-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathann.py
247 lines (189 loc) · 9.76 KB
/
ann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#############################
#@author: Nitin Rathi (ref: https://github.com/nitin-rathi/hybrid-snn-conversion)
#############################
import argparse
import torch.optim as optim
import datetime
import os
import numpy as np
from self_models import *
from torchvision import datasets, transforms
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def train(epoch, loader):
global learning_rate
losses = AverageMeter('Loss')
top1 = AverageMeter('Acc@1')
if epoch in lr_interval:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] / lr_reduce
learning_rate = param_group['lr']
model.train()
for batch_idx, (data, target) in enumerate(loader):
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output,target)
loss.backward()
optimizer.step()
pred = output.max(1,keepdim=True)[1]
correct = pred.eq(target.data.view_as(pred)).cpu().sum()
losses.update(loss.item(), data.size(0))
top1.update(correct.item()/data.size(0), data.size(0))
print('\n Epoch: {}, lr: {:.1e}, train_loss: {:.4f}, train_acc: {:.4f}'.format(
epoch,
learning_rate,
losses.avg,
top1.avg
)
)
def test(loader):
losses = AverageMeter('Loss')
top1 = AverageMeter('Acc@1')
with torch.no_grad():
model.eval()
total_loss = 0
correct = 0
global max_accuracy, start_time
for batch_idx, (data, target) in enumerate(loader):
data, target = data.cuda(), target.cuda()
output = model(data)
loss = F.cross_entropy(output,target)
total_loss += loss.item()
pred = output.max(1, keepdim=True)[1]
correct = pred.eq(target.data.view_as(pred)).cpu().sum()
losses.update(loss.item(), data.size(0))
top1.update(correct.item()/data.size(0), data.size(0))
print ("test_acc:", top1.avg)
if epoch>30 and top1.avg<0.15:
print('\n Quitting as the training is not progressing')
exit(0)
if top1.avg>max_accuracy:
max_accuracy = top1.avg
state = {
'accuracy' : max_accuracy,
'epoch' : epoch,
'state_dict' : model.state_dict(),
'optimizer' : optimizer.state_dict()
}
if os.path.exists('./trained_models/ann/') is False:
os.mkdir('./trained_models')
os.mkdir('./trained_models/ann')
filename = './trained_models/ann/'+identifier+'.pth'
torch.save(state,filename)
print(' test_loss: {:.4f}, test_acc: {:.4f}, best: {:.4f}, time: {}'. format(
losses.avg,
top1.avg,
max_accuracy,
datetime.timedelta(seconds=(datetime.datetime.now() - start_time).seconds)
)
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train ANN to be later converted to SNN', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--gpu', default=True, type=bool, help='use gpu')
parser.add_argument('--log', action='store_true', help='to print the output on terminal or to log file')
parser.add_argument('-s','--seed', default=0, type=int, help='seed for random number')
parser.add_argument('--dataset', default='CIFAR100', type=str, help='dataset name', choices=['MNIST','CIFAR10','CIFAR100','Tinyimagenet'])
parser.add_argument('--batch_size', default=512, type=int, help='minibatch size')
parser.add_argument('-a','--architecture', default='VGG16', type=str, help='network architecture', choices=['VGG5','VGG9','VGG11','VGG13','VGG16','VGG19','RESNET12','RESNET20','RESNET34'])
parser.add_argument('-lr','--learning_rate', default=1e-1, type=float, help='initial learning_rate')
parser.add_argument('--test_only', action='store_true', help='perform only inference')
parser.add_argument('--epochs', default=90, type=int, help='number of training epochs')
parser.add_argument('--lr_interval', default='0.60 0.80 0.90', type=str, help='intervals at which to reduce lr, expressed as %%age of total epochs')
parser.add_argument('--lr_reduce', default=10, type=int, help='reduction factor for learning rate')
parser.add_argument('--optimizer', default='SGD', type=str, help='optimizer for SNN backpropagation', choices=['SGD', 'Adam'])
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight decay parameter for the optimizer')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum parameter for the SGD optimizer')
parser.add_argument('--amsgrad', default=True, type=bool, help='amsgrad parameter for Adam optimizer')
parser.add_argument('--dropout', default=0.0, type=float, help='dropout percentage for conv layers')
parser.add_argument('--kernel_size', default=3, type=int, help='filter size for the conv layers')
parser.add_argument('--devices', default='0', type=str, help='list of gpu device(s)')
args=parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.devices
# Seed random number
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
dataset = args.dataset
batch_size = args.batch_size
architecture = args.architecture
learning_rate = args.learning_rate
epochs = args.epochs
lr_reduce = args.lr_reduce
optimizer = args.optimizer
weight_decay = args.weight_decay
momentum = args.momentum
amsgrad = args.amsgrad
dropout = args.dropout
kernel_size = args.kernel_size
values = args.lr_interval.split()
lr_interval = []
for value in values:
lr_interval.append(int(float(value)*args.epochs))
log_file = './logs/ann/'
try:
os.mkdir(log_file)
except OSError:
pass
identifier = 'ann_'+architecture.lower()+'_'+dataset.lower()+'_'+str(datetime.datetime.now())
log_file+=identifier+'.log'
print (identifier)
if torch.cuda.is_available() and args.gpu:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
# Loading Dataset
if dataset == 'CIFAR100':
normalize = transforms.Normalize((0.5071,0.4867,0.4408),(0.2675,0.2565,0.2761))
labels = 100
elif dataset == 'CIFAR10':
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
labels = 10
if dataset == 'CIFAR10' or dataset == 'CIFAR100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
transform_test = transforms.Compose([transforms.ToTensor(), normalize])
if dataset == 'CIFAR100':
train_dataset = datasets.CIFAR100(root='~/Datasets/cifar_data', train=True, download=True,transform =transform_train)
test_dataset = datasets.CIFAR100(root='~/Datasets/cifar_data', train=False, download=True, transform=transform_test)
elif dataset == 'CIFAR10':
train_dataset = datasets.CIFAR10(root='~/Datasets/cifar_data', train=True, download=True,transform=transform_train)
test_dataset = datasets.CIFAR10(root='~/Datasets/cifar_data', train=False, download=True, transform=transform_test)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
model = VGG(vgg_name=architecture, labels=labels, dataset=dataset, kernel_size=kernel_size, dropout=dropout)
model = nn.DataParallel(model).cuda()
if optimizer == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum, weight_decay=weight_decay)
elif optimizer == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=learning_rate, amsgrad=amsgrad, weight_decay=weight_decay)
print('\n {}'.format(optimizer))
max_accuracy = 0
for epoch in range(1, epochs):
start_time = datetime.datetime.now()
train(epoch, train_loader)
if (epoch+1) % 5 ==0:
test(test_loader)
print('\n Highest accuracy: {:.4f}'.format(max_accuracy))