forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmachine_i2s.c
608 lines (533 loc) · 22.1 KB
/
machine_i2s.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Mike Teachman
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_i2s.c via MICROPY_PY_MACHINE_I2S_INCLUDEFILE.
#include <stdlib.h>
#include <string.h>
#include "py/mphal.h"
#include "hardware/pio.h"
#include "hardware/clocks.h"
#include "hardware/gpio.h"
#include "hardware/dma.h"
#include "hardware/irq.h"
// Notes on this port's specific implementation of I2S:
// - the DMA IRQ handler is used to implement the asynchronous background operations, for non-blocking mode
// - the PIO is used to drive the I2S bus signals
// - all sample data transfers use non-blocking DMA
// - the DMA controller is configured with 2 DMA channels in chained mode
#define MAX_I2S_RP2 (2)
// The DMA buffer size was empirically determined. It is a tradeoff between:
// 1. memory use (smaller buffer size desirable to reduce memory footprint)
// 2. interrupt frequency (larger buffer size desirable to reduce interrupt frequency)
#define SIZEOF_DMA_BUFFER_IN_BYTES (256)
#define SIZEOF_HALF_DMA_BUFFER_IN_BYTES (SIZEOF_DMA_BUFFER_IN_BYTES / 2)
#define I2S_NUM_DMA_CHANNELS (2)
// For non-blocking mode, to avoid underflow/overflow, sample data is written/read to/from the ring buffer at a rate faster
// than the DMA transfer rate
#define NON_BLOCKING_RATE_MULTIPLIER (4)
#define SIZEOF_NON_BLOCKING_COPY_IN_BYTES (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * NON_BLOCKING_RATE_MULTIPLIER)
#define SAMPLES_PER_FRAME (2)
#define PIO_INSTRUCTIONS_PER_BIT (2)
typedef enum {
RX,
TX
} i2s_mode_t;
typedef enum {
GP_INPUT = 0,
GP_OUTPUT = 1
} gpio_dir_t;
typedef struct _machine_i2s_obj_t {
mp_obj_base_t base;
uint8_t i2s_id;
mp_hal_pin_obj_t sck;
mp_hal_pin_obj_t ws;
mp_hal_pin_obj_t sd;
i2s_mode_t mode;
int8_t bits;
format_t format;
int32_t rate;
int32_t ibuf;
mp_obj_t callback_for_non_blocking;
io_mode_t io_mode;
PIO pio;
uint8_t sm;
const pio_program_t *pio_program;
uint prog_offset;
int dma_channel[I2S_NUM_DMA_CHANNELS];
uint8_t dma_buffer[SIZEOF_DMA_BUFFER_IN_BYTES];
ring_buf_t ring_buffer;
uint8_t *ring_buffer_storage;
non_blocking_descriptor_t non_blocking_descriptor;
} machine_i2s_obj_t;
// The frame map is used with the readinto() method to transform the audio sample data coming
// from DMA memory (32-bit stereo) to the format specified
// in the I2S constructor. e.g. 16-bit mono
static const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
{-1, -1, 0, 1, -1, -1, -1, -1 }, // Mono, 16-bits
{ 0, 1, 2, 3, -1, -1, -1, -1 }, // Mono, 32-bits
{-1, -1, 0, 1, -1, -1, 2, 3 }, // Stereo, 16-bits
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // Stereo, 32-bits
};
static const PIO pio_instances[NUM_PIOS] = {pio0, pio1};
// PIO program for 16-bit write
// set(x, 14) .side(0b01)
// label('left_channel')
// out(pins, 1) .side(0b00)
// jmp(x_dec, "left_channel") .side(0b01)
// out(pins, 1) .side(0b10)
// set(x, 14) .side(0b11)
// label('right_channel')
// out(pins, 1) .side(0b10)
// jmp(x_dec, "right_channel") .side(0b11)
// out(pins, 1) .side(0b00)
static const uint16_t pio_instructions_write_16[] = {59438, 24577, 2113, 28673, 63534, 28673, 6213, 24577};
static const pio_program_t pio_write_16 = {
pio_instructions_write_16,
sizeof(pio_instructions_write_16) / sizeof(uint16_t),
-1
};
// PIO program for 32-bit write
// set(x, 30) .side(0b01)
// label('left_channel')
// out(pins, 1) .side(0b00)
// jmp(x_dec, "left_channel") .side(0b01)
// out(pins, 1) .side(0b10)
// set(x, 30) .side(0b11)
// label('right_channel')
// out(pins, 1) .side(0b10)
// jmp(x_dec, "right_channel") .side(0b11)
// out(pins, 1) .side(0b00)
static const uint16_t pio_instructions_write_32[] = {59454, 24577, 2113, 28673, 63550, 28673, 6213, 24577};
static const pio_program_t pio_write_32 = {
pio_instructions_write_32,
sizeof(pio_instructions_write_32) / sizeof(uint16_t),
-1
};
// PIO program for 32-bit read
// set(x, 30) .side(0b00)
// label('left_channel')
// in_(pins, 1) .side(0b01)
// jmp(x_dec, "left_channel") .side(0b00)
// in_(pins, 1) .side(0b11)
// set(x, 30) .side(0b10)
// label('right_channel')
// in_(pins, 1) .side(0b11)
// jmp(x_dec, "right_channel") .side(0b10)
// in_(pins, 1) .side(0b01)
static const uint16_t pio_instructions_read_32[] = {57406, 18433, 65, 22529, 61502, 22529, 4165, 18433};
static const pio_program_t pio_read_32 = {
pio_instructions_read_32,
sizeof(pio_instructions_read_32) / sizeof(uint16_t),
-1
};
static uint8_t dma_get_bits(i2s_mode_t mode, int8_t bits);
static void dma_irq0_handler(void);
static void dma_irq1_handler(void);
static mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
void machine_i2s_init0(void) {
for (uint8_t i = 0; i < MAX_I2S_RP2; i++) {
MP_STATE_PORT(machine_i2s_obj[i]) = NULL;
}
}
void machine_i2s_deinit_all(void) {
for (uint8_t i = 0; i < MAX_I2S_RP2; i++) {
machine_i2s_obj_t *i2s = MP_STATE_PORT(machine_i2s_obj[i]);
if (i2s) {
mp_machine_i2s_deinit(i2s);
}
}
}
static int8_t get_frame_mapping_index(int8_t bits, format_t format) {
if (format == MONO) {
if (bits == 16) {
return 0;
} else { // 32 bits
return 1;
}
} else { // STEREO
if (bits == 16) {
return 2;
} else { // 32 bits
return 3;
}
}
}
// function is used in IRQ context
static void empty_dma(machine_i2s_obj_t *self, uint8_t *dma_buffer_p) {
// when space exists, copy samples into ring buffer
if (ringbuf_available_space(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
ringbuf_push(&self->ring_buffer, dma_buffer_p[i]);
}
}
}
// function is used in IRQ context
static void feed_dma(machine_i2s_obj_t *self, uint8_t *dma_buffer_p) {
// when data exists, copy samples from ring buffer
if (ringbuf_available_data(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
// copy a block of samples from the ring buffer to the dma buffer.
// STM32 HAL API has a stereo I2S implementation, but not mono
// mono format is implemented by duplicating each sample into both L and R channels.
if ((self->format == MONO) && (self->bits == 16)) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 4; i++) {
for (uint8_t b = 0; b < sizeof(uint16_t); b++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 4 + b]);
dma_buffer_p[i * 4 + b + 2] = dma_buffer_p[i * 4 + b]; // duplicated mono sample
}
}
} else if ((self->format == MONO) && (self->bits == 32)) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 8; i++) {
for (uint8_t b = 0; b < sizeof(uint32_t); b++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 8 + b]);
dma_buffer_p[i * 8 + b + 4] = dma_buffer_p[i * 8 + b]; // duplicated mono sample
}
}
} else { // STEREO, both 16-bit and 32-bit
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i]);
}
}
} else {
// underflow. clear buffer to transmit "silence" on the I2S bus
memset(dma_buffer_p, 0, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
}
}
static void irq_configure(machine_i2s_obj_t *self) {
if (self->i2s_id == 0) {
irq_add_shared_handler(DMA_IRQ_0, dma_irq0_handler, PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY);
irq_set_enabled(DMA_IRQ_0, true);
} else {
irq_add_shared_handler(DMA_IRQ_1, dma_irq1_handler, PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY);
irq_set_enabled(DMA_IRQ_1, true);
}
}
static void irq_deinit(machine_i2s_obj_t *self) {
if (self->i2s_id == 0) {
irq_remove_handler(DMA_IRQ_0, dma_irq0_handler);
} else {
irq_remove_handler(DMA_IRQ_1, dma_irq1_handler);
}
}
static void pio_configure(machine_i2s_obj_t *self) {
if (self->mode == TX) {
if (self->bits == 16) {
self->pio_program = &pio_write_16;
} else {
self->pio_program = &pio_write_32;
}
} else { // RX
self->pio_program = &pio_read_32;
}
// find a PIO with a free state machine and adequate program space
PIO candidate_pio;
bool is_free_sm;
bool can_add_program;
for (uint8_t p = 0; p < NUM_PIOS; p++) {
candidate_pio = pio_instances[p];
is_free_sm = false;
can_add_program = false;
for (uint8_t sm = 0; sm < NUM_PIO_STATE_MACHINES; sm++) {
if (!pio_sm_is_claimed(candidate_pio, sm)) {
is_free_sm = true;
break;
}
}
if (pio_can_add_program(candidate_pio, self->pio_program)) {
can_add_program = true;
}
if (is_free_sm && can_add_program) {
break;
}
}
if (!is_free_sm) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("no free state machines"));
}
if (!can_add_program) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("not enough PIO program space"));
}
self->pio = candidate_pio;
self->sm = pio_claim_unused_sm(self->pio, false);
self->prog_offset = pio_add_program(self->pio, self->pio_program);
pio_sm_init(self->pio, self->sm, self->prog_offset, NULL);
pio_sm_config config = pio_get_default_sm_config();
float pio_freq = self->rate *
SAMPLES_PER_FRAME *
dma_get_bits(self->mode, self->bits) *
PIO_INSTRUCTIONS_PER_BIT;
float clkdiv = clock_get_hz(clk_sys) / pio_freq;
sm_config_set_clkdiv(&config, clkdiv);
if (self->mode == TX) {
sm_config_set_out_pins(&config, self->sd, 1);
sm_config_set_out_shift(&config, false, true, dma_get_bits(self->mode, self->bits));
sm_config_set_fifo_join(&config, PIO_FIFO_JOIN_TX); // double TX FIFO size
} else { // RX
sm_config_set_in_pins(&config, self->sd);
sm_config_set_in_shift(&config, false, true, dma_get_bits(self->mode, self->bits));
sm_config_set_fifo_join(&config, PIO_FIFO_JOIN_RX); // double RX FIFO size
}
sm_config_set_sideset(&config, 2, false, false);
sm_config_set_sideset_pins(&config, self->sck);
sm_config_set_wrap(&config, self->prog_offset, self->prog_offset + self->pio_program->length - 1);
pio_sm_set_config(self->pio, self->sm, &config);
}
static void pio_deinit(machine_i2s_obj_t *self) {
if (self->pio) {
pio_sm_set_enabled(self->pio, self->sm, false);
pio_sm_unclaim(self->pio, self->sm);
pio_remove_program(self->pio, self->pio_program, self->prog_offset);
}
}
static void gpio_init_i2s(PIO pio, uint8_t sm, mp_hal_pin_obj_t pin_num, uint8_t pin_val, gpio_dir_t pin_dir) {
uint32_t pinmask = 1 << pin_num;
pio_sm_set_pins_with_mask(pio, sm, pin_val << pin_num, pinmask);
pio_sm_set_pindirs_with_mask(pio, sm, pin_dir << pin_num, pinmask);
pio_gpio_init(pio, pin_num);
}
static void gpio_configure(machine_i2s_obj_t *self) {
gpio_init_i2s(self->pio, self->sm, self->sck, 0, GP_OUTPUT);
gpio_init_i2s(self->pio, self->sm, self->ws, 0, GP_OUTPUT);
if (self->mode == TX) {
gpio_init_i2s(self->pio, self->sm, self->sd, 0, GP_OUTPUT);
} else { // RX
gpio_init_i2s(self->pio, self->sm, self->sd, 0, GP_INPUT);
}
}
static uint8_t dma_get_bits(i2s_mode_t mode, int8_t bits) {
if (mode == TX) {
return bits;
} else { // RX
// always read 32 bit words for I2S e.g. I2S MEMS microphones
return 32;
}
}
// determine which DMA channel is associated to this IRQ
static uint dma_map_irq_to_channel(uint irq_index) {
for (uint ch = 0; ch < NUM_DMA_CHANNELS; ch++) {
if ((dma_irqn_get_channel_status(irq_index, ch))) {
return ch;
}
}
// This should never happen
return -1;
}
// note: first DMA channel is mapped to the top half of buffer, second is mapped to the bottom half
static uint8_t *dma_get_buffer(machine_i2s_obj_t *i2s_obj, uint channel) {
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
if (i2s_obj->dma_channel[ch] == channel) {
return i2s_obj->dma_buffer + (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * ch);
}
}
// This should never happen
return NULL;
}
static void dma_configure(machine_i2s_obj_t *self) {
uint8_t num_free_dma_channels = 0;
for (uint8_t ch = 0; ch < NUM_DMA_CHANNELS; ch++) {
if (!dma_channel_is_claimed(ch)) {
num_free_dma_channels++;
}
}
if (num_free_dma_channels < I2S_NUM_DMA_CHANNELS) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("cannot claim 2 DMA channels"));
}
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
self->dma_channel[ch] = dma_claim_unused_channel(false);
}
// The DMA channels are chained together. The first DMA channel is used to access
// the top half of the DMA buffer. The second DMA channel accesses the bottom half of the DMA buffer.
// With chaining, when one DMA channel has completed a data transfer, the other
// DMA channel automatically starts a new data transfer.
enum dma_channel_transfer_size dma_size = (dma_get_bits(self->mode, self->bits) == 16) ? DMA_SIZE_16 : DMA_SIZE_32;
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
dma_channel_config dma_config = dma_channel_get_default_config(self->dma_channel[ch]);
channel_config_set_transfer_data_size(&dma_config, dma_size);
channel_config_set_chain_to(&dma_config, self->dma_channel[(ch + 1) % I2S_NUM_DMA_CHANNELS]);
uint8_t *dma_buffer = self->dma_buffer + (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * ch);
if (self->mode == TX) {
channel_config_set_dreq(&dma_config, pio_get_dreq(self->pio, self->sm, true));
channel_config_set_read_increment(&dma_config, true);
channel_config_set_write_increment(&dma_config, false);
dma_channel_configure(self->dma_channel[ch],
&dma_config,
(void *)&self->pio->txf[self->sm], // dest = PIO TX FIFO
dma_buffer, // src = DMA buffer
SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (dma_get_bits(self->mode, self->bits) / 8),
false);
} else { // RX
channel_config_set_dreq(&dma_config, pio_get_dreq(self->pio, self->sm, false));
channel_config_set_read_increment(&dma_config, false);
channel_config_set_write_increment(&dma_config, true);
dma_channel_configure(self->dma_channel[ch],
&dma_config,
dma_buffer, // dest = DMA buffer
(void *)&self->pio->rxf[self->sm], // src = PIO RX FIFO
SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (dma_get_bits(self->mode, self->bits) / 8),
false);
}
}
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
dma_irqn_acknowledge_channel(self->i2s_id, self->dma_channel[ch]); // clear pending. e.g. from SPI
dma_irqn_set_channel_enabled(self->i2s_id, self->dma_channel[ch], true);
}
}
static void dma_deinit(machine_i2s_obj_t *self) {
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
int channel = self->dma_channel[ch];
// unchain the channel to prevent triggering a transfer in the chained-to channel
dma_channel_config dma_config = dma_get_channel_config(channel);
channel_config_set_chain_to(&dma_config, channel);
dma_channel_set_config(channel, &dma_config, false);
dma_irqn_set_channel_enabled(self->i2s_id, channel, false);
dma_channel_abort(channel); // in case a transfer is in flight
dma_channel_unclaim(channel);
}
}
static void dma_irq_handler(uint8_t irq_index) {
int dma_channel = dma_map_irq_to_channel(irq_index);
if (dma_channel == -1) {
// This should never happen
return;
}
machine_i2s_obj_t *self = MP_STATE_PORT(machine_i2s_obj[irq_index]);
if (self == NULL) {
// This should never happen
return;
}
uint8_t *dma_buffer = dma_get_buffer(self, dma_channel);
if (dma_buffer == NULL) {
// This should never happen
return;
}
if (self->mode == TX) {
// for non-blocking operation handle the write() method requests.
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
copy_appbuf_to_ringbuf_non_blocking(self);
}
feed_dma(self, dma_buffer);
dma_irqn_acknowledge_channel(irq_index, dma_channel);
dma_channel_set_read_addr(dma_channel, dma_buffer, false);
} else { // RX
empty_dma(self, dma_buffer);
dma_irqn_acknowledge_channel(irq_index, dma_channel);
dma_channel_set_write_addr(dma_channel, dma_buffer, false);
// for non-blocking operation handle the readinto() method requests.
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
fill_appbuf_from_ringbuf_non_blocking(self);
}
}
}
static void dma_irq0_handler(void) {
dma_irq_handler(0);
}
static void dma_irq1_handler(void) {
dma_irq_handler(1);
}
static void mp_machine_i2s_init_helper(machine_i2s_obj_t *self, mp_arg_val_t *args) {
// are Pins valid?
mp_hal_pin_obj_t sck = args[ARG_sck].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sck].u_obj);
mp_hal_pin_obj_t ws = args[ARG_ws].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_ws].u_obj);
mp_hal_pin_obj_t sd = args[ARG_sd].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sd].u_obj);
// does WS pin follow SCK pin?
// note: SCK and WS are implemented as PIO sideset pins. Sideset pins must be sequential.
if (ws != (sck + 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid ws (must be sck+1)"));
}
// is Mode valid?
i2s_mode_t i2s_mode = args[ARG_mode].u_int;
if ((i2s_mode != RX) &&
(i2s_mode != TX)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
}
// is Bits valid?
int8_t i2s_bits = args[ARG_bits].u_int;
if ((i2s_bits != 16) &&
(i2s_bits != 32)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
}
// is Format valid?
format_t i2s_format = args[ARG_format].u_int;
if ((i2s_format != MONO) &&
(i2s_format != STEREO)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
}
// is Rate valid?
// Not checked
// is Ibuf valid?
int32_t ring_buffer_len = args[ARG_ibuf].u_int;
if (ring_buffer_len > 0) {
self->ring_buffer_storage = m_new(uint8_t, ring_buffer_len);
;
ringbuf_init(&self->ring_buffer, self->ring_buffer_storage, ring_buffer_len);
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid ibuf"));
}
self->sck = sck;
self->ws = ws;
self->sd = sd;
self->mode = i2s_mode;
self->bits = i2s_bits;
self->format = i2s_format;
self->rate = args[ARG_rate].u_int;
self->ibuf = ring_buffer_len;
self->callback_for_non_blocking = MP_OBJ_NULL;
self->non_blocking_descriptor.copy_in_progress = false;
self->io_mode = BLOCKING;
irq_configure(self);
pio_configure(self);
gpio_configure(self);
dma_configure(self);
pio_sm_set_enabled(self->pio, self->sm, true);
dma_channel_start(self->dma_channel[0]);
}
static machine_i2s_obj_t *mp_machine_i2s_make_new_instance(mp_int_t i2s_id) {
if (i2s_id >= MAX_I2S_RP2) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
}
machine_i2s_obj_t *self;
if (MP_STATE_PORT(machine_i2s_obj[i2s_id]) == NULL) {
self = mp_obj_malloc(machine_i2s_obj_t, &machine_i2s_type);
MP_STATE_PORT(machine_i2s_obj[i2s_id]) = self;
self->i2s_id = i2s_id;
} else {
self = MP_STATE_PORT(machine_i2s_obj[i2s_id]);
machine_i2s_deinit(MP_OBJ_FROM_PTR(self));
}
return self;
}
static void mp_machine_i2s_deinit(machine_i2s_obj_t *self) {
// use self->pio as in indication that I2S object has already been de-initialized
if (self->pio != NULL) {
pio_deinit(self);
dma_deinit(self);
irq_deinit(self);
m_free(self->ring_buffer_storage);
self->pio = NULL; // flag object as de-initialized
}
}
static void mp_machine_i2s_irq_update(machine_i2s_obj_t *self) {
(void)self;
}
MP_REGISTER_ROOT_POINTER(void *machine_i2s_obj[2]);