-
Notifications
You must be signed in to change notification settings - Fork 1
/
TreeConstruction_changed.py
1431 lines (1232 loc) · 55 KB
/
TreeConstruction_changed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# taken from http://biopython.org/DIST/docs/api/Bio.Phylo.TreeConstruction-pysrc.html#DistanceCalculator
# Copyright (C) 2013 by Yanbo Ye ([email protected])
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Classes and methods for tree construction"""
__docformat__ = "restructuredtext en"
import itertools
import copy
#import biopython
from Bio.Phylo import BaseTree
from Bio.Align import MultipleSeqAlignment
from Bio.SubsMat import MatrixInfo
from Bio import _py3k
def _is_numeric(x):
return _py3k._is_int_or_long(x) or isinstance(x, (float, complex))
class _Matrix(object):
"""Base class for distance matrix or scoring matrix
Accepts a list of names and a lower triangular matrix.::
matrix = [[0],
[1, 0],
[2, 3, 0],
[4, 5, 6, 0]]
represents the symmetric matrix of
[0,1,2,4]
[1,0,3,5]
[2,3,0,6]
[4,5,6,0]
:Parameters:
names : list
names of elements, used for indexing
matrix : list
nested list of numerical lists in lower triangular format
Example
-------
>> from Bio.Phylo.TreeConstruction import _Matrix
>> names = ['Alpha', 'Beta', 'Gamma', 'Delta']
>> matrix = [[0], [1, 0], [2, 3, 0], [4, 5, 6, 0]]
>> m = _Matrix(names, matrix)
>> m
_Matrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [1, 0], [2, 3, 0], [4, 5, 6, 0]])
You can use two indices to get or assign an element in the matrix.
>> m[1,2]
3
>> m['Beta','Gamma']
3
>> m['Beta','Gamma'] = 4
>> m['Beta','Gamma']
4
Further more, you can use one index to get or assign a list of elements related to that index.
>> m[0]
[0, 1, 2, 4]
>> m['Alpha']
[0, 1, 2, 4]
>> m['Alpha'] = [0, 7, 8, 9]
>> m[0]
[0, 7, 8, 9]
>> m[0,1]
7
Also you can delete or insert a column&row of elemets by index.
>> m
_Matrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [7, 0], [8, 4, 0], [9, 5, 6, 0]])
>> del m['Alpha']
>> m
_Matrix(names=['Beta', 'Gamma', 'Delta'], matrix=[[0], [4, 0], [5, 6, 0]])
>> m.insert('Alpha', [0, 7, 8, 9] , 0)
>> m
_Matrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [7, 0], [8, 4, 0], [9, 5, 6, 0]])
"""
def __init__(self, names, matrix=None):
"""Initialize matrix by a list of names and a list of
lower triangular matrix data"""
# check names
if isinstance(names, list) and all(isinstance(s, str) for s in names):
if len(set(names)) == len(names):
self.names = names
else:
raise ValueError("Duplicate names found")
else:
raise TypeError("'names' should be a list of strings")
# check matrix
if matrix is None:
# create a new one with 0 if matrix is not assigned
matrix = [[0] * i for i in range(1, len(self) + 1)]
self.matrix = matrix
else:
# check if all elements are numbers
if (isinstance(matrix, list)
and all(isinstance(l, list) for l in matrix)
and all(_is_numeric(n) for n in [item for sublist in matrix
for item in sublist])):
# check if the same length with names
if len(matrix) == len(names):
# check if is lower triangle format
if [len(m) for m in matrix] == list(range(1, len(self) + 1)):
self.matrix = matrix
else:
raise ValueError(
"'matrix' should be in lower triangle format")
else:
raise ValueError(
"'names' and 'matrix' should be the same size")
else:
raise TypeError("'matrix' should be a list of numerical lists")
def __getitem__(self, item):
"""Access value(s) by the index(s) or name(s).
For a _Matrix object 'dm'::
dm[i] get a value list from the given 'i' to others;
dm[i, j] get the value between 'i' and 'j';
dm['name'] map name to index first
dm['name1', 'name2'] map name to index first
"""
# Handle single indexing
if isinstance(item, (int, str)):
index = None
if isinstance(item, int):
index = item
elif isinstance(item, str):
if item in self.names:
index = self.names.index(item)
else:
raise ValueError("Item not found.")
else:
raise TypeError("Invalid index type.")
# check index
if index > len(self) - 1:
raise IndexError("Index out of range.")
return [self.matrix[index][i] for i in range(0, index)] + [self.matrix[i][index] for i in range(index, len(self))]
# Handle double indexing
elif len(item) == 2:
row_index = None
col_index = None
if all(isinstance(i, int) for i in item):
row_index, col_index = item
elif all(isinstance(i, str) for i in item):
row_name, col_name = item
if row_name in self.names and col_name in self.names:
row_index = self.names.index(row_name)
col_index = self.names.index(col_name)
else:
raise ValueError("Item not found.")
else:
raise TypeError("Invalid index type.")
# check index
if row_index > len(self) - 1 or col_index > len(self) - 1:
raise IndexError("Index out of range.")
if row_index > col_index:
return self.matrix[row_index][col_index]
else:
return self.matrix[col_index][row_index]
else:
raise TypeError("Invalid index type.")
def __setitem__(self, item, value):
"""Set value by the index(s) or name(s).
Similar to __getitem__::
dm[1] = [1, 0, 3, 4] set values from '1' to others;
dm[i, j] = 2 set the value from 'i' to 'j'
"""
# Handle single indexing
if isinstance(item, (int, str)):
index = None
if isinstance(item, int):
index = item
elif isinstance(item, str):
if item in self.names:
index = self.names.index(item)
else:
raise ValueError("Item not found.")
else:
raise TypeError("Invalid index type.")
# check index
if index > len(self) - 1:
raise IndexError("Index out of range.")
# check and assign value
if isinstance(value, list) and all(_is_numeric(n) for n in value):
if len(value) == len(self):
for i in range(0, index):
self.matrix[index][i] = value[i]
for i in range(index, len(self)):
self.matrix[i][index] = value[i]
else:
raise ValueError("Value not the same size.")
else:
raise TypeError("Invalid value type.")
# Handle double indexing
elif len(item) == 2:
row_index = None
col_index = None
if all(isinstance(i, int) for i in item):
row_index, col_index = item
elif all(isinstance(i, str) for i in item):
row_name, col_name = item
if row_name in self.names and col_name in self.names:
row_index = self.names.index(row_name)
col_index = self.names.index(col_name)
else:
raise ValueError("Item not found.")
else:
raise TypeError("Invalid index type.")
# check index
if row_index > len(self) - 1 or col_index > len(self) - 1:
raise IndexError("Index out of range.")
# check and assign value
if _is_numeric(value):
if row_index > col_index:
self.matrix[row_index][col_index] = value
else:
self.matrix[col_index][row_index] = value
else:
raise TypeError("Invalid value type.")
else:
raise TypeError("Invalid index type.")
def __delitem__(self, item):
"""Delete related distances by the index or name"""
index = None
if isinstance(item, int):
index = item
elif isinstance(item, str):
index = self.names.index(item)
else:
raise TypeError("Invalid index type.")
# remove distances related to index
for i in range(index + 1, len(self)):
del self.matrix[i][index]
del self.matrix[index]
# remove name
del self.names[index]
def insert(self, name, value, index=None):
"""Insert distances given the name and value.
:Parameters:
name : str
name of a row/col to be inserted
value : list
a row/col of values to be inserted
"""
if isinstance(name, str):
# insert at the given index or at the end
if index is None:
index = len(self)
if not isinstance(index, int):
raise TypeError("Invalid index type.")
# insert name
self.names.insert(index, name)
# insert elements of 0, to be assigned
self.matrix.insert(index, [0] * index)
for i in range(index, len(self)):
self.matrix[i].insert(index, 0)
# assign value
self[index] = value
else:
raise TypeError("Invalid name type.")
def __len__(self):
"""Matrix length"""
return len(self.names)
def __repr__(self):
return self.__class__.__name__ + "(names=%s, matrix=%s)" % tuple(map(repr, (self.names, self.matrix)))
def __str__(self):
"""Get a lower triangular matrix string"""
matrix_string = '\n'.join(
[self.names[i] + "\t" + "\t".join([str(n) for n in self.matrix[i]])
for i in range(0, len(self))])
matrix_string = matrix_string + "\n\t" + "\t".join(self.names)
return matrix_string
class _DistanceMatrix(_Matrix):
"""Distance matrix class that can be used for distance based tree algorithms.
All diagonal elements will be zero no matter what the users provide.
"""
def __init__(self, names, matrix=None):
# print("names: ",names) #for debugging
# print("matrix: ",matrix) #for debugging
_Matrix.__init__(self, names, matrix)
self._set_zero_diagonal()
def __setitem__(self, item, value):
_Matrix.__setitem__(self, item, value)
self._set_zero_diagonal()
def _set_zero_diagonal(self):
"""set all diagonal elements to zero"""
for i in range(0, len(self)):
self.matrix[i][i] = 0
class DistanceCalculator(object):
"""Class to calculate the distance matrix from a DNA or Protein
Multiple Sequence Alignment(MSA) and the given name of the
substitution model.
Currently only scoring matrices are used.
:Parameters:
model : str
Name of the model matrix to be used to calculate distance.
The attribute `dna_matrices` contains the available model
names for DNA sequences and `protein_matrices` for protein
sequences.
Example
-------
>> from Bio.Phylo.TreeConstruction import DistanceCalculator
>> from Bio import AlignIO
>> aln = AlignIO.read(open('Tests/TreeConstruction/msa.phy'), 'phylip')
>> print aln
SingleLetterAlphabet() alignment with 5 rows and 13 columns
AACGTGGCCACAT Alpha
AAGGTCGCCACAC Beta
GAGATTTCCGCCT Delta
GAGATCTCCGCCC Epsilon
CAGTTCGCCACAA Gamma
DNA calculator with 'identity' model::
>> calculator = DistanceCalculator('identity')
>> dm = calculator.get_distance(aln)
>> print dm
Alpha 0
Beta 0.230769230769 0
Gamma 0.384615384615 0.230769230769 0
Delta 0.538461538462 0.538461538462 0.538461538462 0
Epsilon 0.615384615385 0.384615384615 0.461538461538 0.153846153846 0
Alpha Beta Gamma Delta Epsilon
Protein calculator with 'blosum62' model::
>> calculator = DistanceCalculator('blosum62')
>> dm = calculator.get_distance(aln)
>> print dm
Alpha 0
Beta 0.369047619048 0
Gamma 0.493975903614 0.25 0
Delta 0.585365853659 0.547619047619 0.566265060241 0
Epsilon 0.7 0.355555555556 0.488888888889 0.222222222222 0
Alpha Beta Gamma Delta Epsilon
"""
dna_alphabet = ['A', 'T', 'C', 'G']
# BLAST nucleic acid scoring matrix
blastn = [[5],
[-4, 5],
[-4, -4, 5],
[-4, -4, -4, 5]]
# transition/transversion scoring matrix
trans = [[6],
[-5, 6],
[-5, -1, 6],
[-1, -5, -5, 6]]
protein_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L',
'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'X', 'Y',
'Z']
# matrices available
dna_matrices = {'blastn': blastn, 'trans': trans}
protein_models = MatrixInfo.available_matrices
protein_matrices = dict((name, getattr(MatrixInfo, name))
for name in protein_models)
dna_models = list(dna_matrices.keys())
models = ['identity'] + dna_models + protein_models
def __init__(self, model='identity'):
"""Initialize with a distance model"""
if model == 'identity':
self.scoring_matrix = None
elif model in self.dna_models:
self.scoring_matrix = _Matrix(self.dna_alphabet,
self.dna_matrices[model])
elif model in self.protein_models:
self.scoring_matrix = self._build_protein_matrix(
self.protein_matrices[model])
else:
raise ValueError("Model not supported. Available models: "
+ ", ".join(self.models))
def _pairwise(self, seq1, seq2):
"""Calculate pairwise distance from two sequences"""
score = 0
max_score = 0
if self.scoring_matrix:
max_score1 = 0
max_score2 = 0
skip_letters = ['-', '*']
for i in range(0, len(seq1)):
l1 = seq1[i]
l2 = seq2[i]
if l1 in skip_letters or l2 in skip_letters:
continue
if l1 not in self.scoring_matrix.names:
raise ValueError("Bad alphabet '%s' in sequence '%s' at position '%s'"
% (l1, seq1.id, i))
if l2 not in self.scoring_matrix.names:
raise ValueError("Bad alphabet '%s' in sequence '%s' at position '%s'"
% (l2, seq2.id, i))
max_score1 += self.scoring_matrix[l1, l1]
max_score2 += self.scoring_matrix[l2, l2]
score += self.scoring_matrix[l1, l2]
max_score = max_score1 > max_score2 and max_score1 or max_score2
else:
for i in range(0, len(seq1)):
l1 = seq1[i]
l2 = seq2[i]
if l1 == l2:
score += 1
max_score = len(seq1)
return 1 - (score * 1.0 / max_score)
def get_distance(self, msa):
"""Return a _DistanceMatrix for MSA object
:Parameters:
msa : MultipleSeqAlignment
DNA or Protein multiple sequence alignment.
"""
if not isinstance(msa, MultipleSeqAlignment):
raise TypeError("Must provide a MultipleSeqAlignment object.")
names = [s.id for s in msa]
dm = _DistanceMatrix(names)
for seq1, seq2 in itertools.combinations(msa, 2):
dm[seq1.id, seq2.id] = self._pairwise(seq1, seq2)
return dm
def _build_protein_matrix(self, subsmat):
"""Convert matrix from SubsMat format to _Matrix object"""
protein_matrix = _Matrix(self.protein_alphabet)
for k, v in subsmat.items():
aa1, aa2 = k
protein_matrix[aa1, aa2] = v
return protein_matrix
class TreeConstructor(object):
"""Base class for all tree constructor."""
def build_tree(self, msa):
"""Caller to built the tree from a MultipleSeqAlignment object.
This should be implemented in subclass"""
raise NotImplementedError("Method not implemented!")
class DistanceTreeConstructor(TreeConstructor):
"""Distance based tree constructor.
:Parameters:
method : str
Distance tree construction method, 'nj'(default) or 'upgma'.
distance_calculator : DistanceCalculator
The distance matrix calculator for multiple sequence alignment.
It must be provided if `build_tree` will be called.
Example
--------
>> from TreeConstruction import DistanceTreeConstructor
>> constructor = DistanceTreeConstructor()
UPGMA Tree:
>> upgmatree = constructor.upgma(dm)
>> print upgmatree
Tree(rooted=True)
Clade(name='Inner4')
Clade(branch_length=0.171955155115, name='Inner1')
Clade(branch_length=0.111111111111, name='Epsilon')
Clade(branch_length=0.111111111111, name='Delta')
Clade(branch_length=0.0673103855608, name='Inner3')
Clade(branch_length=0.0907558806655, name='Inner2')
Clade(branch_length=0.125, name='Gamma')
Clade(branch_length=0.125, name='Beta')
Clade(branch_length=0.215755880666, name='Alpha')
NJ Tree:
>> njtree = constructor.nj(dm)
>> print njtree
Tree(rooted=False)
Clade(name='Inner3')
Clade(branch_length=0.0142054862889, name='Inner2')
Clade(branch_length=0.239265540676, name='Inner1')
Clade(branch_length=0.0853101915988, name='Epsilon')
Clade(branch_length=0.136912030623, name='Delta')
Clade(branch_length=0.292306275042, name='Alpha')
Clade(branch_length=0.0747705106139, name='Beta')
Clade(branch_length=0.175229489386, name='Gamma')
"""
methods = ['nj', 'upgma']
def __init__(self, distance_calculator=None, method="nj"):
if (distance_calculator is None
or isinstance(distance_calculator, DistanceCalculator)):
self.distance_calculator = distance_calculator
else:
raise TypeError("Must provide a DistanceCalculator object.")
if isinstance(method, str) and method in self.methods:
self.method = method
else:
raise TypeError("Bad method: " + method +
". Available methods: " + ", ".join(self.methods))
def build_tree(self, msa):
if self.distance_calculator:
dm = self.distance_calculator.get_distance(msa)
tree = None
if self.method == 'upgma':
tree = self.upgma(dm)
else:
tree = self.nj(dm)
return tree
else:
raise TypeError("Must provide a DistanceCalculator object.")
#def upgma_regular_comp(self, distance_matrix):
def upgma(self, distance_matrix):
"""Construct and return an UPGMA tree.
Constructs and returns an Unweighted Pair Group Method
with Arithmetic mean (UPGMA) tree.
:Parameters:
distance_matrix : _DistanceMatrix
The distance matrix for tree construction.
"""
if not isinstance(distance_matrix, _DistanceMatrix):
raise TypeError("Must provide a _DistanceMatrix object.")
# make a copy of the distance matrix to be used
dm = copy.deepcopy(distance_matrix)
weights = [1 for i in range(len(dm))] #number of items at eah node
# init terminal clades
clades = [Clade_new(None, name) for name in dm.names]
leaves_lst = []
# init minimum index
min_i = 0
min_j = 0
inner_count = 0
while len(dm) > 1:
min_dist = dm[1, 0]
# find minimum index
for i in range(1, len(dm)):
for j in range(0, i):
if min_dist >= dm[i, j]:
min_dist = dm[i, j]
min_i = i
min_j = j
# create clade
clade1 = clades[min_i]
clade2 = clades[min_j]
inner_count += 1
inner_clade = Clade_new(None, "Inner" + str(inner_count))
inner_clade.clades.append(clade1)
clade1.set_parent(inner_clade)
inner_clade.clades.append(clade2)
clade2.set_parent(inner_clade)
# assign branch length
if clade1.is_terminal():
clade1.branch_length = min_dist * 1.0 / 2
else:
clade1.branch_length = min_dist * 1.0 / 2 - self._height_of(clade1)
if clade2.is_terminal():
clade2.branch_length = min_dist * 1.0 / 2
else:
clade2.branch_length = min_dist * 1.0 / 2 - self._height_of(clade2)
# update nodes list
if "Inner" not in clades[min_j].name:
leaves_lst.append(clades[min_j])
clades[min_j] = inner_clade
if "Inner" not in clades[min_i].name:
leaves_lst.append(clades[min_i])
del clades[min_i]
# rebuild distance matrix,
# set the distances of new node at the index of min_j
new_weight = weights[min_i] + weights[min_j]
for k in range(0, len(dm)):
if k != min_i and k != min_j:
dm[min_j, k] = (dm[min_i, k]*weights[min_i]/new_weight + dm[min_j, k]*weights[min_j]/new_weight) ## a weighed avg.
#if dm[min_j, k] <= dm[closest[k], k]:
# closest[k] = min_j
dm.names[min_j] = "Inner" + str(inner_count)
weights[min_j] = new_weight
#print("mini:", min_i,"min_j:", min_j)
#print(dm)
#print("dm[min_i, min_j]",dm[min_i, min_j])
#print("dm[min_j, min_i]", dm[min_j, min_i])
#updates: O(n) for each iteration - O(n^2) for the whole algorithm
del dm[min_i]
del weights[min_i]
# del closest[min_i]
dm.names[min_j] = "Inner" + str(inner_count)
# del dm[min_i]
inner_clade.branch_length = 0
return Tree_new(inner_clade, leaves_DS = leaves_lst)
def upgma_better_complex(self, distance_matrix):
#def upgma(self, distance_matrix):
"""the update is saving the minimum in each row. Construct and return an UPGMA tree.
Constructs and returns an Unweighted Pair Group Method
with Arithmetic mean (UPGMA) tree.
:Parameters:
distance_matrix : _DistanceMatrix
The distance matrix for tree construction.
"""
if not isinstance(distance_matrix, _DistanceMatrix):
raise TypeError("Must provide a _DistanceMatrix object.")
# make a copy of the distance matrix to be used
dm = copy.deepcopy(distance_matrix) ##why? there's no use in this M afterwards.
weights = [1 for i in range(len(dm))] #number of items at eah node
closest = [(i+1)%(len(dm)) for i in range(len(dm))] #insted of finding the minimum again each time
# init terminal clades
clades = [Clade_new(None, name) for name in dm.names]
leaves_lst = []
# init minimum index
min_i = 0
min_j = 0
inner_count = 0
#first iteration
print(dm.names)
if len(dm) < 1:
return Tree_new(Clade_new(None, "name"), [])
min_dist = dm[1, 0]
# find minimum index
for i in range(1, len(dm)):
row_min_dist = dm[i, (i+1)%(len(dm))]
for j in range(0, i):
if row_min_dist >= dm[i, j]:
row_min_dist = dm[i,j]
closest[i] = j
if min_dist >= dm[i, j]:
min_dist = dm[i, j]
min_i = i
min_j = j
while len(dm) > 1:
min_dist = dm[1, 0]
# find minimum index
for i in range(1, len(dm)):
if min_dist >= dm[closest[i], i]:
min_dist = dm[closest[i], i]
min_i = i
min_j = closest[i]
# create clade
clade1 = clades[min_i]
clade2 = clades[min_j]
inner_count += 1
inner_clade = Clade_new(None, "Inner" + str(inner_count))
inner_clade.clades.append(clade1)
clade1.set_parent(inner_clade)
inner_clade.clades.append(clade2)
clade2.set_parent(inner_clade)
# assign branch length
if clade1.is_terminal():
clade1.branch_length = min_dist * 1.0 / 2
else:
clade1.branch_length = min_dist * 1.0 / 2 - self._height_of(clade1)
if clade2.is_terminal():
clade2.branch_length = min_dist * 1.0 / 2
else:
clade2.branch_length = min_dist * 1.0 / 2 - self._height_of(clade2)
# update nodes list
if "Inner" not in clades[min_j].name:
leaves_lst.append(clades[min_j])
clades[min_j] = inner_clade
if "Inner" not in clades[min_i].name:
leaves_lst.append(clades[min_i])
del clades[min_i]
# rebuild distance matrix,
# set the distances of new node at the index of min_j
new_weight = weights[min_i] + weights[min_j]
for k in range(0, len(dm)):
if k != min_i and k != min_j:
dm[min_j, k] = (dm[min_i, k]*weights[min_i]/new_weight + dm[min_j, k]*weights[min_j]/new_weight) ## a weighed avg.
if dm[min_j, k] <= dm[closest[k], k]:
closest[k] = min_j
dm.names[min_j] = "Inner" + str(inner_count)
weights[min_j] = new_weight
print("mini:", min_i,"min_j:", min_j)
print(dm)
print("dm[min_i, min_j]",dm[min_i, min_j])
print("dm[min_j, min_i]", dm[min_j, min_i])
#updates: O(n) for each iteration - O(n^2) for the whole algorithm
del dm[min_i]
del weights[min_i]
del closest[min_i]
for i in range(len(closest)):
if closest[i] >= min_i:
closest[i] = closest[i] -1
inner_clade.branch_length = 0
#return BaseTree.Tree(inner_clade)
#print(leaves_lst)
#return BaseTree.Tree(inner_clade)
return Tree_new(inner_clade, leaves_DS = leaves_lst)
def upgma_original(self, distance_matrix):
"""Construct and return an UPGMA tree.
Constructs and returns an Unweighted Pair Group Method
with Arithmetic mean (UPGMA) tree.
:Parameters:
distance_matrix : _DistanceMatrix
The distance matrix for tree construction.
"""
if not isinstance(distance_matrix, _DistanceMatrix):
raise TypeError("Must provide a _DistanceMatrix object.")
# make a copy of the distance matrix to be used
dm = copy.deepcopy(distance_matrix)
# init terminal clades
clades = [BaseTree.Clade(None, name) for name in dm.names]
# init minimum index
min_i = 0
min_j = 0
inner_count = 0
while len(dm) > 1:
min_dist = dm[1, 0]
# find minimum index
for i in range(1, len(dm)):
for j in range(0, i):
if min_dist >= dm[i, j]:
min_dist = dm[i, j]
min_i = i
min_j = j
# create clade
clade1 = clades[min_i]
clade2 = clades[min_j]
inner_count += 1
inner_clade = BaseTree.Clade(None, "Inner" + str(inner_count))
inner_clade.clades.append(clade1)
inner_clade.clades.append(clade2)
# assign branch length
if clade1.is_terminal():
clade1.branch_length = min_dist * 1.0 / 2
else:
clade1.branch_length = min_dist * 1.0 / 2 - self._height_of(clade1)
if clade2.is_terminal():
clade2.branch_length = min_dist * 1.0 / 2
else:
clade2.branch_length = min_dist * 1.0 / 2 - self._height_of(clade2)
# update node list
clades[min_j] = inner_clade
del clades[min_i]
# rebuild distance matrix,
# set the distances of new node at the index of min_j
for k in range(0, len(dm)):
if k != min_i and k != min_j:
dm[min_j, k] = (dm[min_i, k] + dm[min_j, k]) * 1.0 / 2
dm.names[min_j] = "Inner" + str(inner_count)
del dm[min_i]
inner_clade.branch_length = 0
return BaseTree.Tree(inner_clade)
def nj(self, distance_matrix):
"""Construct and return an Neighbor Joining tree.
:Parameters:
distance_matrix : _DistanceMatrix
The distance matrix for tree construction.
usese Tree_new insted of tree and clade_new insted of clade
"""
if not isinstance(distance_matrix, _DistanceMatrix):
raise TypeError("Must provide a _DistanceMatrix object.")
# make a copy of the distance matrix to be used
dm = copy.deepcopy(distance_matrix)
# init terminal clades
clades = [Clade_new(None, name) for name in dm.names]
leaves_lst = []
# init node distance
node_dist = [0] * len(dm)
# init minimum index
min_i = 0
min_j = 0
inner_count = 0
while len(dm) > 2:
# calculate nodeDist
for i in range(0, len(dm)):
node_dist[i] = 0
for j in range(0, len(dm)):
node_dist[i] += dm[i, j]
node_dist[i] = node_dist[i] / (len(dm) - 2)
# find minimum distance pair
min_dist = dm[1, 0] - node_dist[1] - node_dist[0]
min_i = 0
min_j = 1
for i in range(1, len(dm)):
for j in range(0, i):
temp = dm[i, j] - node_dist[i] - node_dist[j]
if min_dist > temp:
min_dist = temp
min_i = i
min_j = j
# create clade
clade1 = clades[min_i]
clade2 = clades[min_j]
inner_count += 1
inner_clade = Clade_new(None, "Inner" + str(inner_count))
inner_clade.clades.append(clade1)
clade1.set_parent(inner_clade)
inner_clade.clades.append(clade2)
clade2.set_parent(inner_clade)
# assign branch length
clade1.branch_length = (dm[min_i, min_j] + node_dist[min_i]
- node_dist[min_j]) / 2.0
clade2.branch_length = dm[min_i, min_j] - clade1.branch_length
##updating leaves DS
if "Inner" not in clade1.name:
leaves_lst.append(clade1)
if "Inner" not in clade2.name:
leaves_lst.append(clade2)
# update node list
clades[min_j] = inner_clade
del clades[min_i]
# rebuild distance matrix,
# set the distances of new node at the index of min_j
for k in range(0, len(dm)):
if k != min_i and k != min_j:
dm[min_j, k] = (dm[min_i, k] + dm[min_j, k]
- dm[min_i, min_j]) / 2.0
dm.names[min_j] = "Inner" + str(inner_count)
del dm[min_i]
# set the last clade as one of the child of the inner_clade
root = None
if clades[0] == inner_clade:
clades[0].branch_length = 0
clades[1].branch_length = dm[1, 0]
clades[0].clades.append(clades[1]) ##clades[1] is a son of clades[0]
root = clades[0]
if "inner_clade" not in clades[1].name:
leaves_lst.append(clades[1])
clades[1].set_parent(clades[0])
else:
clades[0].branch_length = dm[1, 0]
clades[1].branch_length = 0
clades[1].clades.append(clades[0])
root = clades[1]
if "inner_clade" not in clades[0].name:
leaves_lst.append(clades[0])
clades[0].set_parent(clades[1])
return Tree_new(root, rooted=False, leaves_DS = leaves_lst)
def nj_original(self, distance_matrix):
"""Construct and return an Neighbor Joining tree.
:Parameters:
distance_matrix : _DistanceMatrix
The distance matrix for tree construction.
"""
if not isinstance(distance_matrix, _DistanceMatrix):
raise TypeError("Must provide a _DistanceMatrix object.")
# make a copy of the distance matrix to be used
dm = copy.deepcopy(distance_matrix)
# init terminal clades
clades = [BaseTree.Clade(None, name) for name in dm.names]
# init node distance
node_dist = [0] * len(dm)
# init minimum index
min_i = 0
min_j = 0
inner_count = 0
while len(dm) > 2:
# calculate nodeDist
for i in range(0, len(dm)):
node_dist[i] = 0
for j in range(0, len(dm)):
node_dist[i] += dm[i, j]
node_dist[i] = node_dist[i] / (len(dm) - 2)
# find minimum distance pair
min_dist = dm[1, 0] - node_dist[1] - node_dist[0]
min_i = 0
min_j = 1
for i in range(1, len(dm)):
for j in range(0, i):
temp = dm[i, j] - node_dist[i] - node_dist[j]
if min_dist > temp:
min_dist = temp
min_i = i
min_j = j
# create clade
clade1 = clades[min_i]
clade2 = clades[min_j]
inner_count += 1
inner_clade = BaseTree.Clade(None, "Inner" + str(inner_count))
inner_clade.clades.append(clade1)
inner_clade.clades.append(clade2)
# assign branch length
clade1.branch_length = (dm[min_i, min_j] + node_dist[min_i]
- node_dist[min_j]) / 2.0
clade2.branch_length = dm[min_i, min_j] - clade1.branch_length
# update node list
clades[min_j] = inner_clade
del clades[min_i]
# rebuild distance matrix,
# set the distances of new node at the index of min_j
for k in range(0, len(dm)):
if k != min_i and k != min_j:
dm[min_j, k] = (dm[min_i, k] + dm[min_j, k]
- dm[min_i, min_j]) / 2.0