-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
333 lines (282 loc) · 14.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# encoding=utf-8
import matplotlib.pyplot as plt
# matplotlib.use('Agg')
from models.spike import *
from trainer import *
import torch
import torch.nn as nn
import argparse
from datetime import datetime
import numpy as np
import os
from copy import deepcopy
import fitlog
from utils import tsne, mds, _logger, hook_layers
# fitlog.debug()
parser = argparse.ArgumentParser(description='argument setting of network')
parser.add_argument('--cuda', default=0, type=int, help='cuda device ID,0/1')
parser.add_argument('--rep', default=1, type=int, help='repeats for multiple runs')
# hyperparameter
parser.add_argument('--batch_size', type=int, default=64, help='batch size of training')
parser.add_argument('--n_epoch', type=int, default=60, help='number of training epochs')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--lr_cls', type=float, default=1e-3, help='learning rate for linear classifier')
# dataset
parser.add_argument('--dataset', type=str, default='shar', choices=['oppor', 'ucihar', 'shar', 'hhar'],
help='name of dataset')
parser.add_argument('--n_feature', type=int, default=77, help='name of feature dimension')
parser.add_argument('--len_sw', type=int, default=30, help='length of sliding window')
parser.add_argument('--n_class', type=int, default=18, help='number of class')
parser.add_argument('--cases', type=str, default='random', choices=['random', 'subject', 'subject_large',
'cross_device',
'joint_device'], help='name of scenarios')
parser.add_argument('--split_ratio', type=float, default=0.2, help='split ratio of test/val: train(0.64), val(0.16), '
'test(0.2)')
parser.add_argument('--target_domain', type=str, default='0', help='the target domain, [0 to 29] for ucihar, '
'[1,2,3,5,6,9,11,13,14,15,16,17,19,20,21,'
'22,23,24,25,29] for shar, [a-i] for hhar')
# backbone model
parser.add_argument('--backbone', type=str, default='DCL', choices=['FCN', 'DCL', 'LSTM', 'AE', 'CNN_AE', 'Transformer',
'SFCN', 'SDCL'], help='name of framework')
# log
parser.add_argument('--logdir', type=str, default='log/', help='log directory')
# AE & CNN_AE
parser.add_argument('--lambda1', type=float, default=1.0,
help='weight for reconstruction loss when backbone in [AE, CNN_AE]')
# hhar
parser.add_argument('--device', type=str, default='Phones', choices=['Phones', 'Watch'],
help='data of which device to use (random case);'
' data of which device to be used as training data (cross-device case,'
' data from the other device as test data)')
# spike
parser.add_argument('--tau', type=float, default=0.5, help='decay for LIF')
parser.add_argument('--thresh', type=float, default=1.0, help='threshold for LIF')
parser.add_argument('--eval', action='store_true', help='Evaluation model')
# create directory for saving and plots
global plot_dir_name
plot_dir_name = 'plot/'
if not os.path.exists(plot_dir_name):
os.makedirs(plot_dir_name)
def train(args, train_loaders, val_loader, model, DEVICE, optimizer, criterion):
min_val_loss = 0
acc_epoch_list = []
val_acc_epoch_list = []
for epoch in range(args.n_epoch):
logger.debug(f'\nEpoch : {epoch}')
train_loss = 0
n_batches = 0
total = 0
correct = 0
model.train()
for loader_idx, train_loader in enumerate(train_loaders):
for idx, (sample, target, domain) in enumerate(train_loader):
n_batches += 1
sample, target = sample.to(DEVICE).float(), target.to(DEVICE).long()
if args.backbone[-2:] == 'AE':
out, x_decoded = model(sample)
else:
out, _ = model(sample)
loss = criterion(out, target)
if args.backbone[-2:] == 'AE':
# print(loss.item(), nn.MSELoss()(sample, x_decoded).item())
loss = loss + nn.MSELoss()(sample, x_decoded) * args.lambda1
train_loss = train_loss + loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, predicted = torch.max(out.data, 1)
total += target.size(0)
correct += (predicted == target).sum()
acc_train = float(correct) * 100.0 / total
fitlog.add_loss(train_loss / n_batches, name="Train Loss", step=epoch)
fitlog.add_metric({"dev": {"Train Acc": acc_train}}, step=epoch)
acc_epoch_list += [round(acc_train, 2)]
logger.debug(f'Train Loss : {train_loss / n_batches:.4f}\t | \tTrain Accuracy : {acc_train:2.4f}\n')
if val_loader is None:
best_model = deepcopy(model.state_dict())
model_dir = save_dir + args.model_name + '.pt'
print('Saving models to {}'.format(model_dir))
torch.save({'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict()},
model_dir)
else:
with torch.no_grad():
model.eval()
val_loss = 0
n_batches = 0
total = 0
correct = 0
for idx, (sample, target, domain) in enumerate(val_loader):
n_batches += 1
sample, target = sample.to(DEVICE).float(), target.to(DEVICE).long()
if args.backbone[-2:] == 'AE':
out, x_decoded = model(sample)
else:
out, _ = model(sample)
loss = criterion(out, target)
if args.backbone[-2:] == 'AE':
loss += nn.MSELoss()(sample, x_decoded) * args.lambda1
val_loss += loss.item()
_, predicted = torch.max(out.data, 1)
total += target.size(0)
correct += (predicted == target).sum()
acc_val = float(correct) * 100.0 / total
fitlog.add_loss(val_loss / n_batches, name="Val Loss", step=epoch)
fitlog.add_metric({"dev": {"Val Acc": acc_val}}, step=epoch)
logger.debug(f'Val Loss : {val_loss / n_batches:.4f}\t | \tVal Accuracy : {acc_val:2.4f}\n')
val_acc_epoch_list += [round(acc_val, 2)]
if acc_val >= min_val_loss:
min_val_loss = acc_val
best_model = deepcopy(model.state_dict())
print('update')
model_dir = save_dir + args.model_name + '.pt'
print('Saving models to {}'.format(model_dir))
torch.save({'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict()},
model_dir)
return best_model
def test(test_loader, model, DEVICE, criterion, plt=False):
with torch.no_grad():
model.eval()
total_loss = 0
n_batches = 0
total = 0
correct = 0
feats = None
prds = None
trgs = None
confusion_matrix = torch.zeros(args.n_class, args.n_class)
for idx, (sample, target, domain) in enumerate(test_loader):
n_batches += 1
sample, target = sample.to(DEVICE).float(), target.to(DEVICE).long()
out, features = model(sample)
loss = criterion(out, target)
total_loss += loss.item()
_, predicted = torch.max(out.data, 1)
total += target.size(0)
correct += (predicted == target).sum()
if prds is None:
prds = predicted
trgs = target
feats = features[:, :]
else:
prds = torch.cat((prds, predicted))
trgs = torch.cat((trgs, target))
feats = torch.cat((feats, features), 0)
trgs = torch.cat((trgs, target))
feats = torch.cat((feats, features), 0)
acc_test = float(correct) * 100.0 / total
fitlog.add_best_metric({"dev": {"Test Loss": total_loss / n_batches}})
fitlog.add_best_metric({"dev": {"Test Acc": acc_test}})
logger.debug(f'Test Loss : {total_loss / n_batches:.4f}\t | \tTest Accuracy : {acc_test:2.4f}\n')
for t, p in zip(trgs.view(-1), prds.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
logger.debug(confusion_matrix)
logger.debug(confusion_matrix.diag() / confusion_matrix.sum(1))
fitlog.add_hyper(confusion_matrix, name='conf_mat')
if plt == True:
tsne(feats, trgs, domain=None, save_dir=plot_dir_name + args.model_name + '_tsne.png')
mds(feats, trgs, domain=None, save_dir=plot_dir_name + args.model_name + 'mds.png')
sns_plot = sns.heatmap(confusion_matrix, cmap='Blues', annot=True)
sns_plot.get_figure().savefig(plot_dir_name + args.model_name + '_confmatrix.png')
return acc_test
def seed_all(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
if __name__ == '__main__':
args = parser.parse_args()
DEVICE = torch.device('cuda:' + str(args.cuda) if torch.cuda.is_available() else 'cpu')
print('device:', DEVICE, 'dataset:', args.dataset)
acc_list = []
# log
args.model_name = args.backbone + '_' + args.dataset + '_lr' + str(args.lr) + '_bs' + str(
args.batch_size) + '_sw' + str(args.len_sw)
if os.path.isdir(args.logdir) == False:
os.makedirs(args.logdir)
log_file_name = os.path.join(args.logdir, args.model_name + f".log")
logger = _logger(log_file_name)
logger.debug(args)
# fitlog
fitlog.set_log_dir(args.logdir)
fitlog.add_hyper(args)
fitlog.add_hyper_in_file(__file__)
training_start = datetime.now()
for r in range(args.rep):
# fix random seed for reproduction
seed_all(seed=1000 + r)
train_loaders, val_loader, test_loader = setup_dataloaders(args)
snn_params = {"tau": args.tau, "thresh": args.thresh}
if not args.eval:
if args.backbone == 'FCN':
model = FCN(n_channels=args.n_feature, n_classes=args.n_class, backbone=False)
elif args.backbone == 'SFCN':
model = SFCN(n_channels=args.n_feature, n_classes=args.n_class, backbone=False, **snn_params)
elif args.backbone == 'DCL':
model = DeepConvLSTM(n_channels=args.n_feature, n_classes=args.n_class, conv_kernels=64, kernel_size=5,
LSTM_units=128, backbone=False)
elif args.backbone == 'SDCL':
model = SDCL(n_channels=args.n_feature, n_classes=args.n_class, conv_kernels=64, kernel_size=5,
LSTM_units=128, backbone=False, **snn_params)
elif args.backbone == 'LSTM':
model = LSTM(n_channels=args.n_feature, n_classes=args.n_class, LSTM_units=128, backbone=False)
elif args.backbone == 'AE':
model = AE(n_channels=args.n_feature, len_sw=args.len_sw, n_classes=args.n_class, outdim=128,
backbone=False)
elif args.backbone == 'CNN_AE':
model = CNN_AE(n_channels=args.n_feature, n_classes=args.n_class, out_channels=128, backbone=False)
elif args.backbone == 'Transformer':
model = Transformer(n_channels=args.n_feature, len_sw=args.len_sw, n_classes=args.n_class, dim=128,
depth=4, heads=4, mlp_dim=64, dropout=0.1, backbone=False)
else:
raise NotImplementedError
model = model.to(DEVICE)
save_dir = 'results/'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
criterion = nn.CrossEntropyLoss()
parameters = model.parameters()
optimizer = torch.optim.Adam(parameters, args.lr)
train_loss_list = []
test_loss_list = []
best_model = train(args, train_loaders, val_loader, model, DEVICE, optimizer, criterion)
else:
criterion = nn.CrossEntropyLoss()
save_dir = 'results/'
best_model = torch.load(save_dir + args.model_name + '.pt')['model_state_dict']
if args.backbone == 'FCN':
model_test = FCN(n_channels=args.n_feature, n_classes=args.n_class, backbone=False)
elif args.backbone == 'SFCN':
model_test = SFCN(n_channels=args.n_feature, n_classes=args.n_class, backbone=False, **snn_params)
elif args.backbone == 'DCL':
model_test = DeepConvLSTM(n_channels=args.n_feature, n_classes=args.n_class, conv_kernels=64, kernel_size=5,
LSTM_units=128, backbone=False)
elif args.backbone == 'SDCL':
model_test = SDCL(n_channels=args.n_feature, n_classes=args.n_class, conv_kernels=64, kernel_size=5,
LSTM_units=128, backbone=False, **snn_params)
elif args.backbone == 'LSTM':
model_test = LSTM(n_channels=args.n_feature, n_classes=args.n_class, LSTM_units=128, backbone=False)
elif args.backbone == 'AE':
model_test = AE(n_channels=args.n_feature, len_sw=args.len_sw, n_classes=args.n_class, outdim=128,
backbone=False)
elif args.backbone == 'CNN_AE':
model_test = CNN_AE(n_channels=args.n_feature, n_classes=args.n_class, out_channels=128, backbone=False)
elif args.backbone == 'Transformer':
model_test = Transformer(n_channels=args.n_feature, len_sw=args.len_sw, n_classes=args.n_class, dim=128,
depth=4, heads=4, mlp_dim=64, dropout=0.1, backbone=False)
else:
raise NotImplementedError
model_test.load_state_dict(best_model)
model_test = model_test.to(DEVICE)
avgmeter = hook_layers(model_test)
test_loss = test(test_loader, model_test, DEVICE, criterion, plt=False)
acc_list.append(test_loss)
print("Fire Rate: {}".format(avgmeter.avg()))
training_end = datetime.now()
training_time = training_end - training_start
logger.debug(f"Training time is : {training_time}")
a = np.array(acc_list)
print('Final Accuracy: {}, Std: {}'.format(np.mean(a), np.std(a)))