This repository has been archived by the owner on Nov 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
run_mvtec.py
435 lines (362 loc) · 17.5 KB
/
run_mvtec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# -*- coding: utf-8 -*-
from feature_extractor import FeatureExtractor
import torch
import torch.nn as nn
import numpy as np
import argparse
from sklearn.decomposition import PCA
from torchvision.models import resnet18, resnet50, efficientnet_b5, wide_resnet50_2
from torchvision.models import ResNet18_Weights, ResNet50_Weights, EfficientNet_B5_Weights, Wide_ResNet50_2_Weights
from mvtec import Mvtec
from sklearn import metrics
import pandas as pd
import torchvision.transforms.functional as F
import torch.nn.functional as TF
# from skimage import measure
# from numpy import ndarray
# from statistics import mean
import time
# import intel_extension_for_pytorch as ipex
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import sys
import matplotlib
from PIL import Image
from pathlib import Path
class AE(nn.Module):
def __init__(self, fullSz, projSz) -> None:
super(AE, self).__init__()
self.fullSz = fullSz
self.projSz = projSz
self.encoder_layer = nn.Linear(fullSz, projSz)
self.decoder_layer = nn.Linear(projSz, fullSz)
def encoder(self, input):
encoded = self.encoder_layer(input)
return encoded
def decoder(self, input):
decoded = self.decoder_layer(input)
return decoded
def forward(self, input):
encoded = self.encoder(input)
decoded = self.decoder(encoded)
return decoded
class TiedAE(nn.Module):
def __init__(self, fullSz, projSz, weight=None, bias=None) -> None:
super().__init__()
self.fullSz = fullSz
self.projSz = projSz
if weight is None:
self.weight = nn.Parameter(torch.empty(projSz, fullSz))
torch.nn.init.xavier_uniform_(self.weight)
else:
self.weight = nn.Parameter(weight)
if bias is None:
self.decoder_bias = nn.Parameter(torch.zeros(fullSz))
self.encoder_bias = nn.Parameter(torch.zeros(projSz))
else:
self.decoder_bias = bias
self.encoder_bias = torch.matmul(-weight, bias)
def encoder(self, input):
encoded = TF.linear(input, self.weight, self.encoder_bias)
return encoded
def decoder(self, input):
decoded = TF.linear(input, self.weight.t(), self.decoder_bias)
return decoded
def forward(self, input):
encoded = TF.linear(input, self.weight, self.encoder_bias)
decoded = TF.linear(encoded, self.weight.t(), self.decoder_bias)
return decoded
class fromArray(Dataset):
def __init__(self, Array):
super().__init__()
if isinstance(Array, np.ndarray):
self.Array = torch.Tensor(Array)
elif isinstance(Array, torch.Tensor):
self.Array = Array
def __len__(self):
return len(self.Array)
def __getitem__(self, idx):
sample = self.Array[idx]
return sample
def score(dataloader, fre_model):
len_dataset = len(dataloader.dataset)
scores = torch.empty(len_dataset)
heatmaps = torch.Tensor(len_dataset, im_size, im_size)
ground_truth_maps = torch.Tensor(len_dataset, im_size, im_size)
with torch.no_grad():
count = 0
for k, data in enumerate(dataloader):
inputs = data['data'].to(device)
num_im = inputs.shape[0]
features = feature_extractor(inputs)
feature_shapes = feature_extractor.get_feature_shapes()
features_reconstructed = fre_model(features)
fre = torch.square(features - features_reconstructed).reshape(feature_shapes)
fre_map = torch.sum(fre, 1) # NxCxHxW --> NxHxW
fre_score = torch.sum(fre_map, (1,2)) # NxHxW --> N
scores[count: count + num_im] = fre_score
heatmaps[count: count + num_im] = F.resize(fre_map, size=(im_size, im_size), interpolation=F.InterpolationMode.BILINEAR, antialias=True)
ground_truth_maps[count: count + num_im] = torch.squeeze(data['gt']) # GT maps are single-channel (black & white)
count += num_im
output = (scores, heatmaps, ground_truth_maps)
return output
def fit_pca(dataloader, pca_threshold):
eval_loader = torch.utils.data.DataLoader(dataloader.dataset, batch_size=1, shuffle=False)
data = next(iter(eval_loader))
features = feature_extractor(data['data'].to(device))
data_mats_orig = torch.zeros((features.shape[1], len(trainset))).to(device)
with torch.no_grad():
data_idx = 0
for data in dataloader:
images = data['data'].to(device)
num_samples = len(images)
features = feature_extractor(images)
oi = torch.squeeze(features)
data_mats_orig[:, data_idx:data_idx+num_samples] = oi.transpose(1, 0)
data_idx += num_samples
data_mats_orig = data_mats_orig.cpu().numpy()
pca_model = PCA(pca_threshold)
pca_model.fit(data_mats_orig.T)
weights = torch.Tensor(pca_model.components_).to(device)
means = torch.Tensor(pca_model.mean_).to(device)
fre_model = TiedAE(weights.shape[1], weights.shape[0], weight=weights, bias=means)
fre_model = fre_model.to(device)
return fre_model
def fit_ae(dataloader, projSz, mode):
eval_loader = torch.utils.data.DataLoader(dataloader.dataset, batch_size=1, shuffle=False)
data = next(iter(eval_loader))
features = feature_extractor(data['data'].to(device))
data_mats_orig = torch.zeros((features.shape[1], len(trainset))).to(device)
with torch.no_grad():
data_idx = 0
for data in dataloader:
images = data['data'].to(device)
num_samples = len(images)
features = feature_extractor(images)
oi = torch.squeeze(features)
data_mats_orig[:, data_idx:data_idx+num_samples] = oi.transpose(1, 0)
data_idx += num_samples
epochs = args.epochs
batch_size = 64
fullSz = data_mats_orig.shape[0]
if mode == 'tae':
fre_model = TiedAE(fullSz, projSz)
else:
fre_model = AE(fullSz, projSz)
feature_set = fromArray(data_mats_orig.T)
feature_loader = DataLoader(feature_set, batch_size=batch_size, shuffle=True)
learning_rate = 1e-3
optimizer = torch.optim.Adam(fre_model.parameters(), lr=learning_rate)
loss_fn = nn.MSELoss()
fre_model = fre_model.to(device)
for epoch in tqdm(range(epochs)):
for data in feature_loader:
feature_in = data.to(device)
feature_out = fre_model(feature_in)
loss = loss_fn(feature_in, feature_out)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return fre_model
def save_heatmaps(mode, heatmaps_test, heatmaps_out, testset, outset):
heatmaps_concat = torch.cat((heatmaps_test, heatmaps_out), 0)
min_val = torch.min(heatmaps_concat)
max_val = torch.max(heatmaps_concat)
cm = matplotlib.colormaps['viridis']
heatmaps_test = 1.1*(heatmaps_test - min_val)/max_val
for i, hm in enumerate(heatmaps_test):
heatmap = cm(hm)
heatmap_image = Image.fromarray((heatmap[:, :, :3] * 255).astype(np.uint8))
heatmap_relative_path = testset.get_subpath(i)
heatmap_path = Path(args.output_folder) / mode / heatmap_relative_path
heatmap_path = heatmap_path.resolve()
heatmap_folder = heatmap_path.parent
if not heatmap_folder.exists():
heatmap_folder.mkdir(parents=True)
heatmap_image.save(heatmap_path)
heatmaps_out = 1.1*(heatmaps_out - min_val)/max_val
for i, hm in enumerate(heatmaps_out):
heatmap = cm(hm)
heatmap_image = Image.fromarray((heatmap[:, :, :3] * 255).astype(np.uint8))
heatmap_relative_path = outset.get_subpath(i)
heatmap_path = Path(args.output_folder) / mode / heatmap_relative_path
heatmap_path = heatmap_path.resolve()
heatmap_folder = heatmap_path.parent
if not heatmap_folder.exists():
heatmap_folder.mkdir(parents=True)
heatmap_image.save(heatmap_path)
def calculate_metrics(scores_test, heatmaps_test, gt_maps_test, scores_out, heatmaps_out, gt_maps_out):
scores_concat = np.concatenate((scores_test, scores_out))
ground_truth_out = np.ones(len(scores_out))
ground_truth_test = np.zeros(len(scores_test))
ground_truth_concat = np.concatenate((ground_truth_test, ground_truth_out))
fpr, tpr, _ = metrics.roc_curve(ground_truth_concat, scores_concat)
precision, recall, _ = metrics.precision_recall_curve(ground_truth_concat, scores_concat)
im_auroc = metrics.auc(fpr, tpr)
im_aupr = metrics.auc(recall, precision)
gt_maps_concat = torch.cat((gt_maps_test, gt_maps_out), 0)
heatmaps_concat = torch.cat((heatmaps_test, heatmaps_out), 0)
fpr_pix, tpr_pix, _ = metrics.roc_curve(gt_maps_concat.reshape(-1), heatmaps_concat.reshape(-1))
pixel_auroc = metrics.auc(fpr_pix, tpr_pix)
return im_auroc, im_aupr, pixel_auroc
def get_args():
parser = argparse.ArgumentParser(description="Fit a distribution to the deep features of a trained network using"
"training samples.")
parser.add_argument("-m", "--model", help="Model to be tested. Default: efficientnet_b5", choices=['resnet18', 'resnet50', 'efficientnet_b5', 'wideresnet50'], default='efficientnet_b5')
parser.add_argument("--object_categories", help="(Optional) MVTec object category. Either name of category, e.g. bottle, cable, etc. or 'all'. Default: all", default=['all'], nargs='+')
parser.add_argument("--proj_size", help="(Optional) Latent space dimension of AutoEncoder. Provide either one value per object category or a single value for all.", type=int, nargs='+')
parser.add_argument("--gpu", help="(Optional) Run on GPU ", action="store_true")
parser.add_argument("--dataset_directory", help="(Optional) Specify directory of MVTec dataset. Default: ./mvtec", default='./mvtec')
parser.add_argument("--pca", help="(Optional) The amount of variance that needs to be retained by PCA", type=float, default=0.97)
parser.add_argument("--epochs", help="(Optional) Number of epochs for training AE", type=int, default=250)
# parser.add_argument("--calc_pro", action="store_true")
# parser.add_argument("--ipex", action="store_true")
parser.add_argument("--modes", help="Choose one or more modes from pca, tae (Tied AE), or ae to run", choices={'pca', 'ae', 'tae'}, nargs='+', default=['pca', 'tae'])
parser.add_argument("--output_folder")
parser.add_argument("--save_heatmaps", action="store_true")
args = parser.parse_args()
return args
args = get_args()
mvtec_categories = ['bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal_nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper']
model_name = args.model
object_categories = mvtec_categories if args.object_categories == ['all'] else args.object_categories
proj_sizes = list()
if args.proj_size is not None:
if len(args.proj_size) == 1:
proj_sizes = [args.proj_size[0] for x in range(len(object_categories))]
elif len(args.proj_size) == len(object_categories):
proj_sizes = object_categories
else:
print(f"ERROR: {len(args.proj_size)} values found for --proj_size, but {len(object_categories)} object categories were provided.")
sys.exit(1)
else:
if 'pca' in args.modes:
print('WARNING: Latent AE dimension not provided, will be inherited from corresponding PCA model.')
else:
print('ERROR: Latent AE dimension not provided.')
sys.exit()
dataset_directory = args.dataset_directory
pca_threshold = args.pca
device = "cuda:0" if args.gpu == True else "cpu"
if args.model == 'resnet18':
net = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
layer = 'layer3'
pool_factor = 2
im_size = 256
elif args.model == 'resnet50':
net = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
layer = 'layer3'
pool_factor = 2
im_size = 256
elif args.model == 'wideresnet50':
net = wide_resnet50_2(weights=Wide_ResNet50_2_Weights.IMAGENET1K_V1)
layer = 'layer3'
pool_factor = 2
im_size = 256
elif args.model == 'efficientnet_b5':
net = efficientnet_b5(weights=EfficientNet_B5_Weights.IMAGENET1K_V1)
layer = 'features.6'
pool_factor = 2
im_size = 456
net = net.to(device)
net.eval()
# if args.ipex == True and args.gpu == False:
# net = ipex.optimize(net)
feature_extractor = FeatureExtractor(net, layer_name=layer, pool_factor=pool_factor)
auc_roc_im_pca = list()
auc_roc_pix_pca = list()
auc_roc_pro_pca = list()
auc_roc_im_ae = list()
auc_roc_pix_ae = list()
auc_roc_pro_ae = list()
auc_roc_im_tae = list()
auc_roc_pix_tae = list()
auc_roc_pro_tae = list()
for obj_idx, object_category in enumerate(object_categories):
print('>>Processing', object_category)
trainset = Mvtec(root_dir=dataset_directory, object_type=object_category, split='train', im_size=im_size)
testset = Mvtec(root_dir=dataset_directory, object_type=object_category, split='test', defect_type='good', im_size=im_size)
outset = Mvtec(root_dir=dataset_directory, object_type=object_category, split='test', defect_type='defect', im_size=im_size)
batch_size = 64 # Change if needed
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=False, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)
outloader = torch.utils.data.DataLoader(outset, batch_size=batch_size, shuffle=False, num_workers=2)
if 'pca' in args.modes:
print('Training PCA model...')
train_start = time.time()
pca_model = fit_pca(dataloader=trainloader, pca_threshold=pca_threshold)
train_end = time.time()
print(f'Feature size:{pca_model.weight.shape[1]}, Reduced size:{pca_model.weight.shape[0]}')
print(f'PCA Training time {train_end - train_start}')
print('Evaluating test set')
pred_start = time.time()
scores_test_pca, heatmaps_test_pca, gt_maps_test_pca = score(testloader, pca_model)
scores_out_pca, heatmaps_out_pca, gt_maps_out_pca = score(outloader, pca_model)
pred_end = time.time()
print(f'PCA Prediction time {pred_end - pred_start}')
im_auroc_pca, im_aupr_pca, pixel_auroc_pca = calculate_metrics(
scores_test_pca, heatmaps_test_pca, gt_maps_test_pca, scores_out_pca, heatmaps_out_pca, gt_maps_out_pca
)
print(f'PCA: Image AUROC: {im_auroc_pca}, Image AUPR: {im_aupr_pca}, Pixel AUROC: {pixel_auroc_pca}')
auc_roc_im_pca.append(im_auroc_pca)
auc_roc_pix_pca.append(pixel_auroc_pca)
if args.save_heatmaps:
save_heatmaps('pca', heatmaps_test_pca, heatmaps_out_pca, testset, outset)
if 'tae' in args.modes:
print('Training Tied AE model...')
train_start = time.time()
if len(proj_sizes) == 0:
projSz = pca_model.weight.shape[0]
else:
projSz = proj_sizes[obj_idx]
tae_model = fit_ae(dataloader=trainloader, projSz=projSz, mode='tae')
train_end = time.time()
print(f'AE Training time {train_end - train_start}')
pred_start = time.time()
scores_test_tae, heatmaps_test_tae, gt_maps_test_tae = score(testloader, tae_model)
scores_out_tae, heatmaps_out_tae, gt_maps_out_tae = score(outloader, tae_model)
pred_end = time.time()
print(f'AE Prediction time {pred_end - pred_start}')
im_auroc_tae, im_aupr_tae, pixel_auroc_tae = calculate_metrics(
scores_test_tae, heatmaps_test_tae, gt_maps_test_tae, scores_out_tae, heatmaps_out_tae, gt_maps_out_tae
)
print(f'AE: Image AUROC: {im_auroc_tae}, Image AUPR: {im_aupr_tae}, Pixel AUROC: {pixel_auroc_tae}')
auc_roc_im_tae.append(im_auroc_tae)
auc_roc_pix_tae.append(pixel_auroc_tae)
if args.save_heatmaps:
save_heatmaps('tae', heatmaps_test_tae, heatmaps_out_tae, testset, outset)
if 'ae' in args.modes:
print('Training plain AE model...')
train_start = time.time()
if len(proj_sizes) == 0:
projSz = pca_model.weight.shape[0]
else:
projSz = proj_sizes[obj_idx]
ae_model = fit_ae(dataloader=trainloader, projSz=projSz, mode='ae')
train_end = time.time()
print(f'AE Training time {train_end - train_start}')
pred_start = time.time()
scores_test_ae, heatmaps_test_ae, gt_maps_test_ae = score(testloader, ae_model)
scores_out_ae, heatmaps_out_ae, gt_maps_out_ae = score(outloader, ae_model)
pred_end = time.time()
print(f'AE Prediction time {pred_end - pred_start}')
im_auroc_ae, im_aupr_ae, pixel_auroc_ae = calculate_metrics(
scores_test_ae, heatmaps_test_ae, gt_maps_test_ae, scores_out_ae, heatmaps_out_ae, gt_maps_out_ae
)
print(f'AE: Image AUROC: {im_auroc_ae}, Image AUPR: {im_aupr_ae}, Pixel AUROC: {pixel_auroc_ae}')
auc_roc_im_ae.append(im_auroc_ae)
auc_roc_pix_ae.append(pixel_auroc_ae)
if args.save_heatmaps:
save_heatmaps('ae', heatmaps_test_ae, heatmaps_out_ae, testset, outset)
results = dict()
if 'pca' in args.modes:
results['Image AUROC PCA'] = auc_roc_im_pca
results['Pixel AUROC PCA'] = auc_roc_pix_pca
if 'ae' in args.modes:
results['Image AUROC AE'] = auc_roc_im_ae
results['Pixel AUROC AE'] = auc_roc_pix_ae
if 'tae' in args.modes:
results['Image AUROC TAE'] = auc_roc_im_tae
results['Pixel AUROC TAE'] = auc_roc_pix_tae
results_df = pd.DataFrame(results, index=object_categories)
print(results_df)