-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
61 lines (49 loc) · 2.29 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pandas as pd
import pickle
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.model_selection import train_test_split
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.read_csv("datasets/processed.csv")
data['date'] = pd.to_datetime(data['date'], errors='coerce')
data['year'] = data['date'].dt.year
X = data[['value', 'year']]
y = data['border'].factorize()[0]
# Split the data into training and test sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model_filenames = ["Data/Logistic_Regression.pkl", "Data/Random_Forest.pkl", "Data/SVM.pkl", "Data/Decision_Tree.pkl", "Data/K-Nearest_Neighbors.pkl"]
results = {}
for model_file in model_filenames:
with open(model_file, 'rb') as file:
model = pickle.load(file)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
class_report = classification_report(y_test, y_pred, target_names=data['border'].unique(), output_dict=True)
border_crossing = model_file.replace('.pkl', '').replace('_', ' ')
results[border_crossing] = {
"accuracy": accuracy,
"classification_report": class_report
}
print(f"Model: {border_crossing}")
print(f"Accuracy: {accuracy:.4f}")
print("\nClassification Report:\n", classification_report(y_test, y_pred))
# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=data['border'].unique(), yticklabels=data['border'].unique())
plt.title(f'Confusion Matrix for {border_crossing}')
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()
eval_df = pd.DataFrame.from_dict({
border_crossing: {
"Accuracy": res['accuracy'],
"Precision": res['classification_report']['weighted avg']['precision'],
"Recall": res['classification_report']['weighted avg']['recall'],
"F1-Score": res['classification_report']['weighted avg']['f1-score']
}
for border_crossing, res in results.items()
}, orient='index')
eval_df.to_csv('datasets/model_evaluation_results.csv', index=False)
print("\nModel Evaluation Results saved to 'datasets/model_evaluation_results.csv'.")
print(eval_df)