-
Notifications
You must be signed in to change notification settings - Fork 12
/
apppp.py
127 lines (105 loc) · 4.46 KB
/
apppp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import PyPDF2
from langchain_community.embeddings import OllamaEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
import chainlit as cl
from langchain_groq import ChatGroq
from dotenv import load_dotenv
import os
# Loading environment variables from .env file
load_dotenv()
# Function to initialize conversation chain with GROQ language model
groq_api_key = os.environ['GROQ_API_KEY']
# Initializing GROQ chat with provided API key, model name, and settings
llm_groq = ChatGroq(
groq_api_key=groq_api_key, model_name="llama3-70b-8192",
temperature=0.2)
@cl.on_chat_start
async def on_chat_start():
files = None #Initialize variable to store uploaded files
# Wait for the user to upload files
while files is None:
files = await cl.AskFileMessage(
content="Please upload one or more pdf files to begin!",
accept=["application/pdf"],
max_size_mb=100,# Optionally limit the file size,
max_files=10,
timeout=180, # Set a timeout for user response,
).send()
# Process each uploaded file
texts = []
metadatas = []
for file in files:
print(file) # Print the file object for debugging
# Read the PDF file
pdf = PyPDF2.PdfReader(file.path)
pdf_text = ""
for page in pdf.pages:
pdf_text += page.extract_text()
# Split the text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=50)
file_texts = text_splitter.split_text(pdf_text)
texts.extend(file_texts)
# Create a metadata for each chunk
file_metadatas = [{"source": f"{i}-{file.name}"} for i in range(len(file_texts))]
metadatas.extend(file_metadatas)
# Create a Chroma vector store
embeddings = OllamaEmbeddings(model="nomic-embed-text")
docsearch = await cl.make_async(Chroma.from_texts)(
texts, embeddings, metadatas=metadatas
)
# Initialize message history for conversation
message_history = ChatMessageHistory()
# Memory for conversational context
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# Create a chain that uses the Chroma vector store
chain = ConversationalRetrievalChain.from_llm(
llm=llm_groq,
chain_type="stuff",
retriever=docsearch.as_retriever(),
memory=memory,
return_source_documents=True,
)
# Sending an image with the number of files
elements = [
cl.Image(name="image", display="inline", path="pic.jpg")
]
# Inform the user that processing has ended.You can now chat.
msg = cl.Message(content=f"Processing {len(files)} files done. You can now ask questions!",elements=elements)
await msg.send()
#store the chain in user session
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
# Retrieve the chain from user session
chain = cl.user_session.get("chain")
#call backs happens asynchronously/parallel
cb = cl.AsyncLangchainCallbackHandler()
# call the chain with user's message content
res = await chain.ainvoke(message.content, callbacks=[cb])
answer = res["answer"]
source_documents = res["source_documents"]
text_elements = [] # Initialize list to store text elements
# Process source documents if available
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
# Create the text element referenced in the message
text_elements.append(
cl.Text(content=source_doc.page_content, name=source_name)
)
source_names = [text_el.name for text_el in text_elements]
# Add source references to the answer
if source_names:
answer += f"\nSources: {', '.join(source_names)}"
else:
answer += "\nNo sources found"
#return results
await cl.Message(content=answer, elements=text_elements).send()