7du0wmUzMmjWLTp064e7ufst1ClEVydRNIcQVkkxWQkOGDOHw4cN06NCBQYMGERkZyfr16wkNDWXSpEl06dLFVlZVVb744gvCw8MJDQ1l7ty5REVFUaNGDQCefvppvv76azp27MiECRMAGDNmDKGhoUycOJH27dvTr18/1q5di/XywOgtW7YwYMAAQkJCmDhxImPGjOGhh27cPRQUFMTChQtZu3YtXbt2pVevXje8v6XBYOC9997jxIkTPP7443To0IFnn32WP/8sGNv08MMP07NnT0aMGEGXLl3Yvn273Szsm6XVaunTpw9Hjx6lb9++t1yfEFVV1Rv1JUT5UFHs/qoCuTWQENfYuHEjK1as4Msvvyy3Y8qtgcpOYi9f194aaGrDXCa0qbh4bkZlPO9XSOzl705NwDmivGu33EiNKKZk5SFjJoUoJDs7m9WrVzN48OCSCwtxD1OqRoOKEOWuqrRGFibJpLgtkpKSGDhwYJHbevToQWRkZDlHVHaffvopS5YsoW3btvTv37+iwxHirqZIn5YQ4jJJJsVtERAQwO7duys6jFsyZMiQEm9xJIQAUOkbVNExCFE5VcXvYTIBRwghRCnYXwIDvSooDCHEXUeSSSGEECVKHpHHKK9YZj4CySNK9xN7QojrVcXZ3JJMCiGEKJUeXmd5/REZHSWEsCefCkIIIYQQ5aSqtEYWJsmkEEKIUrGYFd6ffYLjh3O4v5mB/qOqVXRIQoi7gHRzCyGEKJXYzdWJ/z2H/Dw4st/Ip4uSKjokISod9Zq/qkCSSSGEEKWSneFkt3zicH4FRSKEuJtIN7cQQogSXUozI7/ILcStq4pjJqVlUgghRIkO/5aNJJNCiKJIy6QQQogSHfjxUkWHIESVIC2TolIxmUxMmTKFjh070rlz5xuWXb58OREREeUUWel9/fXXhIeH25YnTJjAypUrKzAiIe5N2ZlVZaqAEOJ2k5bJcpaYmEjv3r3ZtGkT/v7+d/RY27dv548//uCbb77BYDDcsOzTTz99R2O5XRYtWnRb64uKikKr1fL666/f1nqFuJtYL+ZjTspBX98DRXNzrSK5mUXUW9I+ZjiVqeDvpOLpCErVa5ARosyq4tcySSarsLNnzxIYGFhiIlkezGYzOp283MQ9KDcfxWRGdXdGSc9CdSnF+9FiRcnIRvVxQ7fjIA4/HsXY/UHUmj7goIOcPFRXR/BwQUm5BHkmMOghz4TF4ET+n5koZ1JxSzvDuS1GcvYUzgRVwIJjXR1q7WrkH0wDrRaNhwPWk5mggGFAXbymB6PzKYg1JbHoWdsq8PO2S5yq7cmcWC0JOdoiSikUvnwaFJU2/lZeam6msU9Bh5+7QynPpRDirnTPXt1zcnL44IMP2LFjB+np6fj7+xMZGUmjRo1YvHgxO3bswGg00qJFCyZNmkRAQAAAo0ePpnXr1owaNcpWV3BwMMuWLaNFixYsXbqU2NhYmjZtyvr16wF4/PHHGTNmDABPPvkkAAMGDEBRFEaMGMHIkSOJjo5m48aN5OTk4OHhwT//+U8GDx58w8dgNBqLjXXu3LmsW7cOVVUJCQmhc+fOREVFFVvX0qVLOXDgANHR0QCEh4fTr18/fvnlF+Li4qhevTqvvfYaDzzwAFCQHC5cuJBvv/0WjUbDkCFDWLduHSNHjiQ8PJyNGzfy0Ucf0b9/fz777DNcXV35/PPP+euvv1iwYAHx8fE4OjrSo0cPxo4da0s04+LimDt3LidPniQoKIi2bdvaxXnt+U9KSmL+/PkcOHAAgNDQUF588UVcXFxsz80rr7zCxo0bOXnyJPXq1SMqKoo6deqwcuVKvvnmGwC2bNkCwPfff8+xY8d4++23+euvv9BqtdSpU4cFCxbg7u5+w+dDCABMZtye+wCHbQdQvVzRnLlQkE4poKiX06o5w+DpLjh++ROur/4XJduIqtWgWFXINwP2KZgCuCyMQeXqFJjC2yi07gwNuECty2tOAl6AR6FSCqAl74QKJ5IvrzNjTcmzlTB+doJzn50ABw1JS3uwdVNWkQ9VC6zelMPqB6qV0Ox4dZtRVdiZpGFnku5yxAoGjZWNYfk84FMV22yEsCdjJquQWbNmERcXR3R0NDt37mT+/Pn4+voyb948Dh06xIoVK4iJicHT05OIiP9n787Doqr3B46/z8ywgwKyCKKSueCCyxXzVu6aKWqa5dW6hUtuZVauJZrRpmmKomFqbunP65YLCnrdLWxRWzQtu2mWigiigKwDs5zfH+ToCArjwubn9Tw8z8w5c77fzxxmOB++2xmDyWQqcdk//vgjvr6+7Nixg8jISJYtW8bRo0cBWLNmDQAbN24kPj6eoUOHcujQIeLi4lixYgVfffUVn3/+Oc2bNy+2ntvF+uabbzJ48GBatmxJfHz8bRPJW9m6dSvjx4/nwIEDtG7d2qqM5cuX880337B8+XJiYmK4dOkSFy9etDr+4sWLpKSksGnTJlauXElqaiojRoygY8eO7Nixg+XLl3Po0CGWL18OQFZWFq+//jqdO3dm3759jB07li+++OKW8eXl5TFy5Ejq1KlDTEwMGzZsIDk5mVmzZlm9btu2bcycOZM9e/bg6+vLzJkzARg4cCDdu3enZ8+exMfHEx8fj1arZebMmfzzn/9k37597Nq1izFjxmBnZ2fz+RMPJoeN3+K45RCaLD3avxNJKEgk4e+0avJq0Ofj9vpSNOnZKAYTGr0BJd+IwvXU68bHFPH45kuSAlzFG4AqXCaA0zhT1MSZoo4uTI+G3VszUW/Tn+2Tm0/d1KKTzeIVxKA3axj/jTRPClFRPZAtk6mpqezevZt169ZRo0YNAGrWrInZbCYuLo7IyEh8fApuEzZu3Dg6derEL7/8QtOmTUtUfu3atXn22WcBCA4OpkGDBpw8efKWCaJOpyMvL48zZ87g4eGBp6cnnp6et63jXsV6O3379uXhhx8GoE+fPqxZs4asrCxcXV2Ji4tj8ODBBAQEADB69Gg2bdpU6H2NHj0ae/uCi8SGDRuoV68ezzzzDAA+Pj4MGjSI+fPnM2zYMOLj43F0dGTgwIEoikLjxo156qmn+O9//1tkfPHx8aiqysiRIwFwdHTk5ZdfZsiQIUyZMgWttqDLLSwszNKy3KtXr2LHR+p0OpKSkkhOTsbf35/g4OA7OX02cXd3ws6ubL6O3t5uZVLvvVAuY3dxKNHLvL1cwHzvW+IcyMWAIw7kAFCD05jRkYkHBmwb8qIqSonGdynq3b8PRaspld9nufzMlJDEXllUvpbJBzKZTExMBAqSvhulpaWRn59vSTABnJ2d8fT0JDk5ucTle3l5WT13dHQkOzv7lq8PCQlh1KhRLF26lEmTJtGkSRNGjRpFo0aNbnnMvYr1dm58H05OBXe+yM7OxtXVlZSUFPz8/Cz7HR0d8fDwKHT8tUQSCs77sWPH6NChg2WbqqqYzQXNHsnJyfj5+aHc0F124/u7WWJiIklJSVblASiKwpUrVyxJ9o3vw9HRkZycnNu+73feeYclS5YwdOhQdDod3bt3Z9iwYfd1zGd6eu59K/t2vL3dSEkpYmZFBVBuY+/agipPNsd+73HMfh5oEi5bj7jXKCjzXiIly4DDrIG4vbmyoGtbAVDAZN0MeHM39s1u7vb24CJZuJOON76cxZ48AvidUzSzOZl0Usx06ubKvp23/vuVaafldDVXm8q9HnFBZ76dAh+G5JOScn+/B+X2M1MCEnvpkwS45B7IZNLf3x+Ac+fOUadOHct2Dw8P7O3tSUxMpGbNgjFHOTk5pKamWmZeu7i4oNfrLcekpKTYVLdGU/TIgr59+9K3b1/0ej2LFi1iwoQJxMXF3bKcksR6P3l7e1t1a+v1etLS0qxeo9w0hqp69eo88sgjREVFFVmmj48PFy9eRFVVy7HXEv+i+Pn5Ubt2bdavX3+nb6NQjFCQwL7zzjsAnD59mlGjRuHv70/v3r3vuB7xAHGwI2PV7ZfZ8vZ2g5RM8p5rR95z7QrtVy5ngEaD6uGC3Z5jqC6OmOv4oro4orrdcEtDsxnt/y5gdnNCDSj4p8n4ZxpeBy5grlGFc/sa47TrMKaEHPS4cW3+tYKJas0hv5YfmT/moOqNKDoNarIe7DV4zPknrs8W9ErUBOq2dmPxe4Xvw60CA1/x5Cn3PCYftuOX9FtNwLn2anC3UwlrYGBMUzNZRnDUQlXp4RYPkMo4ZvKBTCY9PT3p3LkzH330EREREfj5+ZGQkABAjx49WLhwIXXq1MHNzY05c+YQGBhI48aNAQgKCmL37t38+9//xt7e3jJhpaTc3d3RaDScP3/ekvSdOHECg8FA48aNsbOzw8XFxdJFeysajabYWO+n0NBQVq1aRUhICF5eXkRHR1taGG+lR48erF69mpiYGLp164adnR2JiYmcO3eOxx57jLZt2zJr1ixWrlzJv//9b06fPk1MTIxV68Pzcq8AACAASURBVOaN2rZty4IFC1i2bBn9+/fH2dmZlJQUfvnlFzp27Fii9+Hl5cXx48cxm82WRD82NpbWrVvj7e2Nq6srOp2u2N+HEPeS6nV9spfhiduMn9ZoMDWsabVJ95AHuof+7iXoWgs+ehxVVfHPMqBxs/4uOWE9NedWvP3t0dqByWC9XQEaNixIbvf3NgCGQseeSFUwmSG4msrNqxK5yFBkISqFBzKZBJg6dSoLFy5k+PDhXL16FT8/P8LDwxk7dizz588nLCyM/Px8mjZtSmRkpCWZuJbk9OnTB3d3d0aPHs22bdtKXK+joyMjR45k8uTJ5OXl8eKLL9K0aVPmzp3L+fPn0Wg01K1bl2nTphVbVnGx3k+DBw/m6tWrDBw4EK1Wy3PPPYe3t/dtJ6p4eXmxcOFC5s+fz4IFC9Dr9fj7+9O3b18A3NzcmDt3LjNnzmTJkiXUr1+fZ599lq1btxZZnqOjI59++inR0dE8++yz5OTk4OXlRdeuXUucTPbu3ZvDhw/TuXNnVFVl7969HDlyhPnz55OdnU2VKlXo1q0boaGhtp8kIcoJRVFQ3O6u+c/DS8Pli8WtLFlYE0+ZoS3EjSrjN0JR1Xswclo88HJycujYsSOLFy+2LB8kSq6sxhNV1LFMILGXtgVvJ5CWUjiZnLywVhlEc2cq4nm/RmIvffdrzOT3yqdWz0PUl+9LPaXpgV0aSNydq1ev8s0332A0GsnKyuLjjz/G39+/VLrYhRClr3ot6ZMW4l5QUax+KoMHtpu7Ili2bJllDcabzZs3jxYtWpS4rB07dtyy6zw8PJzu3bvbFJuqqnz66ae89dZb6HQ6GjZsSGRkpNzlRohKqvvznpz8IZHKuKyJEOLuyJW/HBsyZMg9u2d29+7dbU4Yb8fd3Z1Vq1bds/KEEOWbk8yWEeKeqIxjC6WbWwghRIk4uuZZPX96+O1vriCEeDBIy6QQQogSadXrPFfP/INzf2TToXdVGv3jThYrF+LBZq6EQ0UkmRRCCFEiigaGTKxVIWfmCiHuH0kmhRBCCCFKSWWZwX0jGTMphBBCCCHumLRMCiGEuGNmFZb9puVMhoZqjmYu6zV0q2mivb/td8sR4kFQGWdzSzIphBDCJueyFJ7fY09CtsJDbmZ+SbO+hevS37R88UQe7fwr42VTCHEz6eYWQghhk9cO2vH7VQ05RqVQIllAYeZRWZdSiKJUxjvgSDIphBDCJj+kFH/p+DOzclwkhRDFk2RSCCGETfJKMBwyRa/w6YmiWi2FeLBVxpZJGTMphBAPCIe1B9H+lUzes49hqutn2W737W/YHTiBoXV9DJ2aFjpOezIBh5hDBJhTiW9lKmFtCu/8YEeXmmbqVZWxk0JUZpJMVlDff/89o0aN4tChQ2VS/08//cSYMWM4cOBAmdQvhChCvpEqIxZgd+gUeV2akjXnJdAWdEA5z96Cy4zNBY8jt6I62YOigNmMojdY2keMVZ1QnB3ApKJ/rh0mD2fc3t+AYjLzCNCO7lCjXgkDUvjPKQ3vhJQ0ARWi8quM/1pJN7co1qJFi3jllVestrVo0aLUEslevXqxffv2Em+/Zs+ePbz44ot06NCBDh060L9/f9auXVtsfTt27CAkJITFixffVdxClJo8A87vraNa8Os4xP2A5nIGTmsP4t5xCtVqD8XLbxDOfyeSAAqgyc1Hk5OH5oZEEkB3NRftxXS0l67iErWNKhHrUEzX+7U1udb35y7Owl9kIo4QlZ20TIpK6dixY7z33nt89NFHtG7dGrPZzOnTp7l48WKxx27atImqVasSExPDSy+9hFYr475E+aRk5uAcuRWHjd+iTUovtN/utwv3tL5MB0d+qV7LpmNMKPTcbkdsqOGexiJERVVZxkneqEImkzk5OSxevJj9+/eTlpaGr68v4eHhNGzYkE8++YT9+/ej1+tp3rw5EyZMoHr16gAMHz6coKAgEhMTOXz4MB4eHkyePBlVVZk9ezbJycm0atWKd999FxcXFwBCQkIYO3YssbGxJCQk0LBhQ6ZMmULNmjUB2LlzJytWrCAxMRFHR0fatWvH2LFjcXJyAgpaz55++mmOHDnCiRMn8PPzY/LkyTRr1ow///yT5557ju3bt+Pp6QmAqqr07t2bESNG0KNHjxKfE6PRyPLly4mNjSUjI4OgoCDGjRtH3bp1LeVu3ryZdevWkZSUhKurK2FhYfTv35/ff/+dWbNm8ccff2A2mwkODmbixIkEBASwa9culi9fjqqqtG3bFoA1a9aQlJRk1c1eXP0RERGYTCYcHBzYs2cPTk5ODB06lGeeeeZuPw5FOn78OIGBgTz22GMAaLVaGjZsSMOGDW973J9//slPP/3EnDlzGD9+PN98843lfQtRruQZ8AyZgCYtq9Sq/Pwf7bjsWsXm4w6naPktzUiQR2Xs4BNCVMhu7vfff58TJ06wYMECvvzySyIjI/Hy8mL27NkcP37cktS4u7szZswYTKbr43W2b9/OoEGD2L9/P127dmXq1Kls3ryZzz77jK1bt3L27NlCXaGbN29mxowZ7Nq1izp16jB27FhLma6urnzwwQfs37+fJUuWcPToUZYuXWp1/NatWxk/fjwHDhygdevWREREAPDQQw8RHBxMbGys5bWHDh0iMzOTzp0723ROVq1aRVxcHFFRUezcuZPmzZszatQosrIKLjQbN25k8eLFTJo0if3797N69WqaNGkCgKIoDB8+nB07drBt2zacnJx4++23AejatSuDBw+mZcuWxMfHEx8fT0BAgM31A+zbt4+2bduyb98+JkyYwMyZM0vUUngnmjVrxv/+9z9mzZrF119/TWpqaomO27RpE/Xq1aNt27Y8/vjjbNq06b7EJ8Td0p66WKqJJEDob0fv8EiFA4kV8nIjxD0ns7nLgdTUVHbv3s26deuoUaMGADVr1sRsNhMXF0dkZCQ+Pj4AjBs3jk6dOvHLL7/QtGnBDMUnnnjCkkR1796d5cuX8+KLL1K1alUA2rRpw8mTJ63q/Pe//21piXz99dfp2LEjJ06coFmzZjz++OOW19WsWZNnn32WuLg4q+P79u3Lww8/DECfPn1Ys2YNWVlZuLq68vTTT7Ns2TLCwsIAiImJoXv37jg6Otp0XrZt28bAgQMJDAwEYNiwYcTExHDw4EG6devGunXrGDJkCM2bNwfA3d0dd3d3AOrVuz6Y3t7enmHDhjFgwAD0en2J4yiufiho5W3fvj0AnTp1ws3Njf/973/4+fndqtg7FhwczKJFi/jiiy+YNm0aly5dIigoiLFjx9KiRYsij8nLy2P79u289NJLAPTu3ZuJEyeSnJyMr6/vPY/xRu7uTtjZlc3X0dvbrUzqvRce6NhbBIKdFgylN7klMO0Sta9c4mw1H5uP7VDXCW/vsr9wPtCfmTJUkWMXxatwyWRiYiIAtWvXttqelpZGfn6+JcEEcHZ2xtPTk+TkZMu2atWqWR5fS5S8vLystuXk5FiV7e/vb7Xfw8ODS5cuAfDdd9+xZMkS/vrrLwwGAyaTydJlfc2N5V/r/s7OzsbV1ZXOnTsze/Zsjh49SmBgIAcOHGDlypU2nJECycnJVnFqNBr8/Pws7z0xMZFatYoe65SQkEBUVBQnTpyweu9paWklTvSKqx+szwMUnIubz3VRdDodRqOx0Haj0YhOd+uPcPPmzS3Jc1JSElFRUbzxxhvExsbi5lb4D9uePXvIyckhNDQUgMcffxx3d3e2bNnCiBEjio3zbqSn597X8m/F29uNlJTMMqn7bknsoNsyCdfJq9GdOItivP/3wlYA1eZ8UGVSMwNBDiZSUu5DUDaQz0zZqKix368EuDIO9qhw/Q7XEpZz585Zbffw8MDe3t6SbELB2MrU1NS7blW6sUy9Xk9aWho+Pj4YDAbGjx9P165diY2N5csvv2T06NGoask/Kg4ODvTo0YOYmBi2b99O/fr1rVoKS8rX19eqy9hsNnPx4kXLe/f39+f8+fNFHjtt2jScnZ1Zs2YNX375paWb/tr70GiK/5gUV//d8PPzKxR7Tk4OV65csfrn4XaqV6/OSy+9RHZ2NhcuFD0pYfPmzZjNZvr378+TTz5Jjx49yMzMZOvWrVZDJYQoL4yt6pG+K4K0Xe9ifMgHVXv9u6oCWSO7om/bEJOb4x1fwG48Ll/RcM7d65avLYqXg8qY5vL9EaIyq3Atk56ennTu3JmPPvqIiIgI/Pz8SEhIAKBHjx4sXLiQOnXq4Obmxpw5cwgMDKRx48Z3Ved//vMfQkJC8Pb2Zv78+dSoUYMmTZqQl5eHwWCgSpUqODo6cubMGdavX29z+X379uXFF1/k2LFjlu5uW/Xs2ZOVK1fSokUL/P39+fzzzzGZTLRp0waAfv36sXz5cho0aECTJk3IyMjgwoULNG7cmOzsbGrVqoWbmxvp6eksWrTIquxq1aqRlJSEwWDAzq7oZT6Kq/9u9OrVi9mzZ/PYY4/RtGlTsrOzmTt3LnXr1qVBgwZFHnPgwAEyMjJ47LHH8PLyIj09nf/85z+4u7tbuuJvdObMGY4ePUpkZCSNGjWybE9LS+OFF17g66+/pl27dnf9XoS4H0xNapF26GMA7PYdR3fiLPlPNMfU8Pr4Zt2R01R9dgaa3HxMbk6Ya3iiXM1ByTOgTb0+9tLk5Ya5RjUMLepg9q6KscVDuL6/Ht3JBMzuDrxUJ4+lfzmVMDKVhe1lFrcQN6os4yRvVOGSSYCpU6eycOFChg8fztWrV/Hz8yM8PJyxY8cyf/58wsLCyM/Pp2nTpkRGRt710i59+vRhwoQJXLhwgaCgIGbPno1Wq8XZ2Zm33nqLefPm8eGHH9KoUSO6devG1q1bbSo/MDCQhg0b8ttvv9G1a9c7ijEsLAyDwcCrr75KVlYW9evX55NPPsHV1RUoSCahYPJSUlISVapUYdCgQTRu3JixY8cybdo02rdvT/Xq1XnxxRfZv3+/pewuXbqwe/dunnzyScxmM6tXr7a5/rvRvXt39Ho9M2bM4OLFizg7O/OPf/yDyMhISzd3UlIS/fr1Y968ebRo0YKqVauyadMmoqOjyc7OxsXFhUaNGhEdHW0Z3jBt2jSSkpKYN28emzZtIigoqFDC6OXlRZcuXdi0aZMkk6JCMHQKxtApuNB2Y6u6XPktGiUjB9XX3Wqf48L/4rjlEIZHg8ie0s+y0Pk1aZ2C0SSn89VvPzCrpwtLPzFBCS6IHnYq7fzuf/e7EKJsKaotfbIPoJCQEJYsWWIZe3e/REREYGdnx+TJk+9rPaJ8KqvxRBV1LBNI7GUhPn4vffv2QTfbgKnYwZMqX/fOo557+bnEVNTzDhJ7WbhfYyb3KcutnndSB9+XekpThRszWRmdPXuWPXv20L9//7IORQghilW3SvGtjVXsKFeJpBDi/qmQ3dyVycSJE/nuu+8YNGiQZYFvuN5tW5Tu3bsTHh5eWiHed9OmTWPHjh1F7tuwYYNl0XkhRPkwvbWRvrs0/D2/m6K6vBu6S/e2EEWpjGMmpZtbiHJAurltJ7GXvmvd3CkpmXyZqOGrixq0isr8E3aYVIUqdioZBgVnncrGrnm09C5fl5eKet5BYi8L96ube6+ywup5Z3XQfamnNEnLpBBCCJu19zfT3r+g9XFYQxMZ+QqBbipnMhV8nFSq2pdxgEKUU5WxZVKSSSGEEHfF2wm8nQpaIetVLV+tkUKI+0+SSSGEEEKIUlIZRxPLbG4hhBBCCHHHJJkUQghRrAPn4ZkzPVBmGVn4c1lHI0TFpWoUq5/KQJJJIYQQxfrXPkeuLQE09SfHsg1GCFGuSDIphBDCRgpbfi/rGISomFTF+qcykGRSCCGEzc6klXUEQojyQmZzCyGEsJlOVgAS4o5UlnGSN5KWSSGEEDaTXFIIcY20TAohhLCZKk0RQtyRyvjdqYRvSYjr/vWvf7Fr165iX5eYmEhISAjJycmlEJUQFZ9SGVdeFkLcEUkmRSHDhw9nyZIl96SsXr16sX379ntS1p1Yv349Xbt2LbP6haisTGUdgBAVlKpVrH4qA+nmFpWS0WhEp5OPtxD3iyJNEcVSktNxnfx/aK5kkjPmKQxtG+H80Ubsv/kf+Z2CyRnz1C2PdVyyG8eYwxiaB5I9tb/VPocth3BctgfTQ75kf/hvVFenYmOxjz2C61urUAxGckb3QHV1xOW99Sh5RgxNapI1ewjm2t64TFmN9q9LGNo1wu7r39BcTEPJyAWdBmNQAPZfnwRVJWdYV8x1q+Ow5iCaq9mQbwStBrWqM5rzKWguZ6Haa8l6519w6DRVU7PIfr0Xru+vQ3s6CWPT2mgupqK5nEl++8bY7z2Oos9H1WowBdVAeyEVtYoT2ZOewSHuB5T0bHLG90F78jyOWw5jaBaIkpOHwxffgNGMoqqgUTD5VEGTkw8aDdnjeqMf+sRd/x4ru6+//pq4uDhSU1NZuHAhx48fJysri0cffbTEZSiqqso4amExY8YMNm7ciFarRafT4e3tzVtvvUV0dDTnzp1Dq9XSqlUrJkyYgKenJwA7d+7ks88+49KlSzg6OvLoo4/y7rvvMmbMGA4ePIidnR1arZamTZsSHR2N0Whk5cqVxMbGkpqaSp06dRg/fjyNGjUC4NChQ0RFRXHhwgV0Oh0NGjRgwYIFt41727ZtLF26lL59+7J27VpcXV1Zv349vXr14uWXXyY0NBSAU6dOMW/ePE6ePInZbCYoKIgFCxaQmJjIU089xbvvvsuKFStITk4mODiYd999Fy8vr/t70oGUlMz7XkdRvL3dyqzuuyWxly6fz68vWg4Q3jCXNx4pu3juRGmf9yphc3H4708AqM4OZL3TH7c3V1r2X102mvyeIYWOs/vmN9z7TLc8z3qnP64R/UlJyUTzZzKej72FYioYZ5D7Uheypr942ziUlAyqNX3dcgwUTKC6sU3MVNOL/C7NcFq+t8j9Nytuf1GvU+00KAbbxkeoCih/Zymqkz1Kbn7JjwXS976HMbi2TXVe4+3tdkfHFWeb22qr570y/31f6imJVatWsXLlSvr168eiRYv44YcfOHXqFG+//TZr164tcTnSdCOsvPnmm/zxxx888sgjDB06FICjR48yceJEGjRoQHp6OpMmTWLWrFlMmzYNvV7P1KlT+eSTT2jVqhW5ubn89ttvAMyZM6dQMgewaNEiDh8+zLx58/Dz82Pbtm2MHj2azZs3U6VKFd555x1eeeUVevXqhcFg4OefS3bvtosXL5KSksKmTZuK3H/58mWGDx9OWFgYM2fORKfT8eOPP1q9Zvfu3Xz22WfodDpee+01Fi5cyJQpU+7kVNrE3d0JO7uy+Trerz+YpUFiL01Gq2dVXJzw9q54l5BSPe+XMywPlZw83C5ftdpdNSsHioonR2/11PVqNvB37KcuwA1JoVNqJk7FvacrV62OgcKJoDY5HafUjFvuv1lJO2dvfJ2tiSRcTyQBmxLJa3V76POKPscCgM8//5wVK1YQEBDAZ599BkCdOnX4888/bSqn4v0lEKWuefPmlsdeXl6EhYXx3nvvWbbpdDr++usv6tevT9WqVWnRosUty1JVlXXr1jF37lwCAgIA6NOnD2vWrOHgwYOEhoZiZ2dHQkICV65cwcvLi5CQwv+5F0Wn0zF69Gjs7e2L3B8XF0fNmjUZPHiwZVvr1q2tXjNs2DDc3d0B6NatG1u2bClR3XcrPT23VOq5WUVsIbtGYi9t1i2TmZm5pKSUXTR3orTPu/3L3any8kKUfCO5z7Ul598dcF9zEG3CFYwPVye9S3PUIuJR/tmAqsG1sTt+FrN3VdL7PY4nf/dgPFSdqh2Dsd9/HLOLIxmDO2Mo7j15VqFKxyY47D8BgKFhANjrsDv2l6XlMHvMUxgea0CVPcfRZOsxBVRDm3DFumVRp0UxFoyWNXm5Ya7tg90Pf1i3HirWCaCxthe6hFQwmdH3aInDjh9RzCqqTgtGEwpgtteh5Buv13NDnfltgrD77hSK0UTuc23R/XIOu5/PYvZ0hdx8NLdJMI0NA0hr+hDc4e/8fv3jUZ5mc2dnZ+Pn5weAohScdaPRiJ2dnU3lSDIpinXy5Emio6M5deoUer0eVVXJyckBwNHRkaioKFavXs2CBQuoUaMGL7zwAt26dSuyrPT0dHJychgzZozlgwsFH95Lly4BMHv2bJYvX86AAQPw8PDg6aef5vnnny82Ti8vr1smklDQclmrVq1iy7jGycnJ8j6FENbK0wWxvMrv1YorreujycjBVLfggp16cDra85cx1fIGp6L/XqmuTqTvmIr2z2TMNTytx0TqtFz9z1i0fyRh9q6C6uFafCCKQsba8Wh/PgsmE6ZmD4FWg+6731ByDZjqVMdc27sgvh9no0nJwFS3Otq/LqEqCkpGDqq9HeZAH+z2/wxmFUNoSzCZ0Z5JRnV2QMnMARXMXlXQXM5A++MZzAHVMHYMxjs/nysJaZjr+JJ16Sq6X85haFUXJS0b3emLGNo0RHPsL+z3H8fULBBT00A05y9jruaGuU51lOR0NFl6TA9Xh3zj9fOiaLDf9zOmKk4oioKSZ8BU3x8lIxfFYMTYNBB02rv9NVZqrVq1YvHixbz88suWbStXrizU0FIcSSZFIRqN9VUiPDyczp0789FHH+Hq6kp8fDxjxoyx7A8JCSEkJASTycRXX33FxIkTadKkCQEBAYXKcnd3x8nJiQULFtC4ceMi669fvz7Tp09HVVWOHj3Kq6++Sr169WjVqtVt474xOS2Kn58fe/fuve1rhBAlI0sDlYzqUxWTT9XrG5wdMDWoUfyB9rpbv06rwVTf37ZAFAVTs0CrTcZ/BhV6merhiunvBNVUp3qh/YbQG3qKNJoiYzT5umNqfMM/7jWqYf77H33VpyoGn+CCx65OGGoW/ANvDqmLPqSu5RBzdY/rMfm6Y/L9+8lN5yW/1+2vC+VReboDzpQpUxg5ciQbNmwgOzubJ598EhcXFxYtWmRTOfK/pSikWrVqJCQkWJ5nZ2fj6uqKi4sLSUlJrFixwrLvypUr7N27l6ysLLRaLW5uBd0C15LIatWqcf78ecvrFUVhwIABREVFce7cOQBycnL49ttvSUlJwWAwEBsbS3p6Ooqi4ObmhqIohZLSOxEaGsrZs2dZsWIFer0eg8HAoUOH7rpcIR5E5vJzPRRC3CEfHx82btzInDlzmDVrFjNmzOCLL77A29vbpnKkZVIU8vzzz/Puu+/SoUMHfHx8CA8PZ+7cuSxdupTAwEBCQ0M5duwYUDAGcsOGDXzwwQeYTCZ8fX2JiIjA37/gv+YhQ4bw8ccfs3btWoKDg5k3bx4jRoxg7dq1jBs3zjIDPDg4mAkTJgCwa9cu5syZQ35+Pp6enowYMYKWLVve9fvy9vZm0aJFzJs3j5UrC2ZUNmrUyObmfCGEEOJOqeXsHzFFUWjWrBnNmjW78zJkaSAhyp4sDWQ7ib103bw00OSGubwuSwOVGom99N2vCThbPP9j9bxPavFzAu6X9u3b33KI2IEDB0pcjrRMCiGEsJk0QwhxZ8rTmMmPP/7Y6nlKSgorV660Ws6vJCSZFBVCUlIS/fr1K3Jf9+7dCQ8PL+WIhHiwyR1whKj4HnmkcPfCtXWmBw4cWOJyJJkUFUL16tWJj48v6zCEEACojGxe/KuEEIWV98lr9vb2VpNwS0KSSSGEEMXSYMaMhoJxkyoOtq1pLIQoh6Kioqye6/V6vvzyS9q1a2dTOZJMCiGEKFbSwHzi4/fy9NO9uXy5bO7YJERlUJ7GTCYlJVk9d3JyYvDgwfTu3dumciSZFEIIUWLF3RxACFFxTJ8+/Z6UI8mkEEKIkpNp3ELclbJeZ/Lbb78t0eseffTREpcpyaQQQohiedQdydMZucBKPLUaUi8uL+uQhBB3YPLkycW+RlEUm24/LMmkEEKIYmkzci1LlmtMZjAYwE5m4QhhK7WMh4rs27fvnpcpK4UJIYSwiQKw4UAZRyGEKC+kZVIIIYTtFG1ZRyBEhVSe1pnMyspi/vz5HDlyhLS0NG68w7Ytt1OUlkkhhBC2M5d1AEKIuxUREcGvv/7KK6+8Qnp6OlOmTMHPz49BgwbZVI60TAohhLCdWWZ1C3EnytM6k19//TXbt2/Hw8MDrVZLly5dCA4OZuTIkTYllNIyKYQQwnZy9RCiwjObzbi5uQHg7OxMZmYm3t7enD171qZy5M+BKDe+//57WrduXdZhCCFKQiMtk0LcCVWx/ilLQUFBHDlyBICQkBAiIiKIiIggMDDQpnKkm1tUKhEREWi1Wt5++23Ltm3btrF06VK2bNlShpEJUTyTGU6kKpzJgGNXFC5kKnyVpEFvAGcdZBtVQIOzTqWKvcoVvYLBrOCiM5NlVLBDxcURHDXgYgeqCbJMkJWvkGNWqFvFTICrSkKOQoMqkJ6v4ONopqGnSm03cLFTae+vsuu8wq7zGv5V10wTT5WzmQptC0VbfrrqhBB35oMPPrBMupk8eTKRkZFkZGQwc+ZMm8qRZFKIEjCZTCiKgkYjjfni/jCY4Zld9nyXXPQs6Vzj9cd6I6RaPS84Jg/I0t+6jl+uavnl6t+P027Y8ef1hx72ZtLyCz7nK0+puOhUso2awvNtTLd9O0KIWyjrdSZv5O/vj1Zb8PejWrVqfPjhh3dUjlwZK7mcnBzmzp1L7969adeuHf369eOnn35Cr9cza9YsevToQefOnRk3bpzVDd+NRiPLli2jb9++tGvXjt69e7Nnzx7Lvs8++4zevXvTsWNHXn75ZU6fPm059vDhwwwcOJCOHTvSpUsXJk2aRGpqaoljjo2NpWfPnnTq1ImIiAhycnIs+0JCQjh69Kjl+Y1d459//jk7duwgNjaWtm3b0rZtW44ePcr06dO5cOGCZdv3338PwOnTp3n11Vfp0qULPXr0v57UeQAAIABJREFU4JNPPsFoLLhCJyYmEhISwpYtW+jXrx9t2rSx6T0IYavvL2lumUiWprT8Gy90CtnGW10mpJtbiIru8ccfJyIiwnJdvFPSMlnJvf/++6SkpLBgwQL8/f1JSEgAYPbs2fz+++8sX74cNzc3Zs2axZgxY/i///s/tFotCxYsID4+nhkzZlC3bl0uXbpERkYGAKtWrSIuLo6oqCj8/f1Zvnw5o0aNYuPGjbi6umJvb8/EiRNp0KAB6enpTJo0iVmzZjFt2rRi4zWZTHz11VesXbuWvLw8JkyYwJw5c0p0+6eBAwfy559/FurmnjRpUqFu7tTUVEaMGMErr7zCnDlzSEtLY9y4cTg4ODBs2DDL63bu3Mmnn35K1apV72urpLu7E3Z2ZfN19PZ2K5N674XKFHuQVkWjmMrBJOmStZp4ezhDBTz/lekzU5FU5NjvtfK0zuSyZcuIjY1l/PjxaDQaevToQc+ePWnQoIFN5UgyWYmlpqaye/du1q1bR40aNQCoWbMmZrOZuLg4IiMj8fHxAWDcuHF06tSJX375heDgYDZs2MD06dOpV68eAL6+vvj6+gIFYxAHDhxoGaA7bNgwYmJiOHjwIN26daN58+aWGLy8vAgLC+O9994rcdyvvfYarq6uuLq6MmLECMaMGcOkSZPuaTIXFxdHvXr1eOaZZwDw8fFh0KBBzJ8/3yqZHDZsGF5eXves3ltJT8+973UUxdvbjZSUzDKp+25Vttg9gAVttLz/g47EHKXU2/3sNeBuDyMa5TPjqD355oKxlwPqGvnpcuHvXkpGLlSw81/ZPjMVRUWN/UFIgBs1akSjRo2YOHEihw8fJjY2loEDB+Lt7c22bdtKXI4kk5VYYmIiALVr17banpaWRn5+viXBhIIlATw9PUlOTiYgIIDc3Fxq1apVZLnJycn4+/tbnms0Gvz8/EhOTgbg5MmTREdHc+rUKfR6PaqqWnVVF6d69eqWx/7+/uTn55Oeno6np2eJyyhOYmIix44do0OHDpZtqqpiNluPDLvxfQpxv/WtY6JvnbIfjDg6+DYDL68p+yZUIcQ9VKdOHR5++GH8/f3566+/bDpWkslK7FoidO7cOerUqWPZ7uHhgb29PYmJidSsWRMoGFuZmpqKr68vHh4eODo6cu7cuSITSl9fXy5evGh5bjabuXjxoqXlMjw8nM6dO/PRRx/h6upKfHw8Y8aMKXHcSUlJBAQEAAVJn729Pe7u7kBB0pube70V7/Lly1bHKkUMbC5qW/Xq1XnkkUeIioq6bSxFHSuEAGQymhB3pDxNwMnIyGDnzp3ExsZy7NgxHn/8cYYOHUrnzp1tKkf+GlRinp6elqQuMTERVVU5f/48Fy5coEePHixcuJCUlBT0ej1z5swhMDCQxo0boygK/fr1Y968eZw+fRpVVUlOTubUqVMA9OzZk5UrV3L27FkMBgPLli3DZDLRpk0bALKzs3F1dcXFxYWkpCRWrFhhU9yffPIJWVlZpKamsnjxYkJDQy1d3EFBQcTGxmIwGEhMTGT16tVWx3p5eXHhwgWrFkYvLy/S0tLIysqybOvRowcnT54kJiaGvLw8zGYzCQkJfPPNN3dyqoV48KhyP0UhKrq2bdsSFxdHz549+eqrr4iOjiY0NBQHBwebypGWyUpu6tSpLFy4kOHDh3P16lX8/PwIDw9n7NixzJ8/n7CwMPLz82natCmRkZGWJQJeeeUVnJ2dGT9+PFeuXKFatWq89tpr1KtXj7CwMAwGA6+++ipZWVnUr1+fTz75BFdXV6CgZXLu3LksXbqUwMBAQkNDOXbsWIni1Wq1tGnThgEDBpCdnU3btm2tWjUnTpzIe++9R6dOnXjooYfo2bMnkZGRlv29e/fm8OHDdO7cGVVV2bt3LyEhITzyyCP07t0bk8nE7NmzadmyJQsXLmT+/PksWLAAvV6Pv78/ffv2vYdnX4hKTJFubiHuRFkvVH6j3bt3W+ZO3A1FvbZapRCizJTV4PSKOjAeJPbS5uUz0Gqed0rki/BClzKL505UxPN+jcRe+u7XBJzPH/rC6vnAP5+9L/WUJmmZFEIIYTtdOWpeEaICMZejMZP3iiSTolS1bVv4pmwALVq0YN68eaUcjRDijgXcfdeYEKJykGRSlKr4+PiyDkEIcZdUgDbBZR2GEBVSeRozea/IbG4hhBDFuvztdMv9uVPXjSvTWIQQ94aqqqxfv56wsDB69eoFwJEjR9i+fbtN5UgyKYQQongP+7NlYxiomzB3bFrW0QhRYamKYvVTlqKiovjiiy/o37+/Zf3o6tWrs2TJEpvKkWRSCCGEEOIBtHnzZhYuXEiPHj0sN+kICAjg/PnzNpUjyaQQQohi5RthwJknsJ9l5HLJ744qhLhJeWqZNJlMuLi4ANfv+JadnY2zs7NN5UgyKYQQolgBqx0x4IABaLTBsazDEULcA+3atWP69Onk5+cDBWMoo6Ki6Nixo03lSDIphBDCZt8mlHUEQlRMqmL9U5bCw8O5fPkyLVu2JDMzkxYtWpCYmMj48eNtKkeWBhJCCGEjhcMJ8GhAWcchhLhTJpOJ//73v8yePZusrCwuXLiAn58f3t7eNpclLZNCCCFsZtaWdQRCVEyqRrH6KStarZaPPvoIBwcHqlWrRtOmTe8okQRJJoUQQtwBrbn41wghyreOHTuyb9++uy5HurmFEELYzKyWdQRCVExlPYP7Rnl5ebz22mu0aNGC6tWrW2Z0A8ycObPE5UgyKcq1bdu2sXTpUrZs2VLWoQghbqCRfi0hKrz69etTv379uy5HkskHyPDhw3nkkUcYOnToXZfVq1cvXn75ZUJDQ+9BZEKIikY1lXUEQlRMZTlO8mavvvrqPSlHkknxQFFVFZPJhE5n/dE3Go2Ftgkhbk2toF8X3c9/4bgmHtNDvuT2b0PVYdEoSWmY3V3R/X4BU1ANcl7ricvsGMjSo+gNmPw9UYxGtGdTMDYNJL9dIxzXf4PZw4WsjwfiuPZrtGeSUB3tMLasiz6sA/zdXag5k4zrlNXofvwDJc+Ayc8T08O+6H49j+pTFbOrI7of/0St6kzu6B7oB3UCRcF+11Hs9/2M6uyAkq2H1Ew8v/8DJSsX8o2oOh2KqoJWQ/6jQRhCHsYx7ns0CVfAYMT0kC9Z84Zh9+3/cNj+A2YXR/JeaEd+52Zl+wsQ5cq33357y32PPvpoictRVFWVkS8PgBkzZrBx40a0Wi06nQ5vb2/eeustoqOjOXfuHFqtllatWjFhwgQ8PT0B2LlzJ5999hmXLl3C0dGRRx99lHfffZcxY8Zw8OBB7Ozs0Gq1NG3alOjoaIxGIytXriQ2NpbU1FTq1KnD+PHjadSoEQCHDh0iKiqKCxcuoNPpaNCgAQsWLLht3Ne6ufv06cOaNWswm82EhoYyevRoS/KXlJREZGQkx44dAwoWYX3jjTcsq/qHhIQwbtw4tm/fzpkzZ1i4cCHh4eE89dRTfP/99/z6669MnjyZ999/n6VLlxIUFGSpf9iwYbRu3fqetObeTkpK5n0t/1a8vd3KrO67JbGXLp/PHYHrLSpTGuTy2j/LLp474W0yYq7/KprMXABMPlXRXrpa6HUqN77Twm7crzraoegNVvszp72AfugToM+nWouxaK6U/Hed9d5zGJrXwb33tIJksYSKitlsr0WTf70JWdUopMdOwRhSt8Tl3gsV8fMOBXHfDwubbLN6PvJEr/tST0l06tTJ6nlaWhoGgwFfX1/27t1b4nIq6P+WwlZvvvkmf/zxh1U399GjR5k4cSINGjQgPT2dSZMmMWvWLKZNm4Zer2fq1Kl88skntGrVitzcXH777TcA5syZU2Q396JFizh8+DDz5s3Dz8+Pbdu2MXr0aDZv3kyVKlV45513eOWVV+jVqxcGg4Gff/65RLFfvHiR5ORkYmJiuHz5Mq+99hpVq1ZlyJAh5OXlMXLkSLp168Z7771Hfn4+U6ZMYdasWbzzzjuWMmJiYpg1axZ+fn6YTAV/XLds2cLs2bNp0KABeXl5fPPNN8TExFiSybNnz/Lzzz/z4Ycf3pPfwe24uzthZ1c2X8f79QezNEjspclo9czV2Qlv7wp2CYn/1ZJIAmhTs4p8WXGdkDfuvzmRBHD7/QJu3m5w9hLYkEgCuP56HtydwcZ2nqJivjGRBFDMKh5nL0H3FjaVfS9UvM/7g+Hmmdwmk4lPP/3U0hhTUhXsL4G4l5o3b2557OXlRVhYGO+9955lm06n46+//qJ+/fpUrVqVFi1u/QdIVVXWrVvH3LlzCQgoWMn4WmviwYMHCQ0Nxc7OjoSEBK5cuYKXlxchISElilOj0fD666/j6OhIQEAAYWFhrFy5kiFDhhAfH4+qqowcORIAR0dHXn75ZYYMGcKUKVPQagsWw3vhhRcscV3b1qdPH0vi6OjoSN++fRkzZgxvvPEGDg4OxMTE8Nhjj+Hj41PSU3rH0tNzi3/RfVBRWwxAYi991i2TV/W5pKSUXTR3wrvFQxgfro7ujyRURcHQ4iHsj5wGrFv2zDoNGuOt1z5SFVD+zvVM/h5oE9Ou79NqyHiiOfkpmeDggHuzQOyO/VWi+FQgs3NTjMG1ca/ijCYjp9hW0qJiusboWxVtSgbK31PvzVWdSWtZF3Mpf/Yq5uf9/iXA5WnM5M20Wi0jR46kffv2DB48uMTHSTL5ADt58iTR0dGcOnUKvV6Pqqrk5OQABclVVFQUq1evZsGCBdSoUYMXXniBbt26FVlWeno6OTk5jBkzxmppAaPRyKVLlwCYPXs2y5cvZ8CAAXh4ePD000/z/PPPFxunp6cnjo7X7wXs5+dHcnIyAImJiSQlJdGhQwerYxRF4cqVK5ZE0N/fv1C5fn5+Vs+bN2+Ot7c3e/fupWvXrsTFxREeHl5sfEI8iCrkOpOuTqTvmIr9/uOYantj/MfDOKw6gO70RfKDa+H0xbfkt2tM3jOP4rRqP6rRhCYjF2PDmigGI7of/8DQugGG1vVw+k88Zt+q5I54ErsDJ9AkpYOdFmNQAKbg2gX1aTWkb52M49p4dN/+hiYlA2PjWpia1EL3w2nMNX0w+bnjsP4g5lo+5D3X1tIFnbbvPeyOnMbk6442OZ0qLvbk/PcomswclCuZqK7OKAYDZkd7DE80w9jyYex3/Igm4Qqa1CyMzQPJHdoV3Z/J2MX/itnFAUPnZpgDqpXhL0BUBF9//bXVdbwkJJl8gGhuWssjPDyczp0789FHH+Hq6kp8fDxjxoyx7A8JCSEkJASTycRXX33FxIkTadKkCQEBAYXKcnd3x8nJiQULFtC4ceMi669fvz7Tp09HVVWOHj3Kq6++Sr169WjVqtVt405NTUWv11sSyosXL+Lr6wsUJIS1a9dm/fr1Nr33W23r27cvMTExODs7o9FoaNOmzW3LFeJBZSq/jSu3pbq7kPf09cGeeS92IO/vx4ZnH7dszxn/dOGDh3SxPMyOGGB5bOjU9NYVOtmjH9wZBne22pw3oK3lcX6/x28+CnMtb/JqFdyNxAjg7UZ2t5a3rgfIbViz0DZjcG2M15JbUS6Up3Um27dvb5U45ubmkp+fz9SpU20qR1YKe4BUq1aNhIQEy/Ps7GxcXV1xcXEhKSmJFStWWPZduXKFvXv3kpWVhVarxc2toLn/WgJWrVo1zp8/b3m9oigMGDCAqKgozp07B0BOTg7ffvstKSkpGAwGYmNjSU9PR1EU3NzcUBSlyITuZmazmXnz5qHX60lISGDVqlX06NEDgLZt22IwGFi2bBnZ2dmoqsqlS5fYv3//HZ2j0NBQfvnlFxYvXkyvXr0sXeJCCCFEZfPxxx8zc+ZMy8+SJUuIj4/n6aeL+GfqNqRl8gHy/PPP8+6779KhQwd8fHwIDw9n7ty5LF26lMDAQEJDQy0zolVVZcOGDXzwwQeYTCZ8fX2JiIiwdBcPGTKEjz/+mLVr1xIcHMy8efMYMWIEa9euZdy4cZYZ4MHBwUyYMAGAXbt2MWfOHPLz8/H09GTEiBG0bHn7/7ShoPXRx8eH3r17YzKZ6N69OwMHDgQKuuM//fRToqOjefbZZ8nJycHLy4uuXbvSsWNHm89RlSpV6Ny5M9u3b+fjjz+2+XghHhTSEiHEnVGV8vPtOX78OC+99FKh7cuXL7dpzKQsDSTETRYtWsTPP/9MdHR0qdUpSwPZTmIvXTcvDTS5QS6vV7SlgSrgeb9GYi9992sCTnTzHVbPRx3tfl/qKYl//OMf/Pjjj4W2P/LIIxw+fLjE5UjLpBA3uHLlClu2bGHy5MllHYoQ5ZpafoZ9CVGhlIfZ3NcWKzebzXz33Xfc2K6YkJAgSwOJiiUpKYl+/foVua979+6lOps6MjKSTZs2ERoaKhNvhBBCVFrXGkzy8vKsrrOKouDt7c2UKVNsKk+SSVGmqlevTnx8fFmHAcDYsWMZO3ZsWYchRAWg8q8GZR2DEBVTeZjNfW2x8okTJzJz5sy7Lq/8jAIVQghRjql//xTwdy+7SIQQ98a9SCRBWiaFEEKUwKWBebwf+yv1mrZkQC19WYcjRMVV9g2TFllZWcyfP58jR46QlpZmNXbywIEDJS5HWiaFEEKUSIeqFxndUtoghKgsIiIi+PXXX3nllVdIT09nypQp+Pn5MWjQIJvKkb8KQgghhBClpDyMmbzm66+/Zvv27Xh4eKDVaunSpQvBwcGMHDnSpoRSWiaFEEIU6+OjWgaceZLARUZyjGUdjRDiXjCbzZY73Dk7O5OZmYm3tzdnz561qRxpmRRCCHFbu88rfHzMDlA4mwn1VzuQMDCv2OOEEIWVh3UmrwkKCuLIkSM8+uijhISEEBERgYuLC4GBgTaVIy2TQgghbuu1+IJE8pr88jSDQAhxxz744ANq1KgBFKw96ejoSEZGhs2zvKVlUgghxG1dMdyUPKpgVqEcNbAIUWGUpzGTNWvWtDyuVq0aH3744R2VIy2TQgghbKMoHPxfbllHIYS4S6qqsn79esLCwujVqxcAR44cYfv27TaVI8mkEEKIYhRuSdl1SmbhCHEnVEWx+ilLUVFRfPHFF/Tv35+LFy8CBXemW7JkiU3lSDJZgXz//fe0bt26zOr/6aef6NChQ5nVX1Lbtm2jT58+ZR2GEJXaslSvsg5BCHGXNm/ezMKFC+nRowfK34ltQEAA58+ft6kcSSZFkRYtWsQrr7xita1FixY2rYh/t37++WdGjx5N+/btadOmDS+88AKxsbHFximEuP+kXVKIO1OeWiZNJhMuLi4AlmQyOzsbZ2dnm8qRCTiiXPruu+8YO3YsgwYN4v3338fR0ZH4+HimTZvGhQsXGDFiRKnFoqoqJpMJnU6+LuLB8+dVCm7JfcM178mTP6EC/3n5D0b+9g2aC6loruagqAUvM7k4YK7phXIlA2Od6phreWFsHojdVyex//4P8roGY2gXjEPsEUzVPVF9q8LVHFBUdCcvQHYuioM9eT1CMD4WhFrdA7XK3xc3VYVyNIFBiIqsffv2TJ8+nfDwcKDgehcVFUXHjh1tKqfCXB1zcnJYvHgx+/fvJy0tDV9fX8LDw2nYsCGffPIJ+/fvR6/X07x5cyZMmED16tUBGD58OEFBQSQmJnL48GE8PDyYPHkyqqoye/ZskpOTadWqFe+++64lOw8JCWHs2LHExsaSkJBAw4YNmTJlimXW086dO1mxYgWJiYk4OjrSrl07xo4di5OTEwC9evXi6aef5siRI5w4cQI/Pz8mT55Ms2bN+PPPP3nuuefYvn07np6eQMEvr3fv3owYMYIePXqU+JwYjUaWL19ObGwsGRkZBAUFMW7cOOrWrWspd/Pmzaxbt46kpCRcXV0JCwujf//+/P7778yaNYs//vgDs9lMcHAwEydOJCAggF27drF8+XJUVaVt27YArFmzhqSkJEaNGsWhQ4dKVH9ERAQmkwkHBwf27NmDk5MTQ4cO5Zlnnin2vc2YMYMnn3yS4cOHW7Y98cQT6PV6PvjgA3r16sWJEyeKjPOatWvXsnLlSnJzc+nSpQtvvfUWWq0WgKSkJCIjIzl27BgA7dq144033rD6DIwbN47t27dz5swZFi5cSHBwcIl/N0JUBv/3Pw1jv7O3St4m7/mClS07cN7Di0O59en09bcEp+dYHafLzoPfLgBgl5IJh07Bhm+v71/zDaz5ptj6Hb/8FSjIZXNGdcdh/wm0vyeiH9CGrNmDJakUFVJZt0beaNKkSbz55pu0bNkSo9FIixYtePzxx5kxY4ZN5VSYbu7333+fEydOsGDBAr788ksiIyPx8vJi9uzZHD9+3JLUuLu7M2bMGEwmk+XY7du3M2jQIPbv30/Xrl2ZOnUqmzdv5rPPPmPr1q2cPXuWtWvXWtW3efNmZsyYwa5du6hTpw5jx461lOnq6soHH3zA/v37WbJkCUePHmXp0qVWx2/dupXx48dz4MABWrduTUREBAAPPfQQwcHBVt21hw4dIjMzk86dO9t0TlatWkVcXBxRUVHs3LmT5s2bM2rUKLKysgDYuHEjixcvZtKkSezfv5/Vq1fTpEkToKA5e/jw4ezYsYNt27bh5OTE22+/DUDXrl0ZPHgwLVu2JD4+nvj4eAICAmyuH2Dfvn20bduWffv2MWHCBGbOnGkZ5HsrZ8+e5fz583Tv3r3Qvm7duqGqKocOHbptnBcvXuTKlSts2bKFlStXsnfvXnbt2gVAXl4eI0eOpE6dOsTExLBhwwaSk5OZNWuWVV0xMTFMnz6dr776igYNGpT01yJEpfHWIXtunnzjlZXJeY+C8ZJXnVxY07zNfY9DAZwX/Bfdr+dRjCac/u9L7A6evO/1ClFZpaSkAAX5THR0NAcOHGDdunXs3r2b6OhoXF1dbSqvQrRMpqamsnv3btatW2dZXLNmzZqYzWbi4uKIjIzEx8cHgHHjxtHp/9m797go6/Tx/697DjAc5SigZOoGmqe0wE4iGK4HkkLU1jXTPn7Ns7aoWLKtmpnpridM2Nw8t6bmx8pQN9v1UyvuluZvRSsPa5opKEIoJoeBOdy/P8jRUZSDwMB4PR+Pqbnnvud9X3Mzh8vr/X7f91NP8d1339GlSxegoqJ1LYnq378/a9eu5YUXXqBZs2YA9OjRg2PH7L+Ynn/+eVsl8uWXX6ZXr158++23PPTQQzz55JO27e677z4GDx7Mzp077Z6fmJjIr371KwASEhLYtGkTRUVFeHp6MnDgQNasWcOIESOAiqSlf//+GAyGGh2XjIwMRo4caTtT/UsvvcT27dvZt28f/fr1Y8uWLYwaNYquXbsC4OPjg4+PDwBhYWG2dlxcXHjppZcYOnQoRqOx2nFUtX+oqPBFR0cD8NRTT+Hl5cWJEycICQm5bbuXL18GsP1Nb6TX6/Hx8eHSpUt3jM1gMDBu3Di0Wi333XcfkZGRHD16lP79+5OZmYmqqowbN8627fjx4xk1ahSvvfaarXo5fPhwW3J67bH64uPjhl7vmI9jYKCXQ/ZbFyT2+qXTmim/aXDkry5dtFsO/+l8g8SiaIDrNQJ8/D2hFsewKRz325HYnUNjqEz27duX//znP7bl2bNns2LFilq31ySSyfPnK76s7r//frvHL1++THl5uS3BhIprS/r5+XHx4vUvPH9/f9v9a4lSQECA3WMlJfbdNC1atLBb7+vrS15eHlAxnm/VqlWcOXMGk8mExWKxdVlfc2P717q/i4uL8fT0JDY2lsWLF5OVlUXr1q354osv2LBhQw2OSIWLFy/axanRaAgJCbG99vPnz9OqVatKn5udnU1qairffvut3Wu/fPnyHRO9muwf7I8DVByLm4/1zXx9fQHIy8u75ZJOJpOJwsJC2zZ3auPGBPDG/Z4/f57c3NxbZqYrikJBQYEtib3xtdW3wkLHnLMvMNCL/PyrDtn33ZLY69/HfRT67HLlxurk3N6DWL0lnb+178ajZ//LiIP/rFXbNw3DvON2KHB18f/g9n4m2uM5GH8bRXGHVlDDY9hUjntlJPaG58wJsKqqdssHDhy4q/aaRDJ57Uf97NmztG3b1va4r68vLi4unD9/3lZFLCkp4dKlSwQFBd3VPq8lsABGo5HLly/TvHlzTCYT06dPZ8qUKTzzzDMYDAa2bNnCX//612q37erqytNPP8327dsJCwsjPDzcrlJYXUFBQXZdxlarlQsXLthee4sWLTh37hyPPfbYLc+dP38+gYGBbNq0CR8fH77//nuGDh1qe4NpNFWPgKhq/7XVqlUrWrZsyaeffkr37t3t1u3evRtFUWynSKpOnDcLCQnh/vvv54MPPrjjdrVpWwhn0jVQ5fRQI203GWzjEw+2CuP3PgH0OPUdDw9sR/6Mbniu/BSXg9+jXClBY7JifiAI0xPtUc7lY3mwFeX9HwaNgu7QKVz2HqN0eE+sEQ9A3lUUBVS/X360VRXlSjHab89iuc8fNTQANbCZLZ6yYdGOOAxC1KnGUJlU6jiGJpFM+vn5ERsby4IFC5gzZw4hISFkZ2cD8PTTT/POO+/Qtm1bvLy8WLp0Ka1bt6Zjx453tc/333+fiIgIAgMDefvtt2nZsiWdOnWirKwMk8mEt7c3BoOB06dPV5mUVCYxMZEXXniBw4cP27q7a2rAgAFs2LCBbt260aJFC9avX4/FYqFHj4oxTEOGDGHt2rW0a9eOTp068fPPP5OTk0PHjh0pLi6mVatWeHl5UVhYyMqVK+3a9vf3Jzc3F5PJhF6vr9X+a0tRFGbMmMH06dNp0aIFQ4YMwdXVlX379rFkyRJGjBhhq0ZXJ86bRUVFkZ6ezpo1a/jNb36Du7s7+fn5fPfddzWewSaEs/O0L0wCkOvty+dhnUh/3hWAku5h3Lm/oUJ517aU/8+vrz/QzBP1pm1Ufy+sbYPvJmQhRBUsFgtfffWVrYBkNpvtlgEef/zxarf+R70jAAAgAElEQVTXJJJJgFmzZvHOO+8wZswYrly5QkhICCkpKUydOpW3336bESNGUF5eTpcuXViyZMldj3FLSEggOTmZnJwc2rdvz+LFi9Fqtbi7u/Pqq6+yfPly3nzzTTp06EC/fv345JNPatR+69atefDBBzl+/Dh9+vSpVYwjRozAZDIxadIkioqKCA8PZ8WKFbaBs0OGDAEqJi/l5ubi7e3Niy++SMeOHZk6dSrz588nOjqa4OBgXnjhBT7//HNb27179+bvf/87ffv2xWq1snHjxhrv/248+eST/PnPf+bdd9/lvffew2Kx0KpVK15++WWeffbZGsV5M4PBwJ///GfS0tIYPHgwJSUlBAQE0KdPH0kmhagOVWXw+e+Ahx0diRBNjtoILmrv7+9vOx0QVMypuHFZURT27NlT7fYU9eaOc0FERASrVq2yTVypL3PmzEGv1/P73/++XvcjGj9HjSdqqmOZQGJvSM3XG7ArT6oq73S6TGKEm8Niqo2mdtxvJLE3vPoaM/nH6L12yzP+2bNe9tOQZFCYg/z444/84x//4De/+Y2jQxFCiCrcVHNQFDq0bVqJpBCNRWO6Ak5daTLd3M5kxowZfPXVV7z44ou2E3xDxYm0r3VN36x///52Jeimbv78+fztb3+rdN3WrVttJ50XQjiews3ppEp7v8q3FULceySZrMTBgwfrtf0//vGPlT4eHBxMZmZmve67sUhJSXGq5FgIZ2bQqJRaHR2FEM7BWaqRN5JubiGEEHc0uZPFbrmVp2SWQojrJJkUQghxR9O7WXixnQkPpZyn7oODg8odHZIQTZYzjpmUZFIIIUSV/viYmQ1tPmPPb2R0lBDCnnwrCCGEEEI0EGepRt5IKpNCCCGq5b38cMbtNjs6DCFEIyOVSSGEEFVqvt4VCIdvYOU3BvJGGh0dkhBNklQmhRBC3KPsfwB/vOSgMIQQjY4kk0IIIWpI4aPvHR2DEE2TzOYWQgghAEWtehshxL1BxkwKIYQQQjQQ1TmKkXakMimEEKLGNFpHRyCEaCykMimEEKLmLFVvIoS4lbOMk7yRVCaFEELUmJxtUghxjVQmBWPGjKF79+6MHj36rtuKj49n/PjxxMXF1UFkQlSf5vRFXP51DFPXNqhaDd4TV4LVStmz3UEFl39+h3LpKpb7AlFDfLHqtWgLiymP6kDZ8BgA9P/8FtcP/oX2+wug02LueB+aH/PRH/6R8qgHKVoyCtedB1F9PLD6eOC27v8wRYZh7tgK3ffnKe/9EJrzl9B9exZUFdXggqWlP7pjZ9H/8yi6/56HKyWg1+D5UBs0peWoHq6YI8PAbEUNaoYlwBtDxteUP9Ee80OtcVuxC01eIZaW/qghvpgeDUd7/hLm9qGYIx5w2PFWZQKOELXijJVJSSaFqILZbEank49KY6Y9nYtP79loioyoWgUsqu2siPpjH9ltq//vBbtlw0f7KfnmLJbOrfCautZuncvX189/47b9AK6fZaEpLQdApeLMi4YPv7Ldt/p5olwuspvpfG3dzdz+fvj6wu6sW7Y3fPCvSp977TFVo/DzuimU93u4ktbrnwyZFEJcI93c97iFCxeSlZXF6tWriYqKIjExkQMHDjBy5Eh69epF7969mTlzJpcuXT9D8e7duxk8eDA9e/akT58+zJ49G4CkpCRyc3OZN28eUVFRTJw4EahIxtasWUNiYiIxMTGMGjWKo0eP2trbv38/w4YNIzo6mtjYWCZMmFBl3OfPn2fSpEnExMTQq1cvnn/+ec6cOWPb37vvvsuzzz5Lr169GD9+PN9/fz0pmDNnDm+88YZde/Hx8ezatQuAjIwMEhIS2LBhA3FxcQwbNqx2B1c0GP2+Y2iKKq7IotyQSFaX666DuHx6qMrtriWSYJ/kXbuvuVR0yylzahpLZe1Wtl6xqrjsrjrm+iITcISoHaui2N2cgZRb7nGvvPIKp06dsuvmzsrKYsaMGbRr147CwkJmzpzJokWLmD9/PkajkVmzZrFixQoiIyMpLS3l+PHjACxdurTSbu6VK1dy4MABli9fTkhICBkZGUyePJmPPvoIb29vZs+ezYQJE4iPj8dkMnHkyJEq405LSyM4OJglS5ag1Wo5ffo03t7eALz33nvs3LmT1NRUWrRowdq1a5k4cSLbtm3D09OzWsflwoUL5Ofn8+GHH9b0kNaKj48ber1jPo6BgV4O2W9dsMXeqyPotGCu3awQ7RPt0Ub8Cj7LuvOGVe3DoAejqVYx1IZbr064Ndjfz36UpK+XG4GBTe8nxCne701QU45dVK3pfROIete1a1fb/YCAAEaMGMHcuXNtj+l0Os6cOUN4eDjNmjWjW7dut21LVVW2bNnCsmXLCA0NBSAhIYFNmzaxb98+4uLi0Ov1ZGdnU1BQQEBAABEREVXGqNfrKSgoICcnhzZt2hAWFmZbl5GRwciRI2ndujUAL730Etu3b2ffvn3069evWsdAp9MxefJkXFxcqrX93SosLG2Q/dwsMNCL/PyrDtn33bKL/b7m6P93Bi7/OIwpMgxQ8Zy2Dqwq5VHtUcxWdIfPoLlaisXHAzXAGzQKSmk5psfbUTzrN+Ciw4BSMWby/GXQKlhaBaA5fxlt3hVM7Vtydd0UDO99gerridXTgGHzPszd2mLuEIru+1yMCY+iO5WL7tBpKDejNvPA2twb3bdn0X95HM2Fy1BmQqPVYrrPH8Wiouo0WLq0BrMV6/0BWN1ccd1zBFPEA5geDcc9NQOlsBjV3wtrcx9Mj4ej+ekq5o73UfbMo9Bgfz8DN9ZKf/q5lPz8Btp1HXGa93sT01Rjr68EuOZ9J42fJJPiFseOHSMtLY2TJ09iNBpRVZWSkhIADAYDqampbNy4kfT0dFq2bMnw4cNvm6QVFhZSUlJCUlISyg3lfLPZTF5eHgCLFy9m7dq1DB06FF9fXwYOHFhl1/LLL7/MqlWrSEpKorS0lNjYWCZNmoS7uzsXL16kRYsWtm01Gg0hISFcvHix2scgICCgwRJJUTdMT7TH9ER72/Kl/o/UuA3jS30wvtTnjtuUzBxsu39t4g5A2S//t3S+n7KER+/YRmCgF4V3+HEtnZ5gu18+oOp/XDmCxuroCIQQjYUkkwKNxn7obEpKCrGxsSxYsABPT08yMzNJSkqyrY+IiCAiIgKLxcLevXuZMWMGnTp1IjQ09Ja2fHx8cHNzIz09nY4dO1a6//DwcN566y1UVSUrK4tJkyYRFhZGZGTkbWP29fUlOTmZ5ORksrOzmTZtGhs2bGDcuHEEBQVx4cL1SRZWq5ULFy4QFBQEgLu7O4WFhbb1ZrPZbkwoYJf4CiFu5YxX8RCiITjjbG6ZgCPw9/cnOzvbtlxcXIynpyceHh7k5uaybt0627qCggL27NlDUVERWq0WL6+KboBrSaS/vz/nzp2zba8oCkOHDiU1NZWzZ88CUFJSwpdffkl+fj4mk4kdO3ZQWFiIoih4eXmhKMotSenNPvvsM3JyclBVFU9PT/R6ve05AwYMYMOGDfz444+YTCbWrFmDxWKhR48eADz44IN8/fXX5OTkUF5eTnp6OmaznDVPiBqRXw8hxC+kMikYNmwYr7/+OjExMTRv3pyUlBSWLVvG6tWrad26NXFxcRw+XHEaE1VV2bp1K/PmzcNisRAUFMScOXNs3cqjRo3iT3/6E5s3b6Zz584sX76csWPHsnnzZqZNm0ZeXh4Gg4HOnTuTnJwMVCSGS5cupby8HD8/P8aOHcsjj9y5i/LEiROkpqZy5coVPDw8iIqKYsSIEQCMGDECk8nEpEmTKCoqIjw8nBUrVtgm3/Tv35+srCyGDx+Om5sbL774Is2bN6+vwyuEU5JubiFqxxkrk4qqyqlnhXA0Rw1Ob6oD40Fib2jN19tPwElpX8rv7jw0tNFpisf9Gom94dXXBJzXnv6P3fK8nY45V2xdksqkEEKIGtM4X3FFiAbhjJVJSSZFo5Sbm8uQIUMqXde/f39SUlIaOCIhxHUq0fc7OgYhRGMhyaRolIKDg8nMzHR0GEKI23goyNERCNE0OeOZEGQ+nhBCiCrljTQSpFyhpTvkPG90dDhCiEZEkkkhhBDVkt4mk+wJOhx05U8hnIIzXptbkkkhhBBCCFFrkkwKIYSo0pb/wqDTcSiLzMz+0jmqKUI4gqoodjdnIMmkEEKIKk3+0sC1n4w//9fVscEIIRoVSSaFEELUkMKHxx0dgxBNk1QmhRBCCOBc07ugiRCinsicPCGEEDUmlQghasdZZnDfSL4PhBBC1JjV0QEIIRoNSSbFPWPMmDGsWrXK0WEI4RxURwcgRNOkKvY3ZyDJpBOpy2QpPj6eXbt21UlbjtDU4xeisdM4yY+gEOLuSTIpnIrZbHZ0CELcE8xSmRSiVlQUu5szkAk4TmLhwoVkZWXxzTffsH79egIDA3n11VdJS0vj7NmzaLVaIiMjSU5Oxs/PD4Ddu3fz7rvvkpeXh8Fg4PHHH+f1118nKSmJ3Nxc5s2bx1tvvUWXLl1IS0vDbDazYcMGduzYwaVLl2jbti3Tp0+nQ4cOAOzfv5/U1FRycnLQ6XS0a9eO9PT0KmM/dOgQK1as4IcffsDLy4shQ4bw/PPPoygKRqORP/zhDxw5cgSj0UhoaCiTJ0/mscceAyAjI4PVq1eTmJjI5s2b8fT0pGXLlpXGD3D16lWSk5PZv38/vr6+JCUlERMTw88//0z//v1ZvXo17du3t8X20ksv8eijjzJ69Oi6/pOJRsB13R68UjaCxYrV3RVFtWJ65AFKx/TB++XVUGIEFZQyU8UTFGzdu5a2Qfy8ZjLNhixEk18xtdnazA3NldKK+0HNKOv/CG5//QLMFSMMrb4eoNNCwVUCrCqqi46y/t0w/O0QlP/yDyGNgrV5M5QiI9ZgH4reegHXj/fj8o8joEB5n26U9euGxxsfoD1/GUub5hT9cSTmrm0a8MjhJD+BQoi6oKiqKv++dBJjxoyhe/futsQnKysLvV5Pu3btKCwsZObMmQQGBjJ//nyMRiPR0dGsWLGCyMhISktLOX78ON26dQMquonHjx9PXFycrf20tDQOHDjAm2++SUhICBkZGbz99tt89NFHeHt7069fPyZMmEB8fDwmk4kjR44QERFxx5hPnz7Niy++yNy5c4mKiuLcuXNMmTKFMWPGMGDAAEpKSvjiiy+Ijo7G1dWV999/n9WrV/Pxxx/j6+tLRkYG8+bN47nnnmPixIkAGAyGSuMfM2YMp06dYsmSJXTu3JlNmzbx7rvv8umnn2IwGJg1axYeHh688sorAPz4448899xzZGRk0Lx58zr9W90sP98x51kJDPRy2L7v1l3HXlJGQJsxKJV8A6paBcVS9Vej1cuA5qqx9jFUg9VVh6bMvuJu1evQmK4/Zgn159J/ltRrHM3XG7gxhUwJK+V3T9TrLuvcPf1+d6CmGntgoFe9tPu7Qd/ZLS/b1rFe9tOQpDLpxLp27Wq7HxAQwIgRI5g7d67tMZ1Ox5kzZwgPD6dZs2a2RLIyqqqyZcsWli1bRmhoKAAJCQls2rSJffv2ERcXh16vJzs7m4KCAgICAqpMJAG2bt1KbGwsMTExALRu3ZrnnnuOXbt2MWDAANzd3e0SwhEjRrB+/Xq+++47evToYXsdkydPxsXFpcr99enTh4ceegiAxMREli5dytmzZwkPDycxMZGkpCR+97vf4erqyvbt23niiSfqPZEE8PFxQ693zMexvr4wG8Jdxf6TettJJNVJJAE0RlPt919NNyeSgF0iCaAtuNoAf0f7ffo1cyMwsOn9hNyz73cHa8qxi6o1vW8CUW3Hjh0jLS2NkydPYjQaUVWVkpISoKJ6l5qaysaNG0lPT6dly5YMHz6cfv36VdpWYWEhJSUlJCUlodxwjiyz2UxeXh4AixcvZu3atQwdOhRfX18GDhzIsGHD7hjj+fPnOXjwIJ9//rntMVVVCQoKAsBoNJKamsq///1vCgsLURSFkpISCgsLbdsHBARUK5EE8Pf3t913c3MDsB2Trl27EhgYyJ49e+jTpw87d+4kJSWlWu3ercLC0gbZz82aasUA6iJ2Be+oB3HNPAZU5JUKoBr0lPV/GNeP9tt6tSvr0lUVuPr7wXjN2WJbf+O2KmC5LwDduZ/sn3fTNqqPO5rCklsev3a/5P/1xjXja7R5VwCwtPCj/KnOuP31nxW5sALFMwdRWu9/R/vK5JXiUvLz63mXdezefr87TlONvb4SYGe56s2NJJl0IhqN/XyqlJQUYmNjWbBgAZ6enmRmZpKUlGRbHxERQUREBBaLhb179zJjxgw6depEaGjoLW35+Pjg5uZGeno6HTtWXpIPDw/nrbfeQlVVsrKymDRpEmFhYURGRt425pCQEJ555hlb1/LNNm7cyKFDh0hPT6dFixYoikJsbCw3js5QKvlg3hx/dSUmJrJ9+3bc3d3RaDS26qdwTj9vexXNsXNoCouxPBCCJvsSlvAW4OFKUcoQNFeKsbbwQ7vvKIoKlnYtUIrL0eRfwRTbBVz1lD8fjfbLEygmC6Y+D6H96iSay0WYYzqiNvNAczoXzYkcVH8v1BA/VJ2WAFcNV/7vO8qjO4K/N9rj2XClBM2pXCwPtUYN9UdzsRDVzwtrkA/Fs3+DJrfiH1DWEF9w1VMyYyCUlKF6uaMGejf4sZMBUkKIaySZdCL+/v5kZ2fblouLi/H09MTDw4Pc3FzWrVtnW1dQUEBWVhaPPvoonp6eeHlV/AvsWhLm7+/PuXPnbNsrisLQoUNJTU3ltddeo1WrVpSUlHD48GEeeOABfHx82L17Nz169MDHxwcvLy8URakyqRs8eDBjx47l8ccf54knKgZgnT17lsuXL/PII49QXFyMi4sLzZo1w2QysX79eoqKiqp1LG6Mv7ri4uJYsWIFf/nLX4iPj0er1da4DdG0WB+8z3YCbktgM9vj6v2BWAgEwJzwmN1zLDfcV5t5YO738PV10R3t1lt/FYL1VyH2Ow30otzf5/pzOraq+P8T1yd/WfxuqIoYXLC2th9uYQ32reKV1S/JJYWoHWesTMqpgZzIsGHDOHr0KDExMTz33HOkpKTw8ccf07NnT5KTk+ndu7dtW1VV2bp1K/Hx8fTs2ZOFCxcyZ84cWrRoAcCoUaPYtWsXvXr1YsqUKQCMHTuWnj17Mm3aNKKjoxk4cCDbtm3Daq34Kf7ss88YNGgQUVFRTJs2jbFjx/LII4/cMeYHHniApUuXsmnTJvr27UufPn2YM2cOly9fBuD555/H09OT/v37k5CQgMFgICQk5I5t3i7+6vD29iY2NpaTJ0/y7LPPVvt5QtxrNJJNCiF+IbO5hbjJypUrOXLkiO10Qg1BZnPXnMTesG6ezT2zfSlJjzountpoisf9Gom94dXXmMlJzx2zW17xwYP1sp+GJJVJIW5QUFDAxx9/zG9/+1tHhyJEoyZXwBFCXCNjJkW9ys3NZciQIZWu69+/f4PNlq6OJUuW8OGHHxIXFycTb4SoivRpCVErzjhmUpJJUa+Cg4PJzMx0dBjVMnXqVKZOneroMIRoEnQyN00I8QtJJoUQQtSQyviHq95KCHErqxNejFTGTAohhKiSl2Lhet+2lVqeylUI4YTk60AIIUSVTo0wsa3tTtTpOvJGljs6HCGaLFVR7G7OQJJJIYQQQghRazJmUgghRLWYrQpGs7XqDYUQt2V1jmKkHUkmhRBCVCl4vQtW4mCZFXAlb2SZo0MSQjQS0s0thBCiSlY0XL8CjkKpDJsUolasimJ3cwaSTAohhKghhdVZjo5BCNFYSDe3EEKIGtPJr4cQteIsM7hvJJVJIYQQNSfzcIQQv5B/WwohhKgxVUoRQtSKM87mlq8DIYQQNaaRyqQQ4heSTIomb8eOHcTFxREVFcWePXtq3U5UVBRHjhypw8iEcF7latXbCCHuDdLNLWzGjBlD9+7dGT169F23FR8fz/jx44mLi6uDyG7PbDazYMECFixYQI8ePe6qrczMTNv9gwcPMnHiRPbv33+3IQrhlFxqUIpQ8n9GezYfzZmLuP7vl6haDaanOlP+3JPoM4+i+c9ptIVFWJt5YOpyP+5LPkGTexmlxIhitFR0qXu5YwnwxtSrE9bAZmhKylDyCqG5D1Y3F1z+fQLzA8GYnolE898LqAFelPd+CAwu9XYMhKgNFefr55ZkUjRpBQUFGI1GwsLCbruN2WxGJ1NPhahT1mp2c+sO/0CzxIVorpbaPe72WRbqzPdQqlPhtAJXStBdKcH1VO5tN3Pd+x3qmj22n2pzSz8u71sAHq7VC1YIUSvSzS0AWLhwIVlZWaxevZqoqCgSExM5cOAAI0eOpFevXvTu3ZuZM2dy6dIl23N2797N4MGD6dmzJ3369GH27NkAJCUlkZuby7x584iKimLixIlARVK3Zs0aEhMTiYmJYdSoURw9etTW3v79+xk2bBjR0dHExsYyYcKEO8Z85MgRBg0aBMCgQYOIioqivLycMWPGsHjxYqZNm0Z0dDR//etfycjIICEhwe75c+bM4Y033rAtR0REkJWVRX5+Pi+//DIWi4WoqCiioqLYsWPH3R1gIZxMdSfgGN775y2J5DXVSiRr6Maajy7nEi7/Plb3OxHiLjjjSculXCMAeOWVVzh16pRdN3dWVhYzZsygXbt2FBYWMnPmTBYtWsT8+fMxGo3MmjWLFStWEBkZSWlpKcePHwdg6dKllXZzr1y5kgMHDrB8+XJCQkLIyMhg8uTJfPTRR3h7ezN79mwmTJhAfHw8JpOpyvGLXbp04YMPPuCZZ55h27ZtBAUF2dZ98sknLFq0iEWLFlFWVsbf//73ah+LwMBAUlNTmThxol3Xd33y8XFDr3fMxzEw0Msh+60LEntDMtst+Xu4ERhYjffsgy3rKZ7qada5FdxwrJvecb9OYheNlSST4ra6du1qux8QEMCIESOYO3eu7TGdTseZM2cIDw+nWbNmdOvW7bZtqarKli1bWLZsGaGhoQAkJCSwadMm9u3bR1xcHHq9nuzsbAoKCggICCAiIqLWsT/11FNERkYCYDAYat1OQyksrLxyU98CA73Iz7/qkH3fLYm9oRm4se538Wop+fnVeNqIXnhcuIz+yxNov/kRxWiqeFyvxRj3CK77jqFcugoqoNWgKqCYq+hD12hAVStuVDz1WmRWXw8UownV3ZWSmYMwBvvBL8e6aR73ChJ7w6uvBNhZqpE3kmRS3NaxY8dIS0vj5MmTGI1GVFWlpKQEqEjQUlNT2bhxI+np6bRs2ZLhw4fTr1+/StsqLCykpKSEpKQklBs+SGazmby8PAAWL17M2rVrGTp0KL6+vgwcOJBhw4bVKvYWLVrU6nlCiOqp9rQWvY7i15677eqiOolGCOFIkkwKG43GfhBUSkoKsbGxLFiwAE9PTzIzM0lKSrKtj4iIICIiAovFwt69e5kxYwadOnUiNDT0lrZ8fHxwc3MjPT2djh07Vrr/8PBw3nrrLVRVJSsri0mTJhEWFmarMNaEctO//Nzd3Sktta/+5efnExwcXOnzb45fCGHPIh8RIWpFTlounJq/vz/Z2dm25eLiYjw9PfHw8CA3N5d169bZ1hUUFLBnzx6KiorQarV4eVV0B1xLwvz9/Tl37pxte0VRGDp0KKmpqZw9exaAkpISvvzyS/Lz8zGZTOzYsYPCwkIURcHLywtFUeosqWvXrh2XL18mMzMTq9XK559/zqFDh+54LCwWCzk5OXWyfyGcjSInLRdC/EIqk8Jm2LBhvP7668TExNC8eXNSUlJYtmwZq1evpnXr1sTFxXH48GGgYgzk1q1bmTdvHhaLhaCgIObMmWPrXh41ahR/+tOf2Lx5M507d2b58uWMHTuWzZs3M23aNPLy8jAYDHTu3Jnk5GQAPvvsM5YuXUp5eTl+fn6MHTuWRx55pE5eW2hoKNOmTePNN9/EaDTy61//mqeeeuq2299///0MHjyYkSNHYjabSU5O5umnn66TWIRwBlK8F6J2rE54nklFVVW5joEQDuaowelNdWA8SOwNrfl6+wk4r7UvZcqjjounNpricb9GYm949TUBZ+jIM3bLm9e3rpf9NCSpTAohhKixmlwBRwhxnSqzuYVoWLm5uQwZMqTSdf379yclJaWBIxJCAIT7OzoCIURjIcmkaNSCg4Mb7MThQojqUnmqraNjEKJpktncQggh7kn7E4xUXCQbPvq10bHBCCEaFUkmhRBCVKlNM9jWdhfqdB1PyjUBhKg1Z7w2tySTQgghhBCi1iSZFEIIUaWiMhh8ui+aRWbOXHF0NEI0XVYUu5szkGRSCCFEldpuNqCiRwW6f2xwdDhCiEZEkkkhhBA1pPDFD46OQYimyaLY35yBJJNCCCFq7PBPjo5ACNFYyHkmhRBC1JzV0QEI0TQ5ywzuG0llUgghRM2pjg5ACNFYSGVSCCFEzUllUohakSvgCNEI7Nixg7i4OKKiotizZ4+jwxHinqTqHR2BEKKxkGTyHjZmzBhWrVpVJ23Fx8eza9euOmnrTsxmMwsWLCAlJYXMzExiY2OrfE5lr3PlypVMmDChvsIUwulpLI6OQIimyRnPMynd3KJJKSgowGg0EhYW5uhQxL3MasVt5WdoD59G981ZtLmFqFYVRVVBq6C6uIBeg1JuxtwmCM1PP6M5fwkFMLcJAr0W/7P5lD/xIEVvvYBX8jpc/vkdmH/J0BSwehrA3RXVRY9itoBWU/FcnQblqhHV0wBaDagqamAzlLxCNIXFlMVHYkx4DJ/BC9HkX8H4bHdMcRG4fnIAU5fWmHp1wi39U1Rvd0qmPoPq5Va7Y+Acv4FCiDqgqKoqw6jvQQsXLmTbtm1otVp0Oh2BgYG8+uqrpKWlcfbsWbRaLZGRkSQnJ+Pn5wfA7t27effdd8nLy8NgMPD444/z+gMkASwAACAASURBVOuvk5SUxL59+9Dr9Wi1Wrp06UJaWhpms5kNGzawY8cOLl26RNu2bZk+fTodOnQAYP/+/aSmppKTk4NOp6Ndu3akp6ffNuYjR44wYcIEjEYjBoMBRVHYs2cPn3/+OevWreP8+fMYDAZ69uzJ1KlTcXNzq/R1jhs3jlmzZqGqKi4uLgBs2rSJl156iRkzZtCrVy/bPmfNmoVOp2PWrFn1+NeA/Pyr9dr+7QQGejls33fLkbG7pf8Nzzmb66Qti58n2ktFddLWNVZ3FzQl5bZlVaOgWCu+6q3N3NFcKQGgLD6Sn1dPqlabzdcbuDGD/P2Dpbzcve5ibgjyfneMphp7YKBXvbT76zHn7Zb//pemf7F7SSbvYWPGjKF79+6MHj0agKysLPR6Pe3ataOwsJCZM2cSGBjI/PnzMRqNREdHs2LFCiIjIyktLeX48eN069YNqOjmHj9+PHFxcbb209LSOHDgAG+++SYhISFkZGTw9ttv89FHH+Ht7U2/fv2YMGEC8fHxmEwmjhw5QkRExB1jPn/+PM888ww7d+4kKCgIgH/9618EBwfTpk0bcnJymDp1KtHR0UyaNKnS1wkV3dyHDx+2S17feecdjh07RmpqKgBFRUX07duXd955h86dO9fBEb89k8mMXi8dBU3G/7wN6z6vm7Y0Clgd9DXcriUcf7tamyqLzHbLCyNgRoy8Z4WoKWdMJuWbQNh07drVdj8gIIARI0Ywd+5c22M6nY4zZ84QHh5Os2bNbIlkZVRVZcuWLSxbtozQ0FAAEhIS2LRpE/v27SMuLg69Xk92djYFBQUEBARUmUjezpNPPmm7f9999zF48GB27txZ43YSEhJYt24deXl5NG/enE8//ZTQ0NB6TyQBCgtL630flWmqFQNwbOz6uAiabdyLYqp64KDKnXuEyx8Lx+XfJ2ocw43t2t3XajC3b4n+u3O2dWqAN5qffkY16DF1aoXLwVMAFA15gtJqH0P7yuTVq6Xk59c4bIeS97tjNNXY66sy6YyzuSWZFDbHjh0jLS2NkydPYjQaUVWVkpKK7jCDwUBqaiobN24kPT2dli1bMnz4cPr161dpW4WFhZSUlJCUlIRywwlazWYzeXl5ACxevJi1a9cydOhQfH19GThwIMOGDatx3F999RWrVq3izJkzmEwmLBaLrWu+JoKDg3n00Uf55JNPGD16NB9//DEDBw6scTvC+ZliOnH5i3loT+WiFFxF95/TqK46NEWlWP2agQ4svp5oz1/G1LMDuuM5aP9zGqXcTHlCd7x93Cn95CDGoT0xRz2I/vNvMKTtQikrR7lSgurqgjm6AyoKeLtDSRmgYu7SFsVkRrlaiurrASYLWK1YQ3zRXLiM5udSTI+3w9KuJYZVf0eX9QOlE+OwNm+G/uuTmMNbYm0VgMs/v8Xq7YE58oFaHwNF+rSEEL+QZPIeptHYT+ZPSUkhNjaWBQsW4OnpSWZmJklJSbb1ERERREREYLFY2Lt3LzNmzKBTp06Ehobe0paPjw9ubm6kp6fTsWPHSvcfHh7OW2+9haqqZGVlMWnSJMLCwoiMjKz2azCZTEyfPp0pU6bwzDPPYDAY2LJlC3/9619v+zpv9xhAYmIiS5YsoUePHvzwww923fZC3MgS1gJLWEX3VNnz0Xfc1tT3YfsHAr0o6vvI9fW9OmPqVbcVcOPoX9stl/e7HkN57EN33b4q5wIRolYsTjh7Tb4O7mH+/v5kZ2fblouLi/H09MTDw4Pc3FzWrVtnW1dQUMCePXsoKipCq9Xi5VVR/r+WlPn7+3Pu3Dnb9oqiMHToUFJTUzl79iwAJSUlfPnll+Tn52MymdixYweFhYUoioKXlxeKotw2ybsdk8mEyWTC29sbg8HA6dOn+eCDD+74Oq89lpubi8lksnu8R48emEwm3njjDZ566im8vb1rFI8Q9wpJJoUQ18jXwT1s2LBhHD16lJiYGJ577jlSUlL4+OOP6dmzJ8nJyfTu3du2raqqbN26lfj4eHr27MnChQuZM2cOLVpUVGZGjRrFrl276NWrF1OmTAFg7Nix9OzZk2nTphEdHc3AgQPZtm0bVmvFpTM+++wzBg0aRFRUFNOmTWPs2LE88sgjtwZ6B+7u7rz66qssX76cqKgoFi5ceEvX+82vE6B3794EBQXRt29fYmJiyMnJAUCr1fLss89y4sQJEhISandghbgXyHkmhagVi2J/cwYym1uIm2RkZLB27Vo+/PDDBtunnBqo5iT2hnXzqYFSHizld3JqoAYjsTe8+pqAEzXugt1y5jsh9bKfhiRjJoW4QXFxMZs2bWLo0KGODkWIRk0j1+YWolasipOUI28gyaRoVHJzcxkyZEil6/r3709KSkq97fv9998nLS2Nxx57jMTExHrbjxDOwCLJpBDiF5JMikYlODiYzMxMh+x72LBhtTo1kRD3HpXh9X/6VSGcksUJK5MyAUcIIUQ1qL/cKu7X03AyIUQTJJVJIYQQVcobWcaqzw4S+XgUD3mVOTocIZosc9WbNDlSmRRCCFEt7dyu0Lut1CCEEPbkW0EIIYQQooHImEkhhBD3pGIT/M+ZWHSLzPzP/0kdQghxnSSTQgghqtRukys/W92wADvP6Un/Rn4+hKgNs2J/cwbybSCEEKJK5ar9r94fD0t1UghRQb4NhBBC1FiJs1xUWIgGZsb5PjtSmRRCCHFHqlrZo873gyiEqB2pTAohhLgjuXSiEHXH5IT/DpPKpGhQY8aMYdWqVXfdzpQpU1i/fv0dt4mPj2fXrl23Xb9mzRqSkpLuOhYhnJ5i+48QQtxCKpOiSVq+fLndckREBKtWraJr167VbmPUqFF1HZYQTmnOfqWir9sJz48nREMzOeHnSJJJIYRwRlYr2kOnobQc5UoRqqJB9+Ux9Id+QNFqsTT3xtS1DS7//i9WH3es/t5oyk1oj2ajWC1Ym3lAcSmW7EI+GjYH/Fzt21chrwSauzvk1QkhGhFJJoXD5ObmsmTJEg4fPgxAz549+d3vfoeHhwcAly9f5u2332b//v0UFRURGhrKm2++SevWrRkzZgzdu3dn9OjR/Pa3vwVg4sSJaDQa+vTpwx/+8AfbPsaPH8+3335LSEgIv//973nooYcAWLlyJYcPHyY9PR2o6BYfOHAgX3/9daXbC9FkXCkmoN1EFGulM2eu236wyqa+btkGo5s7ow78HwUeXmS2eRCTVstVgzudPjAwuZOZP0Q449WGhagfJkcHUA9kzKRwiLKyMsaNG0fbtm3Zvn07W7du5eLFiyxatAgAq9XK1KlTuXr1Khs2bODzzz9nzpw5tkTzRps2bQIgLS2NzMxMWyIJ8MknnzB9+nS++OILHn30UebMmXPHuGq6vRCNkdf0dVUnktX0s5sHHuZy/rLtL3y8fhEFc/4fmzemVqxUFFZ8JzUJIe518i0gHCIzMxNVVRk3bhwABoOB8ePHM2rUKF577TWOHTvG0aNH2bNnD56engCEhYXVeD+JiYn86le/AiAhIYFNmzZRVFRka/Nut68rPj5u6PWO+TgGBno5ZL91QWK/jVD/Omsq6OoV9GYz2hvOD2Qwldvu6zRKk/o7NKVYbyaxO4cSGTMpRN04f/48ubm5xMTE2D2uKAoFBQVcuHABPz+/u07iAgICbPfd3NwAKC4uvm27Nd2+rhQWltZr+7cTGOhFfv5Vh+z7bknsd5AyGP8t+1B+st/HzT9h6k2PXVu+9v8LXj583DGCc74BvN57MK/t2cZPHt68Gvc8AIYyIxueVsnPr7dXUqfkPeMYTTV2SYCrT5JJ4RAhISHcf//9fPDBB7ddf+nSpWpXBRUn/JeeELWm11FwdMWtj5ebK2ZlW6yg01ZkjKVloNeDRoFyE5ozeaih/qhaLa5ZZ5iUX8jrl8qZ0/c55vVOxKz95WdDVTk7pm660oW4l5Q64c+VjJkUDhEVFYXJZGLNmjUUFxejqip5eXl8/vnnAHTo0IH27dszb948Ll26hNVq5eTJk+TfpgTi7+/P2bNnG/IlCNH0uOjAVQ/urhX39Trw9gA3l4rHvdyxdm6N6usF3u5YenbANOgJNvZTQVWvJ5JCCHEDSSaFQxgMBv785z/zww8/MHjwYGJiYhg/fjz//e9/AdBoNCxduhRXV1eGDRtGr169mDt3LiUlJZW2N2HCBFauXEmvXr148803G/KlCOH0HguRc0wKUVfKUexuzkBR1cqvuiqEaDiOGk/UVMcygcTekMotEPqe4aaEUiVvpNFhMdVGUzvuN5LYG159jZlUfnfJblld5lcv+2lI0mchhBDijly0VHI1RalDCFErzlGMtCPd3EIIIYQQotakMimEEKLGmrtKZVKIWnHC8cdSmRRCCFGl9j7WG5ZU/hztjBeFE0LUhiSTQgghqrT32XIGNPueR5rD+l5lRIVIZVIIUUG6uYUQQlTL//gfJzGxPfn5kkgKIa6TZFIIIYQQoqHImEkhhBD3qrdyutLzfbOjwxBCNDKSTAohhKhS8/WuHCwLJfM8NF9vcHQ4QjRdyk03JyDJpBBCiGqw/9U7keegMIQQjY4kk0IIIWpI4dNTjo5BiKbK+UqTkkwKIYSoMZnPLYS4RmZzCyGEqDFJJoWoJecoRtqRyqQQQogac8LfQyFELUllUgghRI2pkk0KUTtO+NmRyqRoNFauXMmECRMcHYYQoho08ushhPiFVCYbgTFjxtC9e3dGjx59123Fx8czfvx44uLi6iAyIZyb9lQuLh9/hUvmMSwt/bAGeKH79ixKuQUsFqwt/Cl7qhNu6z5H9fGgLOFR9P/8Fv3BU6CqlMU9grl7GK4ZX2PufD+l4/rh8s9v0Z7Jo+zXXXHZdxQUBeOQJ9H/+ziGdf+HcrUUfjcAojqiO3IGlx1fo5SZKP91N0w9HrSP73g2bu98ivZEDmqANyVj+2G+aRtHsTo6ACGaLOcrTUoyKYS4J2nO/YRP39fR/Fxyh61O4frJAdtXv+sX39qt1f3lM/jLZxUL2w/g+r9foj+eDYDH3A9QykwAGNZ/jj7rh+tPzDyK4Y3f4jn3AxSTBQD3P+/myupJlMdHAhWJrm/sbBTT9SvOuOzO4udNUymPfaj2L7yOqJJNCiF+IR0VDrZw4UKysrJYvXo1UVFRJCYmcuDAAUaOHEmvXr3o3bs3M2fO5NKlS7bn7N69m8GDB9OzZ0/69OnD7NmzAUhKSiI3N5d58+YRFRXFxIkTATCbzaxZs4bExERiYmIYNWoUR48etbW3f/9+hg0bRnR0NLGxsdXqas7IyCAhIYGNGzcSFxdHz549WbZsGYWFhSQnJxMdHc2gQYPIysqyPcdsNvPuu+/y7LPP0qtXL8aPH8/3339/231s2rSJQYMG0bNnT55++mlWrFiBxVLxw6uqKmlpafTr14+ePXsSHx/P5s2bAfj555955ZVXiI2NJTo6mueee45Dhw7Z2v3iiy8YPnw4MTExDB48mL/97W+2defPn2fSpEnExMTQq1cvnn/+ec6cOVPl8RBNj/7/O1VFIlmhJjUE3X9zrj/vl0QSQPftj7dsa9j6b1sieY3LDcmq/qsTdonktVj0X3xXg4jqj9b5iitCNAznO82kVCYd7ZVXXuHUqVN23dxZWVnMmDGDdu3aUVhYyMyZM1m0aBHz58/HaDQya9YsVqxYQWRkJKWlpRw/fhyApUuXVtrNvXLlSg4cOMDy5csJCQkhIyODyZMn89FHH+Ht7c3s2bOZMGEC8fHxmEwmjhw5Uq3YL1y4QFFREdu3b+eHH35g5MiR/Oc//yE5OZkFCxbwzjvv8Prrr/PRRx8B8N5777Fz505SU1Np0aIFa9euZeLEiWzbtg1PT89b2m/evDnLly+nRYsWnDhxgilTphASEsKgQYPYv38/O3fuZN26dQQHB3Pp0iXy8vJs+zEajWRkZODm5sbZs2fR6Sre6l999RVvvPEGixYt4qGHHuLo0aNMnjyZoKAgHn74YdLS0ggODmbJkiVotVpOnz6Nt7d37f/A1eTj44Ze75iPY2Cgl0P2WxfuKvanOoGHAYqNdRaP0jYYvr9QsaDXwS/JoPLgffCNfUKp/20UfHsWrNdPsuPWrytu117Tr7uAVgMW+xKge7+uuDvkb2af2Hp4uBEY2PR+Qu7Z97uDNeXYRdWa3jfBPaBr1662+wEBAYwYMYK5c+faHtPpdJw5c4bw8HCaNWtGt27dbtuWqqps2bKFZcuWERoaCkBCQgKbNm1i3759xMXFodfryc7OpqCggICAACIiIqoVp8Fg4KWXXkKj0RAeHk5YWBgdO3akc+fOAPTv35+1a9dSVFSEp6cnGRkZjBw5ktatWwPw0ksvsX37dvbt20e/fv1uaT82NtZ2v3379sTFxfH1118zaNAgdDodZWVlnD59Gl9fX/z8/PDz87MdnytXrvDjjz/Srl077r//fls7mzdvZujQobZj1qlTJ/r378/OnTt5+OGH0ev1FBQUkJOTQ5s2bQgLC6vWsbhbhYWlDbKfmwUGepGff9Uh+75bdx27twfajN9j+N9/o//yBJaWfqhebmiP54DFglJuwRrsQ9lTnXF7fy+qlxtlAyLQ//s4+iNnUC0qpl6dMUX8Cte//Qdzx1aUTE/A9W//H9ozeRj7Pozr3u9Ao1D6Qgwue45geO9zlOIyXF5+mvw+D6Pv2AqXD79CKTdR3u9hyn/dDa69pua+6Hb9AbfUHWhPnkf196J0bF/Kn+xwfZsGZeDGMsqVq6Xk5zsgjLtwT7/fHaipxl5/CbCTlCNvIMlkI3Ts2DHS0tI4efIkRqMRVVUpKanojjMYDKSmprJx40bS09Np2bIlw4cPrzQZAygsLKSkpISkpCQU5fob2Gw22yp5ixcvZu3atQwdOhRfX18GDhzIsGHDqozT19cXzQ1TOg0GA/7+/nbLAMXFxXh6enLx4kVatGhhW6/RaAgJCeHixYuVtv/pp5/y/vvvk5OTg9lsxmw206lTJwAiIiKYOHEiq1evZubMmXTq1ImJEyfSoUMHRowYgdlsZvbs2RQUFNCjRw+mTJmCv78/58+f5+DBg2zcuNG2H6vVakvgX375ZVatWkVSUhKlpaXExsYyadIk3N3dqzweoumxdGpFcadWVW5XNu7658s4vv+t60c+df1+4uO2+6Ud77PdL4+PtI2HDAz0gvyrmB5rh+mxdrfdr7lbW66um1JlfI6gyCApIcQvJJlsBDQ3nWMjJSWF2NhYFixYgKenJ5mZmSQlJdnWR0REEBERgcViYe/evcyYMYNOnToRGhp6S1s+Pj64ubmRnp5Ox44dK91/eHg4b731FqqqkpWVxaRJkwgLCyMyMrJOX2dQUBAXLlywLVutVi5cuEBQUNAt2+bm5jJr1iz++Mc/8uSTT6LX61m2bJndWM/ExEQSExMxGo2sXLmS5ORkdu7ciZubGxMnTmTixIn89NNPzJo1i9TUVObOnUtwcDADBgxgxIgRlcbo6+tLcnIyycnJZGdnM23aNDZs2MC4cePq9FgI0dQpMgFHiNpxvsKkTMBpDPz9/cnOzrYtX6vkeXh4kJuby7p162zrCgoK2LNnD0VFRWi1Wry8Ksrw15JIf39/zp07Z9teURSGDh1KamoqZ8+eBaCkpIQvv/yS/Px8TCYTO3bsoLCwEEVR8PLyQlGUW5LSujBgwAA2bNjAjz/+iMlkYs2aNVgsFnr06HHLtqWlpVitVnx9fdHpdHzzzTfs2rXLtv7bb7/l0KFDlJeXo9fr8fDwQKvVArB3715++OEHLBYL7u7uuLi42NYNGzaM999/n0OHDmGxWDCZTBw7dsyWpH722Wfk5OSgqiqenp7o9fp6ORZCNHWqfCyEEL+QymQjMGzYMF5//XViYmJo3rw5KSkpLFu2jNWrV9O6dWvi4uI4fPgwUDEGcuvWrcybNw+LxUJQUBBz5syxdR+PGjWKP/3pT2zevJnOnTuzfPlyxo4dy+bNm5k2bRp5eXkYDAY6d+5McnIyUJFALV26lPLycvz8/Bg7diyPPPJInb/OESNGYDKZmDRpEkVFRYSHh7NixYpKJ9+0adOGsWPHMm3aNEwmExEREfTt25cTJ04AFcnmsmXLOHfuHBqNhgceeID58+cDkJ2dzZIlS/jpp59wdXUlIiKCyZMnA/DYY4/x2muvkZqayo8//ohGo6Ft27aMHTsWgBMnTpCamsqVK1fw8PAgKirqtlVMIe5lkksKUUtOWJlUVFVVq95MCFGfHDU4vakOjAeJvaE1X28/AefVsFKmPuG4eGqjKR73ayT2hldfE3CUmfbHQn2r6c90l8qkEEIIIUSDcb7SpCSTolK5ubkMGTKk0nX9+/cnJSWlgSMSQjQeKr1/5egYhBCNhSSTolLBwcFkZmY6OgwhRCPV5daTMAghqsP5CpMyhloIIUTV8kYaacllWnvChRfq7qpBQoimT5JJIYQQ1bK87b/4YZwOrfxyCFF7imJ/cwLylSCEEEIIIWpNkkkhhBBVSj0Mg04/jbLIzLj/k58OIcR18o0ghBCiSm9mXT/P5IfnXBwbjBCiUZFkUgghRA0pbP7O0TEI0UQpN92cgCSTQgghauxCsaMjEEI0FnKeSSGEEDWmlQvxClFLTlKOvIFUJoUQQtSY1vl+D4UQtSSVSSGEEEKIhuKE/xCTyqRoEIcOHSImJsbRYQgh6ojZCX8QhRC1I8lkEzRmzBhWrVpVJ23Fx8eza9euOmnrTrp168YXX3xR7e0PHjzIo48+Wn8BCSHuioyZFKKWnHA2t3RzCyGEA2iyC2j2/BK0J8+D2VqnbVs9XNEYTWC5fbvW4GaUJD2LYXMmmCwUv/k8psfbV38fkkwKIX6hqKoqXwlNyMKFC9m2bRtarRadTkdgYCCvvvoqaWlpnD17Fq1WS2RkJMnJyfj5+QGwe/du3n33XfLy8jAYDDz++OO8/vrrJCUlsW/fPvR6PVqtli5dupCWlobZbGbDhg3s2LGDS5cu0bZtW6ZPn06HDh0A2L9/P6mpqeTk5KDT6WjXrh3p6el3jPvgwYNMnDiR/fv3AzBnzhwsFguurq784x//wM3NjdGjRzNo0CDy8/NJSEigrKwMNzc3AF555RUGDBhAbm4uS5Ys4fDhwwD8/+3de1yO9x/H8dd9d1AUOpdD7LefQmwiWUipGFmkxeLnsCFtjM0Mw8zht58xPIY5zbCjOW2TGZvDnNrPaU6zjfRjTqWUCOVO3XfX7w9zz61z6r5Vn+fj0UPXfV3393pfX7f6+F7X97o6derE66+/Tq1atQDw8fFhwoQJbN68mQsXLvCPf/yDadOm0bhx4yL7AiAjI4OFCxdy6NAh7t69i4+PD+PGjcPBwaF8/xILkJZ2u8L3URAnJ1uT7ftRVfbsd7tMo8bOkybNoahA9ddvgDxHW9JPLSp0W+fP/r5pOcDbnhpGP1PBActZZf/MSHbjcnKyrZB2Ve9oDJaVGdYVsh9jkmKyEho+fDi+vr4MGzYMgBMnTmBhYYGnpycZGRlMnDgRJycnZs6cSXZ2NgEBASxatIi2bdui0WiIj4/H29sbuHea+5VXXiE0NFTf/uLFizl8+DD/+c9/cHNzY/PmzXz44Yds3LiR2rVr061bN0aMGEFYWBi5ubmcPHkSHx+fIjMXVEzu2LGDmTNn4u/vz549e5g4cSKxsbG4ubnl2x7g7t27vPDCC3Tr1o0XX3yRnJwc3n77bRwcHJg6dSpwr5hs3rw577//Pvb29kyZMoXbt2+zZMmSIvtCURSio6Np1KgRY8aMwdzcnPfff5/k5GSWLl1arn9/BcnN1WJhIScKqpUOE2H/GVOn+FsNC9CsBVXB591Uc7UGy/PawRv+8pkVorSqYjEpPwmqgFatWum/d3R0ZNCgQcyYMUP/mrm5ORcuXMDDw4M6deroC8mCKIrCunXrmD9/Pg0aNAAgPDycNWvW8PPPPxMaGoqFhQWJiYmkp6fj6OhYbCFZGB8fHwICAgAICgrC1taWM2fO4ObmVuD2cXFxKIrCyy+/DICVlRWvvPIKQ4YM4e2338bMzAyAQYMG4erqCtwrlqdMmVJsX5w+fZrTp0+zZMkSLC3vPSpu9OjRhISEcPXqVVxcXMp0jCWVkaEpfqMKUFlHDKDyZ8+YEEGdPnNQ5WiLf0MpKRR/KZYC3O3djhrfHwFdHpnTosi+llnEOwxHJjOyNKSlPXpWY6rsnxnJblwVNTJZVa6TfJAUk1XA6dOnWbx4Mf/73//Izs5GURTu3LkD3Cu4FixYwOrVq1myZAn169dnwIABdOvWrcC2MjIyuHPnDmPGjEH1wAiFVqslNTUVgHnz5vHJJ58QFRWFnZ0dvXv3pn///qXO7ejoaLBsbW2tz12QK1eukJKSkm9WuEqlIj09HWdn53ztWllZlagvrly5Qm5uLl27djVou0aNGqSkpFR4MSmqn1y/plw7twx1yg0USwtUtzUodWuhun4LpaYVWJhD6k3UWRoUVGBrDZZq1GdTUGytyWvoBGoVKpUK1Z/JKApQswaKQ22Uho732lWpQKdDlXYLlUpFnlPte/upUwvsbFBsrbmddReVkodiU7rREZWc0xJC/EWKyUpIrTachD9p0iSCg4OZNWsWNjY2xMXFMWbMGP16Hx8ffHx80Ol07Nu3j/Hjx9OiRQsaNGiQr626detibW3NkiVL8PLyKnD/Hh4evPfeeyiKwokTJ3j11Vdp0qQJbdu2rbBjBHBzc6NRo0asX7++zO0W1heurq5YW1uza9euAvctRIWoYUFeo3v/CVLc7O796Vzn7/VudugeekueZ0ODZQXA3Slf0/fbBVCecDXc/kG1auR/rSSkmBRC/EV+a1ZCDg4OJCYm6pezsrKwsbGhVq1apKSk8Omnn+rXpaen89NPP5GZmYmZmRm2tveG7e8XTA4ODly+fFm/vUqljeG2ZAAAH6hJREFUIioqigULFnDp0iUA7ty5w4EDB0hLSyM3N5fvv/+ejIwMVCoVtra2qFSqci/AHBwc0Ol0JCUl6V/z9/cnNzeXVatWkZWVhaIopKamsnv37hK1WVRfNG/enCZNmjBnzhwyMjIAuHHjBtu2bSvX4xKiqqiCZ+qEEGUkI5OVUP/+/Zk+fTqBgYE4OzszadIk5s+fz8qVK2ncuDGhoaH62c6KorBhwwbeffdddDodLi4uTJs2jXr16gEwZMgQ5syZw9q1a2nZsiULFy4kJiaGtWvXMnbsWP2s55YtWzJu3DgAtm/fzgcffEBOTg729vbExMTQpk2bcj3GRo0aERkZyeDBg9FqtYwbN44ePXqwdOlSFi9eTGRkJHfu3MHR0ZGuXbvSuXPnYtssri/mzZvHsmXLGDhwIDdv3sTOzo527drx7LPPluuxCVEV5JXv3YyEqD6q4P/EZDa3EI8BuTVQ6Ul243r41kDvNNPwqq/p8pRFZez3+yS78VXYrYGmPTSbe5rM5hZCCFENySiEEGVUyO23KjMpJkW5SElJoU+fPgWu6969O5MmTTJyIiFERbI0M3UCIcTjQopJUS5cXV2Ji4szdQwhhFEoRBd+u1ohRDUjs7mFEEIUy9Fcy/2T2xbokDtoCSHukx8HQgghinXqX1q++ccWlDfNSRqca+o4QlReqoe+qgApJoUQQgghRJlJMSmEEKJEbuRakHir/J8lLkT1UvWGJmUCjhBCiGI5f2YJdIXlADVIHXzXxImEEI8LGZkUQghRAmr+HkVRcfOOKbMIIR4nUkwKIYQoJRWf/mHqDEJUUlXvLLcUk0IIIcpAns0thPiLFJNCCCFKrYoMqAghyoEUk0IIIUotTx7OLYT4i8zmFkIIUWrmMhQhRNlUwWF9+XEgqo1Vq1YxZswY/fLw4cNZsWJFodtv3bqVsLAwY0QTotLJk98eQoi/yMikYPjw4fj6+jJs2LBHbissLIxXXnmF0NDQckhWvoYMGWLqCEJUGYqu6PVmCVew/P4XFJUK8wupqG5kohkYiOXOX7E49id5daxRGrugeaEjZikZqG7dQdvmSSx3nkR9JhGzM1dQnGuT6+tBbsemqNOzMPszGdWNLNQXU1Hd1aLK1JBnbwO1rMir74DWsz55jZ3Jc7PH8vtfMD9+HqVuTXT1HVCc60BEO+N0jhDVjBSTQgghSq2oM3U11v6M7eiP821j9eNxwxf2ncbq8z367ZQC2rXa/mups+XVMEd9t4An9Uz+EvXOGeS51C11m0KIwsmJimpu9uzZnDhxgpUrV+Lv709ERASHDx9m8ODBdO7cmZCQECZOnMj169f179m2bRuRkZF06tSJrl27MnXqVADGjBlDSkoK7777Lv7+/owcORIArVbLqlWriIiIIDAwkCFDhnDq1Cl9e4cOHaJ///4EBAQQHBzMiBEjis29efNmwsPDWb16NaGhoXTq1In58+eTkZHBuHHjCAgI4Pnnn+fEiRP693z00UdFtv37778zcOBA/P39GTp0KElJSaXuTyGqi6LuDGT92a4SXxamKuT7R1FgIQlw9SaW244XvE4IY1GpDL+qABmZrOYmTJjAuXPnDE5znzhxgvHjx+Pp6UlGRgYTJ05k7ty5zJw5k+zsbN555x0WLVpE27Zt0Wg0xMfHA/DBBx8UeJr7o48+4vDhwyxcuBA3Nzc2b97MqFGj2LhxI7Vr12bq1KmMGDGCsLAwcnNzOXnyZImyJycnk5mZyaZNmzh//jyDBw/m2LFjjBs3jlmzZrFs2TKmT5/Oxo0bi20rMzOT1157jYEDB/Kvf/2LhIQE3njjDSwtLcvQq6VXt641Fham+efo5GRrkv2WB8luTIYFmkMta5ycCvnMejWEo+eMkKn0bNv8A9tK1/f3VL7PzN8qc3ZRPCkmRT6tWrXSf+/o6MigQYOYMWOG/jVzc3MuXLiAh4cHderUwdvbu9C2FEVh3bp1zJ8/nwYNGgAQHh7OmjVr+PnnnwkNDcXCwoLExETS09NxdHTEx8enRDmtrKyIjo5GrVbj4eFBkyZN8PLyomXLlgB0796dTz75hMzMTGxsbIpsKy4uDisrKwYPHoxKpcLLy4uePXvy448/lijLo8rI0BhlPw9zcrIlLe22Sfb9qCS7sVnx4NhhhkZDWlrBW6qmRVFTq8Nqy1HQ5cGdu6gUyHOpi+raTVTav8Y1zdXkejVEnZ2LKjsXbSMnLH67iOpGlr6tPBsrdC0bocrKxuzyNci6i0qrvXdOXAHU90Z3lBrm5LnZk9uxGbpGTlgv/QH1jSwUtRqsLcmrZ4/5hN6keTWCStf3lfUzc09lzV5hBXDVGIw0IMWkyOf06dMsXryY//3vf2RnZ6MoCnfu3HsQr5WVFQsWLGD16tUsWbKE+vXrM2DAALp161ZgWxkZGdy5c4cxY8agemA4X6vVkpqaCsC8efP45JNPiIqKws7Ojt69e9O/f/9ic9rZ2aFW/32lhpWVFQ4ODgbLAFlZWcUWk1evXsXNzc0gY/369YvNIER1pSviPpOKjTVZ84eRNf/RJ/WVlebVHvlec3KyrZSFpBCPOykmhUFBBjBp0iSCg4OZNWsWNjY2xMXFGdxSx8fHBx8fH3Q6Hfv27WP8+PG0aNGCBg0a5Gurbt26WFtbs2TJEry8vArcv4eHB++99x6KonDixAleffVVmjRpQtu2bcv/YAvh7OxMcnIyiqLoC8orV64Ybf9CVDZmcsW9EOIv8uNA4ODgQGJion75/kherVq1SElJ4dNPP9WvS09P56effiIzMxMzMzNsbe+dBrhfRDo4OHD58mX99iqViqioKBYsWMClS5cAuHPnDgcOHCAtLY3c3Fy+//57MjIyUKlU2NraolKp8hWlFc3f3x+NRsPnn3+OVqslPj6eTZs2GTWDEJWJrpA5LkKI6keKSUH//v05deoUgYGB9O3bl0mTJhEbG0unTp0YN24cISEh+m0VRWHDhg2EhYXRqVMnZs+ezbRp06hXrx5w716OW7dupXPnzowePRqAmJgYOnXqxNixYwkICKB3795888035OXdu25q+/btPP/88/j7+zN27FhiYmJo06aNUfvA1taW+fPns2PHDjp37sycOXOIjIw0agYhKhN1FbzuSwijUD30VQWoFEWRJ6wKYWKmuji9sl4YD5Ld2Jw/M5yAM7mZhtd8TZenLCpjv98n2Y2voibgqN7LMVhWJhrnriEVSa6ZFEIIUWpmVWRERQjjq3r/eKSYFI+llJQU+vTpU+C67t27M2nSJCMnEkI8qJmjqRMIIR4XUkyKx5KrqytxcXGmjiGEKJBC8BOmziBEJVX1BiZlAo4QQoji/RqZzf2HKG59Ntu0YYQQjxUpJoUQQhTLrRZ884+tKG+a4+Nq6jRCiMeJFJNCCCGEEKLM5JpJIYQQQghjkWsmhRBCCCGE+JsUk0IIIYQQosykmBRCCCGEEGUm10wKIYQQQhiLXDMphBBCCCHE36SYFEIIIYQQZSbFpBBCCCGEKDMpJoUQQgghjEWlMvwqQFBQEAkJCUYOVnZSTAohhBBCiDKT2dxCPAbUatNN7zPlvh+VZDeumjVrApUz+32S3TQqc/ZyV8auiI2NZeXKlQC4u7szY8YMHBwceOGFF5g8eTJPPfUU06ZN45dffmHLli1otVo6dOjA7t279f92K4oUk0I8BhwcbKrlvh+VZDeubt26ApUz+32S3TQqc/byprxZ+tIrISGBuXPn8u233+Ls7Mz8+fP597//zfz583nmmWc4ePAgTz31FEePHqVGjRqkpqaSlJTEk08+WeGFJMhpbiGqratXrxIWFsbVq1dNHaXUJLtpSHbTkOzi0KFDBAQE4OzsDEBUVBQHDhwAwM/Pj/3795OcnEzdunXp3LkzBw4cYP/+/TzzzDNGySfFpBDVlE6nIzk5GZ1OZ+oopSbZTUOym4ZkF0Vp3bo1p06dYs+ePfj5+eHn58fBgwc5ePAgfn5+RskgxaQQQgghxGOsXbt27N27l7S0NADWr19P+/btAbC0tKR58+Z8/PHHtG/fnqeffppjx45x5swZnn76aaPkk2smhRBCCCEeMy+99BJmZmb65bFjxzJkyBAAGjZsyIwZM/Tr/Pz8+O2332jZsiVmZma4u7vToEEDLC0tjZJVikkhhBBCiMfIrl27Cny9d+/eBb4eExNDTEyMfvnjjz+ukFyFMZs2bdo0o+5RCPHYsLS0xMfHhxo1apg6SqlJdtOQ7KYh2cXjTKUoimLqEEIIIYQQonKSCThCCCGEEKLMpJgUQgghhBBlJhNwhKhGsrOzmT59OqdPn8bMzIzXX38df3//fNudOXOGGTNmoCgKWq2Wp59+mnHjxhltZmBBSpp9z549rFixgpycHAB69uzJgAEDjB3XQEmzp6amMmXKFOLj43F3d+eLL74wQVq4ePEi06ZN4+bNm9SpU4fp06fj7u5usI1Op2Pu3Lns378flUrFiy++SHh4uEnyPqgk2Q8ePMjixYs5e/YsL7zwAq+//rqJ0hoqSfYVK1awfft21Go15ubmjBw50mj3EixKSbJ/9913fPXVV6jVanQ6Hb179yYqKspEiUW5UoQQ1cby5cuVf//734qiKMrFixeVrl27KllZWfm202g0Sk5OjqIoiqLT6ZQ333xTWbNmjVGzPqyk2X/77TclNTVVURRFuX37ttKrVy/l2LFjRs36sJJmv337tnLs2DElLi5OGTBggLFj6sXExChbtmxRFEVRtmzZosTExOTbZvPmzcrIkSMVnU6nXL9+XenevbuSlJRk7Kj5lCT7pUuXlPj4eGXx4sXKBx98YOyIhSpJ9v379ysajUZRFEU5c+aMEhAQoF82pZJkv337tpKXl6coiqJkZmYqPXr0UBISEoyaU1QMOc0tRDWyY8cOIiIiAHB3d6dZs2bs378/33ZWVlZYWFgAoNVquXv3LiqVyqhZH1bS7C1atMDJyQkAGxsbnnjiCZKTk42a9WElzW5jY4O3tzdWVlbGjqh3/fp14uPjefbZZwF49tlniY+P58aNGwbb7dixg/DwcNRqNXZ2dgQEBLBz505TRNYrafaGDRvi6elpcA8/Uytpdj8/P/3no0mTJiiKws2bN42e90ElzW5jY6P/OZKdnY1WqzX5zxVRPqSYFKIaSUlJwc3NTb/s6upKSkpKgdumpaXRv39/QkJCqFWrlr4YMpXSZL/vwoUL/Pbbb7Rt27ai4xWpLNlN5erVqzg7O+sLLTMzM5ycnPI9W7mgYzL185dLmv1xVJbsW7ZsoUGDBri4uBgrZoFKk33v3r307duXsLAwBg4cyD//+U9jxxUVQK6ZFKIK+de//lVokbJ9+/ZSteXk5MRXX32FRqNhypQp7Nq1Sz/yUBHKMzvAtWvXeOONN3jrrbf0I5UVpbyzC1Gco0ePsnTpUhYvXmzqKKUSEBBAQEAAKSkpjB07lg4dOtC4cWNTxxKPSIpJIaqQ1atXF7ne1dWV5ORk7OzsgHujSz4+PkW+x9rami5duvDjjz9WaDFZntmvX7/OiBEjGDRoECEhIeWe9WEV0e+m4uLiQmpqKjqdDjMzM3Q6HWlpaflGv+4fk5eXF5B/pNIUSpr9cVSa7CdPnuSdd95h3rx5j0UhVpZ+d3V1xcvLi59//vmxOAbxaOQ0txDVSHBwMN9++y0Aly5d4tSpUwXOBE1MTNTPhs7NzWXv3r0mPx1V0uwZGRmMHDmSvn37Phazi6Hk2R8H9vb2eHh4sG3bNgC2bduGp6envhC+LyQkhNjYWPLy8rhx4wZ79+4lODjYFJH1Spr9cVTS7H/88QcTJ05k9uzZNG3a1BRR8ylp9vPnz+u/z8jI4MiRIyb/uSLKhzwBR4hqRKPRMG3aNM6cOYNarWb06NEEBgYCsGzZMhwdHYmMjGTr1q189tln+lt4tGnThtdee82kE0NKmn3BggWsX7+eRo0a6d8bFRVFz549TZS85Nl1Oh1hYWHk5OSQmZmJvb09vXr1MnjmrjFcuHCBqVOncvv2bWxtbZk+fTqNGzdm9OjRvPzyyzRv3hydTsf777/PwYMHARg8eLDJr6uFkmU/ceIEkyZNIisrC0VRsLGxYcqUKSYv8EuSfdCgQVy5cgVnZ2f9+2bMmGHyoqwk2efNm8ehQ4cwNzdHURR69eoltwaqIqSYFEIIIYQQZSanuYUQQgghRJlJMSmEEEIIIcpMikkhhBBCCFFmUkwKIYQQQogyk2JSCCGEEEKUmRSTQgjxCBITE/H09KzwxyOuWbOGcePG6ZeHDRvGxx9/XKH7FAXr0qWL/r6hxTHW58MYcnJy6NKlC+fOnTN1FPGYkWJSCGEUly9fZvTo0XTo0AFvb28CAgIYOXKk/ubo3377LV26dMn3vsJe/+677/D09GTRokX51g0cOJAWLVrg7e1NmzZtCA8P199QuTK6c+cOCxcuZNSoUfrXVqxYQXR0tAlTFc3T05MjR46YOka1UBF9fejQIZo3b27wmqWlJUOHDmXOnDnlui9R+UkxKYQwiujoaJydnfnxxx85duwY69ato2PHjmVub926ddStW5evv/4anU6Xb/2IESM4fvw4hw4dokePHowZM8bgCRyVyXfffYeHhwfu7u6mjiKqueeee46DBw9y8eJFU0cRjxEpJoUQFe7GjRucP3+eqKgobG1tUalUuLq60q9fPywtLUvd3rlz5zhy5AizZs0iLS2Nffv2Fbqtubk5/fv3R6fTkZCQkG/96tWr6dWrl8Frly9fplmzZiQmJgIwceJEAgIC8Pb2JjQ0lM2bNxe6vw8//JAXX3zR4LWBAweyZMkS/XJCQgJDhw7lmWeeITAwkHnz5pGbm1tomzt37qRDhw6Ftnn/VOrGjRsJDQ2lVatWREdHc/PmTebOnYufnx8dOnQweIb4/RHf5cuX07FjR/z8/Jg1a5ZBjuKOOz4+Xn8cvr6++uO+/7ShoUOH4u3tzeTJkws8Lo1Gw7vvvktAQADt2rVjxIgRXLlyxeAYZ82axahRo/D29iYkJISdO3cW2k/3j+nTTz+lU6dOeHt7M3v2bG7cuMGoUaNo3bo13bp1MxjF02q1LFq0iODgYNq2bcvgwYMNPie5ubm89957+j5cvnx5vv0eOXKEfv364evrS0hICKtWraI0zwPZtm0bPXv2pE2bNvTs2ZMdO3bkO6YHvfXWW/o+Layvg4KCWLRoEf369cPb25uIiAhOnjxZYBv3BQUFsWnTJq5evUp0dDQ6nQ5vb2+8vb3ZuHEjADY2NrRs2ZJdu3aV+PhE1SfFpBCiwtnZ2dGkSRPefvttYmNjOXv2bKl+2T5s3bp1eHp60rlzZzp16sS6desK3TYnJ4fVq1djYWFR4LOMn3vuOf78809Onz6tf23jxo34+vrSoEEDAFq3bk1sbCxHjhxh5MiRTJw4kbNnz5Ype3p6OgMHDqRLly7s27ePdevW8d///pePPvqo0PecOnWKJ598sti2t23bxldffcXu3btJSkqib9++uLu7ExcXx8yZM5k5c6ZBsXblyhWSk5PZuXMn69atY/fu3axcuVK/vqjjTk1NZeDAgfj6+rJr1y5+/vlnhg8fDtwbSQVYuXIlx48f5z//+U+Bed977z1+/fVX1q9fz+7du7Gzs+Pll182GGneuHEjL730EkePHmXAgAG89dZbaDSaQvvgypUr3Lp1i507d7JmzRq++OILoqOjGTp0KL/88gtdu3Zl0qRJ+u1XrlzJpk2bWL58Of/973/x8fFhyJAhZGZmArB8+XL27NnD2rVr+emnn0hKSjLow7Nnz+rbP3DgAB999BFffvklmzZtKvbvC+DYsWO8+eabjB07lkOHDvHGG2/wxhtv8Ouvv5bo/UX19dq1a5k8eTKHDh2iW7duDB8+XH9cRXFxceHjjz/GzMyM48ePc/z4cXr37q1f7+HhwR9//FGifKJ6kGJSCGEUn3/+Ob6+vnz22WeEh4fTvn17Fi9ebFBUJiYm4uPjY/A1ffp0g3bu3r3Lpk2b9M+BjoyMZN++ffkmOCxbtgwfHx8CAgLYtWsXCxcuNHhe93116tQhODiYb775BgBFUYiNjeX555/Xb9OnTx/s7OwwMzOjR48eeHh4cOjQoTL1Q2xsLJ6enkRFRWFpaYmLiwsxMTFFFh+3bt3Cxsam2LZHjBhB3bp1sbOzIzAwEHNzc/r27Yu5uTkBAQHUrl2bU6dO6bdXqVSMHz8eKysr3N3dGTZsmH4Eqrjj3rRpE+7u7sTExFCzZk0sLS1p3759ifshLy+PjRs38vrrr+Pi4kLNmjWZNGkSf/75p8EIWmhoKK1bt0atVtO3b19u375d5CnWGjVq8Oqrr2JpaUnTpk1p2rQpLVu2pFWrVpiZmdGzZ08uXrzI7du3gXsjf9HR0Tz55JNYWloycuRI1Go1e/bs0R/nsGHDaNSoEVZWVkyYMAGVSqXf31dffUW3bt0ICQnBzMyMJ598kgEDBhAbG1uifti4cSNdu3YlICAAc3NzAgMD6dKli/7z+CgiIyNp0aIFlpaWREdHY2Vlxe7dux+5XRsbG27evPnI7Yiqw9zUAYQQ1YO9vb1+1EWj0fDDDz8wZcoUXFxciIyMBKBBgwYGp/jg3i/7pUuX6pd/+OEHsrKy9Kf3AgICsLe3Z8OGDQYTVF5++WVGjBhRomwRERGMHz+eCRMmcOTIEW7dukXXrl2Be0XPhx9+yNatW7l27RoqlQqNRsONGzfK1A+JiYkcO3YMHx8f/WuKopCXl1foe2rXrl2iESVnZ2f999bW1jg5ORmst7a2JisrS7/s4OCAtbW1frl+/fr6ory4405KSqJx48bFZirM9evXycnJ0Y/+AtSqVQt7e3uSk5Px9vYGMDiGmjVrAhTZFw4ODqjVf4+TPNwPVlZWAGRlZWFra0tycrJBBrVaTf369UlOTgYgJSXFYH3NmjWxt7fXLycmJnLw4EGDz21eXh5ubm4l6ofk5GS8vLwMXmvYsKFB0V9W9evX13+vUqlwc3Mrl1nlmZmZ1KlT55HbEVWHFJNCCKOztrYmIiKCL7/8kvj4+FK9d/369eTl5REWFqZ/7datW3z99deMGDECMzOzUufp0KEDlpaW7N69mx07dhAaGqovOr7//ns2bNjAqlWr+Oc//4larSYiIqLQ0/S1atXKdxo2NTVV/329evVo3759gdfeFaZZs2acO3eO4ODgUh9bUdLT09FoNPqCMikpCVdXV6D4465fv36RM+QfHL0riL29PZaWliQlJelHjLOysrh+/XqJC7Hy4ObmRlJSkn45Ly+PpKQkfQYXFxf9tbNwb2b99evX9cv16tXj+eefZ+rUqeWyf7hXoN7ff2Gfpwf7qLC+frBdRVFITk7W//3WqlXL4D9EWq2W9PR0/fKDBfnDEhIS6Ny5c3GHJqoROc0thKhwN2/eZN68eSQkJJCbm4tWq2Xbtm0kJCTQpk2bErdz9uxZjh49yqJFi4iNjdV/bdiwgWvXrrF3794y5TMzMyM8PJwvvviCHTt26EdK4d4ojLm5Ofb29uTl5fH1119z5syZQtvy8vLijz/+4Pfff0er1fLll18aFCPh4eH8/vvvfP3119y9e5e8vDwuX75c5CSikJAQ9u/fX6ZjK4qiKMydO5fs7GwuX77MypUrCQ8PB4o/7p49e3L+/HmWL1+ORqMhJyfHIKOjo2ORp6PVajXh4eEsWLCAq1evotFomD17Nk888QRPPfVUuR9rYXr37s2KFSs4f/48OTk5LF26FJ1OR2BgIAC9evVi5cqVXLp0iezsbObMmWPwH4n+/fuzdetWdu3apf9snz17lsOHD5do/+Hh4Wzfvp24uDh0Oh179+5l+/bt+ss4mjVrRnp6Ort37yYvL48dO3bwyy+/GLRRWF9/8803/PHHH+Tm5rJixQo0Go3+uLy8vDhw4ACXL18mJyeHDz74AK1Wa9CmTqfj8uXLBm1mZmby22+/ERQUVKLjE9WDFJNCiApnYWFBeno6o0aNwtfXFz8/P5YuXcrbb79N9+7dS9zO2rVr8fLyIigoCCcnJ/1X06ZN6datW5ETcYoTERHB4cOHadCggUEx07t3b5566im6dOlCp06dOHfuXJEFcLt27XjppZcYNmwYHTt25Nq1a7Ru3Vq/3snJic8//5ydO3cSFBRE27ZtGTlyZL5f2g/q1asX8fHxRW5TFvXq1cPFxYXg4GD69OmDv78/w4YNA4o/bhcXF7744gv2799PQEAAHTt2NJi8M2bMGBYuXEjbtm155513Ctz/xIkTadGiBZGRkQQGBpKamsrSpUvLNLpcVkOHDqVHjx4MHTqUDh06cPDgQVauXKm/RnX48OF07NiRvn37EhwcjJubG/Xq1dO/38PDg2XLlvHZZ5/RsWNH2rdvz1tvvWUwelmUNm3aMGvWLN5//33atm3L3LlzmTNnDq1atQLA3d2dyZMnM2XKFHx9fYmLi9NfgnFfYX39wgsv8O677+Lr68sPP/zA8uXLsbW1BSAsLIygoCAiIiIICQnRfxbue+KJJ+jXrx99+vTBx8dHfw3oli1baNeu3SNd4iCqHpXyKFMqhRBCGMWaNWs4duxYud0w+v61qA9foyqqhqCgIF577bV8t716FDk5OTz33HMsXbq0RHcXENWHXDMphBCVQL9+/ejXr5+pY4hqzNLSku3bt5s6hngMyWluIYQQQghRZnKaWwghhBBClJmMTAohhBBCiDKTYlIIIYQQQpSZFJNCCCGEEKLMpJgUQgghhBBlJsWkEEIIIYQoMykmhRBCCCFEmf0fDZm12lIjNZgAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["sample_test_idx = X_test.index.\\\n"," get_indexer_for([5,6,7,18,19,21,24,25,27])"],"metadata":{"id":"y1fgz1MtYfH2","executionInfo":{"status":"ok","timestamp":1648016698321,"user_tz":-540,"elapsed":4,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"execution_count":50,"outputs":[]},{"cell_type":"code","source":["expected_value = shap_svm_explainer.expected_value[1]\n","y_test_shap_pred = (shap_svm_values_test[1].sum(1) + expected_value) > 0.5\n","print(np.array_equal(y_test_shap_pred, y_test_svc_pred))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"bskL2QxnYfXW","executionInfo":{"status":"ok","timestamp":1648016698321,"user_tz":-540,"elapsed":4,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}},"outputId":"bf00445b-5d41-45ed-d537-0babe91c649c"},"execution_count":51,"outputs":[{"output_type":"stream","name":"stdout","text":["True\n"]}]},{"cell_type":"code","source":["FN = (~y_test_shap_pred[sample_test_idx]) & (y_test.iloc[sample_test_idx] == 1).to_numpy() "],"metadata":{"id":"Ua3vL3saYh8P","executionInfo":{"status":"ok","timestamp":1648016698321,"user_tz":-540,"elapsed":3,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}}},"execution_count":52,"outputs":[]},{"cell_type":"code","source":["sns.reset_orig()\n","plt.rcParams.update(orig_plt_params)\n","shap.decision_plot(expected_value, shap_svm_values_test[1][sample_test_idx],\\\n"," X_test.iloc[sample_test_idx], highlight=FN)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":598},"id":"NIktiU8MYh-v","executionInfo":{"status":"ok","timestamp":1648016699337,"user_tz":-540,"elapsed":1018,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}},"outputId":"95696c25-5c61-4aff-f5ce-d1b4b61cc856"},"execution_count":53,"outputs":[{"output_type":"display_data","data":{"text/plain":[""],"image/png":"iVBORw0KGgoAAAANSUhEUgAAArUAAAJFCAYAAADDMg9YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gU1feH39nNppBK6D106e0iIL2KInZApSp2/Vp/ig1FUFSwUSyI2LGCShGlClKkXJr0GnogENLrlvn9MRMIIYENkC3hvs+TZydz27mz7bNnzj1X03UdhUKhUCgUCoXCn7F42wCFQqFQKBQKheJyUaJWoVAoFAqFQuH3KFGrUCgUCoVCofB7lKhVKBQKhUKhUPg9StQqFAqFQqFQKPweJWoVCoVCoVAoFH5PgLcNUCgUvokQoh7wNVAGSACGSCn35KtjBSYCvQEdeFtK+bmnbXUHN+fTCxgLNAEmSSn/z+OGuomb8xkJ3AU4ATvwkpRyvqdtdRc353Qv8DTgAqzAVCnlRE/b6g7uzCdP3frARuBjX33dufn8jAIeBY6Zp1ZKKR/zpJ3u4u7zI4ToD4wENIzPuR5SyhOetNVd3HyOvgGa5jnVFLhVSjnbY4YWE8pTq1AoCuNT4CMpZT3gI2BKAXUGAnWAukA7YJQQIsZjFhYNd+azH7gfGO9Jwy4Rd+azFmgtpWwK3Af8JIQI8aCNRcWdOc0EmkkpmwPXAc8KIZoWUM8XcGc+uT8OpwC/e9C2S8Gt+QDfSCmbm38+KWhNLjofIYQARgE9pZSNgQ5AsieNLCIXnZOUckju8wMMBRIBn/2xWxSUqFUoFOchhCgPtAR+ME/9ALQUQpTLV3UAhqfMJaU8ifGl3M9zlrqHu/ORUu6VUm4CHB42sUgUYT7zpZQZ5r//YXiaynjM0CJQhDmlSClzdw0qBdgwvGc+RRHeQwAvAHOB3R4yr8gUcT4+TxHm8zTwrpTyOICUMllKmeU5S93nEp+j4cB0KWV2cdvnCZSoVSgUBVENOCqldAKYj8fM83mpDhzM8/+hAur4Au7Ox1+4lPkMAfZJKY94wL5Lwe05CSFuFkJsw3jtjZdSbvGope7h1nyEEM2A64EPPG5h0SjKa+4uIcR/QogFQoh2njSyCLg7n4ZALSHEP0KIDUKIV4QQmodtdZcifS4IIQKBe4AvPGZhMaNErUKhUJRwhBCdgTHA3d625UogpZwtpWwE1AMGm/GofocQwgZ8BjycK0RKAJ8CNc2Ql/HALCGET94dcBMrRsxpT6AzcAMw2KsWXTluBQ6Zd6dKBErUKhSKgjgMVDFj/XJj/iqb5/NyCKiR5//qBdTxBdydj7/g9nxMT9l3GAtBdnnUyqJR5OdISnkII274Jo9YWDTcmU8loDYwTwhxAHgKeEAI8ZmHbXUHt54fKeVxKaXdPF5oljf2sK3uUJTPuBlSymwpZSowC7jWo5a6T1HfQ/dRgry0oEStQqEoACllPLCJs569u4GNZtxsXn7B+BK2mHFbtwIzPGepexRhPn6Bu/MRQrQGfgLulFJu8KyVRaMIc2qQ57gs0BXwufADd+YjpTwkpSwrpYyRUsYAH2LEqD/ocYMvQhGenyp5jpsDMYDP/ZgqwmfC90AvIYRmeta7A5s9Z6n7FOVzTghRFegITPechcWPSumlUCgK42HgayHEqxirY4cACCHmAa9KKSXwLdAGyE0ZM1pKGesNY93govMRQnQAfgQiAE0IcRcw3EfTYLnz/HwMhABTjEXcAAz20RhUcG9OD5qp1+wYC98mSykXeMvgi+DOfPwJd+YzVgjRCiONXA7G6+24twy+CO7M50dAANsx0sjNB6Z5x1y3cPc1NxSYI6VM9I6ZxYOm6z63aFShUCgUCoVCoSgSKvxAoVAoFAqFQuH3KFGrUCgUCoVCofB7lKhVKBQKhUKhUPg9StQqFAqFQqFQKPweJWoVCkWREUL4XMqhy0HNx7cpafOBkjcnNR/fpyTOKT9K1CoUikuhpH04qvn4NiVtPlDy5qTm4/uUxDmdgxK1CoVCoVAoFAq/R+WpVSj8GO1dh07uWzjvezn/21ov6FgvvMytvvQCyi7QZ97xLmhD/nPutMtjS4Ht8hmaZ4xAs16IeaqUWWYDbLnHZlkAOgHmsdUsy93BxqrrWMxz1tw6Zt8W/Wx9S55zxqN+pv7ZsrN1tAu0y62n5SvT8pTlPZfbj1ZImVZAn1qe8fLWO3vu/D5yH7V88zmn7ELtCjgHoLkuUFZQO1ee//OPd6bMdd45ChrPde71OHe8s9co9/+CrvGZtq4ilLnOL9Nc5nguHc157rm8dp7pC7Ms9zlFRzvvHHnKzj9XWDtLnrqFtaOQPosyjlbgOOe+6QsqO3eMwsvO78udsrN2FtZ3wefOn/u55woe72J95a9zblnhfZ1fVlC78+3M/6GrnfshXcAYBbejgHYXqq/x23xd13tTAMpTq1AoFAqFQqHwCwoTtKBErUKhUCgUCoWiBKBErUKhUCgUCoXC71GiVqFQKBQKhULh9yhRq1AoFAqFQqHwe5SoVSgUCoVCoVD4PSqll0Lh36g3sOKK8N3EI8hlyXS9uQy3DK14SX04nToz340lI8XBwFfrYAsqmX6TOXPmANC3b9/L7stld3FyVTwVOhd8zZO3JGJPyaFs+wqXPZav48pysLfxd1Sa3IXw3jHeNuc89Ew7GR+tIX3cSoL61CNsVFesNaK8apNrexz2txbinLedgIc7YHuqM1q5cK/Zoyekwhuz4NuV8NT18HRvtNDgCzTQYek2GD0TDp+Cl2+HQR3BFlB4m7wZxvJxwVYKhUKhuDro3KcMclkyK+efpvutZQmLLNrXg9Op8+t7B0q8oL2SuHKcLO69kOQdyXSf35PSTaPPKU/eksjy6xdgDQmg89LelKoW6iVLPYMlOIBKEzoT9+QyQrdUwxJo9bZJAOgOJ5lfbiT99aXYrq1C9NJ7CWhY3qs2OeUhHGMX4FwZi+3JzgRO7ocWGeI1e/TMHJi4AN6dBwPawPa30cpHXqCBDku2wusz4HgSvHI73NMBAi7vOVeiVqFQKBRUqx1Cw5ZhbN+QxrK5CfQZ6L5n0GUK2vQkOwNfU4LWXSyBVsp3qIAj3YEzy3leeUTDSMpcV57gSiEElbuAt6sEEd6nJqc/+Y+EDzdS7nnhVVt0l4vsGdtJG7kYS5UIomYOwNammvfs0XVcy/dhf3MB+vbjBPxfNwK/G4JWKtB7NjldMH0VjJwBrWvBypFo9SpdoIEOC/+D0TPgVKohZu9qf9liNhcVfqBQ+DfqDay4YsTuymDCS7GERVoZNaUeAbaLi1OXU2emKWjvebUOgcElX9BeaviB7tKJnb6fkEohVOpRGQBHugPNqmENNr7Us+IzQYfgCobXzZntxBJoQdMKveNa4sjem8T+tj9RZ/NAbFXCPD6+ruvkLNhL2ouLwKIR9lYPAnvU9tpzoOs6rr92GGL2eAq2F3pgHdwaLcjmFXvO2LVgCzz/I4QGwfi70K6rd4HKOvy1yRCzyRkw8g7ofx1YL+nzQoUfKBQKheLC1KxfijsfqESTNuHuC9r3D5CWZGfgVSJoL5WkbYlseF5yWiYQUqUU16+4kYBSAQSEnv0aTlx/irVDllOqWhjtZ3fDEmjFGuQbt+A9SVCdKKIfasLx51dQbXqhm0cVCzmrD5P24kJccWmEvdGdoDsaek/MOl04f9uMfexCsDuxvdQLa7/maFfIq3nJdm06CCN+gtiT8M4AuLVV4ddI12HeRkPMpmcbYvbOtpcqZi+KErUKhUKhOEOH3tEXr4QZcvD+AdJOGyEHStAWjD3NzvZxW9n7+W50p05w+WCajmyGNeRcYXLw233893/rcOW4KFU1FEeag8Doq0/Q5lLupdbsafAN6f8cJbRTlWIfz7H1BGmvLMa+IY6w17oQPNR74lG3O3F+L7G/tRAtMgTbqBuw3tQIzeLd95h+6BSMnAkLtsDIW+GBLmiFLejSdZiz3hCzOQ549U64/Voo5jkoUatQKBSK83A6dU4ey6ZitfNjOV1OnV8/OECqErSFous6R+ceYfPIDWTGZYJFo87wujR6oQm2iLMxkM5sJ1tfWM+Br/YCEHNfXZq81dJnFkl5C0uojYrvdiTuf0upvf5utIDieY05DySS9trf5Py1h1IjOhD5Yz+0YO/c1tczc3B8uQbHuMVotcsS+FE/LN3qeT30RE9Kh7fmwOfL4LEesHs8Wnghi9JcLpglDTELhpi9RRS7mM1FiVqFQqFQnENqkoMJL8eSmeHk1U/qEZRHtOYK2pRTdgaNUoK2INIOpLLxxQ2cWBIHQOnm0bQcJyjd7FwveGZcBuuGLidxXQKWIAtN321NjUG1vWGyTxLRry6nP93C6U+3UObxZle0b+eJNNLfXEbW9P8o9Xgbyux5EkuEdxbj6alZOD5Zgf2DpVhbVyfwx6FY29b0ii3n2JVth08WG4L2lpawZSxa5dIFV3a54Ne1MGYmBFhgVD+4WYCHBbkStQqFQqE4h7BIK6HhVnRdJ+FEDpVrGF/2LqfObx8qQVsYzmwnuz/ayY4J23FlObFF2Gj8UlNqDamNli+GMOHfeNYNW0F2fBYhVUrR+puOlG5ZxkuW+yaaplFpUhdiu8wkckBdAsqVuuw+XclZZLy7koyP1xIyuBlld/wPS3nPL0YD0BPSsU9chuPj5Vh71Cd4/iNYmhZ/qMVF7XK54Oc18NIv0KgKLHkRrVHVgiu7XDBjtSFmgwPhzbugT0uPi9lclKhVKHwIIUQMEAtUk1Ie8bI5iqsUTdO497lqhEcFYLUaX04up87vEw6SfDJHCdoCiF95go3PS1L3pgJQ/Y4aNB3VnODy596m1XWd2M/3sPWl9egOnbIdyiO+6HDVpOwqKsGNyhA1qD4nXlpFlak9Lrmf/BsnlNnwiNc2TtDjkrG/9zeOL1Zjvb0pwauexlLXu3lvc9GX7jAyGug6fPEAWpcGBVd0uuDnVfDGrxAeAuMGQe/mXhOzuShRq1AUASGETUpp97YdCkVxE1XmbFxhrqBNis82Be3VHe9ZECm7Ukjdm0p4nXBavC0o3/H8PL/OTAebn13H4R9iAaj9aH0avt4CSzHFi5YUyo9qy55rviFj3XFKtS7abne+tHGCKzYBx7hFOH7aSMDg1gRvHoGlWiG38z2Mvu0IvPATbDsKY/tB/zYFL0xzOOEnU8yWDoX3h0CvZl4Xs7koUasoEkKIMGAUcDtQDjgMPASsB94yz4cAK4AnpJSHzHY24DlgKFAZiAdGSClnCCECgJeAYUBpYAPwpJRyq9m2OzAWqAc4gMVm3/EXsbULsAgYDowGwoHZwONSyjSzThlgHNALCAb+Bv4npTxhlh8AvgC6Aq2B+4UQMwubi9nmAeBJoBqw3yxbYJaNAjoCa4D7TVM/kVK+Zh5vNh93CSF04B0p5ZgLzVOhKE6SEux8MSaWiEAXQ0bXVYLWRHfpJG1LJKqRIUpqD62NJUCjxoCahabhWnfvCk7MP4Y1xErzCW2o2i/Ggxb7L9bIICq81Z64x5dS698BaJaLCyhf2jjBteO4sZXtH9sIeKg9ITtfRivvva1s86IfS4TXfoVZ6+Glm2HGEwXnv3U44fsVhpitEAmT7oXuTXxGzOaifh4qiso0oA3QHYgAbgbigA+AtuZfDeAUMEcIkfvp/gYwCOhntusM7DbLngOGADcCFYHlwEIhRIRZng08jiGim2AIyQlu2msF+gJNgQYYwvh9ACGEBvyOsYFBY9PuVOD7fH08ADyDIYpnXWgupqAdAQzEEOgvA78KIerk6a8TcMicx83AS0KI9mZZ7mqI+lLKMCVoFd7E5dJ575m9HDpsp16XckrQmuhZOvaxWSztu5iMYxkAaFYLtYbUuWBe2bpPNiSsbgQd5/dSgraIRA1pABaNpK+3X7Cerutkz9/DaTGF9HErCJ/ch9KLh3lF0LrWHyL7jmlkdZmEpX55Qva9SuDYvj4haPXUTPSRM6DJS1AmzMho8FTv8wWt3QFf/g3XPAVf/A1THoB/XoceTX1O0ILy1CqKgBCiPNAfaCyljDVP7xVCWDC8ln2llEfNuk8Bp4FrhRCrgceAAVLK/8x2R8w/gHsxPJI7zbajMbyYfYAfpJQr8phxXAgxDsN76i4jpJTJQLIQ4lVgrhDiYaAl0AroIaXMNsd+HjglhKiaJ6Z1qpRyo1medZG5PAmMllLmelznCSH+Bu7CEMMAu6WUn5rHq4UQmwABrCzCnBSKYsXl0pk14SBRoZCaBkvnJNC+VzTWAN/7IvM0WrCGVlrDlmMj42gGpSoXvIBJ13US150i+tpyAJRpV56uq25U4QaXgGbRqDypCwf7zibitjpYo4LOq3POxglvdifodu9snOBcvg/7m/PRt8YZW9l+Mwgt9Hx7vYFud8DUpTDmd+jVBDaOQate9vyKOQ74ZhmM/Q1iysG0R6BzQ4/bW1SUqFUUhRjzcXe+8+WAIIwFTgBIKdOEEPEYt+D3AaEFtMulWr62LvO2fzUAIUQrjPCDZkApjC3yirJc9WCe4wOmrWWBmubxCSHO2WM8C6jOWaF6IE9ZuYvMpSbwkRBiYp5zAXn6AsOznZd0DC+wQuET5Ara03HZPPZuXd4fEUv8sRzkP0m06eYbMYCeRNd1Dv92iPC6EZRuYsw/YHAQ1996AwGhBec01XWdDQ/9y5FfDtDm+05UvMFYPa4E7aUTIioQfnMt4ketptKHnc+c94WNE3RdxzXf3Mr2WDK2F3pinfWA17eyzUXXdfhNwgs/Q0xZ+PM5tOY1zq+Y44Cvlhpitm5F+Pox6FjIYjEfRIlaRVE4YD7WBfLeAzqJESIQA+yFM7G35TFibk8CGWa7PQX0e5izghnT8xtjngf4EZgB9JNSpgghbgLmFMHuGhjCGrPfbIzwiIMYgjJaSum6QPu8ZReby0HgNSnlL0Wwr7CxFAqP43LpzJp4kIRj2QweXYegECs97yjH9ElHWfTrKVp3jsJivXq8tan7Utg4Yj3xy09Qunk03eYZK/C1CK1QQQtGBonwBpFYwwLQdU9ZW/Kp8OZ17Gn4LaXvb4QtzOr1jRN0lwvnb/9hH7sAsp3YXuqJtX8Lr29lmxd91W547kdjm9rJQ9B6NTm/UrbdCC94+3doUAW+fwKuq+95Yy8TJWoVbiOljBdCzAA+FkIMwxBwuZnCvwHGCCG2A0nAe8BOYK2UUhdCfAyME0IcArYBVTDE5H/AV8DzQoh/MITzCIzX5h9m3xFAMpAqhKgOvFBE098SQtyPsRBsFPCt6Q2WGAuzJgohXpNSJgghygHdpZQ/FnINLjaXD4BRQog9Zt/BGCEOp3LDKy7CSQxhW5dzvbsKRbHjcunMnniQhKNnBS1Ay46RzP/lJCfjcti4KplWHb2TCsmTODMd7Jy4g12Td+DKcRFYOpBaQ2pfNI7QnpyDLdLYMazuUw2pekcMpaqHesLkq4KAsiGUe6YZp3p/T2Bmutc2TtDtTpw/rDe2sg0PwvZqb6x9G3t9K9u86Lvj4MWfYV0svHEnDLzuvHzJZOXA50vgnVnQpDr89BS0recdg68AvnP1Ff7CfcAmYBnGoqpZGIu7ngYksA5jEVQl4GYppdNs9zLwM8bCrFRgKZC7eGo88AOwADgBdAN6SSlTzPIHMWJsU4FfgaJ4QZ0Y4ngLsAsjG8EzYIQ5ALdghDOsF0KkAquBLhfps9C5SCmnYmRT+BJINK/FSMAt94GUMtOs/4MQIkkI8bJ701QoLg+XS2f2pEOcyidoAaxWjR63GXF3C2ecwuUq2a7H40viWNDlL3a8vw1XjouYu2ty/co+1BxYu9CV97pLZ9e7W1ncei4Zh9IBw1urBO2Vw5WcRdrIxbjGL0HPdhL4Vh/CXu/mUUGrZ9mxf7ycrLpjcHy5msBJdxK05lkCbmnqM4JWj09Gf+wraD8G2tSGXePQhnQ4V9Bm5sDEeVDnCZi/CX59Fua96NeCFkDT1X0RRQklN6WXlLIk35FQb2DFZXNG0B7JOk/Q5uKwu3jz8b0knrIz7P+q0rxdpBcsLV4y4zLY/OpGjsw2Ip8iromk5ThB2Tblzqk3Z44R/dS3b18A7Cl2Njz6L8f/OAIaNJ/YRm13ewXJv3FC2KiuZB1O5/Ddf1F3x2CsYYHFb0NqFo5PV+L44G+0ltWMMIPrahX7uEVBT8+CD/6CD+fD4Pbwyi1oZfIt18jIhikLYfwcuLY2vHontPStebhBobdLSvKXvUKhUCgugsulM2fyIU4ezmTI6LoFClqAAJuF7reVZcbUOBbMOEWzthFeWVleHLgcLvZN28O2d7bgSHdgDbHS8LnG1H2wPhbbhb1vqbuTWTt4OWm7UwiIsCGmXkeFXt7f6rQkcKGNE0JrRBHauQonx66j4tj2F+npMmw4bW5l+9FyrN3qETTvYSzNC9ky1kvoDid8tdzIN9upPqx9Ha1Wvg0m0rPgkwXw3lxoV8/wyjaP8Yq9xYkStQq/RgiRVkjRcuAdT9qiUPgbLpfOnI8OEX/IFLSlLry4pU23KBbMOMmxA1lsk6k0bh1xwfr+QII8xcYRkqStSQBUvqEKzd9oSamqFw8biPvjMBse+RdHqoPwBpFc+10nwmqpRCaXi7sbJ1Qc14G9TadT+t6GBNW9slk59Lhk7O//jWPaaqy3NiF45dNY6vnGVra56LoO8zbDiB+hbDj8/hRa63xe17Qs+Hg+vD/XyGIw/2VoWkDWgxKCErUKv0ZKebHUXuo1rlAUgMulM/ejQ8QfdE/QAtgCLXS7tSy/f3mcBTNO0UiE+7239ui8IyRtTaJUtVCaj21JZTe8rLpLR/81h7WzlwNQ+bbqtJjYhoAw30jf5K/ouk7Ogr2kvbgILBrhk/sQ2KN2oa8xW+Uwyo4QxD31DzF/3HJFbHAdSMAxbjGOH9YTMKg1wZuex1I9+or0fSXR5X4jo8GJZBh3F/Rpfu51Ss2EyX/BB39At8awaCQ0ru49gz2E+sJXKBSKq4xcQXviQCZDxrgnaHO5rmdpFv16kkN7M4ndmUGtBv61EErXdTKPZVCqimF3w2cbYQu3Ufeh+gSUuvhXYk5SDvr7mfCfEywaDV9rRp3/NfB7ce9tLnXjhDJPNidx2jZS5u4n4qZLjw117TxhbGU7dysBD1xnbGVbwffuROj74+HlX+CfXfD67TCs47npw5IzYNKfMGEe9GwKS0dBQ98KlyhO1EIxhcK/UW9gRZFwuXTmfnyIE7GZDB5Tl+AiCNpcNq5MJjTcSt0moX4l5rITsvn3/hWkH0jj+hU3XjDPbEGkbEti7eB/SI9NgzCNdt92pXyXisVk7dXBORsnjOpK8JBmRc7xmrrgIMce+Zu62wZhCS6ar8614TD2sQtw/rMP2/86EfB4J7TSBe8Q5030hFR4YxZ8sxKeuh6e6Y0WmifrQ1K6IWQn/QU3NIeXb4drSmxst1ooplAoFFc7LpfOH58c5nis4aG9FEEL0KK9f2Y+CIyy4cxw4sp2kbI7hegWZdxue2rFCVYPWIozwwk1LGhPhChBexk4DyWRNnLJFdk4IbxXDUKaleXUexso//K17o2/Yp+x+9d/xwh4tiuBXw1CC/ONrWzzotsdRkaD8fOg/7Ww/W20CnnefykZxuKvj+bDTS1h1RioV9l7BnsZ30iqplAoLgkppTpWx24dpyXZ+fa1vezbGn9G0F5qn5npTmb9tMEn5lWU4/UbN9Dm03a0n96J/c7YIrXdn3MAW1QQVQfEcHjISbRyFp+Zlz8d67pO5pcbONFsMtaYKMrseZIdnYLOCNpL6dNxMgNnSg5xS3dfsL6u6+z88HeyOnxIzpDvONIikuD9r2J7phvrd27xietz3vHbc0n7/h9YMRLto2GsP3x2I8v/Zi+Gdq/A3uNsmXoXfPUY1KvsfZs9cFwYKvxAofBv1BtYcVFit6QyY1wszbqVofvgylgDLj1kQNd1vnrvCJv/TeG2+yrSuY/73k5fYM/U3WwZvYnmb7ak5uDCFyEBJG9NJLxeBJZAw6OddTyToArBzJ07Fzibp1bhHq5T6aQ8OBvnvtNEfHcntiYVLrvP9BVHOXz3X0QNvoYKo9uhBZzvq9MdTpy/bML+9kIAbC/0xNqvuU9tZVsQ+tHT0PRlkK+j1cyXeWHtXrh1PLxwCzxxo3cM9B4q/EChUCiuNlxOnWU/HWftH/Hc/nQMdcWVCRuIqRfCni3pNGwZdkX68yTpB9Nw5bjY8JwkYX0CLd9uhTXk/K/Cg9P3sfnpddR+uD6NRrcAILhiiKfNLTFk/7mblPtnETywKZE/9EMLujz5obt0To1fT8IHG6nyZU/Cb4g5v06WHcdXa3CMX4xWKZLAsX2x3OjeAjSf4MWf4aGu5wva39bCg1Ng2iNws/CObT6KErUKhUJRAklLtDNjfCxOh84jExoQUfbK7LqkaRpdby5L2+6lCQn1bU9XQTR/oyWlm5Vmw3OSgz/Gkrw1kbbTOhAWc65AD68bAbqOM9uJruv+I4R8DD0jh9TnFpA9dxeR0+8ksEvNy+7TkZDJkSELcCVlU2vdXQRWOzc3sJ6Saez+9eFStBZVCfx6ENYO/rXDm752HyzaBrvG5TmpG/lm358Lf70MrfxuJ7BiR4UfKBT+jXoDK85j/6YUZrx3gJY9y9B1YGWs1ssXZFkZTjLSnESXL/4tST1B0rYkVg9fQVpsGrZIG60ntyWiVjhhdc6mcUqPTSW05vmbKeTfJldRMHZ5lORBM7GJyoRP7oMl6vI93Rn/xnH4rj+J7F+XCmOvQ7Od/WGlx6din7AMx5SVWHtdg21EDyzN/C8DgK7r0H40PNAV7d5OxkmHE574EpbvgD9ehOplvWukd1HhBwqFQlHScTl1lv4Qx7o/T3LHszWp0/LK5NnUdZ2fPj3Grs3pDHu2KvWa+l/YQX6iGkXRbX4v5BNrOPbXUVYNXo7FqdPum45UutHI61mQoFVcHN3hJP3t5WROWkP4xBsJHtDk8vvUdRI+2MjJdyRVPu9BRN+zXkrXwdM43l2CY7okoH8Lgtc8g6V2ucse02v8uBqyHTC0g3b4tO0AACAASURBVPF/aiYM+NAQtivGQKTvpRzzFZSoVSgUihJA6mk7v4yLBXQendSQ8Ogrt7vVqgWJbFyZQlCwhaiyJWfXrMDIQJqMbEbyhgTST2Tismr898ZmotuUI6iM76V38gcc+06TMngmWikb0esfxlr18uO4nYlZHLl3IY64dGqvuYvAGOPHmmtbHPZ3FuH8YxsB97cjZNuLaJX8M91cLnpGNoz4CaY/gmaxwJEEuOltuLYOfDQcbEq2XQiV0kuhUCj8nL0bUvjkiR3ENA5j2Jv1rqigPRKbyW9fHgeg/8OVKV+55Ii9wz/HsqzrX+QcyaBU6SBskTZS96WyqOd8Tm9I8LZ5foWu62ROW8/ptp8R1L8RUQuGXBFBm7HuOHtb/kBgzQhqLu9HYEwEztWxZN86laxuk7HUL0/I3lcJfOcWvxe0ALw7D9rVQetYHzYdMFJ23dMBpjyoBK0bqCukUCgUforTqfP3d8fYsCiBO/8vhlrNr+y2nlmZTr5+7wgOu067HqVp1bEEiAbAnmpny/OSwz8auWor31qd5h9eiz3dwerhKzm9IYGltyym1/Ibz1tApjgf10kzVVdsItF/30tA48tP1aXrOqcnbSb+jbVU/rQbEbfVxrVwJ1lvLUTfn0DAc90J/H4oWqmSEeMNoB85DRMWwPrRMG8DDP0IPr4f+rXztml+gxK1CoVC4YeknMrhl3GxWAI0HpnQ4Ip6Z8EQFT9/GsfJuBwqVQ/itvtKxu5ZSZtOI4evIH1/GtYQK03ebkV1M1+tLTKQLrO6sfm1TWgaStC6QfYfu0h5YDbBQ5oZu4JdZqouAGdyNkeHLyInNoVaK/th3XSALDEeshzYRvTAenercxaIlRhe/Bke6YY2bwOMmQmzR0C7et62yq9Qolbhlwgh/gT+llKOu2jl4rOhKnAYqCmlPOAtOxRXH3vWJ/Pr+we4tk95Og+oiOUKZDfIz+pFiWxYkUxgsIVhz1YjMMi/o9V0l86+j3eyffRmdLuLiEZRiGntCa9/rvfZEmilxVut0F1nE4skbUsiINRKWIxaOJaLnp5D6v/NJ/vPPUT+2I/ATjFXpN/MDfEc7j+PsJ7VqNgjEudNH6GXDsH2am+sfRsbcaYlEH31XliyDW5rDjNWwsoxUOvyPd5XG0rUKvwSKeUN3rahqAghvgIcUsr7vW2Lwj9xOnUWf3OMzUsS6P9CLWo2KR6RdexAFr9+YcbRPliJClX9O442Kz6TjY+uJn5xHAA1H6xHo9dbYA0u3NunWYwfCjmJ2awauhx7cg6dZnaldNNoj9jsy9jXHiF58ExsbapSZvOjWCKDL7tPXdc5/ekWTr66kio3RBMwZymu/ZUInDIAS+c6JTpPsK7r8MQ3UDEMbethWPUGRKu7BJeCErUKryCEsEkp7d62Q6HwF5JP5fDLO7HYgiw8MqkBYVHFk4UgO9PJV+8dxp6j06ZbFKJzVLGM40mO/X6I+MVxBEYH0WJyGyreUNXttppVI6pxFJnHMoioVzJiii8V3eEkfew/ZH60lvDJfQju1/iK9OtMzSFuyJ/Y/t1JdWci1swgbLMewNKq+hXp3+f5eBFsOwK3tzB2CQtU0uxSUVdO4RGEEAeAL4CuQGvgYSFEdWAYUB7YBjwppZRCiEbARqCKlPKk2V4D9gGvSym/FkIsBRZJKd8wy6sD7wMdMDYkmAM8K6VMFUI8A/SWUvYy634D9AdKSykzhRD9gVFSyoYXmUNF4DOgM3ACGJevvDswFqgHOIDFwBNSynghxPPAQLPeXWaTSCmlUwhxKzASqA3EAW9IKae7f3UVJZ3d65L57cMDtL25PB37VcRiKR6vla7r/PJZHPHHcqhYLYg77q9ULON4mpr31yP7ZBYx99YlpHLRcnzaIgJp92UH7Mn2M55dPVM33uFXEY69CUaqrvAgojc8grXKlVmUmLlwHyn9fyAqMxHbXS2xvTgMS/2r57a7vm4fPPktDGuPNvVBKMEeaU9QMoNTFL7KA8AzQDjQArgF6A2UwRC8fwkhSksptwGbMEWgSRegLPBL/k6FEMHAEmA7UBNoCFQFJphVFgEdhBC591B7YMTCdjT/72nWuRjTASdQHeiEIcjzkg08DpQDmgCVc20wY3+nA19LKcPMP6cQoicwDXgKiAaGApOFEJ3csEdRwnE6dOZPO8KsSQe566XadB5QqdgELcD6f5KR/yQTGKQx7NmqfhtHm7YvhVW3LSHjUDpghBI0eLlZkQVtLpqmERhlrLLXdR3HF9nkjM4kYX3JT/ul6zoZUyWn200l+O6mRP01+IoIWufO46R0+AjH9ZMp1bYSpfa+QtBXA68qQcui/6DLGBA10T5/SAnaK4Dy1Co8yVQp5UbT6/og0EdKud8smyaEeAroA3wHfAk8DHxolt8L/CSlzCig35sATUr5qvl/phBiJLBKCPEAsAVIBdoLIU4AWRgiuiewAOiOISoLRQhRBegG1JFSJgPJQojXzfYASClX5GlyXAgxzhznQjwJTJBSLjf/XyuE+A4YAvxzkbaKEkxSfA4/v7Of4FArj05qSGhk8X9cN2gZRqNWYTRrF0nFapcfJ+ktdr61hZNLj7P99U2Iae2vaN+OVDt6ig6JOktvWUzzMS2oNaxkxny64tNIeWA2zsPJRC+7j4CG5S+/z/WHyBkzH8dfu8iILEfUymcJbud+OEiJ4Ysl6M9/DwE2+Ol/3ramxKBErcKTHDAfywJhwBwhhJ6n3IbhYQX4AXhfCNES2APcgeFhLYiaQHUhRFK+8zpQUUp5VAix2Gx/AliI4ZmdKoSoDVQDll7E9ly7DuY5F5u3ghCiFUb4QTOgFMb+1BeL9q8JdDVDJHKxAssLqa+4Cti5JonfJxyk/W0VaH9HhWL1zuYlNDyA+1+s7vcCrek4gS0qkIYjm13xvm0RgdieC8b5cw7OJQ42vrCeBHmKluNbE1Cq5HylZs/ZScqDswm+twWRv/RHu4w4T13XcS3dg/2thbj+O0aSHomrX3cqT+mBpVTJ2aHOLVwueOVH+PlfaNcAmtdAq1HW21aVGErOO1DhD7jMx1NAOtBDSrmuoIpSyiQhxO8Yt/g3A4eklP8W0u9BYLeUstEFxl6E4fk9AXwNrMcQs/cA66SUKRex/aj5WAMjthcgJl+dH4EZQD8pZYoQ4iaM2N5cXJzPQeArKeX4i4yvuApw2F0s/Ooo21Ykcc8rtane0DMroDesTKZZmwisAZpfCtrEjQnsm7yTlp+0xRJoJTA6iGbvti628bQAjYB7gmh1p2D9s+s4NOMgyduSaPdlB8Jq+nfaL1daNmnPzidn4T4ifxlAYIcal9yX7nLhnL0Vx1sL0ZMyyenQkGMbrFR8rxOlh15wCUPJJCsHhn0MhxPQJw6HB7+AHx7ztlUlCv8MmFL4NVJKHSPW9F0hRF0AIUSYEOJ6IUTlPFW/xBCdD5rHhTEXCBRCvCSECBdCaEKIKkKI2/LUWQS0xIiFXSKldAHLgP/DjXhaKeURDG/uOCFEhBCiAvBqvmoRQDKQai5ceyFf+XGglhAi7/vuQ+BpIURHIYRVCBEohGglhBAXs0lRskg8kc2053aRcCybRyc18JigXft3Et+8f4RP3zhopBbyI3SXzt5JO1jeawFHfz3I/qm7PTp+9Tti6PZnT8Jqh5O8I5nFvRZw7K+jF2/oo9jXHOZ0i0/Qc5xEb3rkkgWtbnfi+GYtWU3exj7mL6xPdCah3bXE/5tOzWX9rk5BezIFuo8BXUdf+DK8/huM7Y8W5r9hPr6IErUKb/EaMAuYJYRIwQgxeJhzX5OLgAygFfBNYR2ZcbbdMBaI7cQQlouB5nnqHAL2A7uklKfz9B+Be4vEwBDYQRiLzJYXYNODwP0Y8bu/cv6its+BUCBBCJEkhLBKKRdgLKAbj+HBjgM+4OJhC4oSxPZVSUx5aieNO0Uz8NXalIrw3E20cpUDiSpro1XHSL/y0madyOTffn+z7dWN6A6dWg/Xp+Zwz+++FNkgiu7ze1GlT1XsKXZWDV3Oljc343IUdGPGN9HtTtJGLSHp5u8Je7snkV/ehiWi6GJLz8jBPmkZWXVG4/hqDYEf3o723XAOvL0TXDq11g4guFGZYpiBj7PrGLR7GTo3gB+ehJnSCI4bdJ23LStxaP72y1yhUJyDegP7MQ67i/nTjrJzTRL9R9Si2jWhXrEjO9NJYLDFb0Rt/OJjbHhkNdkns4zcsx+1pWLvKh4bf84cI6qob9++Z87pus7uj3ey5Y3/wKVTrkN52nx6HcHlfNsT59iTQPKgGVhKhxDxxa1YKxc9s4GemIHj4+XYJ/6D9bqaBLzQA2ubGJKm7yTuqX+o8NZ1lB7eyG9eX1eUf7ZDvw9g7N0wvBt6ehbUfx5+fhztOrUF7iVS6AtJxdQqFAqFFzgdl81Pb+0nslwgj05sQEi4Zz+Oj8RmUrVmCABBIYXvrOVLuHKc7BjzH3sn7wCgbMcKtJzSjpBKl5aq60qiaRr1H2tA6ebRrHlwFSdXxPPPHUvo+XdvNKvv3RTVdZ3MzyRprywmbFRXQh69tsiiU49Lxv7BUhzT/sV6U2OC/34cS8NKuDIdHH1oMelLj1Bz8W0ENy1XTLPwcaYvh6e/hu+fgB5NjXPv/AGdrlGCtphQolahMBFCfAoMKqS4oRnCoFBcNltXJDL3o0N0vqsSbW8u53EPllyWxHcTj9Lz9rL0GegfeUHT9qUg719F8qbTaFaNa15qSt0nG/icYCzfvgI9Fvdm9QMrqfdwfZ+zD8B5Io2U+3/HFZdG9PLhBFxTNNHp2ncSx7jFOH7ZRMAgQfCG57HUMLYPzt6TyOF+8whqEE1teTfW8MDimIJvo+swZiZ88Tf8/Ro0qmacPnQKPloEG8d42cCSixK1CoWJlPJhjLhehaJYsOe4mP/5EXbLZAa9Xoeq9TwfbnDiSDY/fxYHQHQF/xAch3+MZfNz63CmOShVPZRWn7cnurXvpkEKqRhCl1nd0fKkYjux7DhlRFkCQr37tZs1eyepD80mZHhLQmd2KVKqLtfmo9jfXohz4S4CHm5PyK6X0cqdzfaQ/PNujj2+lAqj21L6oSZXZ7hBjgMenGJse7v6TaiYZ5vpET/B4z3Qqvvua9ffUaJWoVAoPEDCsSx+ems/pSsG8cjEBoSEef7jNyfbxVfvHSYny0WrjpG07R518UZeZtuoTeydsB2AKrdVp9kH12KL9H0xnlfQJqxPYMXAf4ioE07XP3p6Rdi60rJJfepP7H/HEjljAIHt3c9s4Fy+D/vbC9E3HiHg6a4EThmAFhFytu9sB8efWU7a/IPE/HUrIS0vf5MGvyQxDW5/DyJDYOlrEHo2nlpftRtW7IbPh3vRwJKPErUKhUJRzOzdkMIv42LpNrAS197k+XADgPRUB1+9d4S4Q9mUqxxIv4cq+YUnrdKNVTjwxR4aj21J9YG1/MLm/NjCAgirEUq568p7RdA6dp8iqc932DrFEL3pUSzhQRdvBOgJ6WT3+wL94GkCnu9BwMzhaMHnbpaQteUUR4YtJLBmBLXX34010r2+SxxxidB9NPRuDuMHQ56wEz01Ex77Bt7qjxbq2wsH/R3fC/ZRKBRuI6VUxz5+PO8HyYzxsdwzsjbWSofOiDJP2rBw3nref34/e7akExyqc+//VSM4xOoT16egY0eG48xx9LXlKPdtdWoMqo2maV63DeDAgQNu19ddOjuO7aTbX71oOqq5x222/3ecxC5fcvKuakROuxVLeJBbbTcsXklWj8lYWlVj2/QbsD3UHi3YdqaOK9vBpvtnEtv9V6IfaUL8iPJnBK0vPEeePN40fxl0Gw2DOiLvaXRG0EopDUHbezwna4bDwOt8xmZ/Py4MldJLofBv1BvYh9kjk5n53gHuGem53cHys/nfFKZPPkpOlotqtYMZPqI6UWV8d2vS5K2JrB6wlCZvtaLyzdW9bU6BFJTSqyAc6Q7WPbGa9IPpdJnV3eNeWvvaIyT1nU74pD4E92/sdjs9MYOsHpOxdqmL7d1bz/OOZ/wbx9HhiwisF0Xlj7tiq+yd17ZPcCoFur4Od7SBUf3PKdJTMuGG8dCkGnw8FM2i/IhXCJXSS6FQKDyJtwWty6Uz/+eTzP/lJACiUyT9H65MYJBvf7HGL44j61gmh77bT6W+1fwy3AAg41gGq4YsJ2lLIgHhNlL2pBDdPNpj4+csiyWp389EfnkrQX3qu91OT8og+/qPsXasfZ6gdablEP/KvyT/tJtKE7sQcWcdv31+rgiJadDzDbipFbzW75yiM4K2aTX4SAlaT6FErUKhUFxhzgjaV2tTvYHnBW1WppPvJhxl67pUNAvcPLgCXfqW8QsBUueJBgSVC6bKHTX8wt6CSFifwL/DlpMVn0VoTBjtv+1IRL1Ij42f/edukof+RtRP/QjsWsvtdnpKJtm9P8HSNgbbB7efc/3TFh7k6INLCO1UhTpbBxFQJuQCPV0FJGfA9W9C10bGxgp5rpWekgm9x0Gz6krQehglahUKheIKsntdMr++7z1BC/DfmlS2rkslJNTC0GeqcU1z3749fGzWIaJalqFUtVA0TaP6Pe4LMV/j0MwDyKfX4sp2Ua59edp+3p6gaM8tnsqasY3Ux+YSNfseAttWc7udnpplCNqW1bBNuOOMoHUmZhH37HLSFx+m8pRuhPeOKSbL/YjUTLjxLbi2Drw3pGBB27wGTB6iBK2HUaJWoVAorhC5gnbga7Wpdo33hGTrzpEknsyhZYdIylXy7dXo+z/bxZYR6wmtE06XpTd4PY/rpaK7dLa9vYWdZvqxWkPr0PzNllhsnhM1mV9vJO3FRUTNH4KteSW32+mpWWTf8CmWJpWxTb7zjKBN/nUvcf9bSsTtdaizddDVuZFCftKz4Ka3oVFVmHivErQ+hn9+eigUCoWP4U1Bq+s6/8w7TYMWYZSvHISmaVzfz7dzheq6zq53trDrna0A1Bhc228FrSPdztrHVnPsz6NoVo1mY1pQ+766Hg2fyPhoDenvrKD0kmFF2iFMT8smu88UtAYVsH3SH81iwX48nbjHl5K1NYFqP99IaPvKxWi5H5GZA7eMh5rl4dMHII9o1VMy4fpx0KKGEXLgp6Ez/o5/foIoFAqFD7FrbTK/feA9D+2Kv07z2xfHWVU1iOferUWAB72Dl4Lu0tnywnpip+4Gi0bzCddSY1Btb5t1SaQfTmfVkOUkb0/CFmmj7dT2VOhc0bM2vLOczM8k0cvuw1qztNvt9PRssm+aglanLIFTBoCmkfjVdo4/v4LoBxtT9bvrsQQrmQBAth1ufxfKR8C0R84VtMkZ0Hu8ErQ+gHq1Ks4ghOgCLJJSeuV1IYToCMyRUvr+NkcKhclZQVuHatd4fttbgNZdopDLkul6SxmfF7SuHCcbHl3N0ZkHsQRaaDWtPZVvcj/205dIkKdYNXQ52aeyCasdTvtvOxJeO8Jj4+u6Tvori8n6bQellw/HWtn9sfWMHLL7foZWI5rAqXdjP5jK0YeW4EzIImbBbYQ0d9/bW+LJcUD/DyA0CL55/NyNFXIFbcsaMFkJWm+jRK3CKwghRgEdpJQ9cs9JKZcDHhG0QoilQDvAnuf0j1LK+z0xvqJksGtNEr99eNArgvbw/kwqVg3CFmghOMTKk2NrYrH49heqI93BuqHLiV8cR0B4ANdO70y5jhW8bdYlYwm04Eh3UL5TBdpObU9glOdiTnWXi9Sn/8K+/CDRy+7DUs7915+emUP2LVPRqkRim3oXCZM3c3LMWso+34qyz7REC/DtH0YexeGEeyaArsP3T0KA9UyRnpxhhBy0ilGC1kdQolZxNTNGSvnGhSoIIWxSSvuF6iiuTnIF7aBRdaha37OCds2SRH6eEkeL9hEM/F8VNE3zeUGbk5TDmgFLOb32FIFlgmg3oytRHszbeqXIu2FR6abRdJnVnchGUVg8KAR1p4uUB2bh3HWK0kuGYYlyP72WnmUn+9bP0cqF4Xr+BmI7z0SzWai1qj9B9dwPXbgqcLpg8CRIz4bfn4PAs5LpjKAVNWHSECVofQQlak2EEGHAKOB2oBxwGHgIWA+8ZZ4PAVYAT0gpD5ntlgIbgJpADyAeeBBjx4sPgerAYmCIlDLVbKMDTwPDgNqABB6QUu41y+8CXjT7TAdmA89IKdPN8gPAZ0B3oA1wAHhQSrlKCNEA2AxUlVLGm/U1YD/wqpTy2yJckwDgJdPO0uY8n5RSbs3T7wPA/4AaQDLwjpRyshCiGTARaARYgdXA41LKfUKIAWa/FiFEmjlcU/NanQl/cGP8r8y+s4B+5rUaLaWc4u4cC5jzKKCTOdZg8/EGIcSXGM9vFMZr4w0p5fdmmy7AImAgMBYoC8wHhud5zssBbwM9zT72AndLKXcJIUoBo4E7gEhgrXmt9l7qPBTFy641Sfw2wfOC1unQ+f3r4yyfdxqAkFArugs060UaepnMuAz+veNvUnckE1KlFO1+60Z4Xc/dpr9S2NPsrH3kX5w1HFjbGF+fpZt5VpjrOQ6SB/+KnpBB6QVD0ULd9w7r2Xayb58GkSEk16tHQrffKD+6LdEPNUHz8R9FHsflguGfwKlUmD0Cgs7uwqcEre+i7jGcZRqGQOwORAA3A3HAB0Bb868GcAqYI4TI+zUyGEOwRAE/Ad9iCNtOQAxQH3gi33gPAncC5YFtwOw8fSYD95j9dTT/XsnX/j6zz0hgIfA1gJRyB4aAHJqnbq6QmuH21TB4DhgC3AhUBJYDC4UQud9GD2P8EHjE7L8FsMYs082yKhjXIA34zrTxJwzxt1RKGWb+7b+E8cG4hnOAaAxxPVkIUaOI88xPJ4znvhqG0ATjx0xzc56jga+EEA3ztLECvYBmQD2Ma/EEgBDCgvHDJApobT4OA1LNtlOBazBeYxUxruFcIYTv7mV6FeMtQZuW4uDTMQdZPu801gCNux6pzB3DK2Gx+vYXatr+VFbcsJDUHcmE1Y+g4189/VLQAhz78whxC47h+DkHPcfzO1TrmXaSbv8RshxEzR1YdEF7xxe4sl0c3hFAxrp4am+4mzKPNFWCNj8uFzw8FWLjYdbzEHL2OuvJGdDrHWhdSwlaH0R5agEhRHmgP9BYShlrnt5ripGhQF8p5VGz7lPAaeBa4F+z7s9SyjVm+XcYXtbxUsrT5rm5gMg37Ht5PLPPA4kYonqVlPLPPPX2CiE+xhB3eZkipdxmtv8ceEoIESmlTMbw4r4MjDfrDge+k1JmFvHS3Ivhed1pjjMauB/oA/yAISLflFKuMOufMv+QUv6Xp59sIcTrwBYhRCkpZcYVGh9giZRytnn8qxAiCUN8HnSj/5eFEP+X5//e5uNBKeV75nGOOZ9peer9aLbrAmzPc/4FKWUakCaE+J2zz7kw/8qazw/Af+acymL8gKkhpTxhnnsdeArj9bAChc+wc00Sv+cK2nqeE7THDmTx+TuHOB1vJzwqgPueq0bNa0p5bPzLwZnhICcxh6iW0bT9uQtBZYK9bdIlU/3OGDKOZLA7fC9aoGfFjCstm6Sbv8daMYyIr29Hs7nvntdzHGTfPo3sPcnEJZem4getiby7vhJkBaHr8MSXsPUwzH8ZSp3N86wnpRse2mtrw8TB6vr5IErUGsSYj7vznS8HBAG5QhcpZZoQIh7Di5crauPytMko5Fx4vr4P5OkzQwhxEqgKIIToCbyK4b0LwvACxudrn7f/dPMxHMPLOwOYIIToAOwAbsXwEBaVapw7d5cZ+pC7VDmG868Z5hxqY4jqNqZduW6NcrgnON0ZH869DmBci/zXujDezB9TK4Tond8+88fNKGAAhidVB0Ix5pKLU0p5shA7YoD4PII2LzXNx/+EOOd3j41z56nwMjtWJzFroucF7eZ/U5g+6Qg52TrV64Rw3/PViCrjP078yMalaT+nO6E1w7GF+4/duRz4cT9lWpclvHYEmqbR4OlG7J1T0I2l4sOVmEnSjd8S0LgC4Z/2RbO6f5NVtzvJ6PYxWRtPknFTW+pM7kpAOf/4QeRxdB2e/QbW7oWFIyH8bKzyGUHbpjZMUILWV1HhBwYHzMe6+c6fBLI5K3pzY2/LY8RVXg55+yyFIZCOCCECgd+BH4HqUsoIYARGjK5bSCmzMMIRhmOERmzK5zl1l8P57LSY/+fO/QDnX7NcPsW4vd7UnEN783zuPFxXYPziIr9td2N4iO8ASpspxzbj/nNyACifL2wil1wBXVdKGZXnr5SU8ocC6iu8QK6gHexBQety6cz7IZ4v3z1MTraO6BzJ/8bE+IWgPT7/KAen7zvzf1TTaL8TtLrTxeZXNyKfXMvKQctxZjq8YocrPo3Erl9ia1eN8M9uLpKgdZzKILn+OLLWx2P7dgjVfuqjBG1h6Dq89AMs3W54aCPPXic9KR16KUHrDyhPLSCljBdCzAA+FkIMwxAauZnAvwHGCCG2A0nAe8BOjMU8l8PT5iKzoxjxuPsxYilDMLyziVLKTDNu8/FL6P8zjAVo13E2DKGofAU8L4T4B0OYjcB4zfxhln8EvCSE2Gja/v/snXdgFNX2xz+z6cmmhwQSEgKhShUuIr2IoCDqU1FR7KioKL5nFwv23hv2xg95YnlKR6QonQtIrwlpkJBCet3Nzu+P2YRQUoDsbkLu55/Mzp2558zsbPa75557bgjQVkq5ESMveT+Qax9if/6EvtOBGCGEp5Sy/AztO4sAwIrxI8dkf0Z6AvPqeb7EmHD2hRBiCkaKRjcgS0p5WAgxC+PZe1BKeUgIEQQMB/6wpzMoXMjutbn89oEhaKOcJGhLiyuY+f4hdmwsQDPBFTdHMPSy0CbxZVoYn8+GiX+h2yCwa3CTrHBgyS9n3d1rObIsDc1do9N9nXHzcf7XZUVqHjkjv8X7um74TR9+Wu9//q8HKLvxWzxbeBOY9ATu4a6p2Fh0DgAAIABJREFUodxkeG4OzN8My56B4GMLqFQJ2guVoG0KqEjtMW4H/gFWYkQYf8MYav43hijZCCQDrYDLpZQVZ2nvC+AXDKHUE7hCSllhFzH3AK/bKwN8BMw63c7teaibgEiMqO+Z8AZG7uoS4AgwAhglpcy3t3+MURniSyAfQ7hVpjn8G2OCWz7GBK8TBeAcjIhruhAiVwjRlpOpy76z+BZDtB/A+BFyHsY11QsppQ0YB5RgPGO5wFdA5X/OO4G9wAohRAGwHaOag/NnoiiOo0rQPuc8QWur0Pnw2UR2bCzA1+zG5KfaMGxcWJP5MjXHBdDx4W50mNqFwJ5Nr0RUYWIBy8Yu5ciyNDxDPBkyZzhtXbDamTXhKDlDvsJnUm/Mz42o9/tvzSgm5dr5lN/8Pb7dQwjY+6gStHXxyq/w37Ww9GkIOzagpucWwcWvQf/2StA2EbTqNfcUzsFe0mtwtQlWjrLzDVAupbzLkXYULkV9gB3EcYK2g3NFwYYVuSz7NYs7Ho+mRSuvuk9wMbquU55VhlcL76rXTVEAZKw+wro7VlOeU05ApwAGfDcEc+zJyx7PnTsXgHHjxjnED+uuDHJGf4fftKH4Tq7fdAhd18n7v72k/WclkWEFeLXyxmv+3WjeTSvtw+m8NRdm/AErp0PksVEFPafIqHIwoAO8O7FJPs/nMDW+GSr94BxFCNERI9rXz9W+KBRNjV1rcvn9Q+cJWl3XyThcTkSUIWAvGBZE74EBjX7JWwDdprPtUUn6wkMMXnQxvtF+TVIAJHx3gC1PbEK36rQc2Yp+Mwa4JA/YsvkwuWNnYn5jND4Te9brnPLkfA5PXoY1tZA2fU2YyrzxmnuXErR18cFC+HgJrHj21IJ2YEd458Ym+Tw3V5SoPQex5wePBl6pXKjAvj+G40tQVWemlHKyM/xzBkKIGcDEGprPq1w8Q6E4kV1rcpn7URI3P9+ByPaOn1RTYdX54eNDbFuXz9SX2xEVa0Q7m4KgtZVXsPmedRz6JQmTl4nCfXn4RjetoW6b1ca2Z7Zw4Mv9AHS8tzPdn+pxWhOyGory1Unk/ms2AZ+Ow/tf59V5vG7TOTpjGxnPrif0gZ4EHtiPnlyC1/zJaD7OW7K3SfLZUnhrniFoo8Oqdus59pSDQUrQNkWUqHUBUkqHfkqklNfUsD+ZY3mc5zR2gX7OiHSFc9i1JoffP0x2mqAFMLlhfHFqGrlZlipR29ixFlnZeMvfZPyZhru/O/1mDSVsUISr3TotyvPKWX/XGo6sSEfzMNHnTUHs9e1c4kvZ0njybviJwO+vwmt0TUVlqh2/N4dDk5aiV+jErrgK09tL0BOz8VowGc1XCdpa+WYFvPCzIWhjw6t2VwnawR3hbSVomyJK1CoUCgWGoJ37kfMEra1Cx+SmoWka197diov+FUbL1o0/fxagPKeMddetIGdjNp5hXvT/aThBTl4utiHYOGUdR1ak4xXqRf9vBhF2QYu6T3IApb/vIX/SbwT9fB2eg2NrPVa3VJD11may3txM+LP9CJ7cDct9P6Hvy8Br4T1ofk3jGXIZs1bBtB9g2bMQ17JqtxK05wZK1CoUimbPztU5zPs4mZue70BknOMF7bqlOaxafJQpz8fi7eOGh6epyQjaksPFrL16OQV78vBp7cuAX0dgbt80l73t8WwvLAUW+r7fD78Y1wxilfywjcJ/LyJ4/kQ8+kbVfuyWDA7dvhT3cB/i5AQ82vhjuW8O+s40vBbdg2ZuGs+Qy5iz1lhcYenT0CmyareeUwQjX4WhneGtG5SgbcIoUatQKJo1u9Y4V9AunpPBwtnG4nNb1+bTb0TTKXtVnlPGqkv/oDi5CP/OgfT/aTg+UU23mL9/+wCG/lr/clkNTcmXmyh8ZhnBS2/BvVvNqRsVOaVkvr6JnC930vKNQQTd3AUAywM/Y9uSitfie9D8m0baisv4bSPc/5WxsEJXY7FGvcIG+9Phxk+UoD1HaPwzERQKRY1IKdX2WW7PnRHP+EfaEhnn6xS7f80/CkC/S8qrBG1juA/12V73+WqKk4swdwrA76WwKkHbGHyr7/b2F7ay6oaVrPlxNWDkM59uP4mJiQ3iT+7U+QQvMQTtccds3EjptkwyX93ItvO/Zm+br7GkFlL0XTeCbzkPTdPYOv8vrLMkXovuYdO+nQ12f87Vbf3J2egPXU7SzKXod36J3u9ZKvwnwaVvwGW92DShY5WgbSw+q+2at2tC1alVKJo26gN8lrwzaQc3P9ee0CjnRLoev2k3pcU2Xv6uM75+bk6x2VCk/PcgmyevpfX4WPp8NsDV7pwRK/+1jMw1GQz5eTjhZzixraHq1GaYXyQs/RFMZi9sRRYKl6VQMP8ghQsSwd2E/9i2+I+NxW9Ya0zexw+s2hKzKRv2AT6J08/Kh3MN3WKFfemwLQW2Jdv/psDhHOgRDRe2N/72iIFurdECm+5IQzNG1alVKBQKhaLbtB6U55YTeF6Qq11B13WOzthO4dJUilcfxqdvBP5j2xK6+Hy8OgerofA60I/kHS9ct6XA3jSIDjkmXO8abmxf9ira93dDtxhXu61wIErUKhQKhaLZECrC6j7IQdjKKyhefZiC+YkUzj+If4mV0n8yCZ7Ulej/XopboJrodSr00nLYfbiaeLULWavNLl6jYUgnmHIxdI1C8z3FfVQ/EJoFStQqFAqFol4Edgum87QeBHQJdLUrTQZLehGFCxMNIbs0Ga+OwfiPjaX196MpGPY5kTNGYFJVCwAjck3q0ZNTBxIyoH3Esejrfy41tiNVNFtxPErUKhQKhaJeBHQNIqCr64ftz4aDsxIoSi4k9vp2mGPNDd6/btMpkUeqcmPLDuRhvjgG/3FtifxoGO4Rx1ZcK2hw600HvbAUdqaeHH319jCEa49oGNMTHr8MOkeieaklfxV1o0StQqFQKJoNyXMSyVyTQfigiAYTtRW5ZRT+kUzB/IMULEzEPdQH/7GxRLwxGL+BrdA8mtaEwIZEt9kgIfOE3NdkOJwLXSKPpQ9c2Qe6t0YLV6MAijNHiVqFQqFQ1IvilCJytx7FJ8qX4PNDXe2O69B1PFIsZL6xiYL5ByndnInvoFb4j21L+LP98GzbPIWZnlME20+IvO5IhTD/Y+L1+gvh5fHQPgLNvfmKfYVjUKJWoVAoFPUie01Gky/pdabYSqwULU+hYH4irX9KQdPBck0wYQ/3xjwiGpNv8xke160V9rJZJ1QeyCmC7q2N9IFebeDmQUbZrCC/ujtVKBoAJWoVCoVCUS98WvvScmxrgnqFuNoVp1CelF+VG1v012G8e4XhP7YtR55uiSXGg16Xj3C1iw5Hz8g7Oe91Txq0DjkWfZ001BCysWFoJrWmk8J1KFGrUCgUTmTImBAs5Tru7k1v1nbYwAjCBp7ZggVNAd1qo3hNmpEbOz8R65Fi/C9tQ9BNXWj9/Wjcgo0FOixz01zsacOjl1mqlc2qFoEttx4Tr4M6wb0jjbJZfmpZXkXjQ4lahUMQQqwAlkopX2yAvhKBp6SUM8+2L4XC1YyZcO6KwqaINbOYgoVJFMw/SNEfyXi0DcR/TCxRX1yET98INLdzK/Ko6zocyjl54lZ8BsSFH6s88OBoYztKlc1SNB2UqFUoFApFvbAWWSk/WoabrxteoU07Upf7/W4KHl5B2e6jmC+Kxjw2llbvDMEjsuHLfLkKvagUdh46Ofrq6X4s+npJD3h0LHRRZbMUTR8lahUNjhDiQ2Aw0F8I8ThwCLgXeBnoCFiBP4EHpJQZ9nOuB54FWgPFwCIp5S1CiLlADPCFEGIGsEZKOUoI4Q48CtwKhAM7galSSmnvbyTwBhAHlAP/SClH1sP3ocCLQFfABsyTUt5are11oDOQBrwjpfy02rk97O19ADdgc6VNe9u7wPlADvAV8IqUssLe/jUwEggCUoAXpZSz6nO/FU2L+J1FVNh04rr44dbEUhDS5qU0yYliFQXlVSW3itccAdypKLAQ+VJ/fAdHYfJs2rPwdZsNErNOnriVehQ6tzq2aMHlvaF7NFpE86zOoDj3UaJW0eBIKacIIbpRLf1ACDEImAJsAcKAH4H3gAlCCF/ge2C0lHKZEMIP6G3va1wN6QfPYYjAS4AkDHG7SAjRQUqZA3wHTAO+ATyB/nX5bReei4HJwA+ACehnb2sLLALuAWYCAlgghDgqpZwjhGgFrMQQtVcDFmCI/dxA4A/gQ+BSoB0wHyjDEN4Aq4CHgVxgPPCdEOIfKeWuuvxWNC0+fzWZ0mIbL3/XGV9V0sgh6LpO+b5ce27sQUo2HMF3gFFyy/uQTtGWo4Te2wPzoKaXCqLnFcP2FPTleyG7EH3Ac0bZrCC/Y9HXa/rC81dDx5aqbJaiWaFErcIpSClXVXuZLoR4HSNaWYkF6GwXckeBv2vqSwihAQ8AY6WUCfbdXwohHgTGYojOcowobYSUMh1YUQ83JwNzpZTfVNtXed4EjMhrZds6IcSnwCRgDnATcEBK+Uq1c5fa/461+/OilFIHdgshXgP+g13USim/rHbebCHEw8AwQInac4y4Lr6Ul+mcY6maLsdWaqVo5SEKFyRSMP8gttIK/MfEEvpAL/wuisbN7AmAafkyF3taP3RrBexPNyKu26tFX7MLoVtraBsOnm7w2vVG2axgVTZLoVCiVuEUhBB9MNIPegK+gAaYAaSUxUKIMRgi7yUhRALwVi3D72H2c+cKIfRq+z0w0hcArgCeBLYLITKBz6SU79bhZixGJPlURAMHT9gXb7dTee6+Ws5Nsgva6udGAwghTMB04DqgJaADfkCLOvxVNEHufLKNq104Z7CkFlCwIJGC+YkUrUjFu1so5rGxRP88Fu8eYU1mgpOemX9y3uvuwxAVfCz6etsQ42/bFmgmE1piNqz5AG1wJ1e7r1A0GpSoVTgK2wmvZwM/AeOllPlCiMuAuZWNUsoVwAohhBtwOfCzEGK9lDL+FH1lAUXASCnlxlMZl1JuBa6zR3UHAUuEENuklLWFaRKBDjW0pQBjTtjXzr6/8txrajm3jRBCqyZsq587ASPiOwrYJaW0CSEkhvBXKBR29AobxevSjdqx8xOxpBZivqQNgdd2IOqrkbiH+rjaxVrRyyyw5/Ax4Vpajh73EFq55Vje64AOMHkEdG2NZm7ak/EUCmejRK3CUaQD7au9DgDygAIhRAzweGWDECICQ3gulVLmCSFy7U0V1fqqEptSSl0I8R7wphBikpRyvxDCDAwEtmOI3gnAfClllhAiB0MYV/ZXE58C64UQN2Hk/JqAfnbB/QPwtBDiZmAWRs7v3Rg5tmCkPEwTQjwGfIAxGW6IlHIpRv7su8CTQog3gLbAY3Z7lffGCmQCJiHErRgR7Xl1+KtogpQUGY+ht6+pyUQSXYk1u4TCRUkULEikcHESHlFmo1LBx8Px7dcSzf308ji6TetBeW45gecFOchje9mswzknL1pw4Ai0Cz8WffVwg5XToFNL9SwoFA2AErUKR/EO8LVdoB4C7gLeAp4C9mBMDBtoP9YE3IdR4cAdI4J5i5Qy0d7+IvCBEOIBYJ2U8lKMSgkPAL8JIVpjRG7XAffbz7kOeEsI4Q1kAM9KKVfW5rCUcqs9DeJFDGFqAX4HVkgpD9rbXrO3pQNPSyl/tJ97WAgxDCNH9jF7lxs5JtRH2e/Jwxji/mvgbftx3wIjgAMYlR++p5acYkXT5rnJ+45NFPNTk3hORNd1SrdlVUVjS7dn4ze8Nf5jY2n52kA8WvufVf+hIqyBPDXQi8vsZbNOqDzgpkHPGCP6Oqo7PDzGKJvl7Xns5Je2obUOUYJWoWggNF3X6z5KoVA0VtQH+Cx5Z9IObn6uPaFRzhnqffym3U1W1Kb896BDSnpVFJZT9GcKBfMTKViQiMnbDf+xbTGPicVvaBQmb9fHX3SbDZKyYFsKe3/8A//EPCKzrJByFDq1OhZ9tacR1KdsVob5RcLSH8Fk9jptf2yJ2ZQN+wCfxOlncDXNkG4Pweyp0C3G1Z4ozp4afwW6/j+FQqFQKJodZQdyqyoVFK9Jw+eCCPzHtiXsod54dgxyWPTy4KwEipILib2+HebYUy+0oOeX2CsOVIu+bk+BQF/oEY2bTwXp/VsTedsVRtksD/VVqlA0BtQnUdFssOfy1lQia6aUcrIz/VEomhO28gqK/z5kRGPnH8SWX455TCzBd3cnes4Y3AJOP1p5JiTPSSRzTQbhgyLwi/Y18lxPXDI2s8Aom1U5eev6C41FC0IMEbxnrjHHtU/X1rWZUigUTkaJWkWzQUqZjL2MmEKhcDyWtCIKFhi5sYXLUvDqHIL/mFiiZ12C9/nhaCbn5ZLqWQWwPYU2oYW06FiG7/2fwb5EaBVkCNce0XDLIGO7nVE2S6FQNC2UqFUoFApFg6BX2CjZeKQqN7Y8IQ/zqBj8r4wjcsYI3MN9He9DuRX2pp08cauoDHpE06ZHNNwUDT0GQtcoNP/GXQZMoVDUHyVqFQpFs8ZkgqxDZU6bKGayRyfXLc1h2LjQqtdNAZ/WvrQc25qgXiEntR39cgdHnliDe7gv/mNjafXOEHz7t0TzcM5kOH3pDnhoFuw/ArFhx1IH7htpbEeHNqoqA3q5Fd1qO3Of3Ezo+aXo6floLQMa1rlzkTILNKL3X+EY1PiKQtGEkVKq7bPcbj+slF/fSWTd3Aw2bnS83WHjQgH4/bsjfPZSMvk5lkZxH+qzneiVQr+ZQ4i7tzNSSipKjZq7csU6jjy+htiFV5D3TWdavjYIvyFRbNq65bT6P9NtvcJGyV2fwyNjIfsTNn03Hm32FLQnL2dTywq0GGN1sb8+WcmmhzdScqTk7O5DYuJZ+1zy+SZKzg9G8/M8o342px/AY+pQSsUb7Pxq4Vn7cy5v75o5zxC1nSIbhT9q++y3a0KV9FIomjbqA9wAHE0r44eX4olo48Pl97fB09uxv/e3rc9n9seHKS6swBzgxoQpUXTtc3b1V52NzWpjzRXLMHfwp2WYhmVXNtGzLnWJL/qsNfDRUlj1dI2RT5vVxtIRi8jfm0/P58+nw91nvrzsXPtEsXHjxp3R+bbCMrI7vEfQgpvwOL/VGfsBUDFvB2W3z8Jj+qW43zOoUUWjGw23fQydI+GxK13tiaJhqPEhV5FahULR7Alp5cWdb3YGDT57aA/Zh0sdaq9HvwAefTuODt39KMyv4POXk9m3rdChNhuavK1HydmURfqiQ2R9sJUWT/Z1iR+6tQKe+xWev7pWQZf4w0Hy9+bjF+NHu1vb13icMyh+Zy2ew9uetaAFcLusG95r/o11xmrKb/0/9JLyBvDwHCIjD/63ESZd5GpPFE5AiVqFQqEAPL1NXP1QLH0vDePzh/ayd31u3SedBUGhHtzzTBvG3RTBeb3NtO/m51B7DU1wnzCG/DGajmMjCBjYCu9uYbhk5G/WWqOCwYjzajzEWmRh1+vbAeg2rSduXq5b9MKWWUTxe+vwe6HhRJapfQu81/4brBWUDnwX28HsBuu7yfP5n3BNPwhtWiMhijNDiVqFQqGwo2ka/S4L54Zn4vj9o2T+/P4wtgrHCTWTSeOiK8O488mYqgljOVkWVi066hqBeJr4d/Sn/L97aDHNiNLufnEbW+5fh7XY6hT7usVqRGmfu6rWKO2+T/ZSmlFKcK8QWl8R7RTfaqLopZV4T+iOe9zJk+3OBs3PC8+ZN+N+ywWU9n+bisW7G7T/JonFCh8vhvtdkxajcD5K1CoUCsUJxHQxc897XUjcUcDM6QcoLnCsSKsUZDabzsz3U/np8zSW/pLlUJsNQe43u/HuEYpPnwhKj5SQMGMPyTMT+OuixeTvyXO8A9+tgrYt0IZ2qfGQ0owS9n60B4Ae03u5NOe0IjGHku+34vfUUIf0r2kaHlOH4TXndspvn4XlpcXG8r7NlV82QIdW0KONqz1ROAklahUKheIUmIM9uPXljoS38eGTB3Zz+ECxw22aTBqDLwkhorUX/UcGO9ze2aBbKsh8VRL+1AUAeEf4MGTJaMwdAyjYk8dfFy0ieVaC4+yXW+GF3+C5q2o9bufrO6gottJqdBQt+oc7zJ/6UPjMMnyn9MMtwuxQO26D4/Da+DAV83dSftWX6HklDrXXaHl/ITygorTNCSVqFQqFogbc3DQumdSa0be35tun9rN5ieOjp70GBPLY23GYA40y4hVWnRXzsrFaGlfELXfWXjzbBuA7ILJqX0DXIIb+OZrW18VSUVzBlvvWsfnetViLHBDp/vov6NwKbWDHGg/J35vHwf9LQHPT6P50z4b34TSwbEunfEk8vg8NcIo9U2QgXiseQGsdRGnfN7HtTHOK3UaDjIfUbLhcuNoThRNRorYRI4S4RQiRKoQoFEJcXctxw4QQzklicxJCiIVCiEcddbyjEEIkCiEmutoPRcPSbXAwd7zekb9/Sue3D5IcLjBNbseGyBfPyeB/X6fzzhMHSU8tc6jd+qJX2Mh8eSMt7FHa6ribPej9SX96fdgPNx83Un44yMqLFpG/q+Em3uml5fDib/B8jf8WAdj+wlaw6bSdGEdAB9cuUFD4xB/4PTkEU4BzFvkA0Dzd8fxwPB5PjaZ02PtYf9zsNNsu54OFcN9ocHfdpECF81Erip0CIUQscBCIllKmusgHd+BjYLyUcoErfHAlUsrTGjM63eNrQwjhDUwDJgBRQD6wEHhaSplS7TgdGCylXNVQthWNl/AYH+5+twu/vp3IF4/sZcK0OAJbeDrc7nl9/Nn0dx6HDpby1iPxXHlbSwZcHOzS3NC8OftxD/PBb3jrU7ZrmkabG+MI7h2KvH21kY4wcjHdXxPETGx39r5/sRJ6xaBdEFfjIRmrj5D2x2Hc/dw57+FuZ2fvLCn/KxHrrkyCfpngEvvuN1+AqXsryq7+CtuGZDxeHYd2Lou9I7nw+yZ451ZXe6JwMipSe4YIITS78HQULQFfYJsDbTQ6hBAeLrbvBswHrgJuBPyBC4EAYL0QIsrJ/rj0fiiOx9vXjeuntaPrwGBmPLib+H/yHW4ztqMvj7wZR99hgVjKdeZ8msZXr6dQ5ODJazWh23QyXzKitHWJ04AuQQxZOpqYG9tRUVLBPw+sZ/PktVgLLWduv6QcXpkLz9UcpdVtOtuf+weAjlM64x3uvOjoSb7oOoWPLcH8wkVoXq6LI5nOj8ZbPoxtx2HKLv4IPaPAZb44nM+WwvgLIcSxucuKxkejjtQKIczAdAyB0QJIAe4GNgGv2Pf7AKuAB6SUyfbzVgBLpZQvVuurKqomhJgODAbWA5Psh3wipXzWvr3V/nev/bzXpJQv2LcfBG4CugIjhBArgdZSygy7HQ1IAJ6RUn5fx/VdDTwDxAKJwHQp5a9CiP7A0hN8CJVS1jr2KIS4BXgeQ4j9DkyRUhba20KB14FRgDewHLhfSnnE3j4VuAcjMpkD/B/wlJSyotr9uw+4DegM7ARulVLuqc0n+7lD7bY7A2nAO1LKT+1tw+zXehvwHMb77H/ieyiE6IcRue6I8f4sAW6XUsba26uOrxZpvxl4AogG1gK3SCnrSiybgPFsnCelPGDfd1AIcZ39mp8DJgkhKp+RJUIIGzBbSln5LMUIIf4E+mG8r3dJKddUux93AlPtfiUAj0kpl9jbpgNDgM0Yz9lmQM10aERomsbg8S2J6uDLnDcO0v/KCAZfE+HQyKm3rxs33t+azr38mfPZYbZvKCD5QDw33h9Fxx7O/eIu+D0BzdMN8yX1m1Hu7ufO+R9eSOigcLY9tJHUHxPJ25bD0BWXnFm92E+XwQXt0HrH1niIJd+CV5g33hHedLy78+nbaEDKftuDXmzB+4buLvUDQAvxw2v+ZCzTF1Iq3sRzzm249Yt1tVsNS7kVPvkDFk9ztScKF9DYI7VfYgiDizAiZZdjF0UY0bMLgTZAFjDXHmWrL0OAZCDS3u+TQoiB9rbKGQWdpJRmKeUL1c67A7gOMGMIjnXALdXaLwaCgJ9qMy6EGIAhHB8HQoEngR+EEP2klGsxRHN1H+pKpnMDxgE9gC4Y4u9tuy0N+B/GkqrdMO5ZATCr2vmpGOIpALgCuJ1jgr+SW4GrgTCMHxgf1OETQoi2wCLgE/t13gq8IoQYf4LvY4DzgYhT9BEELABmAyHA/Rg/buriOoz3OQrwwxD8dTEGWF9N0AIgpbQA/8UuMKWUlc/IKPv7U/1e3Q48AAQCfwDfVruWO4HHMKLAwRhpDr8IIaovcTQE4zmPxrjfikZIu14BTH63C7tX5/DDSwmUFlc43GafwYE88lYcbTv7knfUyifPJ/H79+lOm0Sm6zoZL24g/Km+py3iY65vx9Bll+DfJZCoq9uckaDVi0rhtXl1VjzwDPJk0KyhjPzzEtz9XBe70a0VFD65FPOrF6OZGsfXreZmwvOFsXh8eA1l4z7D8unqJlETud78vM5YErd7jKs9UbiARhupFUKEA9cC3aSUB+27DwghTBgicpyU8pD92AeBo8AFGBG5+rBPSjnDvr1OCPEPIIDVdZz3ppQy3r5dIYT4DEOYvGHfdwcwU0pZVw2VW4GfpZQL7a/nCyF+xRBE6+t5DSfymJQyD8gTQjwDzBNCTAZ6A32AkZXi2D6pKksI0VpKmSql/LlaP1uEEN9j/Jj4tNr+N6pFw78BZtbDpwnAZinlN/bX64QQn2II5jmn8P1UXAYUYtx73e7fVxiRzNp4TkqZZfd3FieL9FPRAjhUQ9thoD41gT6VUu602/0CeFAIEWi/vqnA81LKykjvAiHEcuB6oHJkIUlK+ZZ9W6152YgJbOHJHW90YsGnKcyYupsbno4jPMbHoTZDwz2Z8nwsf/ycyeI5mSz7Xzb7txdx04OtCY/0cqjtwsVJ6KUV+F9Rcy5rbfh3CmTon6MxeR4TeLlbj+LX1h+PgHpk2nz8JwzuhNajfoLFu4X4zLJhAAAgAElEQVTr0g4ASr/9B1O4H56XdHCpH6fC/fLumFZFUHbVl9g2JOH50Xg073Mg2+n9hfDYFa72QuEiGsdPx1MTa/+774T9LQAvjOFlAOxD7BkYka36cuIwdBHGsH1dJJ7w+icgXAgxyD7EfyXweT36iabaNdiJ5/Su4USSqm0nYtynMKCtffuIECJXCJFrt1UKxAAIISYIITYKIbKFEHkYqQYtTui/+j2r7/2qz3XaMCK/NREFJNsFbSVJNR1cjTPxN9Nu71RE2ttP1y7VbLcFPqp8H+zvxfATbNbn2hSNBHcPE5dPacOQa1vy5aP72P7XUYfbdHPTuOTacO5/oS3BLTxIiS/lzYfj2bLacQse6LpO5gsbaDGtL5rpzFMt3Hzc0dyMr56Sw8WsvXo5K0csoiSt9jrAekEJvLkAnv1XjceU55az5rZV5Gxz/HtQF3qJhcLpy40orQsn9dWGqWM43uv+A4VllA16F1uS6+/bWbHhAKTlwjhVxqu50mgjtRwTjx2AXdX2ZwJlGKL3AFTl3oZzTBgVYAw3Y2+P5PSobSzvuDYpZakQ4luMCO1W4B8pZX0md6VwTLhX0o7axV1dtMEQjNj7LsNIzUjCEFchUsqTrk0IEY0Rdb0KWCilLBdCvIkRuT5bUjCG9Ktz4nXqJwjWEzmEkaeqVTvOUWNLi4AvhBBx1SLyldUorsWoglDJmYzZJQHPSinn1HJM4ypIqqgXvS8Oo2U7X2a/FE/q3iJG3dYaN3fHipl2nX159K045nyWxpY1eQSGOO5fetHKQ1gzSwi8tuGijrayCrxb+uAV7l33ZK4P/4CLuqJ1PXXFBYC9H+3m8IJUrAUWhvw0vMH8PBOKP1yPR98oPC907bK8daGZvfCcfSvWd5ZT2u8tvL6/CbeLXZuHfMZ8sBCmjAa3xhyvUziSRitqpZQZQoifgI+FELdiiIHKMa/vgBeEELuAXOAtYA+wwd6+CbhOCPE2RjTypdM0n4khLDpg5JrWxWeABAZwLA2hLr4FltqH+ZdiTOC6Chh2mr5W5xUhxCSMiWDTge+llDYhhMQQ3O8LIZ6VUmYLIVoAF0kpZ2PkB5swrtsihLgQY2i/IRYP/wF4WghxM0YOb2+MfNh7TqOPecD7wH+EEO9j5BvfBjgiiXEWxg+U/wkh7sB4lqIx3tdAjPtaSTrGM3I6Jb3eAaYLIfZjvCfeGKkhWfWZdKdo3ETG+TL5vS789PpBvnlyH9c+3g7/EMcO6fr4uXHTg1GM/FcYkbHHhGH2kXJCIxqu5Fjmixto8YSoirI2BH5t/RnyxygqSiqq+i3NKMHNyw2PwGO+63nF8PYi+PupWvvrdG9nbBYbMVe5dllUW24JRW+sJuSv213qR33RNA2P/4zA1Dua8hu+xf2Bobg/NrLRRphPSXouzNsM79/mak8ULqSx/5y5HfgHWIkRff0No9TVvzFE5EaMyV6tgMsrZ+pjCIfdGFHLfzBKNNUbez7s0xgTt3KFELVOo7SLkU0Yw9Oz62ljNUZu8JsY1QZeByZKKdedjq/VqMC4zu3AXoxZ9f+x27JhTP7SgE1CiAKMCW7D7O27gWcx7m8uxuS1H87Qj+Ow50OPAaYA2cD3GPVefzyNPnKBsRiTq3KAD4FvMCLRDYqU0gpcglE9YjZGhHsDUAJcUL1OLUYu9fNCiBx7nnB9+v8c473+GuNakjGetXMgmU0B4OvvzsTp7Ynt4c+MqbtJ3lXocJuaph0naHdtLuClKftZ9GNGg/RfvDaN8gO5BE1s+Aiem487niFGLrDNakPetpqVwxeRu7XaUPh7i+HSHmidax908wz2ouf08wnuEdLgfp4ORa+twvuKzrh3PjGDq3HjNqwDXhseouJ/2yi/+kv0/Ca0vO6nf8B1/SFYlfFqzmjn1KxHF2KfOFUupbzL1b40B4QQrwB9pJSjXO2Li1Ef4EbM3vW5/PpuEsNuaEW/y1o4LfK17Lcs5n5/hLE3hDPyqrMXVkmX/YZ5bFtC7+nRAN7VTGlGCeuuWUHe9hxMnia6vnA+sddEoXV8BNZNR2t/UnEUAErSivEM9sLN2zkLCsydOxeAcePGndRWcSif7B4fEbrtPtyiXLuK2Zmil1mwTP2FihX78fp1EqYuLV3tUu2UW6HNvbD0aejauNM9FA1Cjf9IG236QVNCCNERGI9RfkzhAIQQozCi0EeAQcBdwMMudUqhqINO/YK4620fZr0YT+qeIi6/vw2e3o4fIBtxRRgduvkRVS16m5ttITDE/bSFdcmWDEq2ZBL909iGdvMkvMN9GLxkFDue2kzil/vZ/tgmsj7bQq9Le+NZg6DVdZ31966lOKWI/l8Ncn2U9rnl+Ezq02QFLYDm5YHnjOuwfr2O0iHv4TnjOtyv7uVqt2pmzlpDzCpB2+xRovYssef9jgZekVLuqLY/huMnuFVnppRy8mnaqWkM8++GXCL2THCSb90wcqkDMEprvUG1+q/1paHfF4WiLkJaeXHXW535/YMkPntoDxOmtSM00vGlpqLjjpUWy8228Pp/4uncy8z4u1rh41f/iGbmSxsJe7g3Jm/nfF24ebvR882+hA2K4J/715EWbyWvNAyxJZvg80NPOj7tj8NkrcnEM8QTvzauHXq27s2i9NfdhO2b6lI/Ggr32y7E1CPSvrxuEh4vXdY4l9d9fyFMq712saJ5oNIPFIqmjfoANxF0XWfDvEyWz0rjXw+2oVO/IKfZ3rW5gG/eSqW81EZIuAc3TW1N286+dZ5XujObxIt+oWP8rZj8nJ/2XXjvbOQiK3k5JjQPE12f70W7uztVRZttVht/DF9Ewb58er5wPh3u6uQUv2pKP8i9ZjYeF0Th9+hgp/jhLPSsQsomfAs2Ha/Zt6C1qE91RCexfj9c/y4c+EBVPWg+1DjcpJ4AhUKhcAKaptFvXDg3PBPH7x8l8+f3h7FVOOc3yXm9/XnkjXZEx3lzNMPC+08fZNGPGVTUYT/z5Y2EPtjLJYJWz8jD778rGbRkFG3v6ohusbHjic1suOlvynONNUkSZyVQsC8fv1gzcbe2r6NHx2JZn4JlfSq+91/oUj8cgRZmxmvRPZj6taFUvEnFxkZUSvv9hTDlEiVoFYAStQqFQuFUYrqYuee9LiTuKOD76Qcozrc6xW6LSC+mvtSWi64MAx0W/TeTD59J5GjGqRetK9ufQ+GSZELudezksBp5YwFMuBD39uH0eE3Q97vBuAd4kD4/lRVDFpK5Kp2drxsZX92n9cDk6bphcV3XKXj8D/yeHY7mc24WMtHcTHi+PA6Pd6+ibOynWL9Y42qX4PBRWLAFbndtTWJF40GJWoVCoXAy5mAPbn25IxFtfPhk6m7S4mtfTauhcPcwMe6mCO55tg2BIe4c3FPM6w/Fs/TXTArzjhfXma9KQu7tjluAY5fePRV6ei58uRKeODa8HzkummF/XUpQ7xBKUopYd/MqyjJLCekdStQ4104QKl98AFt6IT63NuLJVA2E+7964v3XVCxvLafszh/Qy53zo+yUfLoUrh+gyngpqlCiVqFowkgp1XYT3d6yZROXTGpN74vD+N+nu07r3LPd7tjdzKNvxxHdsYLSYhvzZmbwzJ17+O6dVOJ3FrFxo8SWX87RD7fxz7gfKFhwEFt5hfPuz+x1ZA1ugxYVctx+vzZmfF8MJe7eTriHGmK76+Pd0TTNqe9dYmLicftLPtmI3xND2PTPFqf54MptU+cIvDc8RMm8bdg2p7jOn5l/s3NQ5Jmdq7ab9HZNqIliCkXTRn2AmzhLvz2E5qZx0cTTXc377NF1nd1bClm9OIddmwvQbaBp8MyMjgSHeWBJLSDv5wPk/7ifsj05+F/elsDxHfAbGePQ4X594ifGkri3DTl1u03n19g52MpsXBF/NR5m5w75V58opttsZLZ4jdAdU3Br1YgmUDkY3VJBSfBj+Bx+AS3Ap+4TGpqkTOj7BBz53HhoFc0JVadWoVAoGiNpCSX0GX1yqSpnoGka5/X257ze/uRklrN2aQ75OVaCwwyR6B5lZm1IJD2+6USct5X8X+LJfGkjqRMX4395OwKvdZDA3ZgAj11WY3P+vjxsZTa8w72dLmhPpGJXJqYQn2YlaAH0nWlobUJcI2gBlu+E4V2VoFUchxK1CoVC4ULSEoppFef6ovHBLTwZM+H4BQ4O7Czmz/9lIf/K5ZkZHQmbej5hU8+viuBmvlxN4I7vgN/FZy9w9bxiOJQDXU4dubbklbN88EIwaZjbuV5Ilv+dhMfgNq52w+lUrE/CdIELr3vZDhjRzXX2FY0SlVOrUCgULqIw14KlzEZQuKerXTkloeEeDL88lGHjQnFzMyJihflWfltYSPmVXWi36lrab7sR7/NbkPnKRva2/JzUW5dQMN/IwT0jNidCrzY1FvnP350HJsMX/7hGIGr/SsKzGYpa24YkTBfEuMa4rh+L1CoU1VCiVqFQKFxEekIJrdr5nPbStc4iJNyTK25pyfDLw6r2bViey6pFR3n9P/G8N+0gW+MrCLynpyFwt0/Ep3f4MYF7yxkIXHkQRNsam0MvbEHc/Z0BXB6p1XUdSzON1No2JOHmqkjtgXRD2HZo5Rr7ikaLSj9QKBQKF3E4vphW7epe2asxcV5vM0czLGxcmcvBPcUc3FPML1+l029EEAMuDqbFA70IfaAXlkOF5P98gMxXJak3LcZ/XDsCxrfHfHEMJq9avno2JsAVvWv1oftTvejy767otga+uNPElpgLFTbc4kJc64iT0QtK0ROy0bo7f3IjoPJpFTWiRK1CoVC4iPSEYjqIQFe7cVq0jPbmmjtbMW5iOJtX5bF6cQ6pB0tZ/ns2y3/PpmMPPwaOCqFbX39CTxC4Wa9t4tDNS2oXuPIgvHDNKW3brDY0zVgIwN0Fq5ydSGU+bWONtDsK2+YUTD0i0TxdJCGW7YDRPV1jW9GoUaJWoVAoXERafDFDrm2aQ6hePm70vziEC0cGkxJfyurFR9m8Ko9924rYt62IgCB3LhwZRP+RwQRHmY8J3MMnCNzL2hJwbQfMF8egFZZAdiF0iDilzcwV6cg7VhN7c3u6vnC+k6/4ZCx/N9d82mTXTRKrzKd99QbX2Fc0apSoVSgUChdQVlJBXmY5LaK9Xe3KWaFpGjHtfYhpH8UVt7Rk48pc1izJ4UhqGUt+yiJxbwn3To+tOt4j0kzo/b0Ivb+awH3dELhhvb0IahOBm8WG5nXylI/s1RlY8i0cmBVPcV4Zfd+/0IlXejLlfyfhc98FLvXBFdg2JOF2ZXfXGN+VCn5eEBvuGvuKRo0StQqFQuECjiSW0CLaBzf3c2fo2tfsxtCxoQwZE0LCrmJWL8mhZ/+AqvaUhBL2bCmk34ggAoI9ThK45XfNpDDHjbSWXxAwri0B4ztgHnUsRSFrdQa6BtZCK6UZpa66TADccy3Y0gtx737qqPK5jG1DEh6vjKv7QEegqh4oakGJWkWDI4RYASyVUr7YAH0lAk9JKWeebV9NASHEN4BVSjnJ1b4oHEtafDGt4prWJLH6omkacV39iOvqd9z+vxccZcPyXIoLK7jilpbHtXlEmnH3KMX3rUsxD+pqRHDf2ESqPUXBfEU7crdko2kaFy0ZhcnLcSua1Qf/XQV4DIhGc2teRYT09Hz0gjK0uLC6D3YEy3bA1f1cY1vR6Glen0aFQqFoJFSW82pOiCGBdL/AnwGjgqv2bVmdx4q5WRQVWKvKeVVGcNv9NZ4OOyfi268lKS9vRrfq+PmbcEvKxT/WrxZLjsd/V2GzzKet2GjUp3XJ5DibDVbuUpFaRY2oSK2iQRFCfAgMBvoLIR4HDgH3Ai8DHQEr8CfwgJQyw37O9cCzQGugGFgkpbxFCDEXiAG+EELMANZIKUcJIdyBR4FbgXBgJzBVSint/Y0E3gDigHLgHynlyDr8jgU+BfoBOnAQmABkARlAtJTysBBihN3/O6SUX9l9yQYullJuEEKEAq8DowBvYDlwv5TyiN2OL/A8cDUQCGwApkgpDwghHgVurHZPAAKllGdYxV7RmEmLL+b8ka5ZHtdVdOxhpmMPc9VrXddZ8lMmacllzP+/I/SKGcwAix+xul4lmjwizYRO6UlGHvDmToK6BpH11mZSbzEiuIGVKQrezv06899VgMcjzU/U2ly5ktjWJGgRAJHNq4Saov6oSK2iQZFSTgH+Bl6QUpqllJ2AMmAK0ALoDkQC70GVyPseuE9K6Q+0A76w9zUOSAYm2fsaZTfzHHAFcAkQCnwFLBJCVIZ/vgPexxCNUUB90iBettuKAMIwBHOOlDIb2ApUiuKLgQPVXvcDbIAUQmjA/zBEcTegDVAAzKpm53OgM3Ah0BJYD8wTQnhIKV8H/g/41n69ZiVoz00qrDoZySVEtG1ekdoT0XW49PpwOvcyY7HAxpZdeO/JRN54OIHVi49SWnLs8c9enQFAQYVGdq9oYjdcj2+/lmS9tZk9rb4gZeIi8n9PwFZqdbjfpuIKvFNL8egb5XBbjQ2XLrqwfKdaGldRKypSq3A4UspV1V6mCyFexxCilViAzkKIf6SURzFE8SmxC8cHgLFSygT77i+FEA8CY4GZGNHZOCBCSpkOrKiHm+UYIrOdlHI3sK1a21IMEfud/e/TwHt2X0YCy6WUNiGEAPoAI6WUZXZ/HwWyhBCtgVLgBqBNtcjtc8CDGOK4+n1SnMNkpZYSEOaJl49r80Jdjcmk0aNfAD36BZD5xFzWZgWw3hrB4cRS5nyWxu/fHaHPkED6Dw0gZ1M2ugZHtxwlZ0cu4u2++E7pSeiUnljSisj/5cCxCO7YWCOCO7qNQyK4/nsKKWrni1bbIhLnILrNhm1jMqa+Lloed9kOuGWoa2wrmgTN6xOpcAlCiD4YkdCegC+gAWYAKWWxEGIM8B/gJSFEAvCWlHJWDd2F2c+dK4TQq+33wEhfACOK+ySwXQiRCXwmpXy3DjcfwRCrc4UQfsBPwBNSykIMUfu1ECIEI4XiZ/uxPTFE7Q/2PtoCXsARQ99WUYqRRmGxv952QrsHEF2Hf4pziHN5ktiZErZ9H+PuGMqYyzqydV0Ba5YcJX5XMWuW5LBmSQ4B3dvRobQAn/2ZmNuaj5ug5dHKj9D7ehJ6XzWB+86W41MUGlDgmncVUNjVtUv0ugL9QBZaoA9aREDdBzc01gpYtQe+vtf5thVNBiVqFY7gxMUrZ2OIxPFSynwhxGXA3MpGKeUKYIUQwg24HPhZCLFeShl/ir6ygCKMaOjGUxmXUm4FrrNHUgcBS4QQ26SUy2pyWEqZiREBfkAI0Q74DSNv9xmMyHEocB/wt5TSIoRYCvwLI8J6h72bJLtvIVLKkxbwFEJUFlbsYLd3Kly88KfCGaQlNL3lcR2JruvG8rgzbsPdw0SfwYH0GRxIekopa5bksG5xNvmBfiSVW+gM+LerWVDWKnDHtiXw2rMXuP47C0kb3zQXzTgbbBuMSWIuYVMCxIQZObUKRQ2onFqFI0gH2ld7HQDkAQVCiBjg8coGIUSEEOJqIUTlhKhce1NFtb46VB4vpdQx8nHfFEJ0sPdhFkKMFkJECiE8hRC3CCHC7MfmYAjFWnNThRDXCSHa2oVwHkY6QoXdZgmwBngY+MN+yp8YaQPpUsp9le5h5N++b58whhCiReWkL/vEuFnAx0KIKHt7kBDiX0KIytkz6UA7IYT6bJ7DpMWX0CqueefTHkfqUdA0iAo+bnfLaG+uuqMVY0vS6bw7mVYexmCH2S5q/16QzZbVeVgtp/4tWClw2624hg67b8Z3QCuy3tnCnpafk3LjIvL/F3/aObh6mRW/+CIKOpvrPvgcw7YhCVO/WNcYX7ZD5dMq6kR9cSocwTuAEELkCiF2AncBkzAmTf0CzKl2rAkjApoohCgAPgJukVIm2ttfBCYKIXKEEAvt+57FiKT+JoTIB/YDkzn2PF8H7BFCFAK/A89KKVfW4fP5wEqgEKOawmaMCgqVLMUQ55WidgVGKsXSygPs0dkrMNIrNtmvZx0wrFo/dwJ7MSLTBcB2YDzG5DIwJsn5Adn2+9e8ky7PQXRdJ11Fao/HXsrrVGWiKsoqyJfZtErLoWucB2CI2rKSCubNyuDbt1PJOFxep4njBO6em/Ed2Iqsd09f4FrkIUqjvLH5Nr+PphGpdeEkMVXKS1EHmq7rdR+lUCgaK+oD3MTIPVLGZw/t5dGZPVztSqNBnzYHPNzQpl91Upsl30L8J3soSS0iJ76Ao5uyGfrrCAL7hLFheS4p8SVMuO9YFYJfv06nQzdfzuvtj8mt7lqqlnQjRSF/zgFKtmQYKQrjO2C+5NQpCkWv/sWBNdtJvjOGceNctKqWC9DLrZQEP45Pxktofl7ONV5mgbA7IOUTCHJtfWJFo6DGD7bKqVUoFAonclilHpzMxgSYOvqUTR4BHnR+rDsAv3f+BQBznD+eXiYGXXJ8vdLUhBJWzstm5bxsgsI86D8yiAsvCiYwxKNG0x4t/Qi9tyeh9/asErjZ7/1D6q1L8B8TS+C1HY0cXB/j67L87yQKejTD1INth9Hahzlf0AJsOACdIpWgVdSJErWKZoE9l3dXDc0zpZSTnemPovmiUg+OR9d1I/2gT2ytx5UdLaM8pxx3P3e8w71PeUxwCw8uvzmCNUtyyEovZ+HsTBb/mEm3vv4MHB1Ch+5+mEw1R2+rC1zrkSLyfok/TuAGXBWHZU0KBdd1PptLbpK4NPVA5dMq6okStYpmgZQyGXsZMYXClaQlFNNzRPNaSaxWDmaCnxday6CTmmwWGwkz9hI6oAU2e6KNuZ1/jUu0+vm7M+KKMIaNC2X/9iLWLMlh+4Z8tq0vYNv6AsJaejJgVDAXDA/CHFD71597hB+h9/Qg9J4eVQI35/UNeOZbCP7yKEUDzdhGWqsiuOc6tg1JuA1s5xrjy3fCY1e4xraiSdE8Po0KhULRSEiLL+bSO1VZ4io2JkDfU4ul3C3Z7HxmC+YOAbR/2JgkZK6lnFclJpNGp55mOvU0k3fUwro/c1j7hxG9/f27I8yflUGvAQEMvjSE2I51R80rBa6PtZjyDt6UBpQRMC+PPR9/jv+lsUaZsEtiz2mBa1ufhMe/hzvfcEk5yHgY1Pyi44rTR1U/UCgUCidRVlxBwVEL/qE153g2O7alQFz4KZvczR60uTmO1te0oTi1+Iy6DwzxYPT4cJ7+pCOTHo/hvN5mbBU6m/7K4/1pB0k+UFLvvizyMB49IigYE0D6S5F03HszvkOiyP5gK3tafU7We1vOyMfGjl5qQd+XgRZ9cjTd4WxOgOgwMJ865UShqI4StQpFE0ZKqbab0Pa2nVvo1C+IRZ+nNgp/GsP2rvPM8M3f6DtPvicB5wXR671+FIwoI2J4SzQPEwV+BVRW7TkdW25uGqXaXu6a1oanPu5Alwss3PlkDBFRnvXux+euPhS9tYaShUZpavcIPw72LaftsqsJf+5CUlfudck9dPT2ph1bcZ88kLIrv2DT32ud60OvWPB0J/nhT51rV2036u2aUCW9FIqmjfoANzFKCq3MmLqHERMj6Tk8pO4TmgH6t3/Dy7/DxufRAk5dGaI0o4SUnxLpcG8XJ3t3POWrk8gY+y0J/27HkGcnVu0/8tQaNE83wp/p50LvHIdus1F+xw/oqbl4zb0LzduJow2JGdD/Kfj2PhjV03l2FY2VGmd7qkitQqFQOBEfszvXP9mOBZ+mkJFc/6HvcxntlsFwUVe49TNOFWipKLGyasxSdk3bQsrsgwAUHy4mZ3uOs13Fc2Ab9j/RnnbvJFC2aH/VfsuhQtwjz92SU5rJhOcXE9BC/Sgb/xV6+emtxHZWxIbDj/+Gmz6EfYedZ1fR5FCiVqFQKJxMqzhfRt0exeyXEigrqXUF5+bDOzfC4Rx4ff5JTW4+7rS93Vgte8uUdSTOjGf5mD9YNWElRcmFZ2zyn7V5fP1mCgl7Ti9ft/A8f/Y/2Z68m3+pErbWw0V4RJnP2JemgOZmwvP7m9BMGuUTv0O3OvHZHdwFXroexr0GuUXOs6toUihRq1AoFC6gz6gworv48dv7SaeMTjY3NC8P+OkBeHcR+p87T2qPu7czHR48D71CZ/sjG/EO98a/vT8e/mc+DH5wTzFb1+az95/TF8aFXfwJ+m2CIWwX7MNyuOicjtRWonm44fnf29DzSo10BJvNecYnXQSX9ILr3wVnCmpFk0GJWoVCoXARl90TQ2ZKKRvmZbralUaB1joEZt0LEz9BT846qb3LMz2JuSkOW6mN0r159Jp+Pp7BZ77CVZ/BQVw3uRUXjDizWf2e/WMI+v0G8m79FS0xC49mIGoBNG8PvH6dhJ6YjeW+Oc79UfbWzVBhg0dnOs+mosmgRK1CoVC4CA8vE9c/2Y7ls9JI3auGVAG04efBfy6Faz5AL7Mc36Zp9Hy7Ly3Htsaab2X9DSspTi7EZrWRODvhtMVVTHsf+l8cQmi45xn763lhNIFzrsOvMAfruuQz7qepofl64jXvbmxbUrE8/D/nCVt3N/jvv2HuJvh6uXNsKpoMStQqFAqFCwmN9Oby+2P47ysJFOc7cfJNY+bhMRATClNPjsaZ3E2ILwYSOjCc0rQS1ly1nHV3rEZO3cDOV7e7wFnQooMpatmSgkm/UTZ3j0t8cAWavzdeC++hYtk+LM8u+H/27js8qip94Pj3TkmvlNCbgHRFPEoRdi2AStG1rQUVVFRExV6Xn+KquKvYy4qiKKKLXUQFKS42QH2lSO+hQ0DSSZvM/P64NxiQNEgySeb9PE8eb+bee847E8a8OfOec6qv43oxMOM+uO9dWLC27OtVyNCkVlUqY0yYMeZ9Y0yqMebPnx8eeu2DxpgZ1RVbeRljrjTGJBf7fqYx5t4ghqTquM59EunSN5GPntqM36/1tZZlweTr4ds1BCZ/96fz7gg3Pd/9CyLli0oAACAASURBVPHdEsnemEnWylQst8Wa51axeerGCvW1IzmXTyfvYtHco19JoWBHFq7j6pPwxZWkXzed3M9DKLFNjCJi9mgKP1pKwb/mVF/HHZvZS3xd/AwcoVRFhSZNakOAMaa1MSZgjGleDd1dDJwKNBORBqVdKCLjRWRoNcR0TETkXBF5srLaM8a8ZYyZVFntqbphwIhm5Of6+Xba7mCHUiNYsZHwyRi4dxqBxcl/Ou+ND6PXR6cT3SaGnI1ZxLa061kX3yvs/t+ucvezb1c+336xn19/SD/qWH3OJDHvKc1I/OpKMq+fTu701UfdXm1jNYwlfO4t+N5YRMEL31Zfx+eeBHcNgfOfhOzc6utX1Via1KrKdhywUUSObk/LSmSM0b1IVa3h9lj8/f42/PLVXjYuyQh2ODWC1akZvDIcLnqewO+ZfzofkRRJ70/OJLxRBDlrM4g/Po5AYYBFI38kbWX5Rl7bdo4CIHntAXwFRzeTv2BH1sHlvLymGQlfXUXmDZ+T+1noJLaupvGEz70Z3zP/wzdpQfV1fOcQOKEljHgFqnMlBlUjeYIdQCgxxsQA44ALgYbANuBG4FfgCefxSOAHYIyIbHXumw/MFZHHirUVAPqJyA/GmHFAP+AnYKRzyX9E5GHneJnz37XOff8GHnO+rgFigd+Bp0XkxTKeQ1RJsRpjXgJuAFzGmCzgIxEZUUpb44C+ItLf+T4ZeA04C+gJJAM3iMgC57wXeBIYBviBZ5z+HhORt4wxI4CxwETgNiAd6GKM6Qo8DfQAcoB3gYdEpMBp91TgFaAjsBSYfVic8yn2+htjWjp998Xe0WsGcJeIZDrnA8DNzmvbEVgJjBCRNU4ZwzDnusucLuKBE4AXgW5AIbAGGCwi1b+6vAqauPphXHxPGz58chOjnu9EfIOjn8BUV1iX9CTw8yYY9h8CX96N5T50LCa6dQy9PzqDX67+npOePoUNb6xn22db+XHYd5zx1QCimkaV2n5MvIfGLcLZvS2PrRtyOK5TxVcwOHw5L+/JTUn46irSBr0DgQARF3SucJu1katVPcLn3kze6S9ApBfPsFOqvlPLgok3wBmPwKMfw8OXVH2fqsbSkdrq9QZ2snYWEAecB+wCngV6OV+tgH3ADGOMuwJt/wXYCjR12n3QGHOac65oX8EOIhIjIo8CA4DhQE8RicUuGfihHP2UGKuI3AKMB+Y7/YyoQPxFrgXGYCd6c4C3i517ADjX6bsN0NyJobjW2K9Be+AUY0wS8C3wCdAM6I393B8AMMbEAzOBj4B6wB3A6JKCM8ZEAN8Aq5wYOjtxPH/YpSOAi4AG2H+8vAjglDG8C7ztvEYxIlIIvIydTNcDGgF3Avklv0yqrjruxFh6nZfEB09sotCn9bUAPPF3yPPBI58e8XR810TO/HkI9U9tiHm+J/V7NiBnVw4/DvuOgsyCI95TXLsuduK7YeXRfcDk25mFt+mhGy94T25KwsyryLzpC3I/WXVU7dZGrnYNCZ89mvy7p+P7ZFnZN1SGiDD49B544xv4eFH19KlqJE1qq4mTXP0dGCUim0UkICIbgE3YyeVYEdkhItnA7UAn7ESzvNaJyKsi4hORRdgjjqaU6/OBCOyRzAgRSRGRJWU8B1clxVqaiSKy0kn0JgHtnMQT4GrgSRHZJCI5wH3YI7bFFQD3i0iOUwJxNbBMRCaKSL6I7MAeab7auX4IkA382zn/C/YfHyUZAlgi8pDTRyrwf8Cww/4IeUpEtopIHvAWpf8swP55tARaiEiBiCxyXl8Vgvpd0piIGA+z39we7FBqBMvjhmk3w+TvCHxx5P9NuTz2rzN3hJs2f29DeP1w0lelsWjkj/jLKCto29keZd2w8ujecgU7svE0+/MIr7eHk9iO/oLcj/+8oURd5erchIivbiT/pg8o/KqannfjBPjsHhj1OixNrp4+VY2jSW31ae38d91hjzcEwoHNRQ+ISBaQArSoQPuHz4zIxi4rOCIRmQ88iP1xfYoxZrYxpqzEq7JiLU3x51H0G6boeTQDthTrOwc4fNX6XU4iWaQNcJoxJq3oC3gTaOycbw5sEZHiQ2KbKVkboOVh7c3DLkNoXOy6w59HiT8LxzXY78cfjDGbjTGPGmO0PChEuVwWF93dmlUL01jxg1agAFiN4uGDW+Da1wls2FPidVkbM1h2288U7srBG+9lz/zdLL5XSl1HtV0XOyFNXnvgqEbHjzRSW8R7UhMSZl1F5s1fkvtRCCW2J7UgfPpI8ka8S+E3h//aqyI9joOXr4O/PQUpRz/xT9Ve+kuz+iQ7/22P/dF1kb1AHnbSuwEO1t4mYX9sDZAJHBwGMMY0rWDfRxymEJHXgNecOtlx2B/RtyylnfLEWpV2UKzcwBgTiZ1oF3f4c92CXQ87uLQ2jTFWscS2dSkxbMEeFe9S7qj/7E8/DxHZjF16gTGmG3YpwmbsBFyFoKhYD5c9cBxTHtpA49aRNGgeEeyQgs7q3Z7AuAvtiWMLH8aK+vNuYjFt4+gyrjv+fD/1T2/Edxf9j+T3NhHdMppOdxz5bRub4CGpWRgpO/LZujGHNh1Kr8MtLhAIlLlFrrd7ExK+vpq0s6fYNbaXdC13+7WZu1cbwj+8hrxLJhP+2UjcfY6r+k7/3geWb4ULJ8C8hyBc5wuHEh2prSYikoJdt/mKs8SWZYxph71awBTgUWNMUyfBfBp7otDPzu2/An8zxjQ0xsQCj1ew+73YiVT7ogeMMacaY/oZY8KxE9VM7AlKpT0HfzlirUrvAPcYY9o4ta1PUPa/4SmAMcZca4yJMMa4jDHHGWPOcc5/AcQ47XqNMT2A60pp7wsgzFljN9b5OTYzxlxQgeexGzjOKecAO8Dhxf5YSQN8lPHzUHVfs+OjOeuqpkwbv4n8XJ3ZDcBNZ8GJLeHGySWOvra7tRPH39WF+ic34NRXemN5LLxxpSc3RaO1FS1B8KfnY7lduGNLn9TnPbExCV9fTeatX5H7fnA2iQgG91/bE/7OVeRd8Ab+X6tpx7VH/g5J8TB6ElTnFr4q6DSprV7XYte6foudRE7H/sj6DkCAX7AnezUBznPqSsGenLUa2Ojc/2VFOnU+pv8/4L/OR+b/wE7knsee6PU7MBC4tBzNlRVrVXoCe/LYz9gj37uAndhJ+RGJyG7gDOBvzj2pwKfYf0wgImnAYOznngq8APynlPYOAGdiTxBbg73CwjygewWexyTskfffnZ+H22nzV2NMNrAQeA87iVch7pRBDWjUJpIZL2+pvq1IazDLsuDVa2D5NnhlbpnXJ3ZNoF77WJL6JJV6XVFSu7GCk8UKdmbhPUI97ZF4T2xMwuyrybx9Zmgltmd3Iuy1S8kdPBH/ip1V36HLBVNuAdkEz1fjTmcq6Cz9n6SqrZzSh1Tgr0XLfoUgfQOHgPzcQibesYbe5ydhzjm84iY0BTbugT7/hE9vw+pzfInXLb39J7a8vZGIppH0mzmQwvxCAv4AccfHH3JdemoBD49cR3iEi/Fvd8TtsUpsc8YMeyPEoUOHkjV3K3uf+IU28y4qd+wFy/eQNvBtYp45h8jLTyj3fbWdb9qvFNz1GeH/uxXX8aX/kVEpklOg91h757GBJ5Z9vaotSnxz6kitqjWMMfWMMec4ZQLx2KOqydijxkrVWWERbi57sC1z3trJzg1B39ekRrDaNoI3r4e/v0Rgd1qJ13V74mTq925I7s4cvh86l2/OncMPV3xLbsqhO1DFJ3pp2CSMvFw/2zbllDuOgh1ZeEqYJFYSb7dGJM4ZTtads8h577cK3VubeS47Ge9jg8nr/zL+zb9XfYetk+CDO+Cql2BdNYwQq6DTiWLqEMaYB7FXRTiSc0Xk+wq0NQx7I4QjuVFE3q1geC7sDSM+xF66S7BLH8peiFKpWq5hiwiG3NSCaeM3ctPznYiM1f99W4O7Exh5Olz6EoG592N5//yauCM99PzvX/lhyFzSV6RBvJe49vF4ov98bbsu0RTk+8nOKH81lW9ndrnLD4rzdLUT29SB9uSxyGGhMZLouaYXgZwC8s56ifDvxuBqnli1HfbrBI9dCkP/DT+Nh4SK/6xU7aHlB0rVbvoGDjFfvrqVtJR8Lh/bFper5I/IQ0XA74chT0OnZlhPX1Hidbl7cvj+nDlkJ2fR4C9J9P7gDNzhh+5vU5Dvx+O17LrdUhQvP9h5y/8IPz6R+mMqUlb/B9/KFFIHvE3MkwOJvDI0EluAggnz8E1aSMS3Y7AaxVV9h2PehHW74Iv7wVORfY1UDaTlB0opVRecfV1zslJ9/PhxyWu1hhLL5YKpN8GnQuCDn0q8LqJRJH0+OYOIpAh+/y6FxaMW4ssuIHnapoMT8LxhrjIT2sP5dh5544Xy8nRJInHucLLunU3OO0uPup3axnv3WXguP5ncAa8Q+L0a9pl5ZjgU+uHeqVXflwoaTWqVUqoW8XhdXPrAcSz4bA+bl2cGO5wawaoXAx+PgZvfJrBqR4nXRbeJpfdHZ+CJ9bLjs6183ftL5LafWf/q2kOuy870cSCrfCUIBTuzS9x4obw8nZNInDeCrPvnkDMldBJbz0Pn4D63E3nn/IdAevnrmI+uMze8fwfM+BXe/KZq+1JBo0mtUkrVMglJYVx4Z2s+fHIzmfu1pBzAOqk1TLgcLnyeQEbJCVJ8t0R6/vcvuMNd5O+wJ939Nm4pO76ytyT+6r97+MeItfz0Tfl2civYkXVMI7VFPJ0a2ontA3PIebvUHcvrDMuy8P7rPFy9WpM3eCKB7BJXZ6wc9WLg83vh/vfgxzVV25cKCk1qlarFRESPQ/S4/cnxmHMaMOnBZfgK/EGPpyYcW8P7Qb8O7L3mhVKvb3BaIxIebIwLC5fPee1u/4kDO7LJzt+J22NR6AuU2FdycvLB44L9B3AnhFdK/J6OdmKbetdX5M1cV+mvT008tiyL365qhdW+IXmXTEYW/XxU7ZT7OHs3TB4Nlz/Pkvk/Vvvz1ePKOS6JThRTqnbTN3AI8/sDvPfoRuIbhDH05tJ2uA4dgbRs6HQfTL8D69S2pV6b/PYGlt7+M4FIN4WFARr2SaLPtL+SneUnoX7JO5AVnyi2Ouk12i8fhqdR5c2qz/9xC2kXTKPe/67B06Ua1nOtAQIFheT97XWsxnGETbq8wrXNFXbja+D3w+ujqrYfVRV0ophSStU1LpfFxXe3YePSDH6dvS/Y4dQIVkI0PHkZ3PQWgcLStxZuPbwd3cb3oO9HpxPeIJy9C1LY9Mb6UhPaw7mivfizfcca9iHCTmtF7NNnkzb0Xfx7q2ESVQ1ged2Ev38Ngd92UjBuZtV3+NSVMGc5fB06NcyhQJNapZSqxSKi3Vzxf22Z/eYOtq8NjQSoTFeeBjHhMLHsCUFtb+pIwz6NMM/1BGDF+GWkrUjFXxhg8Y/pbFpT+mYXrigP/gOVX9cceVV3wi/rStqF/yWQV7lJc01lxYQT/uWNFL4r+F6v4k0i46Lg9Rvh+omQrhua1BWa1CqlVC2X1DKSv93Wiv8+vlEnjmHXafLycBj3CYE96eW6p8mApjTs1ZBAQYBFNyzgxy/3MeWZ7XwxtfSl06pipLZIzGNn4WoYTcaoGYRKqaCVFEv4rJvIf+grCr9YUbWdDTgBzj0J7ppStf2oaqNJrVJK1QGdeifQY2AD3n9i08GJY6HM6toChveDe6eV63p/gZ9ARj4EAmRtzCTyxy1ExbjZtPoAG1eWPAJuJ7VV84eE5XIR/85F+Jbu4sCEH8u+oY5wtWtI+GcjybvmXQp/3lK1nT11JczVMoS6QpNapZSqI864ogkR0W5mvb492KHUDA9fAN+sIvBd2cs3ubwuen9wBl3v7YblsUh+awO929ijo7M/3lvyfdFVU35QxIoOI+HzYRx4biG5n4fOMlTunq0JnzyMvPNfx7+h5Nf/mMVFwSQtQ6grNKlVSqk6wuWyuPieNmxYksFinTiGFRMBzw6D0W8RKCi7RCC8YQQd7+5Kl/u62fd/uo6IMFi7LJst64+c8FhRXgJVVH5QxN0inoRPLydj5HQKlu2u0r5qEveQroT9c5C9OUNKFW400l/LEOoKTWqVUqoOOThxbLJOHAPgolOgWT14YXa5b+lwc0eandsMV66Pjgl2Kcecj4/8R4Ir2lNl5QfFeU9tTtyLg0g7710Kd4fOTnKe6/vgHmbszRmyqnBzhqIyhFlahlCbaVKrQoIxZr4xZmwltDPTGHNvGdckG2OuLOX8g8aYGccai1IlSWoZyXm36sQxcCaNvXQ1PDGDwPb95bvH7eK4YW3x/Z5P9MercbtgxS+Z7EzO/dO1VVlTe7iIS7sRec1JpF/wXwK5ofNz9Y47F+uEpuRdOpmAr3zbF1dYURnCDVqGUJtpUqtUBYjIuSLyZNH3xpiAMaZvBdsYLyJDKz86pf7QuU8CPQboxDEAq31jGN0f7ny33Pc0GtCUE587lbACH21XbyMiJ485n/y5ttMV5cV/oPqW3Ip+6HRcLRPIGDk9dFZEsCzCXr0U/AHyR71fdc+7/wkwSMsQajNNapVSqo46Y5hOHDvogaEgmwnMXl7uW1pd2Zakwc1I2ptGh7XbWPJDOnt2HPoReHWVHxSxXC7i37oA37rfyR7/XbX1G2yW1034h9cSWLqDgkeqcHOGJ7UMoTbzBDsApaqbMaYl8AzQF3ub2RnAXSKS6ZxvCPwLGAAkABuAy0VkrTFmPjBXRB4zxixzmpxtjPED00RkpPNYS2PMPKAnkAzcICILnPbHAX1FpL/zfTLwGnDWka5X6mgVTRx79fbVLJ69jx4DGwQ7pKCxIsMIvHg13DKFwPLxWOHl2zWsx4u9SDnlC3LDwgCY9fZO6nX747wr2kvBruqtXbYivSR8djn7e76Gp2MDIi7qUq39B0vR5gy5fZ7F1zwBz8g+ld9JURnCtf+B5U9DfFTl96GqjI7UqpBijIkAvgFWAW2AzkBz4HnnvAv4HDuZPcX57wjgTzMzRORE53CgiMQUS2gBrgXGAPHAHODtMkKr6PVKlUvRxLGvdccxrMHdoUszeOrLct8TnhjO4OXn065bNABLJZsDO/741WlFewlUY/lBEXfTOBKmX0HGqBkULN5Z7f0Hi9Uozt6c4f++ovDLlVXTiZYh1Fqa1KpQMwSwROQhEckRkVTg/4Bhxhg3YJyva0Vkj4j4ReQ3Eanob42JIrJSRAqBSUA7Y0x8JV6vVLkltYzk/DGtmDZ+I1mpoTPB6IieuxKe+5rA5pRy3+KJ9HDGm31oUXCAsLwCtk+LIpBj13W6oqq3/KA4b4+mxE08j7Tz36NwZ0ZQYggGV/ske3OGEVOrbnOGp66CeVqGUNtoUqtCTRvs0oC0oi9gHnYZQmOgNZAiIuXbW7Nku4odFw2PxVbi9UpVSOc+CZzUvwHTxof2xDGrVQO461y49Z0KTTjyRHvoPzSRkxevo9XKPQReyMGfX1itqx8cScSFnYm66RTSzn+PwIH8oMVR3dw9WxP25hVVtzlDbCRMGqWrIdQymtSqULMFWCciCYd9RYjIDux61iRjTFw52wuN6ceqTjg4cWxSiE8cu2sQbEyBzxdX6LbWf0nC47XABf5VhSwZ8xNWlAd/FW++UJaoB/6Cp2ND0kd8SsAfOn+weIZ2wzvu3KrbnOGsbnYZwp1aDVZbaFKrQs0XQJizVmysMcYyxjQzxlzgnBdgMTDJGJNkjHEZY04wxjQtob3dQPvqCFypY+VyWVx0d2s2/JrB4jmhu+OYFeaBl6+G26YSOFD+Bf3jO8ZzwkPdASj0Wuycv5uCHH+VbpNbHpZlEff6efi3Z5D9z/lBjaW6eW88DfflJ5M3ZCKB7CrYnOGpq2DeCi1DqCU0qVUhRUQOAGdiTxBbA6Rjlx90d877gaFADrAUSAPeBGJKaPIfwD+NManGmIlVG71Sxy4yxsMVD7Xl6zd2sH1d6E4cs87sAn3aw+OfV+i+tte2p+C4MMAiv14UkS2igz5SC2BFeIn/9HJy3lpK7rTyL1tWF3j/OQirSxPy/l4FmzPERsIbWoZQW1ihsnizUnWUvoHVUVm1II2vJm5l1HOdiEks3/JWdU1gVxqc8CB8PxarY0kfxvzZ1Gdn4Z6QiddXSOdbO+CZupwWcy8isnl0FUZbPgW/7Sa1/9skzrgCb88WwQ6n2gQKCsk77zWs5gmEvXaZvZNcZbrpdcj3wRs3VW676miU+MPVkVqllApBxSeOFfpC828jq0kCjD3fXru2AgM88e0KCFwWCcCaievZmQpzT/mC3xeWf0WFquI9oTHxb5xP2oXTKNx2rPNda4+izRn8i7fh++esyu/gySvtMoSZSyq/bVVpNKlVSqkQdcawJoRHuZn5+rZghxI8N/eHfZnw/qIK3RZ7eoDWVxyHP99Pqt9DYV4hmetqxrJa4UM7EnVHb9LOexd/VhXUmdZQVkw4EV+Owvf2z/jeWFi5jR8sQ3gN0kK3bKem06RWKaVClL3jWGhPHLM8bnhlONz9XwIZORW6t/tjJxHRLIpCl4sml7Sm9fB2VRRlxUXddRqek5qQcdUnIbUigtXY2ZzhH19Q+FUlb85wVjcY0kM3ZajBNKlVSqkQphPHwOpzPJzdDR7+uEL37drj46cGTQgA26ZvJeWHPQBkbcigID24a8ZalkXcq0Px7z9A1th5QY2lurmOdzZnGD6Vwl8qeXOGJ6+Eb7QMoabSpFYppUKcveNYS6Y9HsI7jv3rUnh3AYHftpb7luZtIog7oR5bWyZBAH65dREp83fx3cDZ/Hz19/jzK3kmfgVZYR4SPr6MvPdXkPNOaC1J5e7VhrA3riDvvErenOHgpgxahlATaVKrlFKKzn0S6X5WfT57voq2Ha3hrIZx8OjFcPd/y3+PZTHgogZsa5FETr0o6p/SkLAGEbjCXOz7bg+b31hfhRGXj6tBNAkzhpF519f41oVWiYnnPGdzhsETKzQRsESBAKzbCTv2298/VrGRfVX1NKlVqhYTET3W40o77n5mffZtz60x8VT78ZmdyV2zrczrk5OTDx5n5a8Hy2LdScfhvt5LQtdE2o7uCEDO9uwa8bw8nZM40DaKws2pNSKe6jz23niaPVLrD1S8nfQDrHvpQ/jnRzDoCXyJw2Hg4/DVErZeciKMPrtGPMdQPC6JrlOrVO2mb2BVafZtz2XquA3cPqlrsEMJisD63TBoAtb6CaVeN2PGDACGDh1KVrqPsdeuJTraxeNTOgGw4eXVrBy7hLajO9D18ZOrPO7ySD37baLu7EP42aG3AeIB921E5j+L5S5lHK/QD6u2w6J1sGi9/bVlL5x8HPRqD72Ph57toUli9QWuSlLiOrWe6oxCKaWUqovc+T5Sf9tPWEJYsENR5bE3A35a/0cC+8sGaJQAvdtDr+PhlnOgawvwappUm+hPSymllDpG8XszmDdgJa0ubU1ih/hgh6MO9+smO3FdtB4WrrOT2p7t7VHYOwfbx/Vjgx2lOkaa1CqllFLHyOd1k9AtkagasFVuyNu5/48R2IXrwO+Ha1+xSwhO7wL3/w06NoPSyhFUraRJrVJKKXWMMpLi6T+lF2DX1KpqkpsPS5LtWtiFTj3sgXx7BLZXe3j4Yjj7DVg2QZPYEKBJrVJKKaVqvkDAnry1sNhkrhXboGNTO4E9z8D4K6BtI7BKnEuk6jBNapVSSilV82Tnwi8bnQTWSWQtyy4j6H08TOhlr04QFR7sSFUNoUmtUkdgjBkBjBWRmrOZu1Kqxqq3Yz8fNZqmE8WOViAA63YduqTWul1wQks7gb2iL7xwLbSor6OwqkSa1KoqZ4yZD8wVkccqoa1k7GRz6rG2pZRSxyoiysWAdWuJGdqWvSuCHU0tkpYNP2/4I4H9aT3ERTq1sMfDiNOhe2sI9wY7UlWLaFKrVDUwxliAW0R8hz3uFZGCIIWllDpGHq+Ltvv3423Rib3OY/VOaUDHB7qRaBoENbYa4/CNDRaug22//7GxwQ1nwRujdGMDdcw0qVVVyhjzEtAP6G2MuR/YAYwGxgPHAz5gHjBGRFKcey4DHgaaAweAWSIy3BgzA2gJTDLGvAosEJGBxhgPcC8wAkgCVgK3ibOnnjGmP/AU0BbIB5aKSP9yxn8fcDvgBt4B7i9KQo0xLYFngL7YO3vNAO4SkUznfMC59yqgC3CGMWYa8CZwBnAKcL0x5k2gj4gsKdbvd8AcEXm0XC+0UqrGqHdqQ+qd2jDYYQRP8Y0NFq6z62KbJPwxCnvrufbGBh53sCNVdYwmtapKicgtxpiuFCs/MMb0BW4BlgANgA+A54HLjTFR2Mnj2SLyjTEmGujhtDW0hPKDR4D+wDnAFuzkdpYxpr2IpAJTgH8AbwFhQO9yht8KO4k+DmgKzAR+B8YbYyKAb4D3sJPWCOBd53lcW6yN64ALgGT+eL9dD5wHLHXuOxcYCdzsvD7HOzFeXs44lVJBkp/nZ0nTpiSszQl2KMFR4IPftjorEjgjsfsy4dR2dhJ791D7WDc2UNVAk1pV7UTkh2Lf7jbGPIk9elmkAOhojFkqIvuB70tqy/lYfwwwWEQ2OQ+/YYy5HRgMTMUenW0LNBKR3cD8cobqB+4RkRxgoxPnvdijzEMAS0Qecq7NMcb8H7DAGHO9iBQ6j08QkY3OcaExBuD1YqOyOcaY14AZxpi7RCQXOxGeJSI7yhmnUipI8nP9/NSyFS2Wp9HKeSxrUyaZa9KJbh1DXOeEoMZX6Yo2NihaVmvJZmiTZE/mOrMrPHihvcSWS9eEVdVPk1pV7YwxJ2MnhicCUYAFxACIyAFjzCDgTuBxY8wm4GkRea+E5ho4985wPu4v4sUuXwA4H3gQWG6M2Qu8JiLPlSPUFBE5UOz75GJttgFaGmPSDrsnADTGLrMouudwhzwmIj8YY3YCFzvlCcOBG8oRn1IqyLxhFt13JKuTewAAIABJREFU7qDeSfXJdyaK7Z65nZVjl9B2dAe6Pn5ycAM8Frn5sHjzoUtq5eT/UUYw7hI4pS3ERQU7UqUATWpV9fAf9v004CPgEhHJMMYMwa5HBUBE5gPzjTFu7I/pPzbG/OSMeB7e1j4gG+gvIr8cqXMRWQZc6ozq9gVmG2N+E5Fvyog7yRgTVSyxbQ1sd463AOtEpEsZbRweb0mPTcQeoc0CCoEvy2hXKVUDhEe66bV1K96rW7DkY/ux6DaxND63GbEda9EobSAAyXsPXVJrxTbo1Ew3NlC1hia1qjrsBoqv9xoHpAOZzmSr+4tOGGMaYSeec0UkvdhIaGGxttoXXS8iAWPM88AEY8xIEVlvjIkBTgOWYye9lwNfisg+Y0wqdlJZ1F5pXMC/jTH3Ak2Au4G3nXNfYI8kPwi8iJ2MNgVOFZFPy/WqHOod4AnsCXKTi5UvKKVqmSaDmtNkUPOyLwymrFyQwzY2cLmgtzMKqxsbqFpIk1pVHZ4FJjsJ6g7sj9afBsYCa7ATutOca13YE6YmOasabAOGi0iyc/4x4EVjzBhgkYici50IjgGmG2OaY4/cLgJude65FHjamdyVAjwsIt+WI+4t2COzm7FXP3gXeBIOlkmciZ2IrgFigZ3A+0CFk1oRSTXGfIQ96ezCit6vlAoOX4Gf7XHxRO+pwSvz+f2QnQdzfoPP5v+xscGJrexR2GH94MVroblubKBqNysQCJR9lVKqyhljxmEv7TWwArfpG1hVmn3bc5k6bgO3T+oa7FCCIrB+NwyagLV+QqnXzZhhV0sNHTqUrHQfY69dS4u0NFqt2EarS1vT/fGT8WUU4Inx4I0Pq47QD1V8Y4OF6+Cn9aTmNCKqZz3CL+xqj8Se2CpkNjY44L6NyPxnsdw6ea2OKPEvLx2pVaoGcMourkcniClV622ZsqH6JooV39igaEWCbb+DaWuPwo4aAJNHw/DpcGcfOLt92W0qVUtpUqtCklPLu6qE01NFZFQ1xvIMcCPwjojoBDGlaiGf101Ct0SimkdXbUd7Mw6dzPXLRmia6KxI0B7GDNKNDVTI0qRWhSQR2YqzjFiwicid2EuYKaVqqYykePpP6QXAhpdXV06jBT5YtuXQyVz7MqFne93YQKkj0KRWKaWUqgl27D90FHbJZjiukZ3AntkV/nEhdNCNDZQqiSa1SimlVHU7fGODhevtx3q1t3fneuTvYI7TjQ2UqgBNapVSSh3k9wcIBAJYurRThdTbsZ+PGk2j1aWtSewQ/+cL0rJh5pI/b2zQ+3g4/xR44gp7VFZfd6WOmn6GoVQtJiJ6rMeVdhyT6MUb7uKJK37ly1e3smlpBj//VDNiq67j3LzcMq9JTk4+eLx02VLKIiLwwkx48nO2kQNPXw17JyGvXmyvDzusH5K6/WBCWxXPKz0jo9LbrC3Hxdc9rAnx6PGxH5dE16lVqnbTN7CqVIFAgL3bclm1II3VC9JIS8mjw6kJdOqdQLsecXjD6+5YyLGsUxsdZfHYlE4AbHxlzZ+X9Hr4A3BZ8PAlVfocSpJ69ttE3dmH8BBc0kvXqa1zdJ1apZRSZbMsi6SWkSS1jOT0y5qQlpLPmkVpLJyewsdPb6Zt9zg69UmgwynxRMbqr5CDLEtLNpQKMv0/klJKqRIlJIXR67wkep2XxIEMH2t+SmPlD6l88fJWmneIplMfexQ3rn4Qds5SSqliNKlVSilVLlFxHnoMaECPAQ3Izy1kvWSwamEa86bspH6zCDr1SaBz7wQaNI8IdqjVLi4lnXkDv6bxgKaER+mvVqWCQd95SimlKiwswk2Xvol06ZuIr8BP8vIsVi9M48371xER46Zzb3sEt2n7qDr9sbw3zKL7zh3UO6k+qR+nEtcxnvAjrX6glKpymtQqpZQ6Jh6vi3Y94mjXI47BN7Vgx7psVi1I48MnN+Mr8NOpdwKdeifSqmsMbnfdSnDDI9302roV79UtWPKx/Vh0m1gan9uM2I4JwQ1OqRCjSa1SSqlK43JZtOgYQ4uOMQy8phkpW3NZvSCNr9/Y/sdKCn0SaHdS3V1Jocmg5jQZ1DzYYSgVcjSpVUopVSUsy6JRq0gatYrk9MvtlRRWL0xj4Wd7+HhCsZUUTo0nMqZ2/jryFfjZHhdP9J6CYIeiVMirnf8XUaoWMcbMB+aKyGPBjkWpYEpICqP3+Un0Pj+J7HQfa39KY8X3zkoKHaPp3CeRjr3ia9VKCrkH/HzRuTMtvk+jlfNYQWYBvowCPDEevPG157koVdtpUquOWWUmbcaYZGCsiEw91raCobbHr1R1iY730GNgA3oMbEBeTiEbfrVXUpj79g4aNI+gY+/asZKCy2PRLD2Nhkneg49tmbLhz5svKKWqnCa1SlUCY4xXRPTzR6WOQnjkn1dSWLUg9dCVFPok0LRdzVtJISrazdDVq/FedBpLvrEf80R7iWgaiSdOR2mVqk6a1KpjYox5CegH9DbG3A/sAEYD44HjAR8wDxgjIinOPZcBDwPNgQPALBEZboyZAbQEJhljXgUWiMhAY4wHuBcYASQBK4HbxNkI2hjTH3gKaAvkA0tFpH85Yu8HPAF0BlKBV4BnRCRgjIkCpgJ9gChgA3CfiMxx7h0BjAUmArcB6caYTUeK3+ku0RjzMTAQSAHuFJHpxphEYCfQR0SWFIvtO2COiDxa5g9BqTqk+EoKQ0YH2L42m9UL0/jw35vxFQTo1DuBzn0SaNml5q6k0HpEO1qPaBfsMJQKOXVz6qmqNiJyC/A98KiIxIhIByAPuAVoCHQDmgLPAzjJ4jvAzSISCxwHTHLaGgpsBUY6bRUlhI8A5wPnAPWBN4FZTkIIMAV4AYgHmgFllkEYYzoDX2Enww2BwU7MVzmXuIBPgPZOn/8FPjbGNCzWTGvnubUHTiklfoDhwNNOjC8BbxtjokQkFfgQGFkstuOB3s7zVCpkuVwWLTvFcPa1zbnt9S5c9c92RMd7mDVpO08O+41Pnklm9aI0CvL8QYvR7w+Q53aTnx8IWgxKKZuO1KpKJyI/FPt2tzHmSQ5N0AqAjsaYpSKyHzspPiJjjAWMAQaLyCbn4TeMMbdjJ6JTsUdn2wKNRGQ3ML8cYY4GPhSR6c73a5xR56uBKSKS5bRd5CljzH3AKdjJcNHzuF9E8srR3/sissB5Tq8Bz2Anw8uA14AZxpi7RCQXuA579HpHOdpVKiT8aSWFPXmsXpjGgk+dlRROiqNznwSOP6V6V1I4kFnI5FNOpcXnqQcniimlgkOTWlXpjDEnY5cfnIj90b0FxACIyAFjzCDgTuBx5yP7p0XkvRKaa+DcO8MYU3woxItdvgD2KO6DwHJjzF7gNRF5roww2wBnGmMuLPaYC9jmPIdI7FHcQU4MfiAWe1S3yK5yJrQAu4oORCTbGIPTHiLygzFmJ3CxMWYa9qjuDeVsV6mQlNAonN5/a0TvvzU6uJLC8u9SmfHSVlp0inE2fEggtp637MYq2eY317P238tpPaIdHR84odr7VypUaVKrKsPhn/1NAz4CLhGRDGPMEGBG0UkRmQ/MN8a4gfOwP9b/SUQ2HqGtfUA20F9EfjlS5yKyDLjUGdXtC8w2xvwmIt+UEvMW4E0RubmE83cCfwHOApKdOtt92Al6Sc+7pMfKYyL2CG0WUAh8eZTtKBVyDl9JYf2vGaxekMact3fQsHnEwTrc+s2qZyWFwhwfeSm5+LJ07qhS1UmTWlUZdgPFZ0XEAelApjGmJXB/0QljTCPsxHOuiKQbY9KcU4XF2mpfdL2TTD4PTDDGjBSR9caYGOA0YDl20ns58KWI7DPGpGInlkXtleQV4FtjzCxgFhDAntjWUES+dZ5DHvA7EOaUHpRnz8tD4q+Ad7AnrT0MTBaRsuJXSh1BeKSbrn0T6eqspLD5t0xWL0xj0r1riYrzOAluIk3aRlbqSgr7myZy59w+AGx8ZU2ltauUKj+dKKYqw7OAMcakGWNWYn90PhLIxJ5s9WGxa13AzUCyMSYTeBkYLiLJzvnHgCuNManGmJnOYw8D04HpxpgMYD0wij/+/V6KXRObBXwOPOwkpiUSkRXAEOB27NKAFOAt/igveAZIw16ZYCP2Kg3Jh7dzBEeKv0zOhLGPsEs23ijvfUqpknm8LtqfHM95t7TinndO4PwxrSgsCPD+vzbx9IgVfPnqNjb/lklhYSVM8rIsLOdLKRUcOlKrjplTFtD1sIenH/b98861u4AzS2nrK/6YiFX0mA87yXymhNsGVSTeYu0uxC4vONK5PcCAwx6eUOz8W9hJ8OH3HSn+049w3ZF+823GHsHeXHrkSqmKKlpJoWWnGAZe24yULbmsWpDGzNe3kb63gI494+nYOkBby4WuLqtU7aRJrVI1gFOWcT06QUypKmdZFo1aR9KodSRnXNGE1D15rFmYxoJvUvikzQW0Hb+RTr0T6XBqPBHR7nK1GZeSzryBX9N4QFPCo/RXq1LBoO88VSc5tbyrSjg9VURGVWc8pTHGPAPcCLwjIjpBTKlqluispNCrS4DsodNYa+5g+bf7mfHSlnKvpOApKCR1RSpxHeMJ7xBfjdErpYpoUqvqJBHZirOMWE0nIndir7aglAqy6MI8Th7YgJMHNiDvgL2SwqoFqfZKCi0i6Nw7gdxcNxHxh87lTG8Yx5lfDyQ8MYxdX2wLUvRKhTZNapVSSqkjCI9y07VfIl37FVtJYUEaq79tgCfCT2TqDlqfEAdAYZiHet3rBTlipUKbJrVKKaVUGYpWUmh/cjy0+o2sPV58Bc357PktgEV+np/NyzNp1blWfECkVJ2kS3oppZRSFWBZENu4gHOua86Nz3YAIDYjmx9uWMh/zvqO5F2+IEd4KP/+AxRuywB36P3KL5St9g9MhYTQ+xeuVB0iInqsx3pcice5ebllXpOcnHzwePmKZTRLT6N1AkRu2k+rOD97fj90Y8FgPq+8L9fy+wmvkHZCDGF/aRX0eKrrePH/FpB/8wfkDX2N7eP6YDkJfU2ITY+P/bgkViBQCYtOK6WCRd/ASlWSwPrdMGgC1voJpV43Y4a96/fQoUMBWNNsEt6xp7Fk3DKiejcmvWV96s3bQKur29Hxvm72TQ9/AC4LHr6kSp9DEX96Lpl3ziL/m03ET76AsNPbVEu/wRYIBCh8V8i/Zzqe87vhHT8Eq150sMNSlavEoXetqVVKKaUqUWyneM5+4YKg9Z83dyMZ131G+Dntqf/bzbhiw4MWS3Xyr95N/ugPCKTlEP7ZSNw9Wwc7JFXNNKlVSimljpLfHyDP7SaQH/wPTfxZeWTdO5u8GWuJm3Q+4We3D3ZI1SJwIJ+Cx77G9/oCvP93Dp7RfbE85ds0Q9UtmtQqpZRSR+lAZiGTTzmVFp+n0iqIceR/l0zGNZ/i7deK+stvxpUQGcRoqk/hFyvIv/UjXL1aE/nb/VhNdOOLUKZJrVJKKXW0LAjz+fB6/yjzy1iVxqwOQusR7ej4wAlV2n0gp4Csf8wld9oKYl8dSsR5Hau0v5rCv3U/Bbd9gn/lLsJeuwz3gNB43qp0uvqBUkopdZRi4jxcK78w+PzEg48FfAHyUnLxZRVUad8FP23j95P+Q+GuLOovvzkkEtpAQSEFT84lt8dTuHo0J+K3+zWhVQfpSK1SSilViWI7xTNwzQW4I6vmV2wgz0fWuP+RO3kJsS8OIuKSrlXST01T+P1G8m/6AKtFAhE/3YmrbcNgh6RqGE1qlVJKqUrk8rqIaFQ1Na0Fi3eSMfwT3O3qU2/ZaNyNYqqkn5oksDeT/Hum45+3Du9zF+K+8EQs3VBBHYGWHyhVxYwxDxpjZhT7fr4xZmwp119pjEmuluCUUsckO9PHu91PYs7MtCrtJ1BQSNYj/yP1nHeIuq8f8Z9cVucT2oDfT8HEH8np8gRW/WgiVj2I56LumtCqEulIrQoaY8x8YK6IPFYJbSUDY0Vk6rG2VdlEZHywY1BKVY2AHzIjIshOy6WB81h2chaL/j6fxoOb03p4u2Puw7diD+nDP8GVFE39JTfhbhZ3zG3WdP4l28i/yd6wImLuzbhOaBbskFQtoEmtUkopVYl8GQXsmbOTmPaxx9ROwFfIgQk/kv30AmKeGEDkdT3q/ChlICOHgoe+wvffxYSNH4L7mp5YLv1QWZWPJrUqKIwxLwH9gN7GmPuBHcBoYDxwPOAD5gFjRCTFuecy4GGgOXAAmCUiw52P9lsCk4wxrwILRGSgMcYD3AuMAJKAlcBt4mwgbYzpDzwFtAXygaUi0r+MuEcAY4GXgbuAeGAi8ATwGjAA2AmMFJEfnHvGAX1LatsYcyrwCtARWArMLteLqJSqMdIbxnHm1wNZ9WsmqXLspQi+tfvIGP4JVrSX+jIKd6uESoiy5goEAhR+sISCuz7FdU4nIlc+gNWgbpdXqMqnf/6ooBCRW4DvgUdFJEZEOgB5wC1AQ6Ab0BR4HsAYEwW8A9wsIrHAccAkp62hwFbsRDJGRAY63TwCnA+cA9QH3gRmGWOK1t6ZAryAnZg2A8pbBtEKSHBi6AvcCszETpATgU+AyeVpyBgT79z7EVAPuAM7uVdK1SKFYR7qda+Hp+GxTRAL+P1kP7eA/X0nEXHViSTMGV7nE1r/+hTyzvkPBY/PJuz9awifdIUmtOqo6EitqjGKRjYdu40xT2InokUKgI7GmKUish87KT4iY4wFjAEGi8gm5+E3jDG3A4OBqdijs22BRiKyG5hfzlBzgEdExA8sM8YsA34RkUVO31OBB4wx8SKSXkZbQ4Bs4N8iEgB+Mca8AQwrZyxKqTrCt2k/Gdd8CoUB6i28Hk+7+sEOqUoFcgso+NccfC99j/fBAXhu/SuWV7e3VUdPk1pVYxhjTsYuPzgRiAIsIAZARA4YYwYBdwKPG2M2AU+LyHslNNfAuXeGMab4puxe7PIFsEdxHwSWG2P2Aq+JyHPlCDXFSWiLHAB2HfY9QCxQVlLbHNjiJLRFNpcjBqVUDRKdms2vd/9CtjuswvcGAgFyXv2FrIe+Ifr+fkTd3hvLXbc/SC38ejX5N3+Iq3szIpbei6t5Ytk3KVUGTWpVMPkP+34a9sfwl4hIhjFmCHBwKSwRmQ/MN8a4gfOAj40xP4nIxiO0tQ97BLS/iPxypM5FZBlwqTOq2xeYbYz5TUS+qYTnVl47gFbGGKtYYtu6GvtXSlWC8AN5bH5nG1G9G0OT8idohVvTyLjuM/zpedT77jo8ner2hgL+HWkU3P4J/sXbCHvpEtzndg52SKoO0aRWBdNuoPh6N3HYI5uZxpiWwP1FJ4wxjbATz7kikm6MKZqJUVisrfZF14tIwBjzPDDBGDNSRNYbY2KA04Dl2Env5cCXIrLPGJOKnRgXtVddvsCu673HGPMsdi3xddj1xUqpWiI7IYoeTxm27i4kdXNumdcHAgFyJy8h877ZRN/Rm6h7+2J56u5H7wFfIb4Xv6Pg8dl4RvclYsqVWJEVH9VWqjR1+/MNVdM9CxhjTJoxZiVwAzASyMSebPVhsWtdwM1AsjEmE3v1geEikuycfwy40hiTaoyZ6Tz2MDAdmG6MyQDWA6P449/9pcAaY0wW8DnwsIh8WzVP9chEJA27xvdSIBU7wf1PdcaglDp2edERHHd1OyI6lj1KW7grk7Sh73LgxUUkzhtB9IN/rdMJbeHCzeSaCRR+uZKIBXcQ9s/BmtCqKmEFAoGyr1JK1VT6BlaqkgTW74ZBE7DWTyj1uhkz7KqooUOHkpXuY+y1a4mOdvH4lE4s+jyFjTN3ETNtJW1Hd6Dr4yfbNz38AQELco/vSNYdM4m80RA99q9YYXX3A9PA79nk3/85/q9W4X36b7gvrfvr7KpqUeI/orr7blJKKaWqSXh2LpumbCB3z5ErmPzZPjK+2onP2kPCl1fiNXV3h6yA30/h2z+T/8AMPJf2IGLVg1jxx7bUmVLloUmtUsU4tbyrSjg9VURGVWc8SqkazoIwn4+EvBwW37P2iBPFcj9ZRebEDUScmED83FFYEd4gBVv1/Ct22tvb5hcS8dUoXD1aBDskFUI0qVWqGBHZirOMmFJKlSUmzsO18gvesaexZMnWQ85ZOfmkD/uIgl92EH9JS8JaRUMdTWgDWXkUPDIT39s/4310MJ6RdX9ZMlXz6L84pZRSqhLFdornzBe70XDaD1gNoqi/9CbCWkQFO6wqEQgE8H2yjNzO4wmkZBG54gG8N56mCa0KCh2pVUoppSpJoDCA77tkcn9dTMJ7FxN2eptgh1Rl/Fv2kz/6AwLJ+wl750rcf21f9k1KVSH9U0qpWkxE9FiP9biyjtfvJivSVeb1ycnJB4/nz/yFd0/ozjczUwHI35FJWH4+W9/qczChFRHYnAINYoP/HCvx+PeL/oPrxGZELLmXJdHpFbpXj/X4WI5Lokt6KVW76RtYqUoSGPo0/O1krOtOL/W64kt6LX5zE1O+zKFH+l6ilu8mvWEM9Tx+mp2YSI+Xe+GJ8UJmDrS4CdY9D0nx1fBMql5gdwY5nR4nctdjdXrim6qRSlzSS0dqlVJKhbxA8l5YuAEu712h+xqv3MGYTlk0T7D/vsyKjcLakkXm6nTc0U6F3wcL4YwudSahBfB9ugz34C6a0KoaRZNapZRS6tVv4Oq+WFHhFbote1Yyjc9rRf7OAwA06hzL2cvP56QXe/6x0cDk/8E1Z1R2xEFV+NEy3Bd3D3YYSh1CJ4oppZQKaYHcfHjzW/jxoQrdl781A19KDuHdG5KdnAXA8Re3IrJ5NJHNo+2L1u6EjXvg3LqTAAZSMvH/ug332R2DHYpSh9CkVimlVGj78Gfo0RqrfeMK3ZY5cwuf/9XQ6JFNxBQGKAjz0KHPoRsv8NZ8uLIfeOvOr9vCz37DfW4nrMiwYIei1CG0/EAppVRoe3kujO5f4dt2z9rOrkA4OxfvB6Aw3MPCM2by+4IU+wJfIUz5ts6VHvg+WqqlB6pG0qRWKaVUyAr8uhl2p8PgCiZpBQF2Lk0DoEFWtv2YL0D25qw/Sg9mL4MWDaBz80qMOLgC+7Lw/7wV97mdgx2KUn+iSa1SSqnQ9cpcGHVmhXfAiliTS1br+gCE5R1gT8fGePJ91Du1AVEtnaR28ny45vTKjTfICqcvxz2wA1aUlh6omkeTWlUhxpjTjTG+IPbfzxiTFqz+lVJ1R2B/FnwicN1fK3xv5K8HyGzXEIDoplGkxUQTkVNAs4ta2Rfsy4A5v8Flp1VmyEGnpQeqJqs7leuqzjHGjAP6isjBYjcR+R5IqKb+k4GxIjK1PI8XO38JcB/QznloG/CaiLxYRn/DgKnAOBF55NiiV0qVafJ3MOQkrIZxFb41cnEOaedHwX4fvrYNif12L5bLounfWtoXvPcDDOkB8VGVHHTwBPZn41+wGfeH1wY7FKWOSEdqlapExpg+wJvAWKA+kASMAHaU4/Ybgf3AdcYYd1XFqJSCgN8P/5kHN1d8gpj7dx+e333s/d0HgQB53+6g/p5UGvRLIiIp0r5o8vw6N0Gs8PMVuPt3wIqp2Fq+SlUXHamtAGNMDDAOuBBoiD0CdyPwK/CE83gk8AMwRkS2OvfNBxYDbYD+QApwA/ZWb88BLYF5wNUikuncEwDuwE6I2gICXC8iG5zzlwEPOG1mA58Dd4pItnM+GXgNOAvoCSQDN4jIAmNMJ2AZ0FxEUpzrLWAT8JCIvFOB18QDPOjEmeg8z9tEZEWxdq8HbgVaAenAv0XkJWPMicALQBfADSwCbhGRjcaYS512XcaYLKe7E5zXaq6IeMrZ/1tO27nAJc5r9U8RmVje51hBvYHVIjLL+b4Q+9/Hr6Xd5PxM+gFDgU+Bc4EvqihGpdTsFfYoas+2Fb418tcDpJ8UQ+YBiM7PJ2ZbGgQCNL+otX3Bks2Qmm3vIlaH+D5cgufKU4IdhlIl0pHainkDO0E8C4gDzgN2Ac8CvZyvVsA+YMZho21XAf/C/uj8feAd7MT2L0BroAMw5rD+bgAuxh7tWwl8XqzNdOAKp71+ztfYw+6/1mkzHpgDvA0gIquxE8jhxa4d4LT1UblfDds9wNXAIKAx8D0wxxhT9HneKOw/BG5y2j+J/2fvvsOjKrMHjn/vpJBGCVV6k6Kuuixn7VgR1+7qusiuK0V0WXVtv1177yv2tSG4NnRdO7CWVdEoWNAjggoq0gXpJCEhfXJ/f7w3MoSETEKSmSTn8zw83pl73/eeO5MxJ++c970wJ9jnB/u6416DfNzX76jqf4DbgCxVzQj+La3D+cG9hjOA9rjk+kER6V3L64zWR8CvROR+ETlWRDpH2e5c4CtV/S/wBu6PJWNMQ3noHTjvqG13/aqFtLmFZPduDUBqu2Q2dWhDAh5dT+zpDnjifRhzGISaz69YP6eA8tlLSTiheSXqpnlpPp+4BhYkJ78HJqjqMlX1g1HTpbjk8BpVXR2MlF4M7AHsF9HFC6o6R1XDuMStKzBRVTer6mbcqJxUOu3dqrpYVQuBy3AjtvsDqOqbqrpAVcuDOB7GJduRJgXHhIEpwO4iUnHz8cdwSW+Fs4GpwblqYyxu5PU7VS0GbsKNTh4f7P8rcKuqzg5i3aiqnwfX8JWqvq+qxaqaC9wIHCAitSlCq+n8AO+p6vTg/K8AOUCDzHRQ1U+Bw4COuNd4rYioiAyrro2IpOAS8yeCpx4HjhWR5rMOkDFxxF+2Hj5ZDKMOrH3bsnJS5hdSEkxXDZf7hHzoNrwrye2SobgU/v0RjD68foOOsfCMb0g4YgBe65RYh2JMtaz8IHp9gv8uqvR8J6AVsKziCVXNF5H1QE/gk+DpNRFtCqp5rnWlvpdH9FkgIhuAHgAicjRwHTA4OH8CrqwhUmT/wUKKtMaN8r4E3C8ihwDfAqcAdfleqSfbX3t5UPoQDFnQhx1fM4Jr6A9MxCXqrXEjt+Be0xX1dH7Y/nUA91pUfq1J4DwGAAAgAElEQVSrUgokVfF8UrCvSqr6EW7EFhHpibvG/4pIb1WtauWG04EMglFq3EjtBmA8biTbGFOfJr0Po4fhpdW+NrTgkzWUdUyg+KcE6A1FeWW0zd5K91ODdVunK+zdC/pG+yVN0xB+cR4Jvx8S6zCM2SkbqY3e8uC/Ayo9vwEoZlvSW1F72xlXc7srIvtMwyV7q0QkGXgNeB7opaptcLPto/4eTVWLcOUIZ+NKI+ap6ld1iPHHSnGGgscV176cHV+zCo8CecA+wTVUrH1TcR3l9XD+XbGcbSsYVPSfgStzqKoUYgeq+iNwK65cpV81h52L+6PkGxFZC6zC1QfbhDFj6plfVAL/+gAmHFmn9vlvrSCpY5gNnd0iLB3XZtPKC9P+oCCJfSILxjWvCWL+lkLCWT+QcOIvYh2KMTtlI7VRUtX1IvIS8LCIjMGNJFbMMHgauFlEFuK+2r4b+A74bBdPe0kwyWw1rh53Ka4eNRU3OputqoUisidwQR36fww3Ae0g3GhiXTwJXCYiH+KSwMtxP1evB/sfAq4SkS+D2NsDfYMShDbAD0COiHTElQ5EWgv0EpFkVS2p4/l3xZPAfSLyFvBxEO9dwNfAl1U1EJFTcAnpW6q6Jriui3F11t9VcfyewCG4+uzPI3Z1xk0uOw5XD2yMqQ8vfAa/6oM3YLc6Nc97Yxlt1uVR/ItWeHk+3X7aRGk5lOaUgF8Eny6Cly6t56BjK/zfBYQO2x2vbWqsQzFmp2yktnbGAfOAD3AjjNNwo3aX4JLDz4GVuHrZk4Ja1l0xBXgFNxq8L3CyqoZVNR838erOYGWAh4Dnatu5qn6HS5y64UZ962Ii8G/gbWAdcCQwQlW3BPsfxq0M8TiwBbc6QUWZwyW4CW5bcBO8Ks/2fxE34rpWRHJEpG8dzl9nqvosbmWFh3BLbX2D+4PiRFUtAxCRXiKSH1EzuwlXTvCliGwN2nQCjlbVgqDNoyLyZnD8n4G5qjpDVddG/PsquH6bMGZMfXr43Tot4wVQunYr5Ys3guez1283sntnSPLdF0rpfTLg6Q/gdwdAHcoa4ln4xXkk2g0XTBPg+b5f81Gm0QVLeg1T1dkNfJ4ngRJVPbchz2MajH2AjYmS/8UyOO0BWHJ3rW+LC5D91EIKr36bVcdn8OMRXVnybCf6fbaU1K6pHP/lSTDoYnj6fDhgYANEHxt+XhGFPa4jdfkNeJnN50YSpkmrttTSyg9aMBEZiBtV3D/WsRhjTIN76F2YcGSdElqA/JcXkZydz7rD+pK9vBW9u7t5pBl9W8NH30NCCPavbgpB0xR+YyGhg/tZQmuaBEtqW6igPvgY4PaKGxUEz/cCFlbTbKqqTmiM+BqDiDwKnFnN7j0rbp5hjGn6/M358KrCorpNH/DLygm/8wOtztiLJT+0Z8X8duy9bh1tgIy+GW5t2rGHQx3WvY1n4Re/JPF3+8Y6DGOiYkltnFLVBv0/o6r+rprnV+KWl2r2ggS92STpxpideOJDOHEIXqc2NR9bhYLZq2lVVkDGFcMo+ucP+F6IpPXuZocZ3VPhic9g4T31GXHM+VuLCb/zPcmPnRHrUIyJik0UM8YY06z55eXwyEw4r24TxADy752D16MdiYM60mPPPDqnbKFrX/eVfMaa1XDIIOiaWV8hx4XwmwsJHdAHr316rEMxJiqW1BpjjGne3v4G2qbB/v1rPrYKvu8TfncRKecMBSBnRSvaDygivNXdgyVj1lwY27zWpgVb9cA0PZbUGmOMabb8sjDcMQPOOwqvjvWuhc99DYWltL7EzanN/bEV7TIKyF/uyg/Sly6DE4bWW8zxwC8pI/zWtyScsnesQzEmapbUGtOEqapt27ZtV7Ptl5ez6ZR/QEoS/OmQOvVT9NIC8i96ndz27UhITWLxO2vJzk+h9JFi/DKf1vskkNi7AyQnxvx663P7y48/A9/H69Q6LuKxbduO3K6OrVNrTNNmH2BjquD7Plz0DHy5Av53GV4dbohQ+K+55F8zk/TJp/DjBbMZtGws37y0ivduWUi3NZtJ65nO8IkDSf77E6B3NMBVxI6/pZDCHteRtqWuN5s0psHYOrXGGGNakOtfgdmL4P2r6pTQbr3nIwoemENm1ljKk5K225efkUZZQg4HPn4wyaXZ9RWxMWYXWfmBMcaYZsW/+w14YQ689Xe8trW7aYDv++RfO5PCx76g/ayzSRzYcYdj1nfJ5Jtf9iFz3/b1FbIxph7YSK0xxphmw5+SBf98B2Zdg9e5be3alpeTd+EblH7yI+1nnU2o07alrMp92PJ97rbHiQn1FbIxpp7YSK0xxphmwX9hjis7eOdyvJ4date2NMyW0a9S9tU6Mt8bu11C6/s+q0uSmHnM2+TN21jfYRtj6okltcYYY5o8/8358Nen4c2/4Q3YrXZti0rJOe15yjcXkPnWnwi1Tdl+f9j/eWZKcufUeorYGFPfLKk1xhjTpPmzvofRk+C1i/H26VWrtuV5xWQf+wxeejLtXh2Fl5a8wzGhxBA9WpVydNZvaNXN7q5lTLyypNYYY0yT5X+xDE67H547D+/AAbVqW75xK9lHPkHi4E60nXoaXvL200xK80opC+4aBpDRp3W9xGyMaRiW1JoGJyJZInJNPfW1XETOrI++GlpV1y0iN4jIu7GKyZjmxP92NZxwN0wahzf8F7VqG169hc2H/ovko/vT+uET8BK2/3Xo+z568RxmHvMOecvy6zNsY0wDsdUPjDHGNDn+8g0w4k74xxl4v5VatS1bvInso58i7S+/Jv2yYVUes3jyIlb/dxWJrZPwEut2e11jTOOypNY0KBF5EBgGHCgiVwCrgfOA24CBQBkwE7hQVdcHbc4Argd6AAXAW6o6WkRmAL2AKSLyKPCxqo4QkUTgMmAM0BlYAFykwT31RGQ4MBHoD5QA81R1eA1xjwGuAR4I+k4HXgDOU9WwiPQBlgE9VXVVZBtV3b2a674OuAoIiUjF0M++wIfABar6asT5nwZKVfXsaF9rY1oKf00ODL8DLjse76xDatW29Ku15Bz7DOnXH0HauVUnw5t0I1/dOA8AuW8/Mnqms2GXozbGNDQrPzANSlUvAGYBN6tqhqoOAoqBC4BOwN5AN+B+ABFJA54BzlfV1kA/YErQ14nASmB80NeI4DQ3AicDvwE6AP8C3hKRzGD/07jktC3QHbglyvB7A11wyfCvgdOBM+p63ar6H1wynxU8l6GqS4DHgfEVbUWkLfA7YHKUcRrTYvib82HEP2DMMLy/jqi5QYSST1aSc/RTtL7nN9UmtMWbi/n03I/xy3x2P2cgPU7oWR9hG2MagY3UmkanqrMjHq4VkTtxiWiFUmCwiMxT1c245LBKIuIBFwLHq+rS4OnHReRi4HhgKm50tj/QRVXXAllRhloIXKeqYWCxiMwEBHg2yvbRmgJcISLdVXU18Adgiap+Ws/nMaZJ8/OL4Li74Ji94eqTa9W2+J3F5P7hJdo+cxqtflP1hDK/3OfzCz6lcHUB7Yd2YJ/r9t3hmD1P7Ua7537iF6PW1+kajDENx5Ja0+hEZChuxHJfIA3wgAwAVS0QkeOAS4FbRWQpcLeqPldNdx2DtjNExI94PglXvgBuFPcq4GsR2QA8pqr3RRHq+iChrbAVqPfpz6q6UkTeAcbiRpHHY6O0xmzHLyqBU+6DvXvCxFF4XvR1rkUvL2DLX/5Lu1dHkXxI72qP++6BhayduYbkzGQOeOwgQsk73jUsFArhAaGQ1dkaE28sqTWNobzS4+eBl4DTVXWLiJwAzKjYqapZQJaIJAAnAS+LyJzgq/rKfW3EJZvDVfXzqk6uqvOBkcGo7iHA2yLylaq+twvXlBf8N3LRym6Vjqkca3XPAUwC7hWR14E9cSUYxhjALy2DMx6CDhnw6NhaJbSFT8wl/+qZZP7vLJKGdK32uPWz17HgH98A8OuHDiCth61Ha0xTYzW1pjGsBXaPeNwGyAXyRKQXcEXFDhHpIiKniUjbYJQ0J9gVjujr5+8OVdXH1ePeJSIDgj4yROQYEekmIskiMlpEOgbHZuMSy8gR2FpT1U3ACmCciCSIyN7AOTVcd8VzvUSk8grvrwOtcPW1L6tq9q7EZ0xz4ZeXw7gpUFIGz0zYYemtndl678fk35hFZtbYnSa0hesKmTPhEyj3GXzxnnQ9qvLfp9ssfmctW8pTWPhC+1pdhzGm4VlSaxrDvYCISI6ILADOxX3Fnge8ArwYcWwIOB9YLiJ5wEPAaFVdHuy/BThTRLJF5M3gueuBacA0EdkC/ABMYNvP90jgu2DFgenA9ar6QT1c12jgBFyCfg8uId3ZdRNc64+4WuIcEekLECTwjwNDsNIDYwC3ViwXPgMrNsJLF+5wc4Sdtcu/biaFk5T2s84mcWDHao8tLytnzoSPKd5QRKeDO7PXZTtf77Yot4xwQgIFpTveecwYE1ue7/s1H2WMaXDBkmBXBitERMs+wKbZ8q95Ed78Ct67Eq9tWnRtysvJu+hNSj9aSeZbfyLUOWOnxy+482u+vXsBKZ1TGD7zGFI6p+5wTMmyXJYd+QqDlo1l6/oi7jjnGwYcsJGzrvwN6BKYMBn0jjpdY7zytxRS2OM60rZMjHUoxlRWbf2RjdQaEwdEpDVwEW7pMWNaPH/i6/Cywlt/jz6hLQ2zZfSrlM1bQ+b7Y2tMaAF6ntyLNoPbst+jB1aZ0FaW3jmFxIRyMvrtUgWTMaYB2EQx0yIFtbwLq9k9VVUnNGIsF+NWg3gbeKyxzmtMvPInvw8PvwuzrsXr1Ca6NkWl5I58Eb80TOb/zsJLi648oM2gthz93jG1qtU1xsQnS2pNi6SqKwmWEYu1YHmxaJYYM6bZ8//zKdz4KmRdjdcjuslY5XnF5Jz8HKHO6bR78fc11t6Wl4RZ885PdDuuB57n1SqhXfXZJraGk1nxeoar1jfGxA3709QYY0xc8N+YBxdNhTf/jrd7l6jalG8qIPuoJ0kc2IG2z/4uqslkX904n0/GfcQ3t35V6xhzVhZSkpjEhpy4+JvYGBPBklpjjDEx53/4HYx5DKZdjLd3dLemDa/ewuZDHyf5qH60fuTEqEdcM/fNJKltEt2P61HzwcaYJsPKD4wxxsSU/8Uy+N0D8Pz5ePtXXtq5amVLNpNz9FOk/llIv3xYrc7X+/d96fab7iS1sWW5qmXrqpgmyEZqjWnCVNW2bbvpb982Ha7/LV+0KYy6bcHE2WQf2uHnhLa2552/6KtaHV9cUkxVFi7cNt80bl7PXdj2txZT+vAscva5ldABfWIej23bdlXb1bF1ao1p2uwDbJo8/+R7YdyheCcPjbpN7vjXSDqgJ2njo2+zftY6fnxtBZ0O7kKvU3tH3S5yndpvXlrFlH/nklZaxG3Th9Jc1qktX7mZsodmUfb4pyQM60/iJYcTGta/VrckNqaRVPtDaeUHxhhjWoQt3+eybOpSQskJtUpqm7PwJ8souy+L8Dvfkzh6P1I++z9C/aq/A5sx8cySWmOMMaYF8UvDhF+eR9l9Wfjr80m86DCSJ5+B16bmm08YE88sqTXGGGNaAH/zVsoe+5iyh2bh9e9I4hVHk3DiL+zGE6bZsKTWGGOMacbKv11L2QMfUPb8XBJO3ptW088hNCS6ZdOMaUosqTXGGGOaGd/3KX/7O0rvy6J87ioSJxxM6rdX4+0W3W2HjWmKLKk1xhhjmgm/oITw1M8pvS8LEhNIuuRwEl4dj5eSFOvQjGlwltQaY4wxTVz56hy3JNfkj0k4sC/JD55O6IgBtiSXaVGsOtyYBiAiw0QkJ9ZxGGPqV99DO9K6rJDBB26IdSgAhD9fQfEfn6Jo7zsgv5iUjy+h1fRzSThyoCW0psWxkVrTKEQkC3hXVW+ph76WA9eo6tRd7auhqOosoF2s4zDG1K/0zikkJpST0S8csxj8sjDhV79yS3KtziXxwkNJfuh0vHZpMYvJmHhgSa0xxhjTBPg5BZRN+YSyf36I1yuTxEuPIOHkvfESE2IdmjFxwZJa0+BE5EFgGHCgiFwBrAbOA24DBgJlwEzgQlVdH7Q5A7ge6AEUAG+p6mgRmQH0AqaIyKPAx6o6QkQSgcuAMUBnYAFwkQY3ixaR4cBEoD9QAsxT1eE1xN0HmATsj7sd7TJglKp+LyJPAklAOXAysAG4WVWfDNoejhuZTgwee8A5wF+B3kAu8A9VfTDYfwpwbRDfGuAWVX22Nq+zMabhrfpsE1vDyax4PQNGNs45yxetd0tyPaskHL8XyS+fTYL0apyTG9OEWE2taXCqegEwC5f0ZajqIKAYuADoBOwNdAPuBxCRNOAZ4HxVbQ30A6YEfZ0IrATGB32NCE5zIy65/A3QAfgX8JaIZAb7nwYeANoC3YFoyiBuC87VBeiIS5izI/b/Hvgf0B74M/CIiBxUTV8TgBuAv+DKEoYAc4LrPRp4HLg46Gs08KCIHBpFjMaYRpSzspCSxCQ25GQ06Hl83yc883uKTpxE0SH3QbtUUhZcRaupZ1lCa0w1bKTWxISqzo54uFZE7sQlohVKgcEiMk9VN+OS4ioFo6AXAser6tLg6cdF5GLgeGAqbnS2P9BFVdcCWVGEWQLsBvRT1W+Bryrt/zSirvddEXkZl/h+XEVffwVujbjujcE/gIuA+4M6XIDPRGQqcBbwYRRxGmOi0OPkXnT4dUdadWhV5z5226ctac+sp1efhpkH6heWEH7uC7cklw9JFx9Gwgtj8VKTG+R8xjQnltSamBCRobiR0H2BNMADMgBUtUBEjgMuBW4VkaXA3ar6XDXddQzazhARP+L5JFz5ArhR3KuAr0VkA/CYqt5XQ5h/x5UEzBCRdOAl4EpVzQ/2L690/HLgV9X01QdYVM2+vsARInJpxHMJ7CSRN8bUXkqnFFI6pexSHx0HtqZVQhmdDy6qp6gcf00upY/MpmzSx4SkJ8n3/JbQ8EG2goExtWBJrWks5ZUeP49LEk9X1S0icgIwo2KnqmYBWSKSAJwEvCwic1R1SRV9bQS2AsNV9fOqTq6q84GRwajuIcDbIvKVqr5XXcCqugE3AnyhiPQDpuHqdq8LDulTqUkfYFU13S0HBgDvVLFvBfCkqk6sLhZjTPNUPvdHSu/LIjzjGxJHDSXlwwsJDeoS67CMaZIsqTWNZS2we8TjNrjJUnki0gu4omKHiHTBJZ7vqmpuxHqv4Yi+BlQcr6q+iNwP3CUi41X1BxHJAA4GvsYlvaOA11V1o4hk4xLjna7JIyIjgc9wCWkurhwhss0BIjIKeAE4DDgNqG7y2UPAVSLyJa6Wtj3QN0jC7wOeFJFPcaULCbg6Y69iopsxZtetn7WOH19bQaeDu9Dr1N516mPjD3kUhxPZ8EmrOk8U88PlhKd/7ZbkWraZxAuGkXzfqXjt0+vWoTEGsIlipvHcC4iI5IjIAuBcYDyQB7wCvBhxbAg4H1guInm4hHC0qi4P9t8CnCki2SLyZvDc9biR1GkisgX4ATc5q+JnfCTwnYjkA9OB61X1gxpiHgJ8AOTjVlOYi1tBocILwHG4yWOP4ya2fVRNXw8DtwfHbQn6+jWAqr6NWxlhIi4BXxO8Xg07E8WYFmbL97ksm7qUTZ9vrPngaqydn0tBYitWLM2s+eBK/NxCSu99n6Ldb6Lszpkknj+MlCXXkXTZcEtojakHnu/7NR9ljNlOsKRXmaqOj3Eo9gE2TZ5/8r0w7lC8k4dG3SZ3/GskHdCTtPG1aPNtDps+30ibwW3puF+nqNuVLMtl2ZGvMGjZWL55aRVT/p1LWmkRt00fCroEJkwGvaPa9uVLNlD2wIeUPfM5CccMJvGiw0g4oG/U5zfGbKfaQnMrPzDGGNMitN2jHW33aJwb/fm+T/kHiym7L4vw7KUkjj+QlPmXE+pZ+xFeY0x0LKk1LVZQy7uwmt1TVXVCY8ZjjGn6/OJSwv+e65bkKiol8eLDSX72LLz0ui8jZoyJjiW1psVS1ZXUsW5VVcfUbzTGmIb2c/nBoLZ03D/68oNo+Ou2UPboR5Q+MpvQvt1JvuNEQiMG44Vs6ooxjcWSWmOMMS3Cho/WM+/qufQfN6DektryRRsoXV5MePCtJP5+CCkzLyC0V9d66dsYUzuW1BpjjDG1lBgOU3TkP/G/+YnEViGS51+L19EWLDEmlux7EWOMMbGVEII5S/DLdrp0dHzILQAgqazUTf6aNpakrkmW0BoTByypNaYJi7w3g23bdpPdvvk0+PgHCgf/H/47X0fddsXy5bU618qVK+scZ3FJMQDe+i0AFLZKIfEPwrc/fF/nPm3btm27btvVsXVqjWna7ANsmgXf92HaF/D352HgbjBxFN6e3as9vi7r1C6esujnmtoht0ffLnKd2gW3K5M1tVbr1Bpj6lW169TaSK0xxpiY8zwP7xSBBXfA8L3gsFvxz38Sf8OWWIdmjGkiLKk1xhgTN7zkRLxLjoXv/gGJCbDH5fgTX8cvLo11aMaYOGdJrTHGmLjjdWiNd/+f4KPrYPYil9y+9BmxLpnr0jeVjMJCevXJiWkcxpgdWVJrjDEmbnmDuuJNuwSmnA23TINht+B/tiRm8WT2SCE1XELng4tiFoMxpmq2Tq0xxpi45x25F/4XN8NTs+CU+yCtGwxoF+uwjDFxxEZqjTHGNAleQghv3GGwaCK0ToWbpuFf8yJ+XmGjxZC9uojChCQ2fNKq0c5pjImOJbXGxICIvCsiN8Q6DmOaIi8jBYb2getPgZWbYNBl+FOy8MPlDX7udUsLyU9NY8XSzAY/lzGmdiypNfVORLJE5Jp66mu5iJxZH30ZY5qZ9hl4T0+A6Ze4soRfXYM/c0G1h3c6uDO/mij0/G2vOp+yTcdkUkpK6Nhma537MMY0DKupNcYY06R50g//w2vgFYVz/4W/Zzd384bB3bY7ru0e7Wi7x67V4XbbI53WL62jz4l5u9SPMab+WVJr6pWIPAgMAw4UkSuA1cB5wG3AQKAMmAlcqKrrgzZnANcDPYAC4C1VHS0iM4BewBQReRT4WFVHiEgicBkwBugMLAAu0uAeeiIyHJgI9AdKgHmqOryGuPsAk4D9cXfpWgaMUtXvReSoGuLPAr4A+gAjgPXApao6LdjvAVcA5wNpwFNE3BFFROYAz6vqvRHP3QQcrKpH1fiiG2PwPA9O+zX+Cb+EB99xqySccQDc8Fu8Dq1jHZ4xphFY+YGpV6p6ATALuFlVM1R1EFAMXAB0AvYGugH3A4hIGvAMcL6qtgb6AVOCvk4EVgLjg75GBKe5ETgZ+A3QAfgX8JaIVBS5PQ08ALQFugO3RBH6bcG5ugAdcQlzdrCv2vgjjAbuDs75IPBUcG0AZwKXBDHvBmwEDo1oOwk4u+KBiISAscDkKOI2xkTwWiXh/d9x8O0/3BODL8e/50384lJyv81h6dOL2ThnQ537L8wtpdQLsXV5Qj1FbIypLzZSaxqcqs6OeLhWRO7EJaIVSoHBIjJPVTfjkuIqBaOeFwLHq+rS4OnHReRi4HhgKm50tj/QRVXXAllRhFmCSzj7qeq3wFe1iB/gP6r6cRDjY8A9wABgPnAWMElVvwj23w5MiGj7PHCviBygqp8CxwCpwKtRxG2MqYLXsTX88yz8846Cvz8PD7/L+mOPZf4LG+k/bgAd9+9Up35XfJVPTnprvv0oqZ4jNsbsKktqTYMTkaG4kdB9cV+/e0AGgKoWiMhxwKXArSKyFLhbVZ+rpruOQdsZIhJ5a6EkXPkCuBHRq4CvRWQD8Jiq3ldDmH8Hrg36TQdeAq5U1fydxR9hTcWGqm4VEYCK7zx7AMsj9peLyIqIxwUiMhUYD3wa/PdpVS2uIWZjTA28PbrDf/8P/52vafPX6fRt25EOHRt+lQRjTOOz8gPTECr/xngemAsMVNU2wKjInaqapaon4RLWW4CpItK/mr42AluB4araLuJfuqreEfQ3X1VH4upt/wzcLiJH7ixgVd2gqheq6u7AwcDhuLrdGuOPwmpcvS3w82hz70rHTAJGikhf4ESCEgxjTP3wjt6bzguu5FeXDaLn3U/jj56Ev2pzrMMyxtQjG6k1DWEtsHvE4zZALpAnIr1wk6YAEJEuwCHAu6qaKyIVN1QPR/Q1oOJ4VfVF5H7gLhEZr6o/iEgGLhH9Gpf0jgJeV9WNIpKNS4wr+quSiIwEPsONqObiyhEq2lQbf5SeAe4UkVeDGP+GK3X4map+JSILgJeBz1R1YS3PYYypgZcQgvGH44/cH+74L+x7Nf4Fw+Hvx7u1b40xTZqN1JqGcC8gIpITJGrn4r5SzwNeAV6MODaEWxVguYjkAQ8Bo1V1ebD/FuBMEckWkTeD564HpgHTRGQL8AOuRrXi53kk8J2I5APTgetV9YMaYh4CfADk41ZTmItbQYEa4o/G08A/gRnAOtwI8odVHDcpiMMmiBnTAIrWF7F53mYKc8vxbj0d5t4Mi9e5mzc88WGj3LzBGNNwPN/3az7KGNPgRORw4DWgm6oWRNnMPsCmRcod/xpJB/QkbfzQqNssnrKIeVfPpf+4AQy5fVs7f85iuPQ5KCiBe/6Ad8Se27UrWZbLsiNfYdCysSy4XZmsqaSVFnHb9KGgS2DCZHDVT8aYhudVt8NGao2JAyKSgitLmFyLhNYYUw+8/XeH2dfClSfCuMn4J9+Lv2hNzQ2NMXHFampNixDUwlZXpzpVVSdUs6/BicipuKXI5gK3xioOY1oyz/Pg9/vjnzQEHngbDroJ/8yD4bpTYh2aMSZKltSaFkFVV7LjMlxxQVVfwS0VZoyJMS8lGS47AX/MMLjhVRh8GaE/jwDf6m2NiXdWfmCMMcZU4nVui/fwGHj/KrxZ39Jn9Rz81xRsHooxccuSWmOMMaYa3l49CD9xHus7DIRrXoL/zIl1SMaYalhSa4wxxtSgILUDzLsVBncFIO4YUPIAACAASURBVFRWjr8uN8ZRGWMiWVJrTBOmqrZt2y1yO3FQRzbdnUV4bV7UbVeuXFnn8xaXFOMlJtBm+ABSSorptXUt3DqNhQsX1qof27Zt29717erYOrXGNG32ATYtku/7bL31Awofn0vm62eSuGfnGttUt05tTSLXqQ3PXsIdN69jeJ+57Oel440/1NapNaZx2Tq1xhhjmg/P88i45nAybj6K7COeoCRrWaxDMsbEmCW1xhhjmqzUM/el7fOnkzvyBQqfnd/g5yvMLaXUC7F5S0aDn8sYUzuW1BpjjGnSko/oR+Z7Y8m/eib5t35AQ5bVrfgqn5z01ny0Za8GO4cxpm4sqTXGGNPkJe7VmfafnEPxywvJO3c6fml4h2PaDGpL3z/1p+N+Het8nlZpCSSGy0gPF+1KuMaYBmBJrTHGmGYhoWtrMj8cR/inLeSc+CzlecXb7e88rAtD7/o1PX/bu87n6Du0DZmFWzmyd8OXOhhjaseSWmOMMc1GKKMV7ab9gYQ+7cg+9HHCq7fEOiRjTCOxpNYYY0yz4iUm0PqRE0k5Y282HzSZ0q/XAVC0vojN8zZTsGprjCM0xjQES2qNMcY0O57nkX75MDLuOJrso56keOYSVk1fyXvHvM33D31X536/m5XNhvQ2zFi1fz1Ga4ypD5bUmnojIlkick099bVcRM6sj77iiYjcICLvxjoOY1qK1FH70O6lkWz5w0t4C9aQuW8mad3Tdq1Tr9q1340xMWRJrTERRCQp1jEYY+pX8qF9yPxgHG2nzWX/g5MZeP7gWIdkjGkAibEOwDQPIvIgMAw4UESuAFYD5wG3AQOBMmAmcKGqrg/anAFcD/QACoC3VHW0iMwAegFTRORR4GNVHSEiicBlwBigM7AAuEiDG0KLyHBgItAfKAHmqerwGuIeA1wDTAIuAnKBvUTkMOBOYDCwBrhXVScFbdKAqcBBQBqwGLhcVd8J9vcJ+tsfdxvbZcAo4JfAVUBIRPKDEPYFPgQuUNVXI+J6GihV1bNreu2NMTVLHNyJzE/OIeeEqYSX59Bm0ol4yfYr0JjmxEZqTb1Q1QuAWcDNqpqhqoOAYuACoBOwN9ANuB9+TgyfAc5X1dZAP2BK0NeJwEpgfNDXiOA0NwInA78BOgD/At4Skcxg/9PAA0BboDtwS5Th9wliGwD8WkT6Am8BjwTnGQPcLiKnB8eHgFeC4zsA/wZeFpFOwf7bgvi7AB2D9tmq+p9gX1ZwXRmqugR4HBhfEYyItAV+B0yOMn5jTBQSumTQPmsc5ZsKyDl+KuW5ttasMc2J/ZlqGoyqzo54uFZE7sQlohVKgcEiMk9VN+OS4iqJiAdcCByvqkuDpx8XkYuB43EjpyW4UdouqroWyIoy1FLgClUtDs41Cpirqk8G+z8VkUm4xPNFVc0PzldhoohcDvwaeCOIYzegn6p+C3xVw/mnAFeISHdVXQ38AViiqp9GGb8xJgqLpyxi3tVz6T92EP3z15J9yBTavfEnEnq2jXVoxph6YEmtaTAiMhQ3Mrkv7mt6D8gAUNUCETkOuBS4VUSWAner6nPVdNcxaDtDRCLvgZmEK18AN4p7FfC1iGwAHlPV+6IIdU1FQhvoiSsZiLQk6B8RScWVORwXxFUOtMaNSAP8Hbg2iDUdeAm4MkiGd6CqK0XkHWAsbnR5PDZKa0zD8Txa//N4Cu75mM0HTabdjD+S9MuusY7KGLOLrPzA1KfySo+fB+YCA1W1Da6u9GeqmqWqJ+ESw1uAqSLSv5q+NgJbgeGq2i7iX7qq3hH0N19VR+Lqbf+MKxk4sg5x/4grSYjUL3geXCJ+KHAU0FZV2wHZuKQdVd2gqheq6u7AwcDhuFrgqs5VYRIwVkSGAHviSjOMMQ3E8zzS/+9gWt/zG7JHPE3x/36IdUjGmF1kI7WmPq0Fdo943AY38SpPRHoBV1TsEJEuwCHAu6qaKyI5wa5wRF8DKo5XVV9E7gfuEpHxqvqDiGTgksavcUnvKOB1Vd0oItm4BHLHG8DX7N/AtSJyFvAc8CtckvyXiOsqBjYByUHpQbuIaxsJfAYsD66/pNJ19RKRZFUtiTjn68DDuPral1U1uw5xG2NqKeX0XxDq1prc0/5D+i1HkTZ+aKxDMsbUkY3Umvp0LyAikiMiC4BzcV+l5+EmVr0YcWwIOB9YLiJ5wEPAaFVdHuy/BThTRLJF5M3gueuBacA0EdkC/ABMYNvP8Ujgu2BlgenA9ar6QW0vQlWX4UoLLsAlrs8A16rqC8Eh9wA5wE+4soQCXAJbYQjwAZCPW6FhLq5cgeA1+BFXY5wTTEpDVcO4hHYIVnpgTKNKPrg3mR+Oo+COWeRf8y6+79fcyBgTdzz78BoTH4Llxa4MVo6Iln2AjYnSzxPFxg1gyO07jsiWb9hKzknPkrB7B9o8fvLPS36VLMtl2ZGvMGjZWBbcrkzWVDKKCri55zd44w+FCZPBVUEZYxpetXc/sZFaY+KAiLTGrZP7QKxjMaalCnVKJ/O9sfhbS8g+5mnKswtjHZIxphasptY0a0Et78Jqdk9V1QmNGU9VgmXJbgPeBh6LcTjGtGheahJtXxxJ/t/+x+aDp5D55p+IHBhqlZZAYriM9LCtcWtMvLGk1jRrqrqSYBmxeBUsOxbN0mPGmEbgJYRofe+xJNz/CZsPmkz6Iyf/vK/v0DZkvrGOI/vMB9JjF6QxZgeW1BpjjDFVSLvoQEK92rJl3MskJrSJdTjGmBpYTa0xxhhTjZTf7knGY6eQtmkjBY9+HutwjDE7YUmtMcaYliEojS1cU1CrZolDupG/W1cK7vmY7+77mg3pbZixan+301YQMiZuWFJrTBOmqrZt27Yd5fb6zI0kd2hF16O71bptoV9Oxk1Hwo854G2bOPb9F/MhIyVurtG2bbslbFfH1qk1pmmzD7AxtVBWUEZiWu2mk1SsU9tn8qFsvfwNHu44lKN6zuWAxHS8o/eAZ2fDK39roIiNMZXYOrXGGGNMZEJbkluykyN3FOqQhpdbjAeEEoIns7dCpq2CYEw8sKTWGGNMi/PD5EW8MWQ6m77YFHWbUMc0ynMrrU+7Od+SWmPihCW1xhhjWpzCtQWUbS1j7bs/Rd0m1CGVTWWJZKek8/7KfdyT2VuhfUYDRWmMqQ1bp9YYY0yLs9fffkHnQ7qw2xFdo27jpSVTGkqkLDGR/LJU92R2PvTq2EBRGmNqw0ZqjTHGtDgJqYm1Smh/llppLGhzvo3UGhMnLKk1xhjTom3+chNz/vIJ5aXlNR+cmrT9Y5soZkzcsKQ2CiIyWkRWiUi+iJy2k+MOF5GyxoytoYnImyJyWUMd31KJSJaIXBPrOIxp6crLyvnsL5/w4ysr+P7Bb2tukJq8/WNLao2JG3FdUysifYBlQE9VXRWjGBKBh4HTVfWNWMQQS6p6bEMeXxURGQJ8AQxQ1SWV9h0GvAv0UtU1u3ouY0zLFkoMMeROYdbpWXx7zwK6H9eDNoPaVt+g8kitlR8YEzea/EitiHhB4tlQdgPSgK8a8BxxR0SSaj6qYajql4AC46vYfS4w3RJaY0x96XLobvT9Yz/KS8rRiz/DD++kDKHK8gNLao2JB1ElgyKSAdwAnAp0An4E/owbTbs9eD4VmA1cqKorg3ZZwLuqektEXz4wTFVni8gNwDBgDtsSmEdU9fpge37w3++Ddv9Q1ZuD7YuBPwF7AUeKyAdAD1VdH5zHA5YC16nqMzVc32nAdUAfYDlwg6q+KiIH4kYFI2PooKrFNfQ3GrgJaA1MBy5Q1fxgXwfgTmAEkAK8D/xVVdcF+y8C/gJ0B7KBZ4FrVDUc8fqdD4wFBgMLgDGq+t3OYgraHhacezCwBrhXVScF+w4PrnUscCPufW5d+T0Ukf1xI9cDce/P28A4Ve0T7P/5+IiR9rOAK4GewCfA6CiS0knALSJynaqWBn23B04DTg4enwJcC/QPrucWVX022DcGuAZ4ALgMSAdeAM6LeC17AfcAh+DuzDUD+D9VzRORS3HvYYUE3PuVCfwyuMafPz/Bz/Ihqjo8eLzT97kyEXkCGA60w32+blHV52p4jYwx9WSfG37J2vfWsHnuJn6YvIiBEwZXfWBk+YHvQ14htE1rnCCNMTsV7Ujt48D+wFFAG+AkgqQIOCD41xvYCMwQkYRq+qnKocBKoFvQ71UicnCwb9/gv4NUNUNVb45odzYwEsgA5gKfAqMj9h+NSxBe2tnJReQgXOJ4BdABuAr4t4jsr6qf4JLmyBh2mtDikp8TgX2APXDJ3z3BuTzgNVwC9Qvca5YHRCYvq4Bjca/zycA4dhyxHINL7jriEqB/1hATItIXeAt4JLjOMcDtInJ6pdiPA4YAXaroox3wBvA80B74K+6Pm5qMxL3P3XHJ5U07PxyCc6ThXssKo4GfgLdF5Gjcz+XFQSyjgQdF5NCI43sH19Ef+DVwOnBGcC0pwHvAQqAvsCfQA7gfQFXvCd7vDNzPURbwKpBbU+BRvs+VzcYly+1wr8+TIrJnTecyxtSPpDbJDLlTAPjm9q/JW5pX9YGRqx+UlEHrVEho8l96GtMs1PhJFJHOwO+BCaq6TFV9VV2MGwUdjRtFXK2qW3EJxh7AfrWIYZGqPqqqZar6KTAPkCja3aWqS1Q1HCSaj+ESwApnA1NVtbCGfsYAL6vqm0EMr+OSl3E7b7ZTl6tqbjAqdx1wloiEgKHBv/OD/QW4UcQjRaQHgKq+HPE6fwk8g/tjItJEVV0ZXPeTRPd6jQLmquqTEa/1JHZMmC+PiK2yE4B83GtfGsT3ryjOfaOqblTVLbjErsZ4g5+nZ4FzIp4+B5isqj5wEXC/qs5S1XJV/QyYihsVrlCIG6kvDn5mZ0ac+wTAU9XrVLVQVbNxo75/rOKPskeBtsAfg3PXpMb3uYrrfVxVNwU/z8/jyl0Oj+Jcxph60m1Ed3r9rjflRWG+uPQz/PIqPu5pESO1xaU2ScyYOBJN+UGf4L+LKj3fCWiF+3oZAFXNF5H1bPuaORqVv4beivvavibLKz1+CbhfRA4BvgVOwY3O1aQnrowi0hLgV1G0rc6KiO3luNepI25EsBWwTmS7vK4I6AWsEpFRwKVAP9z7k4wbhY4U+ZpF+3r1JOK9Ciwh+Co/UI4b+a1Od2BlpcRuRXUHR6hLvOCS7rki0hv3+gwAngj29QWOCMoEKiQAsyIer68oNaji3H2BXiKSU+mcPq6OejWAiFyHK5E5KIo/kCrU+D5HPhn8wXMDbkR7tyCGdNxnzBjTiPa9+Vesy1rLxk82sPTpxfQfM2D7A1IT3Z/LAEWlNknMmDgSTVK7PPjvANxXtRU2AMW4pHcx/Fx725ltiVEe7pczwf5utYxvZ4sGbrdPVYtE5CncCO18YJ6qRjO560e2Je4V+rHz5K4mvXEJI0HfxbjSjBW4xKq9qu5wbSLSEzfaeCrwpqqWiMhdRDcSW5MfcaUFkSpfp1/DSORqXCLoRRzXqx5iq5KqzhcRxb2nfYFpqro22L0CeFJVJ9ax+xW4bwn2qu6AoC73PFxCG3mD+DwgQURaRZSjRP5s7/R9rsIo3Ij5CGChqpYH1+1FfTXGmHrRqn0rhvxD+PTsj/j6pvnsdlQ3tpsaFjlRrLjMRmqNiSM1JrWqul5EXgIeDn7Jr8DVKAI8DdwsIguBHOBu4Dvgs2D/F8BIEbkHN0p1ay3j24BLXgdQaXSrGo/hZs0fBESb7DwFvCsiz+AmSo3AJZWH1zLWSLeLyHjcBKEbgGciEpX5wAMicr2qbhKRTsBRwVfOGbiSkA1AqYgcgJsMF8XiiTX6N3CtiJyFKwH4Fa4e9i+16OO/uIlXl4rIA7h647FAeKetds0k4BbcBK2TIp6/D1d3+inwMW6Udm9cSYFG0e9/gVtF5CpcTXI+LjHdL5gkeHRwjqNVdWmltouC48eLyCO4n7ff4Wq7wf0M7ux9rqwNUIZ730PB52zfIEZjTCPrcUJPup/Yk9UzfmTu3z5nv9t/uW3ndkltKXSwkVpj4kW01e3jcLWuH+BGqabhvia9BPcL/HPcZK+uwEkRX/nei0vIlgTtX69NcMHXvdfiJm7liMjVNRz/HS6R7oabaBTNOT7C1QbfhVtt4E7gzKDmtC7CuOv8GvgeV3t8aXCuctzX/R7whYjk4UoLDg/2fwtcj3t9c3CT1/5dxzi2o6rLcCO1FwCbcLW616rqC7XoIwc4Hvgj7rV6EFfTW9PkuV1RMWHsJ7atRIGqvo2rsZ2IGwWvmLgY1W+YoM71SNwEse9wE8Bm4iZrgbvGDOD94KYbFf/aqmoeLpn/v6DdRbg/jir63un7XIWncCuALMaNhu/J9mUUxphGNuS2oSRnJrMuay0/vbutgmrAER3onJPD8V3nWE2tMXHG8/1o5r00HSLyJFCiqufGOpaWQERuB4aq6ohYx9JCNa8PsDFxZOXLy8n9Npfdf9eTlcdOY9CysZTNWszEG9ZxZJ+57Pf1eryj9oDb/xDrUI1pSaotzYvrO4rVlogMxC3btH+sY2muRGQEbhR6HW5913OBv8U0KGOMaQC9TusDQMmybSv5eZ6H70Go2HcjtTZRzJi40WyS2qDu9xjgdlX9JuL5Xmw/wS3SVFWdUMvz5Feza5bWwy1id0UjxfYLXC11G1xJwEQivnqPVn2/L8YY05DCPmz6fCM5c7ewOT2DrPX7IMUrrfzAmDjS7MoPjGlh7ANsTAPL+XgtWae+T6h9Cr1P68YTCzNoXbCVm757Du/uUXCqfTloTCOqtvzAboNijDHG7ETqbim08srJ6JvBbv1SyMzP47Ci+TZRzJg4Y0mtMcYYsxOe59G7VQlHTD+KjgMySCoP06l8S5DUWk2tMfHCklpjjDGmBgkeeAnbfmXaRDFj4o8ltcY0YZH3mbBt27btBtoOeZQUFgEw76mVZK7ZwtzS3aG4jLnLvo+fOG3btlvIdnVsopgxTZt9gI1pYGXrtvLD3s+yx/pzefvA6WxZWsCyfl3425wpeOGp4NkdrY1pRDZRzBhjjKkLLyURv8jdKNMLfmv6ngdJiZbQGhNHLKk1xhhjdsJLTaS8sAyAUMglsT4eJCXEMixjTCWW1BpjjDE74SWFoNzHLyvfNjDreZBgSa0x8cSSWmOMMWYnPM8jFIzWhirKD8AtiWCMiRuW1BpjjDE18FIT8QvLCKoPXFIbsl+hxsQT+0QaY4wxNQilJriR2qDiwMezSWLGxBlLao0xxpgaVKyA8PNIreWzxsQdS2qNaQAiskBERgbbfUTEF5EeweMxIrI4thEaY2qjck2th0e5rRJtTFxJjHUAxjRHqrpXrGMwxtSfipraiooDz/cpx8PWPzAmfthIrTHGGFODipHayDLaMqtBMCau2EitaZFE5HzgHFX9ZcRzfYHFQH/gemA40A74EbhFVZ8LjjsceBf4I3Ab0BH4H3C2quYFxywHrlHVqVHEcgZwJdAX2ApMBy5V1a31ca3GmF3npSa4kdqIO1OXlodIjWFMxpjt2UitaameAwaLyC8jnhsDZKnqcmA28EtcUnsT8KSI7BlxbAIwAtgXGAgMAS6sYyy5wB+Ccw0L/l1Tx76MMQ2gYqR2wIHpLBnYlUPWfEFqkf3daUw8sZFa0yKparaITAPGAheJiAeMBq4O9j8ecfjzIvI34HBgYcTzV6hqPpAvIq8BUsdY3ox4uFhEHgbOqktfxpiGUbH6QXqGRzglif75K0ksKcP3fTxb2suYuGBJrWnJngCeCRLWQ3Ejpa+ISAi4ARgJ7IZbZz0d6BTRNqyqGyIebwVa1yUIETkauA4YDLTCjQKvr0tfxpiGUTFSS9iVHyQUl7l1asvCkGS/So2JB1Z+YFqyd4Bi4ERc6cHzqloIjALGA6cBmaraDpgP1PtwjIgkA68BzwO9VLUNcHlDnMsYU3cVqx+sXlhA5k85TOt9NBtbd4DisliHZowJWFJrWixVDQNP42phTwX+FexqA5QBG4CQiIzD1c42hGTc6Gy2qhYGdbsXNNC5jDF1VDFSu3l1GZ02biEnrQ256W2huDTWoRljApbUmpbuCeAwYJmqfhY89xQwB7cSwmpgT2BWQ5w8qMn9C3CniOQDD+EmsRlj4ogX3Ca3a98EVvXsSL/slXTwCmyk1pg44vm+3RLFmCbMPsDGNIINt39OOLeY9ok53DUnkzELX6Zrsg/vXYnXt3OswzOmJam2PM9Gao0xxpgauJraMJSVA1CWmgStkmyk1pg4YkmtMcYYU4OKmtrstWWkZRfwUfoQ1rZqbzW1xsQRS2qNMcaYGnhBUrt2ZRk9ftzET8ldWJHcCYosqTUmXlhSa4wxxtQgFCzp5f08D8WnLDHRyg+MiSOW1BpjjDE1qFj9gHKX1Ho+lCUkWfmBMXHEklpjjDGmBqGUYKT252d8wgk2UmtMPLGk1pgmTFVt27ZtuxG2v1++GL84TCjRpbWeDySFWPr1tzGPzbZtu6VtV8fWqTWmabMPsDGNoODztfz0l/cp6ZLEQi1jdbeO7LPbFg4f2RFvzKGxDs+YlsTWqTXGGGPqKtQqwY3UpiYB4Pk+oaQQbC2OcWTGmAqW1BpjjDE18FIS8YvKCKUkuMe+T6hVgiW1xsQRS2qNMcaYGnj/3969h9s1nXsc/469k+wkkkiRIHJDaamD8laqpZwSbVXVo9SlBxGlnKOt9LSc49agiqq6FMe1ghRtVRVVRYtSRV+kWteKXBFJ5CKRiCR7nj/GWDIt+zLXvqy99s7v8zzrWXPNOdeY7xhr7eRdY44xZ+qpDfme2j5KakVqiZJaERGRVoSGehpXrKauf6/4OsuoV0+tSE1RUisiItKK98bU9u8DpJ7avr1g2btdHJmIlCipFRERaUV4L6mNPbV1jRl1Db3UUytSQ5TUSqvMbHcz67IrjJvZrma2qKuOX5SZjTOzl7s6DhHpeKWkdvDW6zJ/o0H0W+ddhm/WR0mtSA3p1dUBiOSZ2URgF3ffs7TO3R8GBlcxhp2B7wM7E/9GXgAucffrW4pTRHquUF8H9XWsM3ogdf0yNhv0OhtuPhruVlIrUivUUyuSY2Z7AQ8AfwU2A4YA5wEXmdkZVY4lmJl+eIrUiLqGeuhVT12W0dgIrNOgnlqRGqL/MFthZgOAicD+xARnFvAN4EngnLS+H/AI8C13n5ne9yDwFLApsCcwFziGeCeMi4CRwB+Bw919SXpPBkwAxgGbAw4c7e4vp+0HA/+bynwbuAP4jru/nbZPB64C9gDGANOBY9z9UTPbCvg7MNzd56b9A/AKcLq731hBm/QCTk5xfijV89vu/s9cuUcD3wRGAYuB89z9UjPbDrgE+BhQDzwGHO/uU83soFRunZktTYfbNrXV/e7eq+DxJ6Wy3wEOTG11prtfWaB6lwE3u3s+gf2lmfUHrjGz64ht21Scpfb5FnAisA7wS+A/3X112jYS+AmwC/FuYHcC/132HTgBOCy10b+nNhKRLhYa6ln+1mpWL4dpKzdimyWB9TRRTKRmqKe2ddcSk5g9gEHAvsDrwIXAJ9NjFDAfuNPM6nPvPQw4l3jq/BfAjcTE9jPAaOAjwLfKjncMcAAwFHgWuCNX5mLg0FTerulxatn7x6cy1wXuA64HcPfnicnREbl9x6aybi3cGtH3gMOBvYGNgIeB+8xsUNp+LPGHwHGp/I8Dj6dtWdq2CbENlgKTU4y/AH4IPOjuA9LjlTYcH2Ib3gmsR0yuLzWzUS1Vysy2BD5ciqfMTcQfJGNbiXMUsCHxR8kniEn1wan8vsCfgOeIP0y2BoYDF5cd6yjgIGAA8HRLMYtI9YSGepbOWcH6byyl8a165s3L1FMrUkPUU9sCMxsKfBXYxt2npdUvm1kdMTn8kru/mvY9AVgA7EQ8dQ3wS3d/PG2fTOxlPd/dF6R1dwFWdtgLcj2zJwILiUn1o+7++9x+L5vZ5cTkLu9Kd382vf8a4AQzW9fdFxN7cU8Bzk/7HgVMdvflFTbNkcSe1xfScc4Evg58EbiZmESe7e6PpP3npwfu/kyunBXplP4/zKy/uy/roOMD/Mnd70jLt6WJZtsDM1ood0h6frV8g7u/a2bziT82WrKc2PO9mvgZ/ZH4Gf8c2AcI7n56aV8zOw141MyOLvXmAj9296lpeTUiUhNCQz0NQ/rx1uB+rGyoY90R6yipFakhSmpbNjo9v1S2fgjQAJQSXdx9qZnNBUawJql9PfeeZc2sG1hW9vRcmcvMbB6xNw8zGwucDnw0Hb+eOKwhL1/+2+l5ILGX91bgYjPbBXge2I/Ym1ipEby/7o1p6MOItGo0H2wzUh02JybVY1JcWdo0hJYTzkqOD+9vB4htUd7W5eal502Ik8PycfcBNsjt05y5ueS0/LibAiObuJJDRuxxLiXT01s5hoh0gbq+9fQf2peG/qsYNXAuG22/m5JakRqi4Qctm56etyhbPw9YwZqktzT2dihxzG175MvsT0z2Zqek6nbgFmCkuw8CTiKeEi/E3d8hDkc4ijg0YkpZz2lRs8rirEuvS3WfzgfbrOQKYAmwbarDp9P6Uj0aO+D4bfUv4hjjQ5vYdjAx+bwvvS4SZ7kZwEvuPrjs0bfU49+OskWkk713q1wystXEiWLLlNSK1Ar11LbA3eea2a3A5WY2jpiUbJ423wCcZWbPAYuAC4i9e0+087AT0iSzV4njcV8hjkftR+ydXejuy81sa+D4NpR/FXEC2qdYMwyhUpOAE83sz8QE9iTid+l3aftlwMlm9nSKfT1gU3f/G3Fc8r+ARWa2AXBmWdlziL2Zfdy9uRkYrR2/Tdw9M7PjgdvNbBpwOXE4wReJk/vOyw1DKRJnubuAs83sZOCnxPHEw4Cd3P037YldRDpfaKhn1dKVrGis5813BrJiFTS8u4psdWO85JeIdCn9FbZuPDAFeIjYw/hb4qniCcTkBa28RQAAFL1JREFU8G/ATGBjYN+yU89tcQ1wG7E3eDvgy+6+2t2XEide/SjNuL+MOHmpImkc6pPEZOqWNsZ4PnHs6r3AG8Bngb3c/a20/XLilSGuBd4iXp2gNMxhAnGC21vECV53lZX9K2KP6xwzW2Rmm7bh+G2Wxi3vQZzMN504FvgU4LvufkqFcZaXvSzFujXxB9Bi4hUwtm9v3CLS+UJDPctfW8bAOStYOa83b05dBv36qLdWpEaELMta30uqIl3OadfcBKvOOs4k4F13P6YzjyNVoT9gkSqZNvY21hm/DX8+4SlW9OnFHr8fy4Z7nAx/P5uwUdXuDyOytmt22KWGH6xl0mWrDiRO1BIRkYLqGuoJq+OQ95BBXe+gGzCI1BAltWuRND74c8A5pRsVpPUjiddObcpkdz+2GvFVg5ldAfxHM5u3Lt08Q0SkXOjbC1bGkyMhy6jvXZ8mi+kGDCK1QEltDXH3wlcyaGP5BzSzfibxQv89XkrQe0ySLiLVE97XU5tR3ztA/z7qqRWpEZooJiIiUkBoqCdbFecC1zVm1PXS8AORWqKkVkREpIC6hnpYle+prVNSK1JDlNSKiIgUEBrq4d3YUxuAunqU1IrUECW1It2Yu2tZy1qu0nLoUw8rMxrfm/0QWLBgIaRLY9ZKnFrWck9fbo6uUyvSvekPWKRK5pz0CPXr9eWBC6dSl2Xs8+L+NHzpPPjBAYTdturq8ETWFs1OqldPrYiISFvNXgAj1u/qKEQEJbUiIiJtkjU2wmuLYJMPdXUoIoKuUysiIlKRpYP7kgFhwRIY3J/Q0LurQxIRlNSKiIhUZMO+C1mV1dOwcImGHojUEA0/EBERaYtZb8JwDT0QqRXqqRUREanAW1l/VlPHqmnz6aWeWpGaoaRWRESkAvVvZPTOVrFqxiJ6jVivq8MRkUTDDzqRmR1hZrPNbKmZfaWF/XY3s1XVjK2zmdnvzezEztq/uzCzXcxM15IV6UGW9+vDsv59CK8ugOFKakVqRY/sqTWz0cA0YIS7z+6iGHoBlwMHuvvdXRFDV3L3L3Tm/s0xs92BB4C3yzbd6e6HdMQxRGTttsG6i+NEsTlvaqKYSA3pkUltEWYWgHp376we0o2A/sAznVR+TTKz3u6+sovDWO3uA7o4hg5RI+0pIk2ZvQA0/ECkZnRqUmtmA4CJwP7AEGAW8A3gSeCctL4f8AjwLXefmd73IHC/u/8gV1YG7Oruj5jZRGBX4HHg62mX/3P376flv6fnF9P7znP3s9LyCcBhwMeAz5rZQ8Bwd5+bjhOAV4DT3f3GVur3FeB0YDQwHZjo7r8xs52B+8tiWN/dV7RS3hHAmcBA4A7geHdfmratD/wI2AvoS+yN/Ka7v5G2fxs4DtgEWAj8HDjV3Vfn2u+/gCOBjwLPAuPc/YWWYkrv3S0d+6PA68CF7n5l2rZ7quuRwBnEz3lg+WdoZmOIPddbEj+fe4Hx7j46bX9v/1xP++HA/wIjgL8CR7j7663FW6A+26b67AjUA0+5+55N9fCb2ThiO344vW6tnbcArk5lvwJcV3bs/rT+3Z9C/E59FvghcG576ywinWDOYhimqx+I1IrOHlN7LTAG2AMYBOxLSoqAT6bHKGA+cKeZ1VdQ9meAmcCwVO7JZvbptG279PwRdx/g7mfl3ncUcBAwAHgKeAw4Ird9LDAYuLWlg5vZp4gJzf8A6wMnAzeb2Rh3/ysxac7H0GJCS0yuvgRsC2xFTP5+ko4VgNuBDNiG2GZLgJty758NfIHYzl8GxrMm4S8ZB3wF2ID4A+OnrcSEmW0K3AP8X6rnOOAcMzuwLPa9gY8DGzZRxmDgbuAWYD3gm8QfN605iPg5bwKsQ0z428XMNgYeSo/RxB71SpLGZts5DTm5i/iDYShwAHBs2fuLfPfHA5cA66ZnEakhb8/px8o5vXnnQ+sS+qy1JzxFak6n/TWa2VDgq8A27j4trX7ZzOqISeSX3P3VtO8JwAJgJ2KPXBEvufsVafkxM5sCGPCXVt73Y3efmpZXm9lVwCnA+WndUcBkd1/eSjnjgF+7++/T69+Z2W+ICcnjBetQ7iR3XwwsNrPTgbvM7FhgB2LP356l5DhNqppvZsPdfba7/zpXztNmdiPxx8SVufXn53oEJwGTC8R0CLEnc1J6/ZiZXUlM5H7VROxN2QdYSmz7LMX3M2KPeUvOcPf5Kd6b+GCS3px6M1tUtu5cdz83HfNldz8nt+1+CmqlnccQE+Xvpe/Pv8zsAuCqVIei3/1b3f1PaXlZ0dhEpMp0jVqRmtKZPzFHp+eXytYPARqIp3kBcPelZjaXNaeZiyg/Df028bR9a6aXvb4VuNjMdgGeB/YDPlGgnBHEYRR5U4kJaFvNyC1PJ7bTBsCmafkNM8vv/w4wEphtZocA3wE2I36ufYi90Hn5NivaXiPIfVbJVGIvZUkjsee3OZsAM1NCWzKjuZ1z2hIvxDG1g5vZNpoPficLa6WdhwNz3T2fiObbruh3f3pb4xORKtLQA5Ga0pnDD6an5y3K1s8DVrAm6S2NvR3KmsRoCfF0c2n7sAqP3Vh0m7u/A1xP7KE9DJji7kUmd80iV4dkM1pO7lozKrc8mthO84kJ4NvAeu4+OPfo5+6PmtkIYq/rD4CN3X1d4DIgtCOWkiL1zMoS1nKvAiPTMIqSkR0QW1tM54PfyZIl6Xmd3Lr3vnsF2vlVYGgaN1syOrdc5LsPLX9/RaRWbKJJYiK1pNN6at19rpndClyeJtvMADZPm28AzjKz54BFwAXAC8ATafuTwEFm9hNib+TZFR5+HjEx2II4BrI1VwEOfIo1wxBacz1wfzr9fD9xAtf+wO4Vxpp3jpl9nTgRbCJwo7s3mpkTJ1ddYmbfd/c3zWwIsIe730IcH1xHrPdKM/skMUF/vh2xlNwMnGZmhxPH8O5AHA97XAVl3EUcG/odM7uEON74SGB1B8RXqcnAKWZ2EnFM8SrgM+5+f2rXGcB4MzsZ2Bo4Ohdna+38GPF7fl4aHjKM2KsLQPosW/vui0h3scm6XR2BiOR09kSx8cSZ3A8Re8F+S5yYM4GYRP6NONlrY2Df0gxy4mSa54mnuacAv6vkoGk842nEiVuLzOyUVvZ/gZhIDyNOZipyjL8Qx0f+mDgL/kfAf7h7+Sn/olYT6/kP4EXizPnvpGM1Ek/3B+BJM1tCTKB2T9ufB75PbN9FxMlrN7cxjvdJ46H3Bo4H3gRuBE5z919WUMYi4IvA14htdSkwidhr2Rnq0w0v8o9HUyyvEdttLPEHzxzge7n3HkEcA7yYOFHv2lw9WmzndHm4fYmT/eYCt5HG0+a09t0Xke5imHpqRWpJyDLd7Ajemzj1rrsf09WxrA3M7BxgR3ffq6tj6eb0ByxSJXNOeoT69frywIVTqcsyvnjDv9Hvcx9r/Y0i0pGaHVqpa5EAZrYlcCBx9rp0AjPbi9gL/QawC3AM8N0uDUpEpD00plakpqz1SW0a9/s54Bx3/2du/UjguWbeNtndy68/2tpxljaz6eGOukVsW1Uptm2IY6kHAa8Rxy5fX2khHf25iIi02YYaUytSSzT8QKR70x+wSJWUDz/Y58X96Tu4T1eHJbK2aXb4QWdPFBMRERER6XRKakVERESk21vrx9SKiIhUYnm/PgQyQl1H3N9GRDqKxtSKdGMhhHuIt1Kuql69em2watWq+dU+bmdRfWpbT6sP9Lw6qT61rwfVaX6WZZ9vaoOSWhGpmJm5u1tXx9FRVJ/a1tPqAz2vTqpP7euJdSqnMbUiIiIi0u0pqRURERGRbk9JrYi0xVVdHUAHU31qW0+rD/S8Oqk+ta8n1ul9NKZWRERERLo99dSKiIiISLenpFZEREREuj3dfEFEmmRmWwLXA+sDbwKHu/u/yvapBy4BPg9kwLnufk21Yy2iYH32An4I/BvwU3f/btUDLahgfU4DDgZWAyuBk939D9WOtaiCdToSmAA0AvXA1e5+SbVjLaJIfXL7fgR4Gri8Vr93BT+ficB/Aq+lVX9x9/+qZpxFFf18zOyrwGlAIP47t6e7v1HNWIsq+BndAGybW7UtsJ+731G1QDuJempFpDlXAJe5+5bAZcCVTezzNeDDwBbAzsBEMxtdtQgrU6Q+rwBfB86vZmBtVKQ+TwCfcPdtgfHAL8ysXxVjrFSROv0a2M7dtwc+Bfy3mW3bxH61oEh9Sj8OrwRur2JsbVGoPsAN7r59etRkQpu0Wh8zM2AiMNbdtwF2ARZXM8gKtVondz+89PkARwALgZr9sVsJJbUi8gFmNhTYAbg5rboZ2MHMhpTtehCxp6zR3ecR/1M+sHqRFlO0Pu7+srtPAVZVOcSKVFCfP7j7svTyGWJP0/pVC7QCFdTpLXcvzXDuD/Qm9p7VlAr+hgD+B7gLeKlK4VWswvrUvArqMwH4sbvPAXD3xe7+TvUiLa6Nn9FRwM/dfUVnx1cNSmpFpCkjgFfdfTVAen4trc8bCczIvZ7ZxD61oGh9uou21OdwYKq7z65CfG1RuE5mtq+ZPUv87p3v7v+oaqTFFKqPmW0HfA64sOoRVqaS79zBZvaMmd1rZjtXM8gKFK3P1sBmZvZnM3vKzE41s1DlWIuq6N8FM+sDHAr8rGoRdjIltSIiPZyZ7QacBRzS1bF0BHe/w90/BmwJHJbGo3Y7ZtabeO3QY0uJSA9wBbBpGvJyPvBbM6vJswMF1RPHnI4FdgO+ABzWpRF1nP2AmensVI+gpFZEmjIL2CSN9SuN+RuW1ufNBEblXo9sYp9aULQ+3UXh+qSessnEiSAvVjXKylT8Gbn7TOK44X2qEmFlitRnY2Bz4G4zmw6cABxtZrV4kfxCn4+7z3H3lWn5vrR9myrHWkQl/8bd6u4r3H0J8Ftgp6pGWlylf0Pj6UG9tKCkVkSa4O5zgSms6dk7BHg6jZvN+xXxP+G6NG5rP+DW6kVaTAX16RaK1sfMPgH8AjjA3Z+qbpSVqaBOW+WWNwD+Hai54QdF6uPuM919A3cf7e6jgYuIY9SPqXrArajg89kkt7w9MBqouR9TFfybcBOwl5mF1LO+B/D36kVaXCX/zpnZcGBX4OfVi7Dz6ZJeItKcY4Hrzex04uzYwwHM7G7gdHd34EZgDFC6ZMyZ7j6tK4ItoNX6mNkuwC3AICCY2cHAUTV6Gawin8/lQD/gyjiJG4DDanQMKhSr0zHp0msriRPfLnX3e7sq4FYUqU93UqQ+PzSzHYmXkXuX+H2b01UBt6JIfW4BDHiOeBm5PwDXdk24hRT9zh0B3OnuC7smzM6h2+SKiIiISLen4QciIiIi0u0pqRURERGRbk9JrYiIiIh0e0pqRURERKTbU1IrIiIiIt2ekloREalZIYRVIYTdC+67ewhhVSeH1C2FEMaFEF7u6jhEOpOSWhERabMQwoMhhCyE8NWy9WPS+uldFFqHCyGMTnUa3sHlKuEU6QBKakVEpL2eB44uW3d0Wi8iUhVKakVEpL1uAz4eQtgMIIQwEPgKcF1+pxBC/xDCxSGEWSGE+SGE20MII3PbB4YQrg8hLAghzAghHFF+oBDCfiGEJ0MIi0IIz4cQvlZJoCGE40IIL4YQFocQHgsh7JrbNjGEcH/Z/g+GEE5NL0u3R30xhLA0hHBa2icLIZwQQpgSQlgSQngghPDhZsog955dQgg7A1cAm6UylzY13CKE8KsQwkVl68aFEKaGaHgI4Z4QwrxUt4dDCDu20A7NxpR73a62Fqk2JbUiItJe7xDvIX9Uen0I8BDwetl+FwKfTI9RwHzgzhBCfdp+EbAFsDWwLfBloLSNEMJY4i1KTwDWI97q89IQwmeKBBlCOAQ4i3jr0PWBq4F7QgijCtZzu/T8kSzLBmRZdlZu2zHAAcBQ4Fngjly9mpVl2V+JtzZ9JZU5IMuyB5vY9Trg0BBC79y6I4FJWbw1aB3xtsijgI2Ap4DbyvYvrL1tLdIVlNSKiEhHuBo4MoTQi5jgXZ3fGEKoIyZGp2ZZ9mqWZW8TE6atgJ3S9q8Bp2VZNifLssXASWXH+DZwcZZlD2dZ1phl2RPAZNL97Qs4Ergyy7LHsyxblWXZtcAzwKFtqvH7XZBl2ctZli0HTgQ2B8Z0QLklfwBWAfsAhBA2Bz4NTALIsmxmlmV3ZFm2LMVwKjCS+COhLdrb1iJVp6RWRETaLcuyfwIzgNOIvZX3lO0yBGgApuXesxSYC4zIbZ+ee8803m9T4KR0OnxRCGERMA4YVjDMEU2UOTWtb6/ppYUsy5YB84AOm1CWZdlq4AZiYg6x3n/MsmwWQAhhgxDCDSGEmSGEt4BZab8hbTxke9tapOqU1IqISEe5ipjU/iwlYXnzgBXA6NKKEMIAYgI8izgU4d389rJliEnzxCzLBuceA7Ms27tgfLOaKHMz1iSAS4B1yrbnk7jGFsp+r9wQQn9iMjm7qXJDCOWJYUvl5k0CPh9C2JjYY5ofs3wOsDEwJsuyQaxJ1EMzZbUWU3vbWqTqlNSKiEhHuRnYC7i4fEOWZY3EnsazQgjDUuJ3AfAC8ERKgm8CzgghbBhCGAScW1bMRcCEEMKuIYT6EEKfEMKOIQQrGN8k4BshhJ1CCL1CCEcC26fjAjwJ7JDK7BVCOJ7YY1kyj5iANnVKf0IIYfMQQt8U9yvA47ly9wshDEmT6M4ue+8cYGiqc7OyLHsBcOJY14HAb3KbBwHLgIXpx8J5LZVVIKb2trVI1SmpFRGRDpFl2TtZlt2fZdnCZnaZQEzK/gbMJPYs7pvr1f02cXjAC8A/gDuB93p8syy7l3ipsPOJPbuvEyefDSgY303AGcSxoW8CxwF7Z1k2I21/EPgJcejE68CGwF9y719O7Im+OZ2SPyVX/DXEq0DMI04o+3KuXhcSL282FZgC/K4stAeA+4BpqdzdWqjGdcAXgJuyLFuRW386sdf7TeI44UfJtV0TWoypvW0t0hVCnDQpIiIibRFCyIBdsyx7pKtjEVmbqadWRERERLo9JbUiIiIi0u1p+IGIiIiIdHvqqRURERGRbk9JrYiIiIh0e0pqRURERKTbU1IrIiIiIt2ekloRERER6fb+H8sWyUh/Ft/6AAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["shap.decision_plot(expected_value, shap_svm_values_test[1][696],\\\n"," X_test.iloc[696], highlight=0)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":598},"id":"GE18oDY4YiA_","executionInfo":{"status":"ok","timestamp":1648016700247,"user_tz":-540,"elapsed":913,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}},"outputId":"6e0cc6da-7f0f-425c-dc9f-40f187085344"},"execution_count":54,"outputs":[{"output_type":"display_data","data":{"text/plain":[""],"image/png":"iVBORw0KGgoAAAANSUhEUgAAArUAAAJFCAYAAADDMg9YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU1fnH8U8CEZIAll22CFpEkLr1YRUXVHDFpVqX2iru1VLrUrUgKm7grtVq3atUq/6kLo3iblHBIjxV0QIqqCECYthDFiAk8/vj3oRJSMgEkpkM+b5fr7zmzj3nnvucmQw8OXPOvSmRSAQRERERkWSWmugARERERES2l5JaEREREUl6SmpFREREJOkpqRURERGRpKekVkRERESSnpJaEREREUl6zRMdgIg0Tma2B/AU0B5YCZzp7guq1GkG3AccCUSAW939sXjHGosY+zMSmAj8DLjf3f8Y90BjFGN/rgVOA0qBEmCcu78Z71hjFWOfzgYuA8qAZsCj7n5fvGONRSz9iarbB/gUeLCx/t7F+P5MAC4Gloa7Zrj77+IZZ6xifX/M7BTgWiCF4N+5w939x3jGGqsY36PJwN5Ru/YGTnD3f8Ut0AaikVoRqclDwAPuvgfwAPBwNXXOAH4K9AaGABPMrGfcIqybWPrzLXAecEc8A9tGsfRnFjDA3fcGzgGeN7P0OMZYV7H06Z/APu6+LzAUuMLM9q6mXmMQS3/K/zh8GHg5jrFti5j6A0x2933Dn0aZ0IZq7Y+ZGTABGOHu/YFhwNp4BllHtfbJ3c8sf3+As4DVQKP9Y7culNSKyBbMrBOwP/BsuOtZYH8z61il6qkEI2Vl7r6c4D/lX8Yv0tjE2h93X+junwGb4hxindShP2+6e1H49HOCkab2cQu0DurQp3x3L79rUAaQRjB61qjU4TME8CfgVeDrOIVXZ3XsT6NXh/5cBtzp7ssA3H2tu6+PX6Sx28b36FzgGXff0NDxxYOSWhGpTg9gibuXAoSPS8P90bKARVHPc6up0xjE2p9ksS39ORP4xt0XxyG+bRFzn8zsODObS/C7d4e7fxHXSGMTU3/MbB/gCOCeuEdYN3X5nTvNzD43s7fMbEg8g6yDWPvTD9jNzD4ws0/MbLyZpcQ51ljV6d8FM9sJ+BXwRNwibGBKakVEdnBmdjBwE3B6omOpD+7+L3ffC9gD+E04HzXpmFka8Ajw2/JEZAfwENArnPJyB/CKmTXKbwdi1IxgzukI4GDgKOA3CY2o/pwA5IbfTu0QlNSKSHW+B7qFc/3K5/x1DfdHywV2jXqeVU2dxiDW/iSLmPsTjpQ9TbAQ5Ku4Rlk3dX6P3D2XYN7wsXGJsG5i6U8XYHdgqpnlAJcC55vZI3GONRYxvT/uvszdS8Ltt8Py/nGONRZ1+TduirtvcPd1wCvAwLhGGru6fobOYQcapQUltSJSDXfPAz5j88je6cCn4bzZaC8Q/CecGs7bOgGYEr9IY1OH/iSFWPtjZgOA54GT3f2T+EZZN3XoU9+o7Q7AcKDRTT+IpT/unuvuHdy9p7v3BO4lmKN+QdwDrkUd3p9uUdv7Aj2BRvfHVB3+TfgHMNLMUsKR9cOAOfGLNHZ1+XfOzLoDBwLPxC/ChqdLeolITX4LPGVm1xGsjj0TwMymAte5uwN/BwYB5ZeMudHdv0tEsDGotT9mNgx4DmgDpJjZacC5jfQyWLG8Pw8C6cDDwSJuAH7TSOegQmx9uiC89FoJwcK3v7j7W4kKuBax9CeZxNKfiWb2c4LLyG0k+H1blqiAaxFLf54DDJhHcBm5N4HHExNuTGL9nTsLyHb31YkJs2GkRCKNbtGoiIiIiEidaPqBiIiIiCQ9JbUiIiIikvSU1IqIiIhI0lNSKyIiIiJJT0mtiNSZmTW6Sw5tD/WncdvR+gM7Xp/Un8ZvR+xTVUpqRWRb7Gj/OKo/jduO1h/Y8fqk/jR+O2KfKlFSKyIiIiJJT9epFUliKXduilD+EY7+LFf9WEeq247UXBZTW5FqyrbSZvT5thpD1X2xHBcVS7XHVQk06hw7hfXSw10ZYVkakFa+HZY1J0LzcLtZWFZ+B5tmkQip4b5m5XXCtlMjm+unRu0LHiMV9TeXba6TspXjyuulVClLiSqL3lfeTkoNZSnVtJkSdb7oepv3bdlG+WNKlf5UKtvacdXsA0gp20pZdceVRT2ver6KsrIt9lHd+coqvx6Vz7f5NSp/Xt1rXHFsWR3KyrYsSykLz1cWIaW08r7oOCvaIiwrf0+JkLLFPqLKttxX03GpUXVrOo4a2qzLeVKqPU/lD311ZZXPUXPZlm3FUrY5zprarn7fln2vvK/689XWVtU6lctqbmvLsuqO2zLOqv/oplT+R7qac1R/HNUct7X6Kbz0ZiQSOZJqaKRWRERERJJCTQktKKkVERERkR2AkloRERERSXpKakVEREQk6SmpFREREZGkp6RWRERERJKeLuklktz0ARaJs+zsbABGjRqV4EhEkkR+EcxaCDMXwI9r4f5zgv2RCHQ6D1asg2/uh906x9JaSk0FzWsqEBERERGpk7IymL8kSGBnfg3/WQDzFm++PnhqCkz6FbRqCSkp8OB50LENdG273adWUisiIiIi22blOvh4QZDE/ufrYEQ2v7hynbRmsP9uMLh38JMaNdj6yyH1FoqSWhERERGp3aZS+CIXdu8MbTKCfX/4GzwzvXK9Hu1hyB5hErsH7NcTWu7U4OEpqRURERGRLS1bAx1aQ/NmwfNjb4U358ArV8FxFuw7ZC/IXbl5FHZQb+jWLiHhKqkVERERaeo2lMBnOcEUgpnhdIJFy2H2JLDdgzr794JvfoTijZuPO++w4KcRUFIrIiIi0pREIpC7YvNirpkL4JPvYOOmyvVatQzqlSe1N58GE38V/3hjpKRWREREpCn4eAHc9kqQxP6wesvyft03TyMYsgf07Q7Nom5pkNq4b2+gpFakGmY2Ghjv7j9NdCwiIslq7ty5TJ06lSuvvDKm+kuXLuWhhx7i2muvJS0trYGj28HNWghPTYMBP4XRhwT71pfAS7OC7XatNiewg/eAAbvDTzITFW29UFIrDc7MpgHvuPvN9dBWDkGy+fT2tiUiIg0nEonwwgsvcNppp1Xsmz9/Pq+//jqLFy+msLCQW2+9lbZtN1+ftGvXrmRlZTFt2jRGjBiRiLCTz9oimB3e2GBwbzh872D/N8vgwbfg2BWbk1rbDZ76XVCvd5fgOrE7ECW1InFgZilAM3ffVGV/mruXJCgsEZEGM2/ePDZt2kSfPn0q9rVo0YIhQ4bQqlUr/vKXv1R73NChQ3n66ac57LDDSG3kX3fHXWkZzF+8eSHXzCo3Nrjw8M1J7cH94NZfwUH9Nh+f2RLOPDj+cceJklppUGb2F+BAYIiZ/QlYAlwMTAT2ADYB7wKXuHteeMxpwPVAd6AIeMPdzzKzbCALeMzMHgI+cveRZtYcuAoYDXQC5gJ/cHcP2zscuAPYHdgIfObuh8cY/9XApUAz4O/An8qTUDPLAu4GhhHcrjYbuMLd14XlkfDY3wB7AcPN7DngCWA4MAA438yeAIa6+6dR5/0AeNvdb4rphRYRaWQ+++wz+vbtS0rUaOBuu+3GbrvtxooVK2o8rnfv3qxdu5bFixeTlZUVj1AbrxX58PHCzYu5Pl4I67ZyY4Oj9t28v2s7uPqE+MabYEpqpUG5+xgz60/U9AMzGwaMAT4FOgD/B/wZON3MMgiSxyPc/T0zywT2D9saVcP0gxuAw4EjgUUEye0bZtbb3VcDk4FrgCeBnYBYb1+yK0ESvRvQFXgdWAlMNLOWwHvAPwiS1pbAM2E/zolq41zgRCCHzZ+384HjgM/C444CzgN+F74+e4Qxnh5jnCIijU5ubi6DBg2q83FpaWl06tSJ3NzcppXUlmyCJaugZ6fg+eoC6HjelvWyOlSeCxunGxskAyW1EnfuHn3rkWVmdjvB6GW5EmBPM/vM3VcBH9bUVvi1/iXAMe7+bbj7cTO7FDgGeJpgdHZ3oLO7LwOmxRhqGXCluxcD34RxXkUwynwskOLu14V1i83sWuAjMzvf3UvD/Xe6+zfhdqmZATwaNSpbbGaPANlmdoW7rydIhN9w9yUxxiki0ugUFRXRsmXLbTo2PT2dwsLCeo6okSnaABktgu1vf4T+V0DnneG7B4J9bVvBPrsGd+6qSGJ7ByOwUi0ltRJ3ZvZzgsRwHyADSAFaAbh7kZkdDVwO3GJm3wJ3ufs/amiuQ3hsdvh1f7k0gukLAMcD44AvzGw58Ii73xtDqHnuXhT1PCeqzV5AlpmtqXJMBNiFYJpF+TFVVdrn7tPNbClwcjg94SzgghjiExFptDIyMli/fv02HVtcXExmZnKvxK9kQwl8+l3lGxv0aA/Twxlmu3YM7trVvBkUrA+uDwvw6e073GKuhqSkVuKhrMrz54ApwC/dPd/MjiWYjwqAu08DpplZM4Kv6f9pZh+HI55V21oBFAKHu/vs6k7u7nOAU8NR3WHAW2b2ubu/V0vcncwsIyqx7QksDrcXAV+7+161tFE13pr2PUwwQlsAlAKv1dKuiEijlpWVxQ8//FDn40pKSsjLy6NHjx4NEFUclN/YIDqB/bSaGxusLwkWfjVLDX6WPASt0yvXUUJbJ0pqJR6WAdHXe20DrAXWhYut/lReYGadCRLPd9x9bdRIaGlUW73L67t7xMz+DNxpZue5+wIzawUcAHxBkPSeDrzm7ivMbDVBUlne3takAreZ2VVAF+CPwFNh2asEI8njgPsJktGuwEB3fymmV6WyvwOTCBbI/S1q+oKISFLaZ599eP755yvtKysro7S0lE2bggRv06ZNlJSU0KxZs4orHSxcuJA2bdokX1L78NvwxmdBErusypd4KSmwV4/NNzUY3Bv27Fb5xgZVE1qpMyW1Eg/3AH8LE9QlBF+t3wWMB74kSOgOCOumEiyYeiy8qsH3wFnunhOW3wzcb2aXADPd/SiCRPAS4BUz604wcjsT+H14zKnAXeHirjzgend/P4a4FxGMzH5HcPWDZ4DboWKaxKEEieiXQGtgKfA8UOek1t1Xm9kUgkVnv6jr8SIijc1ee+1FamoqX331VcVlvRYsWMDdd99dUWf8+PEAXH755RV1ZsyYwfDhwxv35byenQ4ffgmTfgU7ZwT73pwDL4dfGEbf2GDIHsENEMrrSYNJiUQitdcSkQZnZhMILu01sg6H6QMsEmfZ2cFsqVGjRiU4ksbvf//7H6+//nry3lFsbVFwZ67ZC+FPJ2y+TeygccH+t8dvvi7s258Ht54dsgf8dBdNHWg4Nb6wSmpFGoFw2sUnwAXuXpf5tPoAi8SZktodVG03Nph3N/QN1wo/8R6sWAenDNl8CS6JlxqTWk0/kCYpnMs7r4bip939t3GM5W7gQuDvdUxoRURkW5Xf2KB8Qdesam5ssFNz2L9XMI2gRdTI8TmHxjdWiYlGakWSmz7AInGmkdokVLIJSko3Xxf27lfhislb1tu1Y+Vrwu7Xq3IyK42BRmpFRESkiYhENs9pvfVluHEKTDwdLj0m2Ne3G6TvBAN233xnrsG9oUvbxMUs201JrYiIiCSv9Rvh0xyYGXVd2Dt/A78M74jeoTUUbwzu2lXu8J/B2ichTWnQjkTvpoiIiCSXjZvgqWnwxL/hk2pubDD7m81J7SlD4IQB0KHN5nIlszukRnwROBGpjbtrW9vajvN2Tk5OwmNostsbSlg09lHofQlc8EgwKltSCv17sPz4veGx38L/7sJP2mPzsV/Pq0hoEx6/tutluyZaKCaS3PQBFokzLRRLgPUb4fH34NZXYPHKYN9ePeCaE+Ho/XVjg6ZFC8VEREQkSY24GaZ/GWz37wHXnQwnDdp8MwQRlNSKiIhIY1O0ATaVQptwBPbMg4JryF53cjA/VsmsVEO/FSIiItJ4vDwLeo2BiS9t3nfOofDJbfALjc5KzTRSKyIiIo1H13aQtza4w1f59WabKZGV2impFRERkcRYVwx/eQPmfg9PXxLsG/hTmHlL8JhS45ogkS0oqRUREZH4WlsE978O97wGqwqCfVcdD3vvGmwP6p242CRpKakVERGR+FhTCH+eCvdODbYBhu0J158MP8tKbGyS9DRJRURERBrW6gK4/v+g5+9gwgtBQntwP3jvOvjgBjh87wadapCfn8/YsWMpLCystzYfffRRpk+fXm/tyfbTSK1II2JmPYHvgB7uvjjB4YiIbJ+V64IpBve9HsyfBTi0f3BproP7xS2M7OxshgwZQmZmJgBTp07ljTfeqFRnw4YNDB8+nNNOOw0IEuFnnnmG+fPnk5aWxtChQznxxBNJDa++MGrUKO68804GDhzITjvtFLe+SM2U1IrUgZmluXtJouMQEWn0bngB7syGgvXB88N/Btf/MphuEEdFRUXMnDmTG264oWLf0UcfzdFHH13x/Mcff+T6669n0KBBFfueeOIJWrRowW233UZBQQH33XcfmZmZHHnkkQDssssudOrUidmzZ3PAAQfEr0NSIyW1Uidm1gqYAPwC6Ah8D1wI/BeYFO5PB6YDl7h7bnhcGnAlcBbQFcgDrnb3KWbWHBgHjAbaAp8Af3D3/4XHHgZMBPYANgHvhm3n1RLrIcA7wLnAjUBr4F/AGHcvCOu0B24HRgItgX8Dv3f3H8PyHOAJYDgwADjPzP5ZU1/CY84H/gD0AL4Ny94KyyYABwIfA+eFof7V3a8Pt+eEj1+ZWQS4zd1v2lo/RUQapaWrg4T2iH2CkdmhfRISxty5c2nbti3t2rWrsc6HH35Ijx496NWrFwArVqxg/vz53HzzzaSnp5Oens4RRxzB1KlTK5JagL59+/LZZ58pqW0kNKdW6upxYBBwGNAGOA74AbgHGBz+7AqsALLNrFl43M3Ar4FfhscdDHwdll0JnAkcDewCfAi8bWZtwvINwBiCJPpnBInkn2OMtxkwCtgb6EuQGN8NYGYpwMtABOgfxr0O+EeVNs4HLidIil/ZWl/ChPZq4AyCBP0a4EUz+2lUewcBuWE/jgPGmVn5v4j7hI993L2VEloRSQo/roEr/x7cOKHc+F8El+Z645qEJbQAubm5dOnSpcbykpISPvroIw488MCKfYsXLyY9PZ2OHTtW7MvKymLlypUUFxdX7OvWrRu5ubkNE7jUmUZqJWZm1gk4Bejv7t+FuxeaWSrBqOUod18S1r0UWAUMNLOZwO+AU9398/C4xeEPwNkEI5JfhsfeSDCKeQzwrLtHz8RfZma3E4yexupqd18LrDWz64BXzey3wP7Az4HD3X1DeO6rgBVm1j1qTuuj7v5pWL6+lr78AbjR3ctHXKea2b+B0wiSYYCv3f2hcHummX0GGDCjDn0SEWk8XpoVTDV4cw4cPyBY9NWjQ/CTYEVFRaSnp9dY/sknn1BaWsrAgQMr9q1fv36LYzIyMrYoa9myZb0uPpPto6RW6qJn+Ph1lf0dgRYEC5wAcPcCM8sj+Ar+GyCzmuPK9ahybFn4tX8PADP7OcH0g32ADCAFaFWHuBdFbeeEsXYAeoXbP5pZdP31QBabE9WcqLKOtfSlF/CAmd0Xta95VFsQjGxHKyQYBRYRSQ5LV8GnOXDM/sHzs4cHdwD73ZGN7oYJGRkZ5OXVPFvtgw8+YODAgbRs2bJiX8uWLSuNyEKQHJeXlVu/fn3F4jNJPCW1Uhc54WNvYF7U/uUEUwR6AguhYu5tJ4I5t8uBovC4BdW0+z2bE2bCkd+e4X6A54ApwC/dPd/MjgWy6xD3rgSJNWG7GwimRywiSCjbuXvZVo6PLqutL4uA6939hTrEV9O5REQal8Ur4daX4bH3YKfmkPMAtGsFLdLgiYsTHV21srKymDNnTrVlS5cuZeHChRVXPCjXvXt3iouLWb58ecUUhO+//5727dtXGsFdsmQJPXr0aLjgpU6U1ErM3D3PzKYAD5rZaIIEbveweDJwk5nNA9YAdwFfArPcPWJmDwK3m1kuMBfoRpBMfg48CVxlZh8QJM5XE/xuvha23QZYC6wzsyzgT3UMfZKZnUewEGwC8PdwNNgJFmbdZ2bXu/tKM+sIHObuz9XwGtTWl3uACWa2IGy7JcEUhxXl0ytqsZwgse1N5dFdEZHEyV0RJLOPvwcbNwX7Rv0cCtcHSW0j1q9fPyZPnsyqVau2WCz24Ycf0qtXry0S0w4dOtC3b19efPFFzjzzTAoLC3nzzTc56KCDKtWbP38+Q4cObfA+SGy0UEzq6hzgM+B9gkVVrxAs7roMcGA2wSKoLsBx7l4aHncN8H8EC7PWAdOA8sVTdwDPAm8BPwKHAiPdPT8sv4Bgju064EWgLqOgpQTJ8RfAVwRXI7gcgmkOwPEE0xn+a2brgJnAIbW0WWNf3P1Rgqsp/A1YHb4W1wJpsQTr7sVh/WfNbI2ZXRNbN0VEGkBOHlz4CPz09/DXt6CkFE4dCl/cCS9c3ijmzNYmMzOTwYMHM2NG5WULGzduZObMmRx88MHVHnfOOedQVlbG1VdfzcSJE9lnn30YOXJkRfmyZcvIy8urNBdXEislEokkOgaRBlF+SS9335G/kdAHWCTOsrOD2U+jRo1KcCQN6NsfYeJL8NT7sKkUUlPgtAPgml9Av+6Jjq7O8vPzmTRpEuPHj6+3ObCPPfYYe+65J8OGDauX9iRmNU7a3pH/sxcREZG6WLgMJr4Ikz+A0rIgmf31gTD+JOjTNdHRbbM2bdowadKkem3zvPPOq72SxJWSWklqZlZQQ9GHwG3xjEVEJOn95n6YuQCapcJZBwcjs71rvsarSGOipFaSmrvXtkJBv+MiIjX5aimk7wRZ4dzY8SfBP2cGyezuuyQ2NpE60kIxERGRpuixd6HvZXBt1MVejtk/uDSXElpJQkpqRUREmooNJZu3D+0fjNK2TgctGpcdgL6aFRERaQomvw8PvAkzbwnu+rVbZ1j6MOyckejIROqFRmpFkpi7a1vb2o7zdk5OTsJjqNN2JMLS8++Fsx6AWQuZP/nVzXUWzIu9HW1ru5Fs10TXqRVJbvoAi8RZUl2ndkMJnPtXeGZ6cHmu+86G3x2Z6KhEtoeuUysiItKkrCqAE++AD+ZDZgt4/rJgIZjIDkpJrYiIyI5m4TI4ZhJ8/QN0bQuv/gn265XoqEQalJJaERGRHclHX8Hxt8OKdbD3rvDan6B7+0RHJdLglNSKiIjsKJ7/KFgQtqEEjtoPnr80uGSXSBOgpFZERCTZRSJw68sw7tng+UUjg0VhzZslNi6ROFJSKyIikuy+yIXxzwXXn73zN3DZMcG2SBOi69SKiIgku713hQfPgymXw+XH1ktCm5+fz9ixYyksLKyHABvGunXrGDt2LAUFBYkORRoBjdRKUjKz14F/u/vtCYyhO/A90MvdcxIVh4g0UYuWw5JVMLRP8PzCEfXafHZ2NkOGDCEzMxOAL774grfffpvFixcTiUTo2rUrJ5xwAr17966xjfz8fJ555hnmz59PWloaQ4cO5cQTTyQ1NRhTmz17NtOmTWPx4sVs3LiRv/71r5WOX7BgAc8//zwrV66krKyMjh07cvTRR7P//sGlyVq3bs3AgQPJzs7m9NNPr9f+S/JRUitJyd2PSnQMdWVmTwKb3P28RMciIknuuzwYcg1s2BTc9rZP13ptvqioiJkzZ3LDDTdU2jd8+HD69OlDixYtmD59Ovfffz8TJkygXbt21bbzxBNP0KJFC2677TYKCgq47777yMzM5MgjgxtAZGRkcPDBB1NSUsLTTz+9xfGdO3fmoosuqmh/wYIF3HfffXTp0oUuXboAMHToUG655RZOOOEE0tO1KK4p0/QDSQgzS0t0DCIiSSurAwzuDT/fDTrvXO/Nz507l7Zt21ZKVgcNGsR+++1HRkYGzZo14+CDD6ZFixaVbhscbcWKFcyfP5+TTz6Z9PR0OnbsyBFHHMEHH3xQUWevvfZi4MCBdOjQodo22rRpQ/v27UlJSSESiZCamkokEiEvL6+iTufOnWnVqhXz58+vn85L0tJIrcSFmeUATwDDgQHAb80sCxgNdALmAn9wdzezvYBPgW7uvjw8PgX4BrjB3Z8ys2nAO+5+c1ieBdwNDCO4dWw2cIW7rzOzy4Ej3X1kWHcycArQ1t2LzewUYIK796ulD7sAjwAHAz8Ct1cpPwyYCOwBbALeBS5x9zwzuwo4I6x3WnjIzu5eamYnANcCuwM/ADe7+zOxv7oi0iREIlC8ETJaQLNU+Mcfgqsb7FT//5Xn5uZWjITWZMmSJRQUFNCtW7dqyxcvXlyRzJbLyspi5cqVFBcX12lU9dJLL2XDhg2UlZXRu3dv+vWr/M91165dyc3NrZiWIE2TRmolns4HLgdaA/sBxwNHAu0JEt43zKytu88FPiNMAkOHAB2AF6o2amYtgfeAeUAvoB/QHfhzWOUdYJiZtQifH04wF/bA8PmIsE5tngFKgSzgIIKEPNoGYAzQEfgZ0LU8hnDu7zPAU+7eKvwpNbMRwOPApUA74CzgL2Z2UAzxiEhTsakUfv8EHHZjkNhCkNw2QEILwVSDrSWd+fn5PPTQQ4wYMYLOnTtXW2f9+vVbtJGRkVFRVhf33nsv9913HxdddBH9+/enWbPKlypLT0+nqKioTm3KjkdJrcTTo+7+abh9AXClu3/r7qXu/jjBKOUxYfnfgLOjjj0beN7dq/tX61ggxd2vc/did19NMPJ5hpk1A74A1gEHhKPA6wmS6PJVFYdRS1JrZt2AQ4E/uvtad18G3BBdx92nu/tsd98Ult8etr01fwD+7O4funuZu88CngbOrOU4EWkq1hUHdwh74E345DuYvbDBT5mRkUFxcXG1ZWvWrOHuu++mX79+nHjiiTW20bJlyy3aKE88W7ZsWeeY0tLS2HfffVmwYAHTp0+vVFZcXFyRMEvTpekHEk854WMHoBWQbWaRqPI0ghFWgGeBu81sf2ABcBLBCGt1egFZZramyv4IsIu7LzGzd8PjfwTeJkhiHzWz3YEewLRaYi+Pa1HUvu+iK5jZzwmmH+wDZAApYT+3phcwPJwiUa4Z8GEtx4lIU7BkFRx7K3nRabAAACAASURBVHyWA+1bw8tXwrA9G/y0WVlZzJkzZ4v9K1as4J577mG//fbj5JNP3mob3bt3p7i4mOXLl1dMQfj+++9p3779di3oKi0trTSnFmDp0qUMHTp0m9uUHYOSWomnsvBxBVAIHO7us6ur6O5rzOxlgq/45wC57v6fGtpdBHzt7ntt5dzvAL8lSGqfAv5LkMz+Cpjt7vm1xL4kfNyVYG4vQM8qdZ4DpgC/dPd8MzuWYG5vuTK2tAh40t3vqOX8ItLUzMmBY24NEtveXeC1PwWPcdCvXz8mT57MqlWrKhaLLVu2jHvuuYchQ4ZwwgknVHvcuHHjGDJkCKNGjaJDhw707duXF198kTPPPJPCwkLefPNNDjpo8+yqsrIySktLKS0tBaCkpASA5s2bk5KSwieffELnzp3ZZZddKCsrY+bMmXz11VeMHDmyoo28vDwKCgro27dvQ70ckiSU1ErcuXvEzP4M3Glm57n7AjNrBRwAfOHuS8OqfwP+AQwKt2vyKnCLmY0D7gcKCOazDnT3l8I67xAs8ioEznL3MjN7H/gjm+febi3mxeHitNvN7GwgHbiuSrU2wFpgXbhw7U9VypcBg80s1d3LE9x7gSfNbCbwEcEo7c8IplN4bXGJyA5q6idw6r1QsB4O7Asv/TEYqY2TzMxMBg8ezIwZMxg1ahQAb7zxBmvWrOG9997jvffeq6h7xhlnMGjQIEpKSsjPz2ePPfaoKDvnnHN45plnuPrqq2nevDkHHHBApYR05syZPPXUUxXPx4wZA8Att9xChw4dWLt2LS+99BJr166lWbNmdO7cmfPOO6/SQrEZM2YwZMgQXc5LlNRKwlwPXAK8Et7EoBCYCfw+qs47QBHwc4JFZdVy9yIzOxSYBHxJsBBtKfA88FJYJ9fMvgXWuPuqqPZPJLZFYhCM6j5KsMis/OoHB0aVXwDcBYwP4/g7QaJe7jGCObYrw6s5tHf3t8zsfOAOoA/BaO5ctkyYRaSp+OtbMOZxKIvAr4bBExdBi/hfBXHUqFFMmjSJQw89lMzMTEaPHs3o0aNrrP/NN9/Qp08f+vTpU7GvTZs2XHTRRTUeM3To0K1OGxg+fDjDhw+vsXzdunXMmjWLcePGbb0z0iSkRCKR2muJSGOlD7BInGVnB7OKykcw601pGVz1NNz9avD82pPghlPq5Za3IjuQGj8QGqkVERFJtKIN8Ov74aVZwbVnH70QRh+S6KhEkoqSWpGQmT0E/LqG4n7unhvPeESkCZm3GKZ+Cj/JhH9eAYf2T3REIklH0w9Ekps+wCJx1mDTD16ZDXt0gb7da68r0nRp+oGIiEij8u4XwdUNjh8QPC9/FJFtoqRWREQk3j5eAEdOhLRm8MltsGe3REckkvR0m1yRJBZ9KVtta1vb8dnOycnZ/nYG7E7eCXvD746APbo0in5pW9vJsl0TzakVSW76AIvE2XbNqS0rg9RwPCkS0eW6ROquxg+NRmpFRETi4ZXZMGQ8rAjvyq2EVqReKakVERFpaK9/Cr+8G2YthKc/THQ0IjskJbUiIiIN6Z3P4cQ7oaQU/nB08CMi9U5JrYiISEN5fx4cdztsKIGLRsI9Z2nagUgDUVIrIiLSEGZ8CcdMguKNcO6h8JdzlNCKNCAltSIiIvVt1kI4ahIUboDfHASPXLD5qgci0iD0CRMREalPn3wLR9wC64rh1KHwxEVKaEXiQJ8yqWBmh5jZpgSe/0AzW5Oo84uIbLfPF8GIm2FNIZw4EP4+Bpo3264m8/PzGTt2LIWFhTHVLykpYfz48Sxbtmy7ziuSbHSbXEkIM5sADHP3w8v3ufuHwE/idP5pwBCgJGr3c+5+XjzOLyI7oHmL4fCbYFUBHLs/PHcppG3/f7PZ2dkMGTKEzMxMAFavXs2zzz7L999/z6pVqzj77LMZPHhwRf20tDRGjhzJlClTGDNmzHafXyRZaKRWmrKb3L1V1M8WCa2ZpSUiMBFJQsvWQMF6OGIfmHIF7LT9CW1RUREzZ85k2LBhFftSU1Pp27cv5557Lm3btq32uAEDBvDVV1+Rl5e33TGIJAuN1IbMrBUwAfgF0BH4HrgQ+C8wKdyfDkwHLnH33PC4acAnQC/gcCAPuIDgNm73AlnAu8CZ7r4uPCYCXAaMBnYHHDjf3ReG5acBY8M2C4F/AZe7e2FYngM8AhwGDAJygAvc/SMz6wvMAbq7e15YPwX4FrjO3f9eh9ekOTAujLNt2M8/uPv/oto9H/g9sCuwFrjN3f9iZvsA9wF7Ac2AmcAYd//GzE4N2001s4LwdHuHr9U77t48xvM/Gba9Hvhl+Frd6O4Px9rHavo8ATgoPNdvwsejzOxvBO/vTwh+N25293+ExxwCvAOcAUwEOgBvAudGvecdgVuBEWEbC4HT3f0rM8sAbgROAnYGZoWv1cJt7YeIJMCh/eGDG2CvHtCifv4enjt3Lm3btqVdu3YV+3beeWeGDx8OBAluddLT0+nZsydz5sxhxIgR9RKLSGOnkdrNHidIEA8D2gDHAT8A9wCDw59dgRVAtplFT5L6DUHC8hPgeeDvBIntQUBPoA9wSZXzXQCcDHQC5gL/impzLfCrsL0Dw5/xVY4/J2xzZ+Bt4CkAd59PkECeFVW3PJGaEvOrEbgSOBM4GtgF+BB428zahOW/JfhD4KKw/f2Aj8OySFjWjeA1KACeDmN8niD5mxY1SvrtNpwfgtcwG2hHkFz/xcx2rWM/qzqI4L3vQZBoQvDHzL5hP28EnjSzflHHNANGAvsAexC8FpcAmFkqwR8mPwEGhI+jgXXhsY8CexL8ju1C8Bq+qlFikSSwaHlwc4Vytjuk71Rvzefm5tKlS5dtOrZr167k5ubWWywijZ1GagEz6wScAvR39+/C3QvDZOQsYJS7LwnrXgqsAgYC/wnr/p+7fxyWP00wynqHu68K970KWJXT3hU1MnsVsJogqf7I3V+PqrfQzB4kSO6iPezuc8PjHwMuNbOd3X0twSjuNcAdYd1zgafdvbiOL83ZBCOvX4bnuRE4DzgGeJYgibzF3aeH9VeEP7h71L/ybDCzG4AvzCzD3Yvq6fwA77n7v8LtF8OFZvsCi2Jo/xoz+2PU8yPDx0Xufle4vTHsz+NR9Z4LjzsEmBe1/0/uXgAUmNnLbH7PLfzpEL4/AJ+HfepA8AfMru7+Y7jvBuBSgt+H6YhI47SqAA69ERavhDfGwfD+9X6KoqIi0tPTt+nY9PR0VqxYUc8RiTReSmoDPcPHr6vs7wi0AMoTXdy9wMzyCEbxypPaH6KOKaphX+sqbedEtVlkZsuB7gBmNgK4jmD0rgXBKGDViVHR7ZcviW1NMMo7BfizmQ0D5gMnEIwQ1lUPKve9LJz60CPc1ZMtXzPCPuxOkFQPCuOKhEUdiS3hjOX8UPl1gOC1qPpa1+QWd7+5StxHVo0v/ONmAnAqwUhqBMgk6Eu5UndfXkMcPYG8qIQ2Wq/w8XOzSn/3pFG5nyLS2LTNDBaEzfgK9utVe/1tkJGRsc3zYouLi8nIyKjniEQaL00/COSEj72r7F8ObGBz0ls+97YTwbzK7RHdZgZBgrTYzHYCXgaeA7LcvQ1wNcEc3Zi4+3qC6QjnEkyN+KzKyGmsvq8SZ2r4vLzvOWz5mpV7iODr9b3DPhwQ7i/vR1k9nL+hVI3tdIIR4pOAtu7+E4J5y7G+JzlApyrTJsqVJ9C93f0nUT8Z7v5sNfVFpLFISYF7R8P7E+AnmQ1yiqysLH74oerf7rFZunQpWVlZ9RyRSOOlkVrA3fPMbArwoJmNJkg0dg+LJwM3mdk8YA1wF/AlwWKe7XFZuMhsCcF83G8J5lKmE4zOrnb34nDe5rZck+URggVoQ9k8DaGungSuMrMPCBKzqwl+Z14Lyx8AxpnZp2Hs7YBe7j6bYF7yAmBN+BX7jVXaXgZkmdlO7r5xG88fL22ATQR/5KSGvyP7AK/GeLwTLDh7zMzGEEzR6A+scPelZvYPgt+9S919iZn9BBgOvB1OZxCRxmLlOva760Pmnht+s5KSApktG+x0/fr1Y/LkyaxatarSYrGSkuBqhJFIhNLSUkpKSkhNTaVZs2Bpxvr168nJyeHXv/51g8Um0thopHazc4DPgPcJRhhfIfiq+TKCpGQ2kAt0AY5z99LtPN9jwIsEidI+wPHuXhomMRcBt4dXBngA+EddGw/nof4X6Eow6rst7iCYu/oW8CNwKDDS3fPD8gcJrgzxOJBPkLiVT3O4jGCBWz7BAq+qCeALBCOuy8xsjZlV991dbeePl6cIkvaFBH+E9CPoU0zcvQwYBRQT/I6tAZ4AWoVVzge+AqaZ2TrgC4KrOUS2bE1EEmZNIYy8me7v57D3gx/XXr8eZGZmMnjwYGbMmFFp/5gxYxgzZgyrVq1i8uTJjBkzhqlTp1aUz5o1iz59+tC5c+e4xCnSGKREIvp/M97CS3odGLXAqqHO8ySw0d0vaMjzSELpAywSD/lFwZ3CZi2kcJfWfDRpJCNGnxqfU+fnM2nSJMaPH19xA4atKSkp4cYbb+Tiiy/e5isniDRiNU790/SDHZSZ7UEw2jco0bGIiCS1gvVw9CSYtRB6duQ/1x7I+vbxW4DVpk0bJk2aFHP9tLQ0brrppgaMSKRxUlK7AwrnBx8BTCq/UUG4P4vKl6CK9rS7/zYe8cWDmT0E1DSZrF/5zTNERLaqaAOMui24wkH39vDe9RT/Lz5TD0SkbjT9QCS56QMs0lDWb4Tjboe3P4cubYO7hf10F7KzswEYNWpUggMUaZJqnH6ghWIiIiJVbSiBk+4KEtpOO8N718FPd0l0VCKyFUpqRUREopVsglPvgamfQvvW8O61sGe3REclIrVQUisiIhLt8ffgFYf0neDt8dBfNzAQSQZKakWSmLtrW9varu/tn+8GzZuxKRXovPMWdXJychpHnNrWdhPdrokWiokkN32ARRrCs9Nhn57Qr/sWRVooJpJQuk6tiIhIzE4fVvl5aRk005ebIo2ZPqEiIiJb8/DbcMC1wTVrRaTRUlIrIiJSk6INcMe/4OMF8NKsREcjIluh6QciIiI1yWgB/7oa/Bs448BERyMiW6GkVkREZGv6da+8YKwsAqk1rlURkQTR9AMREZFYzcnh4Euyaf3d6kRHIiJVKKmVemVmO5nZ82a22sxW1FJ3nJllxyu2WJnZr80sJ+r562Z2VQJDEpHG4oE3aZO7loG3/BuW5zfIKfLz8xk7diyFhYUx1V+3bh1jx46loKCgQeIRSRZKapsAM+tpZhEz2/KCi/XvZGAg0M3dO2ytortPdPdGf6FHdz/K3W+vr/bM7Ekze6y+2hOROLrvbFbv0Z6MvEI46S7YuKneT5Gdnc2QIUPIzMzcouz999/nwgsv5LXXXqvY17p1awYOHFhx/VyRpkpJrdS33YBv3L0o0YGYWVqiYxCRHUzLnZg97hCK26XDh/NhzONQjzcxKioqYubMmQwbNmyLspUrV/L222/TrVu3LcqGDh3Kf/7zH4qLi+stFpFko4VicWRmrYAJwC+AjsD3wIXAf4FJ4f50YDpwibvnhsdNA95x95uj2ooAB7r7dDObABwIfAycF1b5q7tfH27PCR+/Co+7Dbg5/DkbaA2sBO5y9/tr6UNGTbGa2V+AC4BUMysAprj76K20NQEY5u6Hh89zgEeAw4BBQA5wgbt/FJanAbcDZwBlwN3h+W529yfNbDQwHngY+AOwFtjLzPoDdwH7A8XAM8B17l4StjsQeBDYE/gMeKtKnNOIev3NLCs89zCCO3plA1e4+7qwPAL8Lnxt9wTmAqPd/ctwGsMZYb3TwlPsDOwN3A/8DCgFvgSOcXdN3BNpZDa0y2D2NcM56Jq34dF34WdZ8Puj6qXtuXPn0rZtW9q1a7dF2eTJkzn++OP54IMPtijr3LkzrVq1Yv78+ey///71EotIstFIbXw9TpCsHQa0AY4DfgDuAQaHP7sCK4BsM2tWh7YPAnKBrmG748zsgLBsn/Cxj7u3cvebgBHAWcAgd29NMGVgegznqTFWdx8DTASmhecZXYf4y50DXEKQ6L0NPBVVNhY4Kjx3L6B7GEO0ngSvQW9ggJl1At4HXgS6AUMI+j4WwMx2Bl4HpgDtgMuAi2sKzsxaAu8B88IY+oVx/LlK1dHASUAHgj9e7gcIpzE8AzwVvkat3L0UeIAgmW4HdAYuBzbW/DKJSCKt7d0enrgoeHLZU/DO5/XSbm5uLl26dNli/wcffECLFi0YMGBAjcd27dqV3NzceolDJBlppDZOwuTqFKC/u38X7l5oZqkEyeUod18S1r0UWEWQaP4nxlN87e4PhdszzewzwIAZNdTfCLQkGMlc7u55QF4tfaivWLfmYXefG7b9GHCpme3s7muBM4GJ7v5tWH41wUh3tBLgT+6+IaxzMTDH3R8Oy5eY2SSC0eobgWOBQuA2d48As83sccLR1GocC6S4+3Xh82Izuxb4yMzODxNUgDuiRtqfBJ6upd8bgSygh7vnADNrqS8iiXb6MPgiFya9DKfcAx9PhN5bJqR1UVRURHp6eqV9q1atYurUqVx99dVbPTY9PZ2iooTP/BJJGI3Uxk/P8PHrKvs7Ai2A8kQXdy8gSDB71KH9H6o8LySYVlAtd58GjCP4uj7PzN4yM6vlHPUV69ZE96N86W95P7oBi6LOXQwsr3p8eUIb6gUcYGZryn+AJ4BdwvLuwKIwoS33HTXrBWRVae9dgmkIu0TVq9qPGt+L0NkEn8fpZvadmd1kZvqjU6Sxu/k0OM5gdSEcdzus3b6kMiMjY4t5sZMnT+boo4+mbdu2Wz22uLiYjIyM7Tq/SDLTf5rxkxM+9ib46rrccmADQdK7ECrm3nYi+NoaYB1QsQzWzLrW8dxl1e1090eAR8J5shMIvqLP2ko7scTakJYQNd3AzNIJEu1oVfu6iGA+7DFba9PMUqIS255biWERwaj4XjFHvaUt3o9w9P4cADP7GcFUhO8IEnARaaxSU+Hp38PQ8fC/7+H0P0P21dBs28aMsrKymDNnTqV98+fPJzc3l5dffhkIktecnBzmzZvHlVdeWVFv6dKlDB06dNv7IpLklNTGibvnmdkU4MFwQdMiYPeweDJwk5nNA9YQLGr6Eii/0fh/gVPN7G5gPXBLHU+/nCCR6g0shorFUS3Cc2wgSJxLa2og7EOZmdUWa0P6O3Clmf2bYCR0ErV/2zAZuMLMzgH+QfA1f09gD3d/A3gVuC9s9x6ChVrnErwm1XkVuMXMxhHMky0gmMM70N1firEfy4DBZpbq7mUAZnYW8La7LyV4XTdRy/shIo1E6/TgVroDxsLrn8KNU+CGU7apqX79+jF58mRWrVpVsVjs1ltvrVTn4Ycfpnfv3owYMaJiX15eHgUFBfTt23fb+yGS5DT9IL7OIVhd/z5BEvkKwVfWlwEOzCZY7NUFOC5qfuY9wHzgm/D416iD8Gv6a4Fnw6/MrwFaESxuWkFw5YORwKkxNFdbrA1pEsHisVkEI98/AEupOQHF3ZcBw4ETwmNWAy8RXHoMd18DHEPQ99UECe5ft9JeEXAowQKxLwmusPAusG8d+vEYwcj7yvD9aBa2+V8zKySYm/wPgiReRJJBr07wzyvAdoezD9nmZjIzMxk8eDAzZmxeDtG2bdtKP2lpabRs2ZI2bdpU1JkxYwZDhgzZYj6uSFOSEqnH6+uJxFM49WE1cHD5Zb+aIH2AReKs/CYHo0ZVc++YsrJgSsJ2yM/PZ9KkSYwfP77aGzBUtW7dOiZOnMi4ceNo3bq26fsiSS+lxgIltZIszKwdwVUW3gUyCEawDwT6lV9ztgnSB1gkzraa1JaLROC+1+GkQdC9fZwiE2kSakxqNadWKgnnio6rofgod/+wDm2dQXAjhOpc6O7P1DG8VIIbRrxAcOkuJ5j60FQTWhFprO7Mhquehqc/hJm3bPPCMRGJnUZqRZKbPsAicRbTSO3KdXDYjTDhl3DCwDhFJtIkaKRWREQkbtq3hk9u2+75tSISO33aREREGkJ0QvvRV/DqfxMXi0gToJFaERGRhvRFLhwyAXZqHsyv7b+1e9yIyLbSSK1IEnN3bWtb23HezsnJqdux63+EU4dC4QaKTrodSjY1mr5oW9vJuF0TLRQTSW76AIvEWUwLxaoqWA97/xG+ywvuNnbdyQ0UncgOr8aFYhqpFRERaWitWsLjvw22b/onzMlJaDgiOyIltSIiIvEwvD9cPBI2lcLoByumIYhI/VBSKyIiEi+3/Rp6dYLPcmDSy4mORmSHoqRWREQkXjQNQaTBKKkVERGJJ01DEGkQSmpFRETiTdMQROqdkloREZF4qzoN4YvcxMYjsgNQUitNgplNM7Px9dDO62Z2VS11cszs11spH2dm2dsbi4gkueH94ZKj4Ipjofcu9dp0fn4+Y8eOpbCwMKb6JSUljB8/nmXLltVrHCLxpNvkitSBux8V/dzMIsCB7j69Dm1MrPfARCQ53TsaUmq8lvw2y87OZsiQIWRmZgKwevVqnn32Wb7//ntWrVrF2WefzeDBgyvqp6WlMXLkSKZMmcKYMWPqPR6ReNBIrYiISKJEJ7SrC2Dh9o+UFhUVMXPmTIYNG1axLzU1lb59+3LuuefStm3bao8bMGAAX331FXl5edsdg0giaKRWmhwzywLuBoYR3GY2G7jC3deF5R2BW4ERwE+AhcDp7v6VmU0D3nH3m81sTtjkW2ZWBjzn7ueF+7LM7F1gEJADXODuH4XtTwCGufvh4fMc4BHgsOrqi0gTMCcHjp4EHdvArEmw07b/9zx37lzatm1Lu3btKvbtvPPODB8+HAgS3Oqkp6fTs2dP5syZw4gRI7b5/CKJopFaaVLMrCXwHjAP6AX0A7oDfw7LU4F/ESSzA8LH0cC6qm25+z7h5kh3bxWV0AKcA1wC7Ay8DTxVS2h1rS8iO5Ldd4EWaZDRAlYVbFdTubm5dOnSZZuO7dq1K7m5WrQmyUkjtdLUHAukuPt14fNiM7sW+MjMzgd+DhjQwd3XhnU+34bzPOzucwHM7DHgUjPbOarN7a0vIjuSVi3h39dD9/bQbPvGm4qKikhPT9+mY9PT01mxYsV2nV8kUZTUSlPTi2BqwJoq+yPALkBPIK8ekskforbLlx+3Bmpqt671RWRHs2vHzduRCJRFtinBzcjI2OZ5scXFxWRkZGzTsSKJpqRWmppFwNfuvld1heH81k5m1sbd82NoL1KfwYmIsGQVXPgI2G4w4ZQ6H56VlcWcOXNqr1iNpUuXsvfee2/TsSKJpjm10tS8CuwUXiu2tZmlmFk3MzsxLHfgE+AxM+tkZqlmtreZda2hvWVA73gELiJNxMJl8NoncMtLwR3H6qhfv36sXr2aVatWVdpfUlJCSUkJkUiE0tJSSkpKKC0trShfv349OTk5SmolaSmplSbF3YuAQwkWiH1J8PX+u8C+YXkZMAooBj4D1gBPAK1qaPIa4EYzW21mDzds9CLSJBzcD8YcCZtKYfQDsHFTnQ7PzMxk8ODBzJgxo9L+MWPGMGbMGFatWsXkyZMZM2YMU6dOrSifNWsWffr0oXPnzvXSDZF4S4lE9O2pSBLTB1gkzrKzgxsCjho1quFOUrge9r4Svv0Rrj+5ztMQ8vPzmTRpEuPHj6+4AcPWlJSUcOONN3LxxRdv85UTROKkxruVKKkVSW76AIvEWVySWoD358EhE6B5M5g9Cfbt2bDnE0kONSa1mn4gIiLSGG3nNASRpkZJrYiISGN1669gt84wZxFMfDHR0Yg0akpqRUREGqvMlvDERcH2Nl4NQaSpUFIrIiLSmB3cD34fTkM4S9MQRGqipFZERKSxm/Qr6NkRPl8Ez3yY6GhEGiUltSJJzN21rW1tx3k7Jycn/udN34mNReuD7V6dGsXroG1tJ2q7Jrqkl0hy0wdYJM7idkmvqhavhBf+A5ceAyk1XtVIZEdX4y9/83hGISIiItuoe3u47NhERyHSaGn6gYiISGO2phDKyhIdhUijp6RWRESkMfvd47DnZfw/e3ceH1V1Pn78ExBNSIKyRAqGAbQuRL8u8AgJBWtdKFXRfrUUaa2AW8GiqN9+tUFUXNOqrWhV0K9WRVxqqVWj0R+1FZcYjA8qCqIWNYwRNcQASUgiW35/nDNhss+EJJPleb9eeeXOueeee+6dGXhy7nPu5Y2PYt0TYzo0Sz8wxhhjOqptOyB/HXz2DQzpH+veGNOhWVBrjDHGdFR77wVr74C3P4WhKbHujTEdmqUfGGOMMR3ZXj0h45BY98KYDs+C2g5MRKaJSKGIlIvIWU3UO15EutQjZkTkRRG5sq3qtxURKRCRc2LdD2NMF/D+evhmc4s2LS0tJTMzk61bt0ZUv6ysjMzMTMrLy1u0P2M6Aks/aICIDAM+B4aoamGM+rAXcC8wWVVzYtGHWFLVn7Rl/aaISDxwNTAVOAAoBV4ErlHVL8LqVQPjVfWN1tq3McYAUF0N5y2ED4KwbJ57VG4UsrOzycjIIDExsaZs9erVLF26lOLiYlJSUpg8eTJpaa7d5ORkRo8eTXZ2NlOnTm3VQzGmvdhIbQuJSJwPPNvK94DewPttuI8OR0R6xXj/PYEXgDOBXwLJQDrQB3hLRA5o5/7E9HwYY2JkxX9g5WeQnACjvx/VphUVFaxYsYJx48bVlG3cuJFFixYxceJEFixYwMSJE1m4cCHFxcU1dcaOHUteXh6VlZWtdhjGtKcOPVIrIknAfFyAkQJ8AfwaWAlk+fIE4A3gUlUN+u2WAy+r6k1hbdWMqonIfGA88BZwga+yUFWv88ur/O+P/XZ/UNUb/fJlwK+Aw4ETRORVIFVVi/x+4oDPgGtV9dFmju8s4FpgGFAAzFfVf4hIBvBynT70V9XvmmlvGnADLhB7DpitquV+XX/gVmACEA+8E7hG/AAAIABJREFUAlyiqt/49XOAWbiRyU3AY8A8Vd0Zdv5+A8wADgPWANNVtdl7zIjID/2+DwO+Au5Q1fv8uuP9sc4Arse9z8l130MRGYMbuT4E9/4sA85T1WF+fU39sJH2c4FMYAiQB0xT1a+a6e5U3GcjTVXX+bLPRWSKP+brgQtEJPQZWSYiu4AnVTX0WQqIyL+AMbj39SJVfTPsfFwIzPH9+gy4SlWX+XXzgeOAd3Cfs3eAVhuFNsZ0Enf5C3QXnQgJe0e16Zo1a+jbty/9+vWrKcvLy2Po0KGkp6cDMGbMGF577TXy8vJqnow2cOBAkpKSWLt2LSNHjmyd4zCmHXX0kdoHcYHBibiRstPxQRFu9CwdGAoUA9l+lC1SxwFBYLBvd66I/MCvO8r/PlRVk1T1xrDtzgemAEm4gGMFMC1s/cnAfsDSpnYuImNxgePvgP7AXOAJERmjqnm4oDm8D00GtEBPYBJwJDACF/z9ye8rDngG90jVI3DnrAx4PGz7Qlzw1Ac4AziP3QF/yHTgLGAA7g+MPzfTJ0RkOPASsNAf53QgS0Qm1+n7KcAxwMAG2tgPyAGeBPoBl+D+uGnOFNz7fACQiAv4m3MK8FZYQAuAqm4H/ooPMFU19BmZ4N+f8HN1HnApsC/wT+CRsGO5ELgKNwrcF5fm8LSIhA/FHIf7nA/BnW9jTHfyZQksfQt69oBZE6LePBgMMmjQoFplhYWFBAKBWmWBQIDCwtoZdoMHDyYYDEbfZ2M6gA47Uisi+wM/B45Q1c998ToR6YELIiep6pe+7mVACTAaNyIXiU9UdZFfXiEi7wEC5Daz3e2q+qlf3iki9+MCk9t82fnAElVt7vrNdODvqvqif/2CiPwDFxC9FeEx1HWVqm4BtojItcDzIjITGAmMAk4KBcd+UlWxiKSqaqGq/j2snXdF5FHcHxP3hZXfFjYa/jCwJII+TQXeUdWH/esVInIfLmD+WwN9b8hpQDnu3Ff7/v0FN5LZlOtVtdj393HqB+kNSQG+bGTdBmD/CNq4T1XX+P0+AFwmIvv645sD3KCqoZHeHBF5BTgbCF1ZWK+qf/TL2yLYnzGmK1m0DHbshMnpMGRA1JtXVFSQkJBQq6yqqqpeWUJCAlVVVfXKKioqou+zMR1Ahw1qcZfkAT6pU54C7IO7vAyAqpaLSBG7LzNHou5l6K24y/bNKajzeilwp4iMA9YCPwWOjaCdIbg0inCf4gLQlloftlyAO08DgOF++RsRCa9fBQSAQhGZClwBHIj7XOyNG4UOF37OIj1fQwh7r7xPcaPBIbtwI7+NOQAI+oA2ZH1jlcO0pL8bcX1uyGC/Ptr94ve9Bfde3CMid4XV2Qs3Uh4SybEZY7qiqm1wn88+u6RlmUe9e/emqKioVll8fHy9XNnKykri4+PrlfXvbw95MJ1TRw5qC/zvg4EPw8o3At/hgt51UJN7uz+7A6My3OVm/PrBUe67qYds11qnqlUi8ghuhHYV8J6qRjK56wt2B+4hB9J0cNecobiAEd/2d7jUjPW44KqfqtY7NhEZght1PRN4UVW3icjtuJHrPfUF7pJ+uLrHWV0nYK3rS1yealxYvUAT9ffES8ADInJQ2Ih86G4UP8fdBSGkqT43Zj1wnar+rYk69pB3Y7qrv74JG0vh6GEw7rAWNREIBFi1alWtstTUVD7++ONaZcFgkMMOq72PDRs2MHbs2Bbt15hY67BBraoWichS4F4RmY4LBg7yqxcDN4rIh8Bm4I/AR0C+X78SmCIif8KNRt4c5e434gKLg6k9gtaY+wEFxrI7DaE5jwAv+8v8L+MmcJ0JHB9lX8NlicgFuIlg84FHVXWXiCgu4L5LRK5T1W9FJAU4UVWfxOUH98Ad93YRScdd2l+7B30JeQK4RkTOxeXwjsTlw86Koo3ngbuAK/wI5+G4iWU7W6F/dT2O+wPlGRE5H/dZGoJ7X/fFndeQr3GfkWhu6XUHMF9E/oN7T+JxqSHFkUy6M8Z0YdXVcKf/u/nSn0BcXIuaSUtLY/HixZSUlNRMFsvIyGDZsmXk5+czatQoVq5cSTAYZMaMGTXbFRUVUV5ezogRI/b4UIyJhY4+Uew84D3gVdzo67O4W11djgsi38ZN9hoEnB6aqY8LHNbiRi3fw92iKWI+H/Ya3MStzSJydTP1P8IFP4Nxk5ki2UcuLjf4dtzdBm4FzlHVupf8I7UTd5wfAB/jZtVf4fe1C3e5Pw5YKSJluNSC4/36tcB1uPO7GTd57YkW9qMWnw99CjAb+BZ4FHe/16eiaGMzcCpuctUm4G7gYdxIdKtS1R3ARNzdI57EjXDnA5XA6PD71OJyqW8QkU0+TziS9v8P914/hDuWIO6zZrfuMqa7e/NjePdzGJAMU3/QfP1GJCYmkp6eTm7u7ikiKSkpzJw5k5ycHObMmUNOTg6zZs1iwIDdObu5ublkZGTUy701prOIq65uyRVUU5efOLVNVS+KdV+6AxHJAkapavRTg7sW+wIb086ys7MBam6F1Wqm3AFP5cHc/4ab9+wBCKWlpWRlZTFv3rxaD2BoTFlZGbfccgtz584lOTmS6QfGxEyjlzA6bPpBZyIihwCTcbcfM21ARCbgRqG/AcYBFwG/jWmnjDGmtRR+C39v+W286urTpw9ZWVkR109OTo6qvjEdkQW1e8jn/f4YyFLV1WHlAWpPcAu3RFVnRrmfxh7I/XprPiK2Jdqpb0fgcqn74G6tdRth93+NVGu/L8YY0ypKK+GEI6BvIqTa3QeMaQlLPzCmc7MvsDHtrM3SDwC274BeNt5kTBMaTT/o6BPFjDHGmO7DAlpjWsyCWmOMMSZWqqsh83FY8YlbNsa0mAW1xhhjTKzkfgy/fwZOvxW27Yh1b4zp1CyoNaYTU1VbtmVbbuflgoKC1mszMAAyf8oX54yCfXp1mGO0ZVvuyMuNsYlixnRu9gU2pp216UQxY0xzbKKYMcYYY4zpuiyoNcYYY2LhvHvhzhzYWhXrnhjTJdi9Q4wxxpj2trYQHloOyQlwwQmx7o0xXYKN1BpjjDHt7aHl7veUDEiMj2lXjOkqLKg1xhhj2tP2HbD4Vbd8no3SGtNaLKg1xhhj2tNL78E3W+DQwZB+cKx7Y0yXYUGtMcYY055CqQczjoe4Ru9OZIyJkgW1JioicryIxOyxNyIyXkQ2x2r/xhizR4q2QPZK6NkDzv1h1JuXlpaSmZnJ1q1bI6pfVlZGZmYm5eXlUe/LmM7G7n5gOiwRmQ+MU9WTQmWq+jqwXzvtvwCYp6pLIikPWz8ZuAr4vi/6ArhfVf/czP5+CSwB5qvq9XvWe2NMh/TY67BjJ5w6Egb1jXrz7OxsMjIySExMrClbvXo1S5cupbi4mJSUFCZPnkxaWhoAycnJjB49muzsbKZOndpqh2FMR2Qjtca0IhEZC/wFmAf0B/YHpgNfRrD5r4ES4HwR6dlWfTTGxEh19e7Ug/N+FPXmFRUVrFixgnHjxtWUbdy4kUWLFjFx4kQWLFjAxIkTWbhwIcXFxTV1xo4dS15eHpWVlXt6BMZ0aDZSGwURSQLmA2cCKbgRuF8DK4EsX54AvAFcqqpBv91y4B1gOHASUARchHvU2wIgAPwLOFdVy/w21cDluIDoIECBC1V1nV9/NpDp29wKPAdcoapb/foC4H7gRGAMUABcpKpvisgIYBWQqqpFvn4c8Blwrao+GsU52QuY6/vZ1x/nHFVdHdbuhcAlwFBgC/AHVb1bRI4C7gIOB3oCK4DZqvqpiEzx7fYQkdB1syP9uXpZVfeKcP8P+7argMn+XN2gqvdFeoxRygDWqupL/vVO3OdjZVMb+fdkPDAJ+AfwE+D5NuqjMSYWVn4GHwRhQDKcNirqzdesWUPfvn3p169fTVleXh5Dhw4lPT0dgDFjxvDaa6+Rl5dX8xjfgQMHkpSUxNq1axk5cmTrHIsxHZCN1EbnQVyAeCLQBzgd+Aq4A0j3P0OBYiC7zmjbr4Df4y6d/xV4FBfYHgcMAw4FLq2zv4uAn+FG+9YAz4W1uQX4hW9vvP+ZV2f783yb+wL/BB4BUNW1uAByWljdk31bSyM+G87/AucCpwDfA14H/ikiffz6mbg/BGb59o8B3vLrqv26A3DnoBx3+R1V/StwC7BcVZP8z2ct2D+4c5gN9MMF13eLyNAojzNSucBIEblTRH4iIvtHuN1FwPuq+jyQg/tjyRjTlTz0ivv9y/Gwd/RjSsFgkEGDBtUqKywsJBAI1CoLBAIUFhbWKhs8eDDBYDDqfRrTmdhIbYR8cPJz4AhV/dwXrxORHrjgcJKqfunrXoa7jDwayPN1n1LVt/z6JbhR1ttUtcSXPQ9Ind3+MWxk9kpgEy6oflNVXwyrt05E7sUFd+HuU9U1fvsHgMtEZF9V3YIbxb0auM3XPR9YoqrRXp+agRt5/cjv5wbgAuBU4AlcEHmzqr7h6xf7H1T1/bB2vhOR64EPRKS3qla00v4B/q2qz/nlp/1Es6OB9VEea7NUdYWI/BC4GHeODxCRd4DLfT5wPSISj3vvbvRFD/p+pqpqYUPbGGM6mapt8HiuW55xfIuaqKioICEhoXazVVX1yhISEqiqqqpXVlER6T+rxnROFtRGbpj//Umd8hRgHyAU6KKq5SJSBAxhd1D7Vdg2FY2UJddpuyCszQoR2QikAojIycC1wGF+/z1xaQ3hwtsPTZVNxo3yLgXuFJFxwFrgp8CxRG8ItY99l099GOKLhlH/nOGP4SBcUD3G96var0oh8oCzuf1D7fMA7lzUPdcN2Q70aqC8l1/XIFXNxY3YIiJDcMf4vIgMVdWG7twwGUjCj1LjRmo34oLz+RH00xjT0fXoAX+eAbkfw1HDWtRE7969KSqq/c98fHx8vVzZyspK4uPj65X179+/Rfs1prOw9IPIFfjfde+UvRH4jt1Bbyj3dn9czu2eCG+zNy7YKxSRvYFngCeBgKr2wc22j/iGh6pahUtHOB+XGvFenZHTSH1Rp589/OvQsRdQ/5yFLALKgCP9MfzAl4eOY1cr7H9PFLD7Dgah9pNwaQ4NpULUo6pfADfj0lUObKTaRbg/SlaLyNdAIS4/2CaMGdNV7L0XnHMcLLywxU0EAgG++qr23+ipqan10gqCwSCpqam1yjZs2FAvTcGYrsZGaiOkqkUishS4V0Sm40YSD/KrFwM3isiHwGbgj8BHQP4e7vZyP8nsS1w+7me4fNQE3OjsJlWtFJE0YHYL2r8fNwFtLLvTEKL1MHCliLyGCwKvwn2uXvDr7wHmisi7vu/9gOGq+jYu0PsPsFlEBgA31Gn7ayAgInur6rYW7n9PPAwsEJGXgDd9f28HPgDebWgDEfkpLiB9SVW/8sd1GS7l4qMG6qcB43D52W+HrdofN7nsFFw+sDGmm0tLS2Px4sWUlJTUTBbLyMhg2bJl5OfnM2rUKFauXEkwGGTGjBk12xUVFVFeXs6IESNi1XVj2oWN1EbnPOA94FXcCOOzuFG7y3HB4dtAEBgEnK6qO/dwfw8AT+NGg48CzlDVnapajpt4dau/M8A9wOPRNu7zUFcCg3Gjvi1xGy53dRnwDXACMEFVS/36e3F3hngQKMXdnSCU5nA5boJbKW6CV93Z/n/Djbh+LSKbRWR4C/bfYqr6GO7OCvfgcqRX4/6gmKSqOwBEJCAi5SIy3m/2LS6d4F0R2eq3SQFODuUJi8giEQnlRP8aeEdVs1X167Cf9/3x24QxYzq7BS/ARffB2j1LkU9MTCQ9PZ3c3NyaspSUFGbOnElOTg5z5swhJyeHWbNmMWDAgJo6ubm5ZGRk1Mu9Naariauurm6+lml3/pZe48MmWLXVfh4GtqnqRW25H9Nm7AtsTDvLznYXT0K3zGpSdTUcfCl8+g28OBcmHr1H+y4tLSUrK4t58+bVegBDY8rKyrjllluYO3cuycmRTCUwpsNrNNXS0g+6MRE5BDeqOCbWfTHGmC4pLg6evRKeyoOTj9zj5vr06UNWVlbE9ZOTk6Oqb0xnZkFtN+Xzg38MZIUeVODLA8CHjWy2RFVntkf/2oOILALOaWR1WujhGcYYs0cOHwLXD2m+njFmj1j6gTGdm32BjWlnEacfVFe7kVpjTGtq9EtlE8WMMcaYtvDQKyC/g2ffbr6uMWaPWVBrjDHGtIW/vAIrP4OS8lj3xJhuwYJaY4wxprV9XuSeHpa4D0zOiHVvjOkWLKg1phNTVVu2ZVtu5+WCgoLm6/zfc27hx0ehH61utr4t27ItR77cGJsoZkznZl9gY9pZRBPFpi6AJ9+Ee86Hi3/cTj0zpluwiWLGGGNMu6iuhlfWuOUfHR7bvhjTjVhQa4wxxrSmtV/CN1vge/vBYQfEujfGdBsW1BpjjDGt6d8+h/aEI+w+tca0IwtqjTHGmNb0ig9qLfXAmHZlQa0xxhjTWnbtguX+SeMnHBHbvhjTzVhQa4wxxrSW94PuYQuBATB8/1j3xphuxYJaY4wxprW0MJ+2tLSUzMxMtm7dGlH9srIyMjMzKS+3p5UZE7JXrDtgjDHGdBkjDoDJ6XDayKg2y87OJiMjg8TExJqy1atXs3TpUoqLi0lJSWHy5MmkpaUBkJyczOjRo8nOzmbq1KmtegjGdFY2UmtanYgsF5F5rdRWgYic0xptdQYi8rCIPBDrfhhjWugnx8BTV8BZ6RFvUlFRwYoVKxg3blxN2caNG1m0aBETJ05kwYIFTJw4kYULF1JcXFxTZ+zYseTl5VFZWdmqh2BMZ2VBrTHGGBNDa9asoW/fvvTr16+mLC8vj6FDh5Kens5ee+3FmDFjCAQC5OXl1dQZOHAgSUlJrF27NhbdNqbDsfQD06pE5G5gPJAhIr8DvgQuBm4BDgF2AP8CLlXVIr/N2cB1QCpQAbykqtNEJBsIAA+IyCLgTVWdICJ7AVcC04H9gTXAHPUPhhaRk4DbgIOAbcB7qnpSM/0eBtwHjME9evZzYCpQDBQBQ1R1g4ic4Pt/vqr+xfflW+BkVc0Xkf7ArcAEIB54BbhEVb/x++kN3ACcBewL5AOzVXWdiFwJ/DLsnADsq6o7I34DjDGx88pqqNwGx6VBUnzEmwWDQQYNGlSrrLCwkEAgUKssEAhQWFhYq2zw4MEEg0FGjowu3cGYrshGak2rUtXZwOvAjaqapKqHAt8Bs4EU4L+AwcCdUBPkPQr8RlWTgQOBB3xbk4AgcIFva4LfzfXAGcBEoD/wF+AlEenr1y8G7sIFjQcAN0XQ9Vv8vgYCA3AB8yZV/RZYBYSC4pOBdWGvxwC7ABWROOAZXFB8BDAUKAMeD9vP/wGHAenA94C3gOdFpJeq3go8BjzijzfJAlpjOpHfPwun/h6eXxnVZhUVFSQkJNQqq6qqqleWkJBAVVVVvbKKioqW9deYLsZGak2bU9U3wl5+LSK34gLRkO3AYSLynqqW4ILiBvnA8VLgVFX9zBc/KCKXAacCS3CjswcBA1X1a2B5BN3chgsyD1TVtcD7YetexgWxi/3va4A7fV9OAl5R1V0iIsAo4CRV/c7390qgWERSgSrgF8DQsJHb64HLcMFx+HkyxnQ24w+D0go4PrqHLvTu3ZuioqJaZfHx8fVyZSsrK4mPj69X1r9//5b115guxoJa0+ZEZBRuJPQooDcQByQBqGqFiJwCXAHcLCKfAX9U1ccbaW6A3zZbRKrDynvh0hfAjeLOBT4QkY3A/aq6oJlu/i8uWM0WkURgKZCpquW4oPYhEemHS6H4u697FC6ofcK3MRzYB/jGxbc1qnBpFNv96/frrO8FDGmmf8aYjm7eWe4nSoFAgFWrVtUqS01N5eOPP65VFgwGOeyww2qVbdiwgbFjx0bfV2O6IAtqTVvYVef1k7ggcbKqlorIaUB2aKWqLgeWi0hP4HTg7yLylqp+2kBbxcBW3Gjo2w3tXFVXAVP8SOo4YJmIvK+q/26sw6q6ETcCfKmIHAg8i8vbvRY3ctwf+A3wuqpuF5GXgf/GjbCe75tZ7/vWT1Xr9hsRCd2J/WC/v4bU284Y07WlpaWxePFiSkpKaiaLZWRksGzZMvLz8xk1ahQrV64kGAwyY8aMmu2KioooLy9nxIgRseq6MR2K5dSatvA18P2w132ALUCZiASA34VWiMhAETlLREITojb7VTvD2jo4VF9Vq3H5uLeLyMG+jSQR+bGIDBaRvUVkmogM8HU34QLFJnNTRWSKiAz3gfAWXDrCTr/PSuBN4LfAP/0m/8KlDXytqp+EuofLv73LTxhDRFJCk778xLjHgXtF5AC/fj8R+W8RSQo73gNFxL6bxnQmf8uDD4LuMblRSkxMJD09ndzc3JqylJQUZs6cSU5ODnPmzCEnJ4dZs2YxYMCAmjq5ublkZGTUy701pruy/zhNW7gDEBHZLCJrgIuAC3CTpp4G/hZWtwduBLRARMqAe4Bpqlrg198EnCMim0TkRV92HW4k9VkRKQX+A8xk9+d5CvCRiJQDzwHXqeqrzfT5GOBVoBx3N4V3cHdQCHkZF5yHgtrluFSKl0MV/OjsGbj0ipX+eFYAx4e1cyHwMW5kugz4AJiMm1wGbpJcIvCtP389m+m3MSbWKrfBOX+Go/4XNkX2RLC6Jk2axJtvvlnriWJHHHEE8+fP5+6772b+/Pk1D14A90Sx/Px8TjvttD3uvjFdRVx1dXXztYwxHZV9gY1pZ9nZLntq0qRJruDfq+HEG+DoYfDurbHrmDHdQ6PPn7aRWmOMMWZP/Hu1+33CEbHthzHdnE0UM92Cz+X9sJHVS1R1Znv2xxjThbyyxv3+UXS38jLGtC4Lak23oKpB/G3EjDGm1ZRVQv466NkDjrO7EBgTS5Z+YIwxxrTUGx/Bjp0gB0Gf3rHujTHdmgW1xhhjTEtZ6oExHYYFtcZ0Yqpqy7Zsy+28XFBQULO85XX/RO2MQzpE32zZlrvDcmPsll7GdG72BTamndW6pdexmaCfwoqbYczBzWxpjGkFdksvY4wxptWVlLvffRNj2w9jjAW1xhhjTItt8kFtv6TY9sMYY0GtMcYY0yK7dsHmCre8n43UGhNrdp9aY4wxpiWqgWVXw5YK2KtnrHtjTLdnQa0xxhjTEj17wElHxroXxhjP0g+MMcYYY0ynZ0GtMcYY0xJrCyHzcXjqzVj3xBiDBbUREZFpIlIoIuUiclYT9Y4XkR3t2be2JiIvisiVbVW/uxKR5SIyL9b9MMbsgQ+C8Ptn4Km8iKqXlpaSmZnJ1q1bI6q/fft25s2bx9dff70nvTSm2+jQObUiMgz4HBiiqoUx6sNewL3AZFXNiUUfYklVf9KW9RsiIscAK4GDVfXTOut+CLwMBFT1qz3dlzHGtNjhQ+Cms+GQQRFVz87OJiMjg8REd6eETZs28cQTT/DFF19QUlLCjBkzSE9Pr6nfq1cvJkyYwNKlS5k9e3abHIIxXUmnH6kVkTgfeLaV7wG9gffbcB8djoj0itW+VfVdQIELGlh9EfCcBbTGmJg7fAhcfSZMzmi2akVFBStWrGDcuHE1ZT169GDEiBGcf/759O3bt8Htjj32WD7++GOKiopardvGdFURBYMikgTMB84EUoAvgF/jRtOyfHkC8AZwqaoG/XbLgZdV9aawtqqB8ar6hojMB8YDb7E7gFmoqtf55VX+98d+uz+o6o1++TLgV8DhwAki8iqQqqpFfj9xwGfAtar6aDPHdxZwLTAMKADmq+o/RCQDNyoY3of+qvpdM+1NA24AkoHngNmqWu7X9QduBSYA8cArwCWq+o1fPweYBRwAbAIeA+ap6s6w8/cbYAZwGLAGmK6qHzXVJ7/tD/2+DwO+Au5Q1fv8uuP9sc4Arse9z8l130MRGYMbuT4E9/4sA85T1WF+fU39sJH2c4FMYAiQB0yLICi9D7hJRK5V1e2+7X7AWcAZ/vVPgWuAg/zx3KSqj/l104F5wF3AlUAi8BRwcdi5DAB/Asbhbs6TDfyPqpaJyBW49zCkJ+796gsc7Y+x5vvjP8vjVPUk/7rJ97kuEXkIOAnYD/f9uklVH2/mHBljOok1a9bQt29f+vXrV1O277778qMf/QhwAW5DEhISGDZsGKtWreLkk09ul74a01lFOlL7IDAGOBHoA5yOD4qAdP8zFCgGskUkmhv2HQcEgcG+3bki8gO/7ij/+1BVTVLVG8O2Ox+YAiQB7wArgGlh60/GBQhLm9q5iIzFBY6/A/oDc4EnRGSMqubhgubwPjQZ0OKCn0nAkcAIXPD3J7+vOOAZXAB1BO6clQHhwUsh8BPceT4DOI/6I5bTccHdAFwA9Odm+oSIDAdeAhb645wOZInI5Dp9PwU4BhjYQBv7ATnAk0A/4BLcHzfNmYJ7nw/ABZc3NF0d/D56485lyDRgA7BMRE7GfS4v832ZBtwtIseF1R/qj+Mg4FhgMnC2P5Z44N/Ah8BwIA1IBe4EUNU/+fc7Cfc5Wg78A9jSXMcjfJ/regMXLO+HOz8Pi0hac/syxsTQGx/BM/mwoaTZqsFgkEGDIktTqGvw4MEEg8EWbWtMd9LsSK2I7A/8HDhCVT/3xetEpAcukJikql/6upcBJcBo3IhcJD5R1UV+eYWIvAcIkNvMdreH5VvuFJH7gauB23zZ+cASVa1spp3pwN9V9UX/+gUR+QcumHwrwmOo6ypV3QJsEZFrgedFZCYwEhgFnBQKjv2kqmIRSVXVQlX9e1g774rIo7g/Ju4LK78tbDT8YWBJBH2aCryjqg/71ytE5D5cwPy3BvrekNOActy5r/b9+wtuxLwp16tqse/v4zScVlCLqm4VkceAC4GnffGFwP+parUf0b5TVV/36/JFZAluVPg1X1aJG6nfifvM/gv32XrMH0ucql4bqisi1wBvisiFodFcbxGwL3Cm33dz3R9FM+9zA8f7YNjLJ0Xkt8DxuKDbGNMR3fE8PJ1SMupFAAAgAElEQVQPT13ebApCRUUFCQkJLdpNQkICxcXFLdrWmO4kkvSDYf73J3XKU4B9cJeXAVDVchEpYvdl5kjUvQy9FXfZvjkFdV4vBe4UkXHAWuCnuNG55gzBpVGE+xQXgLbU+rDlAtx5GoAbEdwH+KZOYFQFBIBCEZkKXAEciHt/9saNQocLP2eRnq8hhL1X3qf4S/neLtzIb2MOAII+oA1Z31jlMC3pL7hA/h0RGYo7PwcDD/l1w4Ef+TSBkJ7A62Gvi+oEp+H7Hg4ERGRznX1W4/KoQ3+oXYtLkRkbwR9IIc2+z+GF/g/E+bgR7e/5PiTivmPGmI6qxN/FoF9Ss1V79+7d4rzYyspKevfu3aJtjelOIglqC/zvg6k9arQR+A4X9K6Dmtzb/dkdGJXh/nPGrx8cZf92RbpOVatE5BHcCO0q4D1VjWRy1xfsDtxDDqTp4K45Q3EBI77t73CpGetxgVU/Va13bCIyBDfqeibwoqpuE5HbcaOLe+oLXGpBuLrHWV0nYK3rS1wgGBdWL9AKfWuQqq4SEcW9p8OBZ1U1dG+b9cDDqnpbow00bT3uKsHhjVXwebkX4wLab8NWlQE9RWSfsHSU8M92k+9zA6biRq8nAB+q6i5/3HERH40xpv1tKne/+yY2XQ8IBAKsWrWq2XoN2bBhA0ceaU8uM6Y5zQa1qlokIkuBe/1/8utxOYoAi4EbReRDYDPwR+AjIN+vXwlMEZE/4Uapbo6yfxtxwevB1BndasT9uFnzY9mdhtCcR4CX/WX+l3GBxZm4S78tlSUiF+AmCM0HHg0LVFYBd4nIdar6rYikACeq6pO4/OAeuOPeLiLpuEv7a/egLyFPANeIyLm43M6RuHzYWVG08Txu4tUVInIXLt94BrCzya32zH3ATbgJWqeHlS/A5Z2uAN7EjdL+Fy6lQCNo93ngZhGZi8tJLscFpqP9JMGT/T5OVtXP6mz7ia9/gYgsxH3efobL7Qb3GWzqfa6rD7AD97738N+zo3wfjTEd1SY/Utu3+ZHatLQ0Fi9eTElJSa3JYtu3bwegurqanTt3sn37dnr06EHPnm5qSlVVFQUFBZxzzjmt339juphIJ4qdB7wHvIobpXoWd5n0ctx/4G/jJnsNAk4Pu+R7By4g+9Rv/0I0nfOXe6/BTdzaLCJXN1P/I1wgPRg30SiSfeTicoNvx91t4FbgHFWte8k/Ujtxx/kB8DHuDgxX+H3twl3ujwNWikgZLrXgeL9+LXAd7vxuxk1ee6KF/ajF50OfAswGvgUeBa5R1aeiaGMzcCrwS9y5uht4GDcS3VZCE8Y2sPtOFKjqMlyO7W24UfDQxMXm/3dx21cAJ+AmiH2EmwD2L9xkLXDHmAS8Iu6hG6GffVW1DBfM/4/fbg7uj6NQ202+zw14BJe/vQ43Gp5G7TQKY0xHVOJHaiNIP0hMTCQ9PZ3c3NrTRWbPns3s2bMpKSlh8eLFzJ49m5yc3bdEz8/P59BDD2XgwHpzd40xdcRVVzd1tbnz8ROntqnqRbHuS3cgIlnAKFWdEOu+dFNd6wtsTCeQnZ1N3I5dnHbmY9AjDrY/AY3ckitcaWkpWVlZzJs3r+YBDE3Zvn07N9xwAxdffHGL75xgTBfUaGpeh36iWLRE5BDcbZvGxLovXZWITMCNQn+Du7/rRcBvY9opY4xpZ722bnML+yVGFNAC9OnTh6ysrMj30asXN954Y/MVjTFAFwpqfd7vj4EsVV0dVh6g8dsiLVHVmVHup7yRVa+3xiNi90Q79e0IXC51H1xKwG2EXXqPVGu/L8YY0556lfmsqwhSD4wx7aPLpR8Y083YF9iYdpadnc1+H21k/JUvwbEHQX7ko6/GmD3WaPpBpBPFjDHGGOPtHUo/iODOB8aY9mFBrTHGGBOl3ekHzU/4Msa0DwtqjTHGmCj1KreRWmM6GgtqjenEwp8zYcu2bMvts1xQUEBJ2v5w+6/45PD9Yt4fW7bl7rbcGJsoZkznZl9gY9pZdnY2AJMmTYpxT4zplmyimDHGGGOM6bosqDXGGGOilPLOBngyF77eHOuuGGM8C2qNMcaYKH3/76th6p2w5otYd8UY43WZJ4oZY4wx7WXjUYMYMOJACAyIdVeMMZ4FtcYYY0yU1v38vxhhE8WM6VAs/cAYY4wxxnR6FtQa0wZEZI2ITPHLw0SkWkRS/evpIrIutj00xrTYrmr2XfctfPZNxJuUlpaSmZnJ1q1bI6pfVlZGZmYm5eXlLe2lMd2OpR8Y0wZU9fBY98EY0zZ6VWzjuCtyYP4rsOWRiLbJzs4mIyODxMTdj9VdvXo1S5cupbi4mJSUFCZPnkxaWhoAycnJjB49muzsbKZOndomx2FMV2MjtcYYY0wU9oryEbkVFRWsWLGCcePG1ZRt3LiRRYsWMXHiRBYsWMDEiRNZuHAhxcXFNXXGjh1LXl4elZWVrdp/Y7oqG6k13ZKI/Aa4UFWPDisbDqwDDgKuA04C9gO+AG5S1cd9veOBl4FfArcAA4D/B5yvqmW+TgEwT1WXRNCXs4FMYDiwFXgOuEJVI7tOaYxpV3tv9UHtfr0jqr9mzRr69u1Lv379asry8vIYOnQo6enpAIwZM4bXXnuNvLy8mieVDRw4kKSkJNauXcvIkSNb9yCM6YJspNZ0V48Dh4nI0WFl04HlqloAvAEcjQtqbwAeFpG0sLo9gQnAUcAhwDHApS3syxbgF35f4/3PvBa2ZYxpYzUjtfslNl3RCwaDDBo0qFZZYWEhgUCgVlkgEKCwsLBW2eDBgwkGgy3vrDHdiI3Umm5JVTeJyLPADGCOiMQB04Cr/foHw6o/KSK/BY4HPgwr/52qlgPlIvIMIC3sy4thL9eJyL3AuS1pyxjT9npt3e4W+kYW1FZUVJCQkFCrrKqqql5ZQkICVVVV9coqKipa3lljuhELak139hDwqA9Yj8ONlD4tIj2A+cAU4HtANZAIpIRtu1NVN4a93gokt6QTInIycC1wGLAPbhS4qCVtGWPaXq/y79xChCO1vXv3pqio9lc6Pj6+Xq5sZWUl8fHx9cr69+/f8s4a041Y+oHpzv4JfAdMwqUePKmqlcBU4ALgLKCvqu4HrALiWrsDIrI38AzwJBBQ1T7AVW2xL2NM64h2pDYQCPDVV1/VKktNTa2XVhAMBklNTa1VtmHDhnppCsaYhllQa7otVd0JLMblwp4J/MWv6gPsADYCPUTkPFzubFvYGzc6u0lVK33e7uw22pcxphX02hrdSG1aWhqbNm2ipKSkpiwjI4P169eTn5/Pzp07yc/PJxgMkpGRUVOnqKiI8vJyRowY0ar9N6arsqDWdHcPAT8EPlfVfF/2CPAW7k4IXwJpwOttsXOfkzsLuFVEyoF7cJPYjDEdVK/y6EZqExMTSU9PJzc3t6YsJSWFmTNnkpOTw5w5c8jJyWHWrFkMGDCgpk5ubi4ZGRn1cm+NMQ2Lq66ujnUfjDEtZ19gY9pZ4fFXkvpqASyeDb86LqJtSktLycrKYt68ebUewNCYsrIybrnlFubOnUtycovS9Y3pqhpNz7Og1pjOzb7AxrSzb469nIH6JWRfBaeNinV3jOluGg1qLf3AGGOMiUKvKO9Ta4xpH3ZLL2OMMSYK34xOZeugZIak9mu+sjGm3VhQa4wxxkRh3c+OAGDIsP1j3BNjTDhLPzDGGGOMMZ2ejdQaY4wxkdqxk74fFrG9zz6x7okxpg4bqTWmE1NVW7ZlW27P5S0VjPvd/+MHV77UMfpjy7bcDZcbY7f0MqZzsy+wMe1pSwWbR13Bjt69GPD+n2PdG2O6o0Zv6WXpB8YYY0yk9u3N63ecCsCkGHfFGFObpR8YY4wxxphOz0ZqjTHGmGhY2p4xHZLl1BrTudkX2Jj2VFoB+05ne0IvelU8FuveGNMd2WNyjTHGmNYSZ39PGtPhWFBrjDHGRCrODxJZTGtMh2NBrTHGGBOpmqDWolpjOhoLak2zROR4EdkRw/2PF5HNsdp/pERkuoisi3U/jDFtyMe0cRHGtKWlpWRmZrJ169aI6peVlZGZmUl5eXkLO2hM92V3PzAdiojMB8ap6kmhMlV9HdivHfuQAVwHZOC+Ix8Bd6nqI0310xjTDcQ1OkelQdnZ2WRkZJCYmFhTtnr1apYuXUpxcTEpKSlMnjyZtLQ0AJKTkxk9ejTZ2dlMnTq1VbtuTFdnI7XGhBGRCcArQB5wIJAC/AFYICLXt3Nf4kTE/vA0piOJIv2goqKCFStWMG7cuJqyjRs3smjRIiZOnMiCBQuYOHEiCxcupLi4uKbO2LFjycvLo7KystW7b0xXZv9hNkNEkoD5wJm4AOcL4NfASiDLlycAbwCXqmrQb7cceAcYDpwEFAEX4S5eLQACwL+Ac1W1zG9TDVwOTAcOAhS4UFXX+fVnA5m+za3Ac8AVqrrVry8A7gdOBMYABcBFqvqmiIwAVgGpqlrk68cBnwHXquqjUZyTvYC5vp99/XHOUdXVYe1eCFwCDAW2AH9Q1btF5CjgLuBwoCewApitqp+KyBTfbg8RCV17O9Kfq5dVda8I9/+wb7sKmOzP1Q2qel8Eh3cP8ISqhgewT4lIb+ABEXkId24b6mfo/FwKXAkkAk8BF6vqTr8uAPwJGIebapIN/E+dz8BlwK/8OfqRP0fGmI4gNFAbQfrBmjVr6Nu3L/369aspy8vLY+jQoaSnpwMwZswYXnvtNfLy8pg0yT2jbODAgSQlJbF27VpGjhzZ2kdgTJdlI7XNexAXxJwI9AFOB74C7gDS/c9QoBjIFpGeYdv+Cvg97tL5X4FHcYHtccAw4FDg0jr7uwj4GbA/sAZ4LqzNLcAvfHvj/c+8Otuf59vcF/gn8AiAqq7FBUfTwuqe7NtaGvHZcP4XOBc4Bfge8DrwTxHp49fPxP0hMMu3fwzwll9X7dcdgDsH5cAS38e/ArcAy1U1yf981oL9gzuH2UA/XHB9t4gMbeqgROQQ4Puh/tTxOO6/s5Ob6edQYCDuj5JjcUH12b79eODfwIe4P0zSgFTgzjr7Oh+YAiQB7zbVZ2NMO/MjtZEkIQSDQQYNGlSrrLCwkEAgUKssEAhQWFhYq2zw4MEEg8E96qox3Y2N1DZBRPYHfg4coaqf++J1ItIDFxxOUtUvfd3LgBJgNO7SNcBTqvqWX78EN8p6m6qW+LLnAamz2z+GjcxeCWzCBdVvquqLYfXWici9uOAu3H2qusZv/wBwmYjsq6pbcKO4VwO3+brnA0tUNdprXDNwI68f+f3cAFwAnAo8gQsib1bVN3z9Yv+Dqr4f1s53/pL+ByLSW1UrWmn/AP9W1ef88tN+otnRwPom2k3xv7+su0JVt4lIMe6PjaZU4ka+d+Leo3/h3uPHgNOAOFW9NlRXRK4B3hSRC0OjucDtqvqpX96JMabjiDL9ICEhoVZZVVVVvbKEhASqqqrqlVVURPpPojEGLKhtzjD/+5M65SnAPkAo0EVVy0WkCBjC7qD2q7BtKhopS67TdkFYmxUishE3moeInAxcCxzm998Tl9YQLrz90HTbZNwo71LgThEZB6wFfoobTYzWEGof+y6f+jDEFw2j/jnDH8NBuKB6jO9X6H+GFJoOOKPZP9Q+D+DORd1zXddG//sA3OSw8H7vDQwIq9OYorDgtO5+hwOBBu7kUI0bcQ4F0wXN7MMYEytRpB/07t2boqLa/0THx8fXy5WtrKwkPj6+Xln//v33pKfGdDuWftC0Av/74DrlG4Hv2B30hnJv98fl3O6J8DZ744K9Qh9UPQM8CQRUtQ9wFZFdBQNAVatw6Qjn41Ij3qszchqpL+r0s4d/HTr2Auqfs5BFQBlwpD+GH/jy0HHsaoX9t9R/cDnGv2hg3dm4/8b+6V9H0s+61gOfqOp+dX7iQyP+e9C2MaY9RJF+EAgE+Oqr2n9fp6am1ksrCAaDpKam1irbsGFDvTQFY0zTbKS2CapaJCJLgXtFZDouKDnIr14M3CgiHwKbgT/iRvfy93C3l/tJZl/i8nE/w+WjJuBGZzepaqWIpAGzW9D+/bgJaGPZnYYQrYeBK0XkNVwAexXus/SCX38PMFdE3vV97wcMV9W3cXnJ/wE2i8gA4IY6bX+NG83cW1W3tXD/LaKq1SIyG3hGRD4H7sWlE5yKm9z3h7A0lEj6WdfzwM0iMhf4My6feDAwWlX/sSd9N8a0k7g4Nh/UD+Limr3PYFpaGosXL6akpKRmslhGRgbLli0jPz+fUaNGsXLlSoLBIDNmzKjZrqioiPLyckaMGNGGB2JM12Mjtc07D3gPeBU3wvgs7lLx5bjg8G0gCAwCTq9z6bklHgCexo0GHwWcoao7VbUcN/HqVj/j/h7c5KWo+DzUlbhg6skW9vE2XO7qMuAb4ARggqqW+vX34u4M8SBQirs7QSjN4XLcBLdS3ASv5+u0/TfciOvXIrJZRIa3YP8t5vOWT8RN5ivA5QJfDfxWVa+Osp91267wfU3D/QG0BXcHjKP3tN/GmHbSswev33Eqr//plGarJiYmkp6eTm5ubk1ZSkoKM2fOJCcnhzlz5pCTk8OsWbMYMGBATZ3c3FwyMjLq5d4aY5oWV22P+usw/O2cxodNsGqr/TwMbFPVi9pyP6Zd2BfYmHaWnZ0NUHMLrqaUlpaSlZXFvHnzaj2AoTFlZWXccsstzJ07l+Tk5qYBGNMtNZr9Y+kH3Yy/bdVk3EQtY4wxLVFd7X6aecJYnz59yMrKirjZ5OTkqOobY3azoLYb8fnBPwayQg8q8OUB3L1TG7JEVWe2R//ag4gsAs5pZHVa6OEZxhjTmNPOeJS4amDHadAzusfmGmPajqUfGNO52RfYmHZW3ePnLqjd/gTs1bPZ+saYVmXpB8YYY0xreP6ZcyAujkkW0BrTodjdD4wxxphoNJNHa4yJDQtqjTHGGGNMp2dBrTGdmKrasi3bcjsvH3vJM4y//AXYvqND9MeWbbm7LTfGJooZ07nZF9iYdrar19n02LELvnsc9rapKca0s0bzf2yk1hhjjDHGdHoW1BpjjDHGmE7PglpjjDHGGNPpWVBrjDHGGGM6PQtqjTHGGGNMp2dBrTHGGGOM6fQsqDWmhURkvIhsjrDufBF5ua37ZIzpWEpLS8nMzGTr1q0R1S8rKyMzM5Py8vI27pkxXY/dYM+0CRFZDrysqje1QlsFwDxVXbKnbe1BH+YD41T1pFCZqr4O7BerPhljOr7s7GwyMjJITEysKVu9ejVLly6luLiYlJQUJk+eTFpaGgDJycmMHj2a7Oxspk6dGqtuG9Mp2UitMcYY0wYqKipYsWIF48aNqynbuHEjixYtYuLEiSxYsICJEyeycOFCiouLa+qMHTuWvLw8KisrY9FtYzotG6k1rU5E7gbGAxki8jvgS+Bi4BbgEGAH8C/gUlUt8tucDVwHpAIVwEuqOk1EsoEA8ICILALeVNUJIrIXcCUwHdgfWAPMUf8cPRE5CbgNOAjYBrwXPsraSL+HAfcBY3BP6vocmAocDcwFeohI6Jrgkb5fL6vqXn77OOBC4BJgKLAF+IOq3t3AvmYANwJnAcuBsar6btj614B/quqNTfXZGNNxrVmzhr59+9KvX7+asry8PIYOHUp6ejoAY8aM4bXXXiMvL49JkyYBMHDgQJKSkli7di0jR46MSd+N6YxspNa0OlWdDbwO3KiqSap6KPAdMBtIAf4LGAzcCSAivYFHgd+oajJwIPCAb2sSEAQu8G1N8Lu5HjgDmAj0B/4CvCQiff36xcBdwL7AAUAkaRC3+H0NBAbgAuZNqvpXv26570OSqn7WwPYzgfnALFxawjHAW3UriciNwFXAcar6FvA34IKw9YcAGf6YjDGdVDAYZNCgQbXKCgsLCQQCtcoCgQCFhYW1ygYPHkwwGGzzPhrTldhIrWkXqvpG2MuvReRWagdt24HDROQ9VS3BBcUN8iOilwKnhgWXD4rIZcCpwBLc6OxBwEBV/Ro3GtqcbcD3gANVdS3wfkQHt9slwM1hx1rsf0L2FpEluBHesf44Ae4HskXkf1S1CjgfN1L9ZZT7N8a0gxee/iUAk/Zu+r/QiooKEhISapVVVVXVK0tISKCqqqpeWUVFRSv01pjuw4Ja0y5EZBRutPMooDcQByQBqGqFiJwCXAHcLCKfAX9U1ccbaW6A3zZbRKrDynvh0hfAjeLOBT4QkY3A/aq6oJlu/i9wjW83EVgKZKpqpNOQhwGfNLF+BG4EdkJYQIuqviEiG4CficiTwDTgogj3aYzpoHr37k1RUVGtsvj4+Hq5spWVlcTHx9cr69+/f5v30ZiuxNIPTFvZVef1k8A7wCGq2geXq1pDVZer6um4gPUmYImIHNRIW8XAVuAkVd0v7CdRVX/v21ulqlNw+ba/BrJE5ISmOqyqG1X1UlX9PvAD4Hhc3m5DfWhIAXBwE+tXAVOAv/uc33D34UZoTwN2Ai9EsD9jTAcWCAT46quvapWlpqbWSysIBoOkpqbWKtuwYUO9NAVjTNMsqDVt5Wvg+2Gv++AmTpWJSAD4XWiFiAwUkbNEZF9V3QmE7v26M6ytmmBRVatx+bi3i8jBvo0kEfmxiAwWkb1FZJqIDPB1N+GC0lB7DRKRKSIy3Kc3bMGlI4T3ISAiezfRxD3AXBHJEJEeIjJARI4Nr6CqT+MC+qdE5IywVY8Co3GT5R7y58EY0wGN+20O4y9/AbbvaLJeWloamzZtoqSk5sIMGRkZrF+/nvz8fHbu3El+fj7BYJCMjIyaOkVFRZSXlzNixIg2OwZjuiILak1buQMQEdksImtwl9MvAMqAp3GTo0J6AL8BCkSkDBccTlPVAr/+JuAcEdkkIi/6suuAZ4FnRaQU+A9uolboMz0F+MjfreA54DpVfbWZPh8DvAqU4+6m8A7uDgr4/n6BywfeLCLDG9j+XiALeBAo/f/s3Xt8XVWZ//FPb0zSNIVeQm0pp+VOIxcHHtukFgYRmAAWHZ0OdFTuYouVgjNeUqsiKFURLQ6XwoBiqeClMmq08kOcQSCkxAel0lqQW3soBdLQ0iRNAm2T3x9rJT1JmlubnOQk3/frlVf2WXvtddknp33O2mvtHY9/b+tM7v7/CNMjfmBmH4tp2wjTHU6Mx4tIP3XgS9s46MWt4R4pHcjJyaGgoIDS0tLmtLy8PObNm8eqVatYuHAhq1atYv78+YwfP745T2lpKYWFhW3m3opIx4Y0NnbyqRSRtIgPeJiZcoeHrtAHWCTNHl16DzTCqQsvhKEdjw1VVVWxZMkSFi9e3OIBDO2prq7mhhtuYNGiReTm5vZQi0UGlCHt7lBQK9L3zGwCYWT3CnfvznxafYBF0qykpASg+b6yIpJW7Qa1uvuBDBpxLu/f2tm9wt3npbM9Tczsu4TFbPd2M6AVERGRSCO1IplNH2CRNNtw9mKGNDQw5bfXw/Bhfd0ckcFGI7UiIiI9IfHwCwzd1QAN+k4p0p/o7gciIiIikvEU1IqIiIhIxlNQK5LB3F3b2tZ2mrdT16L0h/ZoW9uDbbs9Wigmktn0ARZJs4YRF4Q5tW/fBwdoaYpImrW7UEwjtSIiIiKS8RTUioiIiEjGU1ArIiIiIhlPQa2IiIiIZDwFtSIiIiKS8RTUioiIiEjGU1ArIiIiIhlPQa30KjNbZ2bnd5Kn0cxmpatNIiL74/Ebi3j0u+fA8M7/C62qqqK4uJgdO3Z0qezq6mqKi4upqanZ32aKDDq6a3Q/YmZTgZeBQ919Ux83p0e4+7ubtvuqf2Z2MbDY3Y9MV50iMnBtP2Jc2BjaeVBbUlJCYWEhOTk5zWlr165l5cqVVFZWkpeXx5w5c8jPzwcgNzeX6dOnU1JSwty5c3ul/SIDlUZqpQ0zG9HXbZBA74VI5qqtrWX16tXMmrXnQtSWLVtYtmwZRUVFLF26lKKiIm6//XYqKyub88ycOZOysjLq6ur6otkiGUsjtSnM7CrgGmA8UAX8CBgFZLn7FTHPo8AUd58SX38eOM3dz4mvPwx8GTgCeA34urv/OKWOU4AlQD6wDbgN+K67NwJrYrbnzKwR+Ja7X29m44BvA2cBWcD/AZ9x9zdimRuAO4EPADOADcAV7v5ESr2fBBYChwIvAV9w94fivmuBU4E/A5+Iv89u5xyNAyoIo62bzex04A/AZe7+AzMbDrwJnOnu5bFti919RXv9i2knmNn3gGOBdcDF7v5srHNkPGcfAbKBx4Gr3D0Z9z8CPOzuX09pZyNwCrAbWAYcYGZN1/M+6O6P7K1/8dgLgK8Ck4Fa4EF3vyi1XHd/PL4+LdY9PL7OBW4FPghUE/4WfgCc4e6PmNmJwPeBdwPDgNXAAnd/MR5/DzAC2AmcB/wUmN9eW0Uk/Y6/7UmGNDTA2efA8GHt5lu3bh1jxoxh7NixzWllZWVMmTKFgoICAGbMmMGjjz5KWVkZs2fPBmDChAmMGjWK9evXc9JJJ/VuZ0QGEI3URmZ2NPBNQsCTSwg6fg08DJwR84wC/hEYEvMDnBnzYGZnAncDVwNjgYuAW8zs1Lg/H1gF3AjkAecCCwiBJMCJ8fcx7j4qBrRDgF8CjcBxwBRCsHRfqy5cClwFHAj8nhCQN/Xtk8AXgI8BY4AvAQ+YWerl+FMJQfihwEfbO0/u/iYhOD0jpf8vpLyeATQAvpfD2/QvZd/Fsd7xwCvAf6Xs+x5QEH+mAJVAiZm1/7/JnvaWAfOAl2KdozoJaEcC9wKfjn8HhwN3dVZPipvjMccCxxPe49R2NgLXAocAU4EaYEWrMuYAvyP8jfxHN+oWkTRIPPwCUx56ARoaO8yXTCaZOHFii7RNmzaRSCRalpdIsGlTyxlZkyZNIplM9kyDRQYJjdTusQsYArzbzDa6+1vAajMbDRxqZocD04A/Ac8DZ5rZRuB97Ak8FgI3u/tj8XW5ma0ALgQeBa4Efu7uv8/1buMAACAASURBVIr7nzWzW+L+5e206+T4c4a7vw3No8OVZjY5ZW7qHe6+Lu6/C7jazA509+2xXde5e9NI6Soz+z/gAqBpdHOju98Ut9/p5Fw1BfrL4+8vAzfHAPwM4P/cvaGTMlq7MWXk9R5ioGdmQwlfDma7+6sx7WpgKzAdKOtmPV2xEzjWzJ52963AY50dENs1jPDF4Wx3r4hpi4B/a8rj7n9NOeRtM/sa8IyZjXT32pj+uLv/NG7XIiL9yjPzpkNDIycO63hcqLa2luzs7BZp9fX1bdKys7Opr69vk1Zbq4+/SHcoqI3c/SUz+xjhUu9dZvZXQiD4kJn9iRCsTSOMgr5ACF6eJYyaPhOLOQx4v5l9NqXoYewJig4DTjezj6TsH0oYmWzPYcA/AG+YWWp6PZAAmoLa11L2NS2zzQW2xzJuNbPvp+QZnnIswMYO2tDaw8APzWwscDTwC0JgeyLhPN3fjbKatG5/btzOI/T/5aad7l5jZhWEUeUeDWrdvdbMzgE+C3zDzF4CbnL31iPjezMeOICW57LFeTWzIwgj9TMIfWwa6slLybthnzsgIr0uedZRAJ0GtSNHjqSioqJFWlZWVpu5snV1dWRlZbVJGzduXA+0VmTwUFCbwt0fIFyWP4BwyfpXcQ5p08jkNOASQoB1J/B34A9xPiyEoOQed7+xnSo2Aj9w90+3s39vo5sbCUHe2H0Y/Uwt46vu/vMO8nSn7MeAccCngcfcfaeZPQz8CyFYu6wH6miyBXibcKn+BWieBnIwe74MVAPNS4vNbNL+1BunJzwSR17PA35hZk/Gea81qXUBqXVVEka5pwAvxrSW1xnD/N7NwAnu/qaZHUf4UjRkX9srIv1TIpFgzZo1LdImT57Mc8891yItmUxy7LHHtkjbvHkzM2fO7PU2igwkCmojMzuGMKL5KFBHGOFsJAQYDxPmyb4D/NndG8zsZeBThIVlTZYC95jZauAJwijt8cAQd3fCorA/mtmDwIOx/KOBPHf/IyGAawCOYs8oqhPmsH7fzL4aA6E84APu/pMudu97wLVm9nwsK4swpaGyaTFWd7h7nZk9Afwn8JWY/AfCXNTX3f3v7Ry6t/51VleDmS0HrjezvwFvATcRRsnLY7angPPN7LuEEexvtCrmdeBgMxvt7lUd1WdmE4BZhMVf283srbhrd0pdF8XpG5MII7pNbd1tZvcRzvUz7bRlNGH6yltmNh64rivnQUT6j8RDz4f5tOc0QAejtfn5+SxfvpytW7c2LxYrLCzkoYceory8nJNPPpmnnnqKZDLJJZdc0nxcRUUFNTU1TJs2rdf7IjKQaKHYHgcQArTXCIHTVcBH3b2ecIl7KPC/KaOlDxMClIebCoh3E/gk4fJyZSzre4Q7KODuawmr4q+O+yqAewiXnnH3OsJl/PvN7C0z+1Ks70OEkbynzKyasGL+tK52zN3/m3D3hB8S7riQjPXsz+2imvr/+/j6EWAkKedjL+1o078u1nUNIbj/E6HtE4Hz3L0p0PwesJ4wOvo08NtWx/9fbOfLsd5/6qCuoYQR6A3xXN8KXOTuG+L+BcCRhDm9PyO8f6kWxjb+HVgb620kjDY39eUUwt01HgN+02nvRaRfOX5ZOSfe9iTs7viiSk5ODgUFBZSWljan5eXlMW/ePFatWsXChQtZtWoV8+fPZ/z48c15SktLKSwsbDP3VkQ6NqSxsePVmyKy7+IVgGeBQ9x9cy9UoQ+wSJo1jLiAobsa4O374ICOL3hWVVWxZMkSFi9e3OIBDO2prq7mhhtuYNGiReTm5naaX2QQGtLuDgW1Ij0n3iXjXcCThIVjPwRy3L2j0eH9oQ+wSJp1J6gVkR7XblCrT6O0Ee8CcUc7uz+V+jCJTBRvs7Wond1np9ySbV9kERYRTiXcjutRwpQUERER6UUaqRXJbPoAi6SZRmpF+lS7I7VaKCYiIiIiGU9BrYiIiIhkPAW1IiIiIpLxFNSKZLDwTA9ta1vb6dxOXYvSH9qjbW0Ptu32aKGYSGbTB1gkzbRQTKRPaaGYiIiIiAxcCmpFREREJOPpuomIiEg3PDNvOjQ0cuIwjQuJ9CcKakVERLohedZRAApqRfoZfSJFREREJONppFZERKQbEg89Dw2NcE4DaLRWpN/Qp7EfM7OLzGyTmdWY2Uc7yHeame1KZ9t6m5n9zsw+31v594eZXWxmL/RyHXeZ2T29WYeI7Jvjl5Vz4m1Pwu6GTvNWVVVRXFzMjh07ulR2dXU1xcXF1NTU7G8zRQYdjdTuhZlNBV4GDnX3TX3UhuHAbcAcd1/VF23oS+5+dm/mb4+ZnQb8H9D0P9DbwGpgobv3aiArIpkhecaRDGloYMrQdm+X2aykpITCwkJycnKa09auXcvKlSuprKwkLy+POXPmkJ+fD0Bubi7Tp0+npKSEuXPn9lofRAYijdTuIzMbEgPP3vIuYCTw116so98xsxF93QZgt7uPcvdRQALYCizv4zaJSD/xzJUz+OuCQhg+rMN8tbW1rF69mlmzZjWnbdmyhWXLllFUVMTSpUspKiri9ttvp7KysjnPzJkzKSsro66urtf6IDIQ9euRWjMbBVwLfATIA14BPgU8BSyJ6dnA48BV7p6Mxz0CPOzuX08pqxE4xd0fN7NrgVOAJ4HLY5bb3f2rcXtN/P1cPO5b7n593L4a+ATwbuB0M/sjMNndK2I9Q4CXgK+4+72d9O+jwFeAqcAG4Fp3/x8zKwQebtWGce7+diflXQRcB+QCvwYWuHtN3DcO+DZwFpBFGI38jLu/EfcvBOYDhwDbgB8Di919d8r5+zRwCXAssA642N2f7ahN8dh/inUfC7wGfM/d74j7Tot9vQT4GuF9zm39HprZDMLI9dGE9+ch4FJ3nxr3N+dPGWm/ECgGDgXKgIvc/bXO2pvK3XeY2U+A+zvo33Dg88DFwMGEc7PQ4zP94jSCYUA9MIcwCnxd0zmIeS4FvhT7/yvCE1MG1JQSkcFm3bp1jBkzhrFjxzanlZWVMWXKFAoKCgCYMWMGjz76KGVlZcyePRuACRMmMGrUKNavX89JJ53UJ20XyUT9faT2bmAG8AFgNHAeMSgCCuLPFKASKDGzjr82t3QqkAQmxXIXmdn74r4T4+9j4ojd9SnHXQacD4wC/ky4NH1Ryv4zgYOAlR1VbmYzCYHjF4FxwCLgfjOb4e5lhKA5tQ0dBrSEoGk2cAIwjRD8fTfWNQT4JeGRqscRzlk1cF/K8ZuAswnn+UPApewJ+JtcDHwUGE/4gvFfnbQJMzsMeBC4PfbzYmCJmc1p1fZzgH8EJuyljIOAVcBPgLHAZwhfbjpzPuF9PgTIIQT83WJmo4F/J3xxas/XCOesiNDHHwAPmtmYlDz/CpSktP8WM5sS6zgFuBWYF/f/PrZdRPqhA198kwNfeBMaOp5Tm0wmmThxYou0TZs2kUgkWqQlEgk2bWo5023SpEkkk8meabDIINFvR2rN7GDg34Dj3P3lmPyCmQ0lBJGz3f3VmPdqwiXi6YQRua74u7svi9urzexpwIDSTo77jru/GLd3m9mdhBG2G2PaZcAKd+/sutHFwC/c/Xfx9W/N7H8IweSTXexDa19w9+3AdjP7CvAbM5sHnAScDJzRFBzHRVWVZjbZ3Te5+y9SyvmLmd1L+DJxR0r6jSmj4fcAK7rQprnAn939nvh6tZndQQiYf76Xtu/NB4EawrlvjO37AWHEvCNfc/fK2N77aBukt2eYmb0Vt3OB14F/2VvG+IXhKuBcd38pJt8d/ybPZc85+l93/3XcfiCW/x5gI2FEeaW7/z7uX25mXQnaRaQPzPrcgwzd1QCf/jgc0P7YUG1tLdnZ2S3S6uvr26RlZ2dTX1/fJq22trbnGi0yCPTboJZwSR7g763S84B/IFxeBsDda8ysgj2Xmbui9WXoHYQApjMbWr1eCdxsZrOA9cCHgfd2oZxDCdMoUr1ICED31caU7Q2E8zQeOCxuv2FmqfnrCXNGN5nZXOCzwOGEv4sDCKPQqVLPWVfP16GkvFfRi4SRzSYNhJHf9hwCJGNA22Rje5lT7Et7IcypPQia5/jOAR4xM3P3v7XKO54wal8Sp2g0GQFMbqctrdszGfBW+1ufMxHJMCNHjqSioqJFWlZWVpu5snV1dWRlZbVJGzduXK+3UWQg6c9B7Yb4+yggNZDYQliRPhV4AZrn3h7MnsComnC5mbh/Ujfr7uiaUot97l5vZj8ijNCuAZ52964s7nqFPYF7k8PpOLjrzBRCwEgs+23C1IyNhCBqrLu36ZuZHUoYUfwI8Dt3f8fMvkMYud5frxCmFqRq3c/GVgFra68CCTMbkpIv0UH+HuPuO4H7zOz7hOkZrYPaSsK5PcPd/7SP1bxK27+FqcS/bxHJTIlEgjVr1rRImzx5Ms8991yLtGQyybHHHtsibfPmzcycObPX2ygykPTbObVx4dVK4DYzmxrvNnAkISBaDlxvZpPMbCRwE/AsUB4Pfwr4sJnlmVku8I1uVr+FELwe1cX8dxJG8+YD/93FY34EfNTM/tnMhpnZ2YSg8ofdbGuqJWY2Ok7duBa4NwaxTgi4vx8XjBHPzQXxuFGEv4UtwE4zK6DzS/tddT9wspldaGbDzWw6YT7s3d0o4zeEUc3PmtkIM3sPYWFZr4vvzfmEubJrWu+PQfbNwHfM7Kh4zKj4vnb1y9S9wL+a2QfiOfo4YS65iGSw/Px8tm3bxtatW5vTCgsL2bhxI+Xl5ezevZvy8nKSySSFhYXNeSoqKqipqWHatGl90WyRjNVvg9roUuBp4I+E0ddfEW51dQ0hUPsTYbHXROC8ppX6hIVk6wmjlk8Dv+1OpXE+7JcJC7feMrMvdZL/WUIgPYmwmKkrdZQS5gZ/h3C3gW8DH3f31pf8u2o3oZ/PAM8R7sDw2VhXA+Fy/xDgKTOrJkwtOC3uXw98lXB+3yIsXmt3tX93xPnQ5wALgDcJAdyX3f1n3SjjLcL81I8RztUtwD2EkejeMCw+8KKGcD6+DFzh7g+3k7/p3P3KzKqA5wmLvrr0+XL3PxIWj91FmBteBPx0/7ogIn0tJyeHgoICSkv3LNXIy8tj3rx5rFq1ioULF7Jq1Srmz5/P+PHjm/OUlpZSWFjYZu6tiHRsSGNjR1d9paviwql33P2Kvm7LYGBmS4CT3f2svm5LH9MHWCTNGkZcEBaKvX0fHNDxLL6qqiqWLFnC4sWLWzyAoT3V1dXccMMNLFq0iNzcri4DEBlU2n3qiYLaHmBmRwN/AWa4+9q+bs9AZGZnEUah3wBmAf8D/Ke77890jYFAH2CRNOtOUCsiPa7doFafxv1kZiuBfwaWpAa0Zpag7aKiJivcfV4362nvQeCP9dQjYvdVmtp2HGEu9WhgM+EWaj/qbiE9/b6IiIhI/6CRWpHMpg+wSJpppFakT7U7UtvfF4qJiIiIiHRKQa2IiIiIZDwFtSIiIiKS8RTUimQwd9e2trWd5u11Mw5m41lHwtAh/aI92tb2YNtujxaKiWQ2fYBF0qykpASA2bNn93FLRAYlLRQTERERkYFL9yIRERHphgNffDNcI2logKEaGxLpLzT9QCSz6QMskma6T61In9ITxURERHrC9sPHMGR3Iwe1+1+riPQFBbUiIiLd8Ph3zgFg9gj9FyrSn2gykIiIiIhkPAW1IiIiIpLxFNRKjzOz08xsVx/Wf4qZvdVX9Xemr8+PiOyfcz/yY2afdy+80/nHuKqqiuLiYnbs2NGlsqurqykuLqampmZ/myky6GhCkGQ0M7sWmOXuZzSluftjwEFpqn8DsNjdV3QlXUQGl5KSEgoLC8nJyWlOW7t2LStXrqSyspK8vDzmzJlDfn4+ALm5uUyfPp2SkhLmzp3bV80WyUgaqRUREekFtbW1rF69mlmzZjWnbdmyhWXLllFUVMTSpUspKiri9ttvp7KysjnPzJkzKSsro66uri+aLZKxNFLbw8xsFHAt8BEgD3gF+BTwFLAkpmcDjwNXuXsyHvcI8GfgMOAMoAK4gnA/tqVAAvgDcKG7V8djGoFrgIuBIwAHPunuL8T9FwDFscwdwK+Bz7r7jrh/A3An8AFgBrABuMLdnzCzacAaYLK7V8T8Q4CXgK+4+73dOCfDgUWxnWNiPxe6+9qUcj8JfAaYAmwHvuXut5jZicD3gXcDw4DVwAJ3f9HMzo/lDjWzpmt1J8Rz9bC7D+9i/ffEsuuBOfFcXefud3S1j/vDzAz4n1jnf6ejThHpfevWrWPMmDGMHTu2Oa2srIwpU6ZQUFAAwIwZM3j00UcpKytrfuzuhAkTGDVqFOvXr+ekk07qk7aLZCKN1Pa8uwkB4geA0cB5wGvA94CC+DMFqARKzGxYyrGfAL5JuHT+U+BeQmB7KjAVOAa4qlV9VwD/ChwMrAN+nVLmduDfY3mnxJ/FrY6/NJZ5IPB74EcA7r6eEEBelJL3zFjWyi6fjeBzwIXAOcC7gMeA35vZ6Lh/HuGLwPxY/j8CT8Z9jXHfIYRzUAOsiG38KXAD8Ii7j4o/L+1D/RDOYQkwlhBc32JmU7rZz24zs/OA3xC+jCigFRlAkskkEydObJG2adMmEolEi7REIsGmTZtapE2aNIlkMtnrbRQZSDRS24PM7GDg34Dj3P3lmPyCmQ0lBIez3f3VmPdqYCswHSiLeX/m7k/G/SsIo6w3uvvWmPYbwFpVe1PKyOzngW2EoPoJd/9dSr4XzOw2QnCX6g53XxePvwu42swOdPfthFHcLwE3xryXASvcvbvXxC4hjLw+G+u5DrgcOBe4nxBEfsPdH4/5K+MP7v7XlHLeNrOvAc+Y2Uh3r+2h+gH+191/HbcfiAvN3gNs7GZfu8zMrgL+Eyhy96d7qx4R6Ru1tbVkZ2e3SKuvr2+Tlp2dTX19fZu02tqu/hMnIqCgtqdNjb//3io9D/gHoCnQxd1rzKwCOJQ9Qe1rKcfUtpOW26rsDSll1prZFmAygJmdCXwFODbWP4wwrSFVavlNy3NzCaO8K4GbzWwWsB74MPBeuu9QWva9IU59ODQmTaXtOSP24QhCUD0jtqvpsbB5dD3g7Kx+aHkeIJyL1ud6b3YCI/aSPiLua89QwheGZQpoRQamkSNHUlHR8p/crKysNnNl6+rqyMrKapM2bty4Xm+jyECi6Qc9a0P8fVSr9C3A2+wJepvm3h5MmHO7P1LLHEkI9jaZ2QHAL4GfAAl3Hw18gQ6emdyau9cTpiNcRpga8XSrkdOueqVVO4fG101930Dbc9ZkGVANnBD78L6Y3tSPhh6of39sAI5MTYjv7bsI84/b0wD8E3CpmRX3QDtEpJ9JJBK89lrL78uTJ09uM60gmUwyefLkFmmbN29uM01BRDqmoLYHxQVVK4HbzGyqmQ0xsyOBw4HlwPVmNikGnzcBzwLl+1ntNWZ2hJllEebjvkSYj3oAYXR2m7vXmVk+sGAfyr+TsHhqPrCvcz7vAT5vZkfHYPtLhKsEv437bwUWmVmhmQ01s/Fm1jQiPJowavqWmY0HrmtV9utAIpa7r/Xvj3uAK+K9cYeZ2RjgZuAZ4C8dHRinQ5wCXG5mS3qgLSLSj+Tn57Nt2za2bt3anFZYWMjGjRspLy9n9+7dlJeXk0wmKSwsbM5TUVFBTU0N06ZN64tmi2QsBbU971LgaeCPhBHGXxFG7a4h3J3gT0ASmAic5+6797O+u4AHCKPBJwIfcvfd7l5DCES/He8McCtwX3cLj4HXU8AkwqjvvriRMHf1IeAN4HTgLHevivtvI9wZ4m6ginB3gqag9hpC4FdFWOD1m1Zl/5ww4vq6mb1lZoftQ/37zN1/TLizwq2EOdJrCXe3mO3uuwDMLGFmNWZ2yl6O3xD7d56Z3Ra/CC0ys3X72zYR6Vs5OTkUFBRQWlranJaXl8e8efNYtWoVCxcuZNWqVcyfP5/x48c35yktLaWwsLDN3FsR6diQxsbGznNJvxRv6XVKygKr3qrnHuAdd7+iN+uRfaIPsEiaNYy4gKG7GuDt++CAjpemVFVVsWTJEhYvXtziAQztqa6u5oYbbmDRokXk5nZlWr/IoNPuNEotFJMOmdnRhOkHM/q6LSIimWb06NEsWdL12UW5ubndyi8ieyiolXaZ2Urgn4ElTQ8qiOkJ4G/tHLbC3eelo33pYGbLgI+3szu/6eEZIjJ4bD98DEN2N3JQl5fdikg6aPqBSGbTB1gkzUpKSgCanwAmImnV7tdJLRQTERERkYynoFZEREREMp6mH4hkNn2ARdKsO3c/EJEep+kHIgORu2tb29pO83bqYFB/aI+2tT3YttujkVqRzKYPsEiaaaGYSJ/SSK2IiIiIDFwKakVEREQk42n6gUhm0wdYJM22HTM/PHxh/S0wQgvFRNJMj8kVERHpCQe+tC3c/UBfKUX6FU0/EBEREZGMp6BWRERERDKegloREZFeUlVVRXFxMTt27OhS/urqaoqLi6mpqenllokMPJpTK4OemV0LzHL3M/q6LSIysJSUlFBYWEhOTk5z2tq1a1m5ciWVlZXk5eUxZ84c8vPzAcjNzWX69OmUlJQwd+7cvmq2SEbSSO0gZmaPmNniHiprg5l9vCfKEhEZCGpra1m9ejWzZs1qTtuyZQvLli2jqKiIpUuXUlRUxO23305lZWVznpkzZ1JWVkZdXV1fNFskYymoFRER6QXr1q1jzJgxjB07tjmtrKyMKVOmUFBQwPDhw5kxYwaJRIKysrLmPBMmTGDUqFGsX7++L5otkrE0/WCQMrNbgFOAQjP7IvAqcCVwA3A0sAv4A3CVu1fEYy4AvgpMBmqBB939IjMrARLAXWa2DHjC3c8ys+HA54GLgYOBdcBCjw9wNrMzgBuBI4B3gKc7mwJgZhcDi4Fbgf8ADgTuAJYAdwJnApuBy9398XjMcGBRbMcY4M+xHWvbqWMhMB84BNgG/BhY7O67zWwI8HXgEiAXeBO4yd3/y8zGxDacTvhsbQLmuftjsdwPA1+O/X0N+Lq7/zjumxr7MYNwo6CXgbnu/lxH50NE+q9kMsnEiRNbpG3atIlEItEiLZFIsGnTphZpkyZNIplMctJJJ/V6O0UGCo3UDlLuvgB4DLje3Ue5+zHA28ACIA84HpgE3AxgZiOBe4FPu3sucDhwVyxrNpAkBJKj3P2sWM3XgA8BRcA44AfAgzH4A1gOfJ8QmB5CCBa7YgpwUGzDLOAzwO8IAfIY4AHghyn5PwdcCJwDvCv2+/dmNrqd8jcBZwOjY/svBS6P+84ELgJmxPMwHXg8pZ6RKe37l1gWZnYmcDdwNTA2lnGLmZ0aj72BcA4nAOMJAfi2Lp4PEemHamtryc7ObpFWX1/fJi07O5v6+vo2abW1tb3eRpGBRCO10qxpZDN63cy+TQhEm+wEjjWzp919KyE43Ks4onkVcK67vxST7zazq4FzgRWE0dkjgAnu/jrwSBebWgd8zd0bgDVmtgb4k7uvjnWvAIrN7EB3304YVf2Wuz8b919HCFLPBe7fy3n4RcrLv5jZvcAHCCOp7wBZwLvNbEscxa6Ied8hBO/HAH9x97+nlLMQuLlp1BYoj+28EHg0Hvsu4HB3Xw/8tYvnQkT6qZEjR1JRUdEiLSsrq81c2bq6OrKystqkjRs3rtfbKDKQKKiVZmZ2MmHE8ETCiOMQYBSAu9ea2TnAZ4FvmNlLhMvu97VT3Ph4bImZpT53ZwRh+gKEUdBFwDNmtgW4092XdqGpFTGgbVJLuJyf+hrC9IDtwKGEy/nEvjSY2YaY3oaZzSX083DCZ+QAYHU89hEzW0SYAvEzM1sNLIpTKm6M/fsRMNHMfgN83t3fAA4D3m9mn02pahh7vhh8jjA1ocTMcoCVQLG7674+IhkqkUiwZs2aFmmTJ0/muedazipKJpMce+yxLdI2b97MzJkze72NIgOJph8Mbg2tXv+EMN/0aHcfDbS4n4y7P+Lu5xEC1q8DK8zsiHbKqgR2AGe4+0EpPznu/s1Y3hp3P58w3/ZTwBIzO70nOxi9AkxtemFmQ+PrV1pnNLNDCaPIXwcmuvuBhPm7zc+advc73X0WYWT1acJ0B9x9h7t/yd2PA95NmFJxYzxsI3Btq3OR6+7nxGO3uPtV7n4k8D7gNMJ8ZBHJUPn5+Wzbto2tW7c2pxUWFrJx40bKy8vZvXs35eXlJJNJCgsLm/NUVFRQU1PDtGnT+qLZIhlLI7WD2+vAkSmvRxNGNqvNLAF8sWmHmU0gzF992N23m9lbcdfulLKOasrv7o1mdjPwHTO73N2fN7NRhIDtGULQOxf4rbtXmtk2QmDcVF5Pugf4vJk9CmwAvkD42//tXvKOInzZ2wLsNLMC4BPAegAzmw78A1BOmINc3dRmM5sNvAD8HagB6lP6sxS4J47sPkEYpT0eGOLubmbnxzI3EN6Dd+idcyEi++m3D3wMgNkHdPxfaE5ODgUFBZSWljJ79mwA8vLymDdvHitXrmT58uWMHz+e+fPnM378+ObjSktLKSwsbDP3VkQ6ppHawe17gJnZW2a2DriCMNe0mjD6+POUvEOBTwMbzKyaMHp5kbtviPu/DnzczLaZ2e9i2leBXwG/MrMq4HlgHnv+7s4HnjWzGuDXwFfd/Y+90M8bCXNnHwLeINyd4Cx3r2qdMc5nbWr3W4TAPnXe7SjC4rlKwp0Pzor9gDA/uASoIgSndYQAGnd/CPhkbEslYbrE92J5AP8I/JEQDK8jjJg3jfKKSIaaPXs2TzzxRIsnih133HFce+213HLLLVx77bXND16A8ESx8vJyPvjBD/ZFc0Uy2pDGxsbOc4lIf6UPsEialZSUADSPvopIWg1pd4eCWpGMpg+wSJptO2Y+Q3Y3ctD6W2CEZvGJpFm7Qa0+jdKvxLm8f2tn9wp3n5fO9oiItHbgS9sYuqtBXylF+hkFtdKv6QicqAAAHmhJREFUuHuSPfNMRUT6ncdvLIJGOHW4lqWI9CcKakVERLph+xHxoQhDFdSK9Cf6RIqIiIhIxlNQK5LBwoPMtK1tbadze+q3fs8Jt5TBrt39oj3a1vZg226P7n4gktn0ARZJs4YRF4SFYm/fB508gEFEely7dz/QSK2IiIiIZDwFtSIiIiKS8RTUioiIiEjGU1ArIiIiIhlPQa2IiIiIZDwFtSIiIiKS8RTUioiIiEjGU1ArIiLSS6qqqiguLmbHjh1dyl9dXU1xcTE1NTW93DKRgUd3jRbpgJldBHwDOAi4CJgN7HL3y3uxznt6uw4RSY+SkhIKCwvJyclpTlu7di0rV66ksrKSvLw85syZQ35+PgC5ublMnz6dkpIS5s6d21fNFslIGqmVtDCzR8xscQ+VtcHMPt4TZXVSz3DgNuAKdx/l7r/o7TpFZOCora1l9erVzJo1qzlty5YtLFu2jKKiIpYuXUpRURG33347lZWVzXlmzpxJWVkZdXV1fdFskYyloFakfe8CRgJ/7YnCzGxIDJRFZBBYt24dY8aMYezYsc1pZWVlTJkyhYKCAoYPH86MGTNIJBKUlZU155kwYQKjRo1i/fr1fdFskYyl/2Cl15nZLcApQKGZfRF4FbgSuAE4GtgF/AG4yt0r4jEXAF8FJgO1wIPufpGZlQAJ4C4zWwY84e5nxWDx88DFwMHAOmChu3ss7wzgRuAI4B3gaXc/o4M2FwIPx5fPmVkjMG4v+aYA3wfeB9QBvwCK3b0u7m8ErgY+AbwbeL+Z5XTUdxHp3x6/sQga4dThHY8LJZNJJk6c2CJt06ZNJBKJFmmJRIJNmza1SJs0aRLJZJKTTjqpZxotMghopFZ6nbsvAB4Dro+X8Y8B3gYWAHnA8cAk4GYAMxsJ3At82t1zgcOBu2JZs4EkcHks66xYzdeADwFFhODzB8CDZjYm7l9OCD4PBA4Bvt5Jm8sIQSjAMbGut1PzxED6t8DrwBSggBDcfqdVcZcB5wOjgL901HcR6f+2HzGO7UeOg6Ed/xdaW1tLdnZ2i7T6+vo2adnZ2dTX17dJq62t7ZkGiwwSGqmVPuHuj6e8fN3Mvk0IRJvsBI41s6fdfSshKN4rMxsCXAWc6+4vxeS7zexq4FxgBWF09ghggru/DjzSA92YDhwFzHD3HcCOOG/4l2a2wN0bY77vuPuLcXs30FnfRWQAGDlyJBUVLS/AZGVltZkrW1dXR1ZWVpu0cePaXBwSkQ4oqJU+YWYnEy7Bn0iYtzqEMJKJu9ea2TnAZ4FvmNlLwE3ufl87xY2Px5bEy/1NRhCmL0AYxV0EPGNmW4A73X3pfnbjUGBLDGibvAhkEUZhm/4325B6UEd9F5H+7/jbnmRIQwOcfQ4MH9ZuvkQiwZo1a1qkTZ48meeee65FWjKZ5Nhjj22RtnnzZmbOnNlzjRYZBDT9QNKlodXrnwB/Bo5299FAi3vXuPsj7n4eIWD9OrDCzI5op6xKYAdwhrsflPKT4+7fjOWtcffzCfNtPwUsMbPT97NPrwB5cbpEk8OBemBLSlq3+i4i/Vvi4ReY8tAL0NDYYb78/Hy2bdvG1q1bm9MKCwvZuHEj5eXl7N69m/LycpLJJIWFhc15KioqqKmpYdq0ab3WB5GBSCO1ki6vA0emvB4NbAeqzSwBfLFph5lNAGYBD7v7djN7K+7anVLWUU353b3RzG4GvmNml7v782Y2ijC/9RlC0DsX+K27V5rZNkKg2VTevioHXgBuMrP/INzL9nrghylTD/am3b6LSP/3zLzp0NDIicM6HhfKycmhoKCA0tJSZs+eDUBeXh7z5s1j5cqVLF++nPHjxzN//nzGjx/ffFxpaSmFhYVt5t6KSMcU1Eq6fA/4YQxQXwWuAG4CFgPPEhaGvS/mHQp8mnCHg+GEEdGL3H1D3P914L/M7CpgtbufTbhTwlXAr8xsMmHkdjXwmXjM+YTgM4swLeCr7v7H/emQu+8ysw8SFqAlCSO0D9B5kNpR30Wkn0ueFb5TdxbUAsyePZslS5Zw+umnNz+A4bjjjuO4447ba/7q6mrKy8tZtGhRzzVYZJAY0tjY8eUTEenX9AEWSbOSkhKA5tFXEUmrIe3t0EitiIhINyQeej7Mpz2nAbowWisi6aGRWhm04nzWv7Wze4W7z0tne/aRPsAiadYw4gKG7mqAt++DAzQ2JJJmGqkVac3dk+hWWiIiIgOCrpuIiIiISMZTUCsiIiIiGU9BrUgGc3dta1vbad5OXYvSH9qjbW0Ptu32aKGYSGbTB1gkzbRQTKRPtbtQTCO1IiIiIpLxFNSKiIiISMZTUCsiIiIiGU9BrYiIiIhkPAW1IiIiIpLxFNSKiIiISMZTUDsImdlpZrarD+s/xcze6qv6+wMz22Vmp/V1O0Sk+56ZN501V86AYZ3/F1pVVUVxcTE7duzoUtnV1dUUFxdTU1Ozv80UGXR0gz3pVWZ2LTDL3c9oSnP3x4CD0tgGAxYD7wP+AXgdWAV8y91fS1c7RGRgSJ51FAAndiGoLSkpobCwkJycnOa0tWvXsnLlSiorK8nLy2POnDnk5+cDkJuby/Tp0ykpKWHu3Lm90wGRAUojtTKgmdmZwOPAc8B73H008E/Am/G3iEivqK2tZfXq1cyaNas5bcuWLSxbtoyioiKWLl1KUVERt99+O5WVlc15Zs6cSVlZGXV1dX3RbJGMNehGas1sFHAt8BEgD3gF+BTwFLAkpmcTAqGr3D0Zj3sE+DNwGHAGUAFcQXiyxVIgAfwBuNDdq+MxjcA1wMXAEYADn3T3F+L+C4DiWOYO4NfAZ919R9y/AbgT+AAwA9gAXOHuT5jZNGANMNndK2L+IcBLwFfc/d5unJPhwKLYzjGxnwvdfW1KuZ8EPgNMAbYTRjlvMbMTge8D7waGAauBBe7+opmdH8sdamZN19JOiOfqYXcf3sX674ll1wNz4rm6zt3v6EL3bgPuc/cvNCXE0dnrU/q/z+9D3P8B4AbgaGAX4e/gqpT3JRe4BZgNVANfaXX+2z2HXeifiKRZ4qHnoaERzmnocArCunXrGDNmDGPHjm1OKysrY8qUKRQUFAAwY8YMHn30UcrKypg9ezYAEyZMYNSoUaxfv56TTjqpdzsjMoAMxpHauwmByQeA0cB5wGvA94CC+DMFqARKzGxYyrGfAL5JuHT+U+BeQmB7KjAVOAa4qlV9VwD/ChwMrAN+nVLmduDfY3mnxJ/FrY6/NJZ5IPB74EcA7r6eEPxclJL3zFjWyi6fjeBzwIXAOcC7gMeA35vZ6Lh/HuGLwPxY/j8CT8Z9jXHfIYRzUAOsiG38KSHYe8TdR8Wfl/ahfgjnsAQYSwiubzGzKR11ysyOBo4E7uuk//v8PkRvAwsIX5KOByYBN6fsXwocBeQTgvoPEYLXJu2eQxHpf45fVs6Jtz0Juxs6zJdMJpk4cWKLtE2bNpFIJFqkJRIJNm3a1CJt0qRJJJPJnmmwyCAxqEZqzexg4N+A49z95Zj8gpkNJQSHs9391Zj3amArMB0oi3l/5u5Pxv0rCKN7N7r71pj2G8BaVXtTysjs54FthKD6CXf/XUq+F8zsNkJwl+oOd18Xj78LuNrMDnT37YTRwy8BN8a8lwEr3L2716wuIYy8PhvruQ64HDgXuJ8QRH7D3R+P+SvjD+7+15Ry3jazrwHPmNlId6/tofoB/tfdfx23H4gLzd4DbOyg3Lz4+9WOKt/f9yHlvAC8bmbfBn4Q8w4FPgac6+6vx7QvAP+SUn9PnEMRSZPkGUcypKGBKUPbfQQ9EKYfZGdnt0irr69vk5adnU19fX2btNpaffxFumNQBbWEUTCAv7dKzyMsIGoKdHH3GjOrAA5lT1Cbuqiotp203FZlb0gps9bMtgCToXm+51eAY2P9wwjTGlKllt+0fDaXMLq4ErjZzGYB64EPA++l+w6lZd8b4iX3Q2PSVNqeM2IfjiAE1TNiuxrjrjw6Dji7Uz+0PA8QzkXrc93alvj7EML52av9fR/M7GTCiPSJwEjClJRRMU/T39aGlONfTtnuqXMoImnyzJUzAJgyfFiH+UaOHElFRct/SrKystrMla2rqyMrK6tN2rhx43qgtSKDx2CbfrAh/j6qVfoWwiXkqU0Jce7twYQ5t/sjtcyRhEBlk5kdAPwS+AmQiAuYvkAIiLrE3esJl8EvI0yNeLrVqF9XvdKqnUPj66a+b6DtOWuyjDBP9ITYh/fF9KZ+dHx9rmv17xN3/zvwAtDuEuKeeB/isX8Gjo7Hp9ZXCbxDSv9abUPn51BEMlAikeC111p+H588eXKbaQXJZJLJkye3SNu8eXObaQoi0rFBNVLr7hVmthK4zcwuJoyCHRF3LweuN7O/AW8BNwHPAuX7We01cZHZq4T5uC8R5qNmE0bwtrl7nZnlE+ZldtedhAVoM9kzDaG77gE+b2aPEgLYLxD+Nn4b998KLDKzv8S2jwUOc/c/EeYlPw+8ZWbjgetalf06kDCzA9z9nX2sf39cSZgb/QZwi7tvNrMJhDmyLwO/Yf/fh9GEkfNqM0sAX2za4e67zew+4GtmthaoI/wdtD6+o3MoIv3IgS++Ga6nNDTA0PbHhvLz81m+fDlbt25tXixWWFjIQw89RHl5OSeffDJPPfUUyWSSSy65pPm4iooKampqmDZtWm93RWRAGWwjtRCCmaeBPxJGx35FWJx0DSE4/BOQBCYC57n77v2s7y7gAcJo8InAh9x9t7vXEBZefTveGeBWOl/Q1Each/oUYXHST/axjTcS5q4+BLwBnA6c5e5Vcf9thDtD3A1UEUYlm6Y5XENYWFVFWOD1m1Zl/5ww4vq6mb1lZoftQ/37zN1/D8wiLNJ6xsyqCXe2OJiwgK0n3ocrCHOAqwnv9c9b7V9ICKCfBZ4hLHhL/bvq7ByKSD8y63MPcupnV8Guji9E5eTkUFBQQGlpaXNaXl4e8+bNY9WqVSxcuJBVq1Yxf/58xo8f35yntLSUwsLCNnNvRaRjQxobGzvPJfsk3tLrlFYLiXqjnnuAd9z9it6sR/olfYBF0qxhxAUM3dUAb98HB3R8wbOqqoolS5awePHiFg9gaE91dTU33HADixYtIje3s2UDIoNSu1PzBtX0g4Eo3rZqDmGRkYiI9COjR49myZIlXc6fm5vbrfwisoeC2gwW5wf/M7Ck6UEFMT0B/K2dw1a4+7x0tC8dzGwZ8PF2duc3PTxDREREBjZNPxDJbPoAi6RZd6YfiEiPa3f6wWBcKCYiIiIiA4yCWhERERHJeApqRURERCTjKagVyWDurm1tazvN26lrUfpDe7St7cG23R4tFBPJbPoAi6SZFoqJ9CktFBMRERGRgUtBrYiIiIhkPF03ERER6YbkGUcypKGBKUPbvQoqIn1AQa2IiEg3PHNleCr5lOHD+rglIpJK0w9EREREJONppFZERKQbDnzxzXDfkYYGGKqxIZH+Qrf0Esls+gCLpJlu6SXSp3RLLxERkZ6w/fAxvHXE2A7+a92jqqqK4uJiduzY0aWyd+7cyeLFi3n99df3s5Uig4++YoqIiHTD4985B4DZIzr/L7SkpITCwkJycnIA2LZtG/fffz+vvPIKW7du5ZJLLqGgoKA5/4gRIzjrrLNYuXIlCxYs6J0OiAxQGqkV6cfMbERft0FE9k1tbS2rV69m1qxZzWlDhw5l2rRpXHbZZYwZM2avx733ve/lueeeo6KiIl1NFRkQNFIrshdmdhVwDTAeqAJ+BNwJvAwc6u6bYr6LgcXufmR8/S7gv4FTgTeAbwF3AYe5+wYz+wBwA3A0sAv4A3CVu1fE4x8BngamAqfHvN/s9Q6LSI9bt24dY8aMYezYsc1pBx54IO9///uBEODuTXZ2NlOnTmXNmjWceeaZaWmryECgoFakFTM7mhBIvtfd15nZQcCxXTz8x8BbwKFAFvCzVvvfBhYAfyEEzD8DbgbmpuS5FPgw8C9A9j52Q0R6ybkf+XFcKHZ2hwvFkskkEydO3Kc6Jk2aRDKZ3NcmigxKCmpF2tpFWALybjPb6O5vAavNbGpHB5nZZMLo6hHuXgVUmdn1wD815XH3x1MOed3Mvg38oFVRK939f+N27f51RUT6Sm1tLdnZ+/a9NDs7m8rKyh5ukcjApqBWpBV3f8nMPgbMB+4ys78C1wF/7+TQQ+Lv1OGVjakZzOxkwpSCE4GRhOB5VKtyNuxby0WkPxk5cuQ+z4utq6tj5MiRPdwikYFNC8VE9sLdH3D3M9kzReBXwM64Oycl66SU7Vfj70RKWuo2wE+APwNHu/toWk47aNKwr+0Wkf4jkUjw2muv7dOxmzdvJpFo/c+HiHREQa1IK2Z2jJkVmdlIQiC7nfCQgzcJI6+XmtkwMzse+GTTcXHx2CPAN80s18zygMWtih8dy6s2swTwxV7vkIj0ifz8fLZt28bWrVtbpO/cuZOdO3fS2NjI7t272blzJ7t3727eX19fz4YNGzjhhBPS3WSRjKagVqStA4CvAK8RFn1dBXzU3euBi4APEgLT7wJ3tzr23wnTCjYBpcDPY/rb8fcVwOVANfBAyn4RGWBycnIoKCigtLS0RfqCBQtYsGABW7duZfny5SxYsIBVq1Y17y8vL+eYY45hwoQJ6W6ySEbTY3JFepGZ/TNh6kK2u/fGh00fYJE0685jcquqqliyZAmLFy9ufgBDR3bu3Ml1113HlVdeuc93ThAZ4Np9lp+CWpEeZGbvIcyJfQY4DPgp8Dd3v6iXqtQHWCTNuhPUikiPazeo1fQDkZ41hjCtoAZ4HPgrsLBPWyQiIjIIaKRWJLPpAyySZhqpFelTGqkVERERkYFLQa2IiIiIZDxdNxEREemG7YePYcjuRg5q9yKoiPQFzakVyWBDhgx5kPDUs7QaPnz4+F27dg2YB9OrP/3bQOsPDLw+qT/93wDqU2VjY2PR3nYoqBWRbjMzd3fr63b0FPWnfxto/YGB1yf1p/8biH1qTXNqRURERCTjKagVERERkYynoFZE9sWdfd2AHqb+9G8DrT8w8Pqk/vR/A7FPLWhOrYiIiIhkPI3UioiIiEjGU1ArIiIiIhlPD18Qkb0ys6OBHwHjgDeBC939+VZ5hgHfB4qARuCb7n5XutvaFV3sz1nADcDxwH+5+3+mvaFd1MX+fBm4ANgN7AQWufv/S3dbu6qLfboEuAZoAIYB/+3u3093W7uiK/1JyXsM8Bfgtv76d9fF9+da4Epgc0wqdfdPp7OdXdXV98fM/g34MjCE8O/cGe7+Rjrb2lVdfI+WAyekJJ0AfNjdf522hvYSjdSKSHuWAbe6+9HArcAde8nzMeBI4CigELjWzKamrYXd05X+vARcDtyYzobto670pxx4r7ufAFwK/NTMstPYxu7qSp9+AZzo7u8BZgL/YWYn7CVff9CV/jR9ObwD+GUa27YvutQfYLm7vyf+9MuANuq0P2ZmwLXAme5+HDAL2J7ORnZTp31y9wub3h/gImAb0G+/7HaHgloRacPMDgZOAu6PSfcDJ5lZXqus5xNGyhrcfQvhP+U56Wtp13S1P+7+grs/DexKcxO7pRv9+X/uXhtf/pUw0jQubQ3thm70qcrdm1Y4jwRGEEbP+pX/3969xspVlWEc/z+0oGLbGC0g0Butl4BG0C6pRCoYAwoh0ERiaAmXSkBITKBfxMRCwMZbKrYkxIAILQgFA0EpSqBgqOINXCCCCBhK21OQhoJQi9BC4fXD2gc2k3PaPecy50x9fslJZ/Zas+Z998yZvmfN2nu38TsE8E3gV8A/OxRe29rMZ9RrI58FwA9zzhsBcs6bc85bOxdpcwN8jc4Ars85bxvu+DrBRa2Z9WUy8EzO+Q2A6t9/VdvrpgDra/d7+ugzGjTNp1sMJJ9TgTU556c7EN9ANM4ppXR8SulRyntvcc75kY5G2kyjfFJKBwNfBJZ0PML2tPOeOyml9HBKaVVK6bBOBtmGpvkcBExPKf0upfRgSmlhSkkdjrWptj4XUkp7APOAqzsW4TBzUWtmtotLKR0BLALmjnQsQyHnvDLn/DHgI8Ap1XrUrpNS2p1y7tCzewuRXcDlwAHVkpfFwK0ppVH57UBDYyhrTo8CjgCOAU4Z0YiGzhygp/p2apfgotbM+rIB2L9a69e75m+/antdDzC1dn9KH31Gg6b5dIvG+VQzZddRDgR5oqNRtqft1yjn3ENZN3xcRyJsT5N89gVmALenlNYB5wFnppRG40nyG70+OeeNOefXq9t3Ve0f73CsTbTzGXdzznlbznkLcCtwaEcjba7d36GvsgvN0oKLWjPrQ875OeAh3p7Zmwv8tVo3W3cT5T/h3ap1W3OAmzsXaTNt5NMVmuaTUvo08HPgxJzzg52Nsj1t5HRg7fZE4PPAqFt+0CSfnHNPznliznlaznkasJSyRv2sjge8E228PvvXbh8CTANG3R9TbXwmrACOTimpmln/AvC3zkXaXDufcymlScBs4PrORTj8fEovM+vP2cA1KaULKUfHngqQUroduDDnnIGfAbOA3lPGfDvnvHYkgm1gp/mklA4HbgQmAEopnQScMUpPg9Xk9fkx8B7ginIQNwCnjNI1qNAsp7OqU6+9Tjnw7bKc86qRCngnmuTTTZrk892U0kzKaeReo7zfNo5UwDvRJJ8bgQT8g3IauTuBq0Ym3EaavudOA27LOb84MmEOD18m18zMzMy6npcfmJmZmVnXc1FrZmZmZl3PRa2ZmZmZdT0XtWZmZmbW9VzUmpmZmVnXc1FrZmajlqTtko5s2PdISduHOaSuJOl0SU+OdBxmw8lFrZmZDZik1ZJC0ldats+qtq8bodCGnKRpVU6ThnhcF5xmQ8BFrZmZDdZjwJkt286stpuZdYSLWjMzG6xbgE9Kmg4gaTzwZWBZvZOkPSVdKmmDpOcl/VLSlFr7eEnXSPq3pPWSTmt9IklzJD0g6SVJj0k6uZ1AJZ0j6QlJmyX9WdLsWttFku5u6b9a0sLqbu/lUZ+Q9LKkC6o+Iek8SQ9J2iLpHkkf6mcMao85XNJhwOXA9GrMl/tabiHpJklLW7adLmmNikmS7pC0qcrtXkkzd7Af+o2pdn9Q+9qs01zUmpnZYG2lXEP+jOr+XOC3wLMt/ZYAn6l+pgLPA7dJGlO1LwU+DBwEfAI4AehtQ9JRlEuUnge8n3Kpz8skfa5JkJLmAosolw79AHAlcIekqQ3zPLj696MRMS4iFtXazgJOBPYGHgVW1vLqV0T8iXJp06eqMcdFxOo+ui4D5knavbZtPrA8yqVBd6NcFnkq8EHgQeCWlv6NDXZfm40EF7VmZjYUrgTmSxpLKfCurDdK2o1SGC2MiGci4r+UgulA4NCq/WTggojYGBGbgfNbnuNc4NKIuDci3oyI+4HrqK5v38B84IqIuC8itkfEVcDDwLwBZfxOl0TEkxHxKvANYAYwawjG7XUnsB04DkDSDOCzwHKAiOiJiJUR8UoVw0JgCuWPhIEY7L426zgXtWZmNmgR8XdgPXABZbbyjpYuewHvAtbWHvMy8Bwwuda+rvaYtbzTAcD51dfhL0l6CTgd2K9hmJP7GHNNtX2w1vXeiIhXgE3AkB1QFhFvANdSCnMoef8mIjYASJoo6VpJPZL+A2yo+u01wKcc7L426zgXtWZmNlR+Qilqr66KsLpNwDZgWu8GSeMoBfAGylKE1+rtLbehFM0XRcT7aj/jI+LYhvFt6GPM6bxdAG4B3tvSXi/i3tzB2G+NK2lPSjH5dF/jSmotDHc0bt1y4EuS9qXMmNbXLH8P2BeYFRETeLtQVz9j7Symwe5rs45zUWtmZkPlBuBo4NLWhoh4kzLTuEjSflXhdwnwOHB/VQSvAC6WtI+kCcD3W4ZZCiyQNFvSGEl7SJopKTWMbznwNUmHShoraT5wSPW8AA8An6rGHCvp65QZy16bKAVoX1/pL5A0Q9K7q7ifAu6rjTtH0l7VQXTfaXnsRmDvKud+RcTjQKasdR0P/KLWPAF4BXix+mPhBzsaq0FMg93XZh3notbMzIZERGyNiLsj4sV+uiygFGV/AXooM4vH12Z1z6UsD3gceAS4DXhrxjciVlFOFbaYMrP7LOXgs3EN41sBXExZG/oCcA5wbESsr9pXAz+iLJ14FtgH+EPt8a9SZqJvqL6S/1Zt+J9SzgKxiXJA2Qm1vJZQTm+2BngI+HVLaPcAdwFrq3GP2EEay4BjgBURsa22/ULKrPcLlHXCf6S27/qww5gGu6/NRoLKQZNmZmY2EJICmB0Rvx/pWMz+n3mm1szMzMy6notaMzMzM+t6Xn5gZmZmZl3PM7VmZmZm1vVc1JqZmZlZ13NRa2ZmZmZdz0WtmZmZmXU9F7VmZmZm1vX+B8lDH8WAKz2bAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["eval_idxs = (X_test.index==5) | (X_test.index==24)\n","X_test_eval = X_test[eval_idxs]\n","eval_compare_df = pd.concat([\\\n"," chocolateratings_df.iloc[X_test[eval_idxs].index].rating,\\\n"," pd.DataFrame({'y':y_test[eval_idxs]}, index=[5,24]),\\\n"," pd.DataFrame({'y_pred':y_test_svc_pred[eval_idxs]},\\\n"," index=[24,5]),\n"," X_test_eval], axis=1).transpose()\n","eval_compare_df"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"uwtlMFuLYiDO","executionInfo":{"status":"ok","timestamp":1648016700248,"user_tz":-540,"elapsed":5,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}},"outputId":"b8eb8533-25e4-445d-e283-236e700ca387"},"execution_count":55,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" 5 24\n","rating 4.0 2.75\n","y 1.0 0.00\n","y_pred 1.0 0.00\n","review_date 2013.0 2015.00\n","cocoa_percent 70.0 70.00\n","counts_of_ingredients 4.0 4.00\n","cocoa_butter 1.0 1.00\n","vanilla 0.0 0.00\n","lecithin 1.0 1.00\n","salt 0.0 0.00\n","sugar 1.0 1.00\n","sweetener_without_sugar 0.0 0.00\n","company_location_Canada 0.0 0.00\n","company_location_France 1.0 1.00\n","company_location_Other 0.0 0.00\n","company_location_U.S.A 0.0 0.00\n","company_location_U.k. 0.0 0.00\n","country_of_bean_origin_Blend 0.0 0.00\n","country_of_bean_origin_Dominican_republic 0.0 0.00\n","country_of_bean_origin_Ecuador 0.0 0.00\n","country_of_bean_origin_Madagascar 0.0 0.00\n","country_of_bean_origin_Nicaragua 0.0 0.00\n","country_of_bean_origin_Other 0.0 1.00\n","country_of_bean_origin_Peru 0.0 0.00\n","country_of_bean_origin_Venezuela 1.0 0.00\n","tastes_cocoa 0.0 0.00\n","tastes_rich 0.0 0.00\n","tastes_fatty 0.0 0.00\n","tastes_roasty 0.0 0.00\n","tastes_nutty 0.0 0.00\n","tastes_sweet 0.0 0.00\n","tastes_sandy 0.0 0.00\n","tastes_sour 0.0 0.00\n","tastes_intense 0.0 0.00\n","tastes_mild 0.0 0.00\n","tastes_fruit 0.0 0.00\n","tastes_sticky 0.0 0.00\n","tastes_earthy 0.0 1.00\n","tastes_spice 0.0 0.00\n","tastes_molasses 0.0 0.00\n","tastes_floral 0.0 0.00\n","tastes_spicy 0.0 0.00\n","tastes_woody 0.0 0.00\n","tastes_coffee 0.0 0.00\n","tastes_berry 1.0 0.00\n","tastes_vanilla 0.0 0.00\n","tastes_creamy 0.0 0.00"],"text/html":["\n"," \n","
\n","
\n","\n","
\n"," \n"," \n"," | \n"," 5 | \n"," 24 | \n","
\n"," \n"," \n"," \n"," rating | \n"," 4.0 | \n"," 2.75 | \n","
\n"," \n"," y | \n"," 1.0 | \n"," 0.00 | \n","
\n"," \n"," y_pred | \n"," 1.0 | \n"," 0.00 | \n","
\n"," \n"," review_date | \n"," 2013.0 | \n"," 2015.00 | \n","
\n"," \n"," cocoa_percent | \n"," 70.0 | \n"," 70.00 | \n","
\n"," \n"," counts_of_ingredients | \n"," 4.0 | \n"," 4.00 | \n","
\n"," \n"," cocoa_butter | \n"," 1.0 | \n"," 1.00 | \n","
\n"," \n"," vanilla | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," lecithin | \n"," 1.0 | \n"," 1.00 | \n","
\n"," \n"," salt | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," sugar | \n"," 1.0 | \n"," 1.00 | \n","
\n"," \n"," sweetener_without_sugar | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," company_location_Canada | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," company_location_France | \n"," 1.0 | \n"," 1.00 | \n","
\n"," \n"," company_location_Other | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," company_location_U.S.A | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," company_location_U.k. | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," country_of_bean_origin_Blend | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," country_of_bean_origin_Dominican_republic | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," country_of_bean_origin_Ecuador | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," country_of_bean_origin_Madagascar | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," country_of_bean_origin_Nicaragua | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," country_of_bean_origin_Other | \n"," 0.0 | \n"," 1.00 | \n","
\n"," \n"," country_of_bean_origin_Peru | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," country_of_bean_origin_Venezuela | \n"," 1.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_cocoa | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_rich | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_fatty | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_roasty | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_nutty | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_sweet | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_sandy | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_sour | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_intense | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_mild | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_fruit | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_sticky | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_earthy | \n"," 0.0 | \n"," 1.00 | \n","
\n"," \n"," tastes_spice | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_molasses | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_floral | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_spicy | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_woody | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_coffee | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_berry | \n"," 1.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_vanilla | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n"," tastes_creamy | \n"," 0.0 | \n"," 0.00 | \n","
\n"," \n","
\n","
\n","
\n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":55}]},{"cell_type":"code","source":["shap.force_plot(expected_value, shap_svm_values_test[1][X_test.index==5],\\\n"," X_test[X_test.index==5], matplotlib=True)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":273},"id":"KS_ya-LIYoU6","executionInfo":{"status":"ok","timestamp":1648016701026,"user_tz":-540,"elapsed":782,"user":{"displayName":"JaeYoung Hwang","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"08071223562055378805"}},"outputId":"2ff44b32-3677-4371-d138-959679541018"},"execution_count":56,"outputs":[{"output_type":"display_data","data":{"text/plain":["