-
Notifications
You must be signed in to change notification settings - Fork 2
/
ros_demo.py
398 lines (314 loc) · 15 KB
/
ros_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
"""Test HN pipeline on ros images"""
from tomlkit import key
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.utils.data
from handnet_pipeline.handnet_pipeline import HandNet
import message_filters
import cv2
import threading
import argparse
import numpy as np
import rospy
from sensor_msgs.msg import Image, CameraInfo
from cv_bridge import CvBridge
from utils.vistool import VisualUtil
lock = threading.Lock()
import os
import torch
import torch.nn as nn
import torch.optim as optim
import colorsys
import models
from core.config import cfg
from aug_utils import j2d_processing
from coord_utils import get_bbox, process_bbox
from funcs_utils import load_checkpoint, save_obj
from graph_utils import build_coarse_graphs
from vis import vis_2d_keypoints
from _mano import MANO
from a2j.a2j import convert_joints
import os
os.environ['PYOPENGL_PLATFORM'] = 'egl'# 'osmesa'
import torch
from torchvision.utils import make_grid
import numpy as np
import pyrender
import trimesh
import math
from pyrender.constants import RenderFlags
class Renderer:
def __init__(self, faces, resolution=(224,224), orig_img=False, wireframe=False):
self.resolution = resolution
self.faces = faces
self.orig_img = orig_img
self.wireframe = wireframe
self.renderer = pyrender.OffscreenRenderer(
viewport_width=self.resolution[0],
viewport_height=self.resolution[1],
)
# set the scene
self.scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.3, 0.3, 0.3))
# light = pyrender.PointLight(color=[1.0, 1.0, 1.0], intensity=0.8)
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=0.8)
light_pose = np.eye(4)
light_pose[:3, 3] = [0, -1, 1]
self.scene.add(light, pose=light_pose)
light_pose[:3, 3] = [0, 1, 1]
self.scene.add(light, pose=light_pose)
light_pose[:3, 3] = [1, 1, 2]
self.scene.add(light, pose=light_pose)
def render(self, img, params, verts, mesh_filename=None, color=(1.0, 1.0, 0.9, 1.0)):
mesh = trimesh.Trimesh(vertices=verts, faces=self.faces)
if mesh_filename is not None:
mesh.export(mesh_filename)
camera = pyrender.IntrinsicsCamera(*params)
material = pyrender.MetallicRoughnessMaterial(
metallicFactor=0.0,
alphaMode='OPAQUE',
baseColorFactor=color
)
mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=False)
mesh_node = self.scene.add(mesh, 'mesh')
camera_pose = np.eye(4)
cam_node = self.scene.add(camera, pose=camera_pose)
if self.wireframe:
render_flags = RenderFlags.RGBA | RenderFlags.ALL_WIREFRAME
else:
render_flags = RenderFlags.RGBA
rgb, depth = self.renderer.render(self.scene, flags=render_flags)
valid_mask = (depth > 0)[:, :, np.newaxis]
output_img = rgb[:, :, :3] * valid_mask + (1 - valid_mask) * img
image = output_img.astype(np.uint8)
self.scene.remove_node(mesh_node)
self.scene.remove_node(cam_node)
return image
def render(result, params, orig_height, orig_width, orig_img, mesh_face, mesh_filename=None):
pred_verts = result['mesh']
# Setup renderer for visualization
renderer = Renderer(mesh_face, resolution=(orig_width, orig_height), orig_img=True)
rendered_img = renderer.render(
orig_img,
params,
pred_verts,
mesh_filename=mesh_filename,
)
return rendered_img
def get_joint_setting(mesh_model):
joint_regressor = mesh_model.joint_regressor
joint_num = 21
skeleton = ( (0,1), (0,5), (0,9), (0,13), (0,17), (1,2), (2,3), (3,4), (5,6), (6,7), (7,8), (9,10), (10,11), (11,12), (13,14), (14,15), (15,16), (17,18), (18,19), (19,20) )
hori_conn = (
(1, 5), (5, 9), (9, 13), (13, 17), (2, 6), (6, 10), (10, 14), (14, 18), (3, 7), (7, 11), (11, 15), (15, 19),
(4, 8), (8, 12), (12, 16), (16, 20))
graph_Adj, graph_L, graph_perm, graph_perm_reverse = \
build_coarse_graphs(mesh_model.face, joint_num, skeleton, hori_conn, levels=6)
model_chk_path = './experiment/pose2mesh_manoJ_train_freihand/final.pth.tar'
model = models.pose2mesh_net.get_model(joint_num, graph_L)
checkpoint = load_checkpoint(load_dir=model_chk_path)
model.load_state_dict(checkpoint['model_state_dict'])
return model, joint_regressor, joint_num, skeleton, graph_L, graph_perm_reverse
def predict_mesh(model, joint_input, graph_perm_reverse, mesh_model):
bbox = get_bbox(joint_input)
bbox2 = process_bbox(bbox.copy())
joint_img, _ = j2d_processing(joint_input.copy(), (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), bbox2, 0, 0, None)
joint_img = joint_img[:, :2]
joint_img /= np.array([[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])
mean, std = np.mean(joint_img, axis=0), np.std(joint_img, axis=0)
joint_img = (joint_img.copy() - mean) / std
joint_img = torch.Tensor(joint_img[None, :, :]).cuda()
# estimate mesh, pose
model.eval()
pred_mesh, _ = model(joint_img)
pred_mesh = pred_mesh[:, graph_perm_reverse[:mesh_model.face.max() + 1], :]
out = {}
out['mesh'] = pred_mesh[0].detach().cpu().numpy()
return out
class ImageListener:
def __init__(self, network, RGBD=False, left=False):
self.network = network
self.cv_bridge = CvBridge()
self.vistool = VisualUtil('dexycb')
self.im = None
self.depth = None
self.rgb_frame_id = None
self.rgb_frame_stamp = None
self.empty_label = np.zeros((176, 176, 3), dtype=np.uint8)
self.rgbd = RGBD
self.left = left
# initialize a node
rospy.init_node("pose_rgb")
self.box_pub = rospy.Publisher('box_label', Image, queue_size=10)
self.label_pub = rospy.Publisher('pose_label', Image, queue_size=10)
self.mesh_pub = rospy.Publisher('mesh_label', Image, queue_size=10)
self.base_frame = 'measured/base_link'
rgb_sub = message_filters.Subscriber('/head_camera/rgb/image_raw', Image, queue_size=10)
depth_sub = message_filters.Subscriber('/head_camera/depth/image_raw', Image, queue_size=10)
msg = rospy.wait_for_message('/head_camera/depth/camera_info', CameraInfo)
self.camera_frame = 'measured/camera_color_optical_frame'
self.target_frame = self.base_frame
# update camera intrinsics
intrinsics = np.array(msg.K).reshape(3, 3)
self.paras = np.array([intrinsics[0, 0], intrinsics[1, 1], intrinsics[0, 2] ,intrinsics[1, 2]])
queue_size = 1
slop_seconds = 0.1
ts = message_filters.ApproximateTimeSynchronizer([rgb_sub, depth_sub], queue_size, slop_seconds)
ts.registerCallback(self.callback_rgbd)
# pose2mesh
cfg.DATASET.target_joint_set = 'mano'
cfg.MODEL.posenet_pretrained = False
self.mesh_model = MANO()
self.model, self.joint_regressor, self.joint_num, self.skeleton, self.graph_L, self.graph_perm_reverse = get_joint_setting(self.mesh_model)
self.model = self.model.cuda()
self.joint_regressor = torch.Tensor(self.joint_regressor).cuda()
self.virtual_crop_size = 500
# video callback
# self.box_video = []
# self.label_video = []
# ts = message_filters.ApproximateTimeSynchronizer([self.box_pub, self.label_pub], queue_size, slop_seconds)
# ts.registerCallback(self.callback_video)
def callback_rgbd(self, rgb, depth):
if depth.encoding == '32FC1':
depth_cv = self.cv_bridge.imgmsg_to_cv2(depth)
elif depth.encoding == '16UC1':
depth_cv = self.cv_bridge.imgmsg_to_cv2(depth).copy().astype(np.float32)
depth_cv /= 1000.0
else:
rospy.logerr_throttle(
1, 'Unsupported depth type. Expected 16UC1 or 32FC1, got {}'.format(
depth.encoding))
return
im = self.cv_bridge.imgmsg_to_cv2(rgb, 'bgr8')
with lock:
self.im = im.copy()
self.depth = depth_cv.copy()
self.rgb_frame_id = rgb.header.frame_id
self.rgb_frame_stamp = rgb.header.stamp
def run_network(self):
with lock:
if listener.im is None:
return
if self.im is None:
return
im_color = self.im.copy()
depth_img = self.depth.copy()
rgb_frame_id = self.rgb_frame_id
rgb_frame_stamp = self.rgb_frame_stamp
# flip if using left hand
if self.left:
im_color = cv2.flip(im_color, 1)
depth_img = cv2.flip(depth_img, 1)
# run network
with torch.inference_mode():
im_color_forward = [torch.from_numpy(cv2.cvtColor(im_color, cv2.COLOR_BGR2RGB).transpose(2, 0, 1).astype(np.float32) / 255.0).cuda()]
depth_img = torch.from_numpy(depth_img).unsqueeze(0).unsqueeze(0).cuda()
if self.rgbd:
im_rgbd = torch.cat([im_color_forward[0].unsqueeze(0), depth_img], dim=1)
keypoint_pred, depth_im, detections = self.network(im_color_forward, depth_images=im_rgbd if self.rgbd else depth_img)
keypoint_pred = keypoint_pred.cpu()
depth_im = depth_im.cpu()
detections = detections.cpu()
# unbatch
detection = detections[0].clone()
keypoint_pred = keypoint_pred[0].clone()
# clamping
detection[:2] = torch.clamp(detection[:2], 0, im_color.shape[0])
detection[2:] = torch.clamp(detection[2:], 0, im_color.shape[1])
detection = detection.numpy()
keypoint_pred = torch.clamp(keypoint_pred, min=0.0, max=176.0)
keypoint_pred = keypoint_pred.cpu().numpy()
# sanity checking
joint_input = convert_joints(keypoint_pred, None, detection, None, 176, 176)[:, :2]
bbox = get_bbox(joint_input)
bbox2 = process_bbox(bbox.copy())
print(keypoint_pred)
if detections.max() == 0 or detections is None or bbox2 is None:
label_msg = self.cv_bridge.cv2_to_imgmsg(self.empty_label)
label_msg.header.stamp = rgb_frame_stamp
label_msg.header.frame_id = rgb_frame_id
label_msg.encoding = 'rgb8'
self.label_pub.publish(label_msg)
box_msg = self.cv_bridge.cv2_to_imgmsg(im_color)
box_msg.header.stamp = rgb_frame_stamp
box_msg.header.frame_id = rgb_frame_id
box_msg.encoding = 'bgr8'
self.box_pub.publish(box_msg)
return
# metrics
depth_im = depth_im[0]
image_to_draw = cv2.cvtColor(im_color, cv2.COLOR_BGR2RGB).copy()
cv2.rectangle(image_to_draw, (detection[0], detection[1]), (detection[2], detection[3]), (0, 255, 0), 1)
bbox_msg = self.cv_bridge.cv2_to_imgmsg(image_to_draw.astype(np.uint8))
bbox_msg.header.stamp = rgb_frame_stamp
bbox_msg.header.frame_id = rgb_frame_id
bbox_msg.encoding = 'rgb8'
self.box_pub.publish(bbox_msg)
color_im_crop = cv2.cvtColor(cv2.resize(im_color[detection[1]:detection[3], detection[0]:detection[2], :], (176, 176)), cv2.COLOR_BGR2RGB).copy()
# visualize and publish
label = self.vistool.plot(color_im_crop, None, None, jt_uvd_pred=keypoint_pred, return_image=True)
label_msg = self.cv_bridge.cv2_to_imgmsg(label.astype(np.uint8))
label_msg.header.stamp = rgb_frame_stamp
label_msg.header.frame_id = rgb_frame_id
label_msg.encoding = 'rgb8'
self.label_pub.publish(label_msg)
full_image = cv2.cvtColor(im_color, cv2.COLOR_BGR2RGB).copy()
joints2d = convert_joints(keypoint_pred, None, detection, None, 176, 176)[:, :2]
joints3d = convert_joints(keypoint_pred, None, detection, self.paras, 176, 176)
orig_height, orig_width = full_image.shape[:2]
out = predict_mesh(self.model, joints2d, self.graph_perm_reverse, self.mesh_model)
out['mesh'] = out['mesh'] * 1000. + joints3d[0]
out['mesh'] /= 1000.
out['mesh'][:, 1] *= -1
out['mesh'][:, 2] *= -1
if args.save_path:
# find avail filename
filename = 0
while os.path.exists(os.path.join(self.save_path, f'{filename}.npy')):
filename += 1
np.save(os.path.join(self.save_path, f'{filename}.npy'), out['mesh'])
# vis mesh (and optionally save)
rendered_img = render(out, self.paras, orig_height, orig_width, full_image, self.mesh_model.face, mesh_filename=os.path.join(self.save_path, f'{filename}.obj' if args.save_path else None))
rendered_img = self.cv_bridge.cv2_to_imgmsg(rendered_img.astype(np.uint8))
rendered_img.header.stamp = rgb_frame_stamp
rendered_img.header.frame_id = rgb_frame_id
rendered_img.encoding = 'rgb8'
self.mesh_pub.publish(rendered_img)
# alternate vis 2d pose
# tmpkps = np.zeros((3, len(joints2d)))
# tmpkps[0, :], tmpkps[1, :], tmpkps[2, :] = joints2d[:, 0], joints2d[:, 1], 1
# tmpimg = full_image.copy().astype(np.uint8)
# pose_vis_img = vis_2d_keypoints(tmpimg, tmpkps, skeleton)
# pose_vis_img = self.cv_bridge.cv2_to_imgmsg(pose_vis_img.astype(np.uint8))
# pose_vis_img.header.stamp = rgb_frame_stamp
# pose_vis_img.header.frame_id = rgb_frame_id
# pose_vis_img.encoding = 'rgb8'
# self.pose_pub.publish(pose_vis_img)
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Demo E2E-HandNet on ROS')
parser.add_argument('--pretrained_fcos', dest='pretrained_fcos', help='Pretrained FCOS model',
default='models/fcos.pth', type=str)
# parser.add_argument('--pretrained_a2j', dest='pretrained_a2j', help='Pretrained A2J model',
# default='wandb/a2j/E2E-HandNet/326lfxim/checkpoints/epoch=44-step=128879.ckpt', type=str)
parser.add_argument('--num_classes', dest='num_classes', help='Number of classes in FCOS model', default=3, type=int)
parser.add_argument('--pretrained_a2j', dest='pretrained_a2j', help='Pretrained A2J model',
default='models/a2j.pth', type=str)
parser.add_argument('--rgbd', dest='rgbd', help='Use RGBD', type=bool, default=False)
parser.add_argument('--left', dest='left', help='Use left hand', type=bool, default=False)
parser.add_argument('--save_path', dest='save_path', help='Path to save results', default='output/', type=str)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
network = HandNet(args, reload_detector=True, num_classes=args.num_classes, reload_a2j=True, RGBD=args.rgbd).cuda().eval()
cudnn.benchmark = True
#network.eval()
os.makedirs(args.save_path, exist_ok=True)
# image listener
listener = ImageListener(network, RGBD=args.rgbd, left=args.left)
while not rospy.is_shutdown():
listener.run_network()
#listener.write_video('test_box.mp4', 'test_label.mp4')