-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathagora2coco.py
191 lines (161 loc) · 10.4 KB
/
agora2coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import json
import torch
import numpy as np
import os.path as osp
from glob import glob
from tqdm import tqdm
import cv2
import pickle
import smplx
import os
import pathlib
import argparse
def get_bbox(joint_img, joint_valid):
x_img, y_img = joint_img[:,0], joint_img[:,1]
x_img = x_img[joint_valid==1]; y_img = y_img[joint_valid==1];
xmin = min(x_img); ymin = min(y_img); xmax = max(x_img); ymax = max(y_img);
x_center = (xmin+xmax)/2.; width = xmax-xmin;
xmin = x_center - 0.5*width*1.2
xmax = x_center + 0.5*width*1.2
y_center = (ymin+ymax)/2.; height = ymax-ymin;
ymin = y_center - 0.5*height*1.2
ymax = y_center + 0.5*height*1.2
bbox = np.array([xmin, ymin, xmax - xmin, ymax - ymin]).astype(np.float32)
return bbox
def load_obj(file_name):
v = []
obj_file = open(file_name)
for line in obj_file:
words = line.split(' ')
if words[0] == 'v':
x,y,z = float(words[1]), float(words[2]), float(words[3])
v.append(np.array([x,y,z]))
return np.stack(v)
def save_obj(v, f, file_name='output.obj'):
obj_file = open(file_name, 'w')
for i in range(len(v)):
obj_file.write('v ' + str(v[i][0]) + ' ' + str(v[i][1]) + ' ' + str(v[i][2]) + '\n')
for i in range(len(f)):
obj_file.write('f ' + str(f[i][0]+1) + '/' + str(f[i][0]+1) + ' ' + str(f[i][1]+1) + '/' + str(f[i][1]+1) + ' ' + str(f[i][2]+1) + '/' + str(f[i][2]+1) + '\n')
obj_file.close()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_path', type=str, dest='dataset_path')
parser.add_argument('--human_model_path', type=str, dest='human_model_path')
args = parser.parse_args()
if not args.dataset_path:
assert 0, "Please set dataset_path"
if not args.human_model_path:
assert 0, "Please set human_model_path"
return args
args = parse_args()
root_path = args.dataset_path
smplx_layer = smplx.create(args.human_model_path, 'smplx', use_pca=False)
image_id = 0
ann_id = 0
gt_joints_2d_path = './gt_joints_2d'
gt_joints_3d_path = './gt_joints_3d'
gt_verts_path = './gt_verts'
smplx_joints_name= \
('Pelvis', 'L_Hip', 'R_Hip', 'Spine_1', 'L_Knee', 'R_Knee', 'Spine_2', 'L_Ankle', 'R_Ankle', 'Spine_3', 'L_Foot', 'R_Foot', 'Neck', 'L_Collar', 'R_Collar', 'Head', 'L_Shoulder', 'R_Shoulder', 'L_Elbow', 'R_Elbow', 'L_Wrist', 'R_Wrist', # body
'Jaw', 'L_Eye_SMPLH', 'R_Eye_SMPLH', # SMPLH
'L_Index_1', 'L_Index_2', 'L_Index_3', 'L_Middle_1', 'L_Middle_2', 'L_Middle_3', 'L_Pinky_1', 'L_Pinky_2', 'L_Pinky_3', 'L_Ring_1', 'L_Ring_2', 'L_Ring_3', 'L_Thumb_1', 'L_Thumb_2', 'L_Thumb_3', # fingers
'R_Index_1', 'R_Index_2', 'R_Index_3', 'R_Middle_1', 'R_Middle_2', 'R_Middle_3', 'R_Pinky_1', 'R_Pinky_2', 'R_Pinky_3', 'R_Ring_1', 'R_Ring_2', 'R_Ring_3', 'R_Thumb_1', 'R_Thumb_2', 'R_Thumb_3', # fingers
'Nose', 'R_Eye', 'L_Eye', 'R_Ear', 'L_Ear', # face in body
'L_Big_toe', 'L_Small_toe', 'L_Heel', 'R_Big_toe', 'R_Small_toe', 'R_Heel', # feet
'L_Thumb_4', 'L_Index_4', 'L_Middle_4', 'L_Ring_4', 'L_Pinky_4', # finger tips
'R_Thumb_4', 'R_Index_4', 'R_Middle_4', 'R_Ring_4', 'R_Pinky_4', # finger tips
*['Face_' + str(i) for i in range(5,56)] # face
)
smplx_joint_part = {
'body': list(range(smplx_joints_name.index('Pelvis'), smplx_joints_name.index('R_Eye_SMPLH')+1)) + list(range(smplx_joints_name.index('Nose'), smplx_joints_name.index('R_Heel')+1)),
'lhand': list(range(smplx_joints_name.index('L_Index_1'), smplx_joints_name.index('L_Thumb_3')+1)) + list(range(smplx_joints_name.index('L_Thumb_4'), smplx_joints_name.index('L_Pinky_4')+1)),
'rhand': list(range(smplx_joints_name.index('R_Index_1'), smplx_joints_name.index('R_Thumb_3')+1)) + list(range(smplx_joints_name.index('R_Thumb_4'), smplx_joints_name.index('R_Pinky_4')+1)),
'face': list(range(smplx_joints_name.index('Face_5'), smplx_joints_name.index('Face_55')+1))}
smpl_joints_name = ('Pelvis', 'L_Hip', 'R_Hip', 'Spine_1', 'L_Knee', 'R_Knee', 'Spine_2', 'L_Ankle', 'R_Ankle', 'Spine_3', 'L_Foot', 'R_Foot', 'Neck', 'L_Collar', 'R_Collar', 'Head', 'L_Shoulder', 'R_Shoulder', 'L_Elbow', 'R_E lbow', 'L_Wrist', 'R_Wrist', 'L_Hand', 'R_Hand', 'Nose', 'R_Eye', 'L_Eye', 'R_Ear', 'L_Ear', 'L_Big_toe', 'L_Small_toe', 'L_Heel', 'R_Big_toe', 'R_Small_toe', 'R_Heel', 'L_Thumb_4', 'L_Index_4', 'L_Middle_4', 'L_Ring_4', 'L_Pinky_4', 'R_Thumb_4', 'R_Index_4', 'R_Middle_4', 'R_Ring_4', 'R_Pinky_4')
pathlib.Path(osp.join(root_path, gt_joints_2d_path, 'smplx')).mkdir(parents=True, exist_ok=True)
pathlib.Path(osp.join(root_path, gt_joints_3d_path, 'smplx')).mkdir(parents=True, exist_ok=True)
pathlib.Path(osp.join(root_path, gt_verts_path, 'smplx')).mkdir(parents=True, exist_ok=True)
pathlib.Path(osp.join(root_path, gt_joints_2d_path, 'smpl')).mkdir(parents=True, exist_ok=True)
pathlib.Path(osp.join(root_path, gt_joints_3d_path, 'smpl')).mkdir(parents=True, exist_ok=True)
pathlib.Path(osp.join(root_path, gt_verts_path, 'smpl')).mkdir(parents=True, exist_ok=True)
for split in ('train', 'validation'):
images = []
annotations = []
data_path_list = glob(osp.join(root_path, split + '_SMPLX', 'SMPLX', '*.pkl')) + glob(osp.join(root_path, split + '_SMPL', 'SMPL', '*.pkl'))
data_path_list = sorted(data_path_list)
for data_path in tqdm(data_path_list):
with open(data_path, 'rb') as f:
data_smplx = pickle.load(f, encoding='latin1')
data_smplx = {k: list(v) for k,v in data_smplx.items()}
with open(osp.join(root_path, split + '_SMPL', 'SMPL', data_path.split('/')[-1]), 'rb') as f:
data_smpl = pickle.load(f, encoding='latin1')
data_smpl = {k: list(v) for k,v in data_smpl.items()}
if split == 'train':
img_folder_name = data_path.split('/')[-1].split('_withjv')[0] # e.g., train_0
else:
img_folder_name = 'validation'
img_num = len(data_smplx['imgPath'])
for i in range(img_num):
img_dict = {}
img_dict['id'] = image_id
img_dict['file_name_3840x2160'] = osp.join('3840x2160', img_folder_name, data_smplx['imgPath'][i])
img_dict['file_name_1280x720'] = osp.join('1280x720', img_folder_name, data_smplx['imgPath'][i][:-4] + '_1280x720.png')
images.append(img_dict)
person_num = len(data_smplx['gt_path_smplx'][i])
for j in range(person_num):
ann_dict = {}
ann_dict['id'] = ann_id
ann_dict['image_id'] = image_id
ann_dict['smplx_joints_2d_path'] = osp.join(gt_joints_2d_path, 'smplx', str(ann_id) + '.json')
ann_dict['smplx_joints_3d_path'] = osp.join(gt_joints_3d_path, 'smplx', str(ann_id) + '.json')
ann_dict['smplx_verts_path'] = osp.join(gt_verts_path, 'smplx', str(ann_id) + '.json')
ann_dict['smplx_param_path'] = data_smplx['gt_path_smplx'][i][j][:-4] + '.pkl'
ann_dict['smpl_joints_2d_path'] = osp.join(gt_joints_2d_path, 'smpl', str(ann_id) + '.json')
ann_dict['smpl_joints_3d_path'] = osp.join(gt_joints_3d_path, 'smpl', str(ann_id) + '.json')
ann_dict['smpl_verts_path'] = osp.join(gt_verts_path, 'smpl', str(ann_id) + '.json')
ann_dict['smpl_param_path'] = data_smpl['gt_path_smpl'][i][j][:-4] + '.pkl'
ann_dict['gender'] = data_smplx['gender'][i][j]
ann_dict['kid'] = data_smplx['kid'][i][j]
ann_dict['occlusion'] = data_smplx['occlusion'][i][j]
ann_dict['is_valid'] = data_smplx['isValid'][i][j]
ann_dict['age'] = data_smplx['age'][i][j]
ann_dict['ethnicity'] = data_smplx['ethnicity'][i][j]
# bbox
joints_2d = np.array(data_smplx['gt_joints_2d'][i][j]).reshape(-1,2)
bbox = get_bbox(joints_2d, np.ones_like(joints_2d[:,0])).reshape(4)
ann_dict['bbox'] = bbox.tolist()
joints_2d_lhand = joints_2d[smplx_joint_part['lhand'],:]
lhand_bbox = get_bbox(joints_2d_lhand, np.ones_like(joints_2d_lhand[:,0])).reshape(4)
ann_dict['lhand_bbox'] = lhand_bbox.tolist()
joints_2d_rhand = joints_2d[smplx_joint_part['rhand'],:]
rhand_bbox = get_bbox(joints_2d_rhand, np.ones_like(joints_2d_rhand[:,0])).reshape(4)
ann_dict['rhand_bbox'] = rhand_bbox.tolist()
joints_2d_face = joints_2d[smplx_joint_part['face'],:]
face_bbox = get_bbox(joints_2d_face, np.ones_like(joints_2d_face[:,0])).reshape(4)
ann_dict['face_bbox'] = face_bbox.tolist()
annotations.append(ann_dict)
# save smplx gts
joints_2d = np.array(data_smplx['gt_joints_2d'][i][j]).reshape(-1,2)
with open(osp.join(root_path, gt_joints_2d_path, 'smplx', str(ann_id) + '.json'), 'w') as f:
json.dump(joints_2d.tolist(), f)
joints_3d = np.array(data_smplx['gt_joints_3d'][i][j]).reshape(-1,3)
with open(osp.join(root_path, gt_joints_3d_path, 'smplx', str(ann_id) + '.json'), 'w') as f:
json.dump(joints_3d.tolist(), f)
verts = np.array(data_smplx['gt_verts'][i][j]).reshape(-1,3)
with open(osp.join(root_path, gt_verts_path, 'smplx', str(ann_id) + '.json'), 'w') as f:
json.dump(verts.tolist(), f)
# save smpl gts
joints_2d = np.array(data_smpl['gt_joints_2d'][i][j]).reshape(-1,2)
with open(osp.join(root_path, gt_joints_2d_path, 'smpl', str(ann_id) + '.json'), 'w') as f:
json.dump(joints_2d.tolist(), f)
joints_3d = np.array(data_smpl['gt_joints_3d'][i][j]).reshape(-1,3)
with open(osp.join(root_path, gt_joints_3d_path, 'smpl', str(ann_id) + '.json'), 'w') as f:
json.dump(joints_3d.tolist(), f)
verts = np.array(data_smpl['gt_verts'][i][j]).reshape(-1,3)
with open(osp.join(root_path, gt_verts_path, 'smpl', str(ann_id) + '.json'), 'w') as f:
json.dump(verts.tolist(), f)
ann_id += 1
image_id += 1
with open(osp.join(root_path, 'AGORA_' + split + '.json'), 'w') as f:
json.dump({'images': images, 'annotations': annotations}, f)