Skip to content

Commit

Permalink
renaming
Browse files Browse the repository at this point in the history
  • Loading branch information
ThomasFaria committed Jul 29, 2024
1 parent 35d38cc commit a184d31
Show file tree
Hide file tree
Showing 5 changed files with 91 additions and 79 deletions.
78 changes: 0 additions & 78 deletions slides/en/applications/_application4.qmd

This file was deleted.

9 changes: 9 additions & 0 deletions slides/en/applications/_application4a.qmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
:::{.callout-tip collapse="true" icon=false}
## Introduction to MLflow concepts

:::{.incremental}
1. In `JupyterLab`, open the notebook located at `formation-mlops/notebooks/mlflow-introduction.ipynb`
2. Execute the notebook cell by cell. If you are finished early, explore the `MLflow` UI and try to build your own experiments from the example code provided in the notebook.
:::

:::
9 changes: 9 additions & 0 deletions slides/en/applications/_application4b.qmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
:::{.callout-tip collapse="true" icon=false}
## Introduction to MLflow concepts

:::{.incremental}
1. In `JupyterLab`, open the notebook located at `formation-mlops/notebooks/mlflow-introduction.ipynb`
2. Execute the notebook cell by cell. If you are finished early, explore the `MLflow` UI and try to build your own experiments from the example code provided in the notebook.
:::

:::
73 changes: 72 additions & 1 deletion slides/en/applications/_application5.qmd
Original file line number Diff line number Diff line change
@@ -1,7 +1,78 @@
:::{.nonincremental}
:::: {.callout-tip collapse="true" icon=false}
## Logging
## Part 1 : introduction to `Argo Workflows`


1. Launch an `Argo Workflows` service by clicking [this URL](https://datalab.sspcloud.fr/launcher/automation/argo-workflows?autoLaunch=true). Open the service and input the service password (either automatically copied or available in the `README` of the service)
2. In `VSCode`, create a file `hello_world.yaml` at the root of the project with the following content:

```{.yml filename="hello_world.yml"}
apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
generateName: hello-world-
labels:
workflows.argoproj.io/archive-strategy: "false"
annotations:
workflows.argoproj.io/description: |
This is a simple hello world example.
You can also run it in Python: https://couler-proj.github.io/couler/examples/#hello-world
spec:
entrypoint: whalesay
templates:
- name: whalesay
container:
image: docker/whalesay:latest
command: [cowsay]
args: ["hello world"]
```

3. Submit the `Hello world` workflow via a terminal in `VSCode` :

```shell
argo submit formation-mlops/hello_world.yaml
```
4. Open the UI of `Argo Workflows`. Find the logs of the workflow you just launched. You should see the Docker logo <i class="fab fa-docker" style="color: #18a8fe;"></i>.

::::
:::



## Application 4

:::{.nonincremental}
:::: {.callout-tip collapse="true" icon=false}
## Part 2 : distributing the hyperparameters optimization

1. Take a look at the `argo_workflows/workflow.yml` file. What do you expect will happen when we submit this workflow ?
2. Modify the highlighted line in the same manner as in application 3.

```{.yml code-line-numbers="4" filename="workflow.yml"}
parameters:
# The MLflow tracking server is responsable to log the hyper-parameter and model metrics.
- name: mlflow-tracking-uri
value: https://user-<namespace>-<pod_id>.user.lab.sspcloud.fr
- name: mlflow-experiment-name
value: nace-prediction
```

3. Submit the workflow and look at the jobs completing live in the UI.

<details>
<summary>
<font size=\"3\" color=\"darkgreen\"><b>Click to see the command </b></font>
</summary>

```shell
argo submit formation-mlops/argo_workflows/workflow.yml
```

</details>

4. Once all jobs are completed, visualize the logs of the whole workflow.
5. Finally, open the `MLflow` UI to check what has been done.
::::

:::
1 change: 1 addition & 0 deletions slides/fr/applications/_application3.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -217,3 +217,4 @@ python formation-mlops/src/predict_api.py
Nous avons ici réalisé une succession de requêtes GET car nous avons un seul point d'entrée vers notre API. Pour réaliser des requêtes en `batch` il est préférable de réaliser des requêtes POST.
::::
:::

0 comments on commit a184d31

Please sign in to comment.