-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtest_main.py
396 lines (315 loc) · 18.7 KB
/
test_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import io
import os
import random
import sys
import unittest
from unittest import mock
import numpy as np
import main
from main import VGG_ARCHITECTURE
class TestMain(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.unsupported_model_type = 'xx'
cls.unsupported_species = 'xx'
cls.supported_species = next(iter(main.DISEASE_SUPPORTED_SPECIES))
if cls.supported_species not in main.DISEASE_SUPPORTED_SPECIES:
raise ValueError("supported species is not setup right in unit test\n"
"Please, Write unit test condition again with appropriate supported species")
if cls.unsupported_species in main.DISEASE_SUPPORTED_SPECIES:
raise ValueError("unsupported species is not setup right in unit test\n"
"Please, Write unit test condition again with appropriate unsupported species")
if cls.unsupported_model_type in main.SUPPORTED_MODEL_TYPES:
raise ValueError("unsupported model type is not setup right in unit test\n"
"Please, Write unit test condition again with appropriate unsupported model type")
@mock.patch('main.argparse.ArgumentParser', autospec=True)
def test_get_cmd_args(self, mock_parser_class):
args = main.get_cmd_args()
mock_parser = mock_parser_class.return_value
# check mandatory image cmd arg
mock_parser.add_argument.assert_any_call('image', type=str, help=mock.ANY)
# check for optional cmd args
mock_parser.add_argument.assert_any_call('--model', type=str.lower, default=VGG_ARCHITECTURE,
choices=[VGG_ARCHITECTURE, main.INCEPTIONV3_ARCHITECTURE],
help=mock.ANY)
mock_parser.add_argument.assert_any_call('--segment', action='store_true', help=mock.ANY)
mock_parser.add_argument.assert_any_call('--species', type=str.lower, default='', help=mock.ANY)
# check cmd args are parsed and returned from the function
self.assertEqual(args, mock_parser.parse_args.return_value)
def test_get_species_model_raises_error_if_unsupported_model_type_is_given(self):
with self.assertRaises(ValueError) as ve:
main.get_species_model(self.unsupported_model_type)
def test_get_species_model_doesnot_raise_error_if_supported_model_type_is_given(self):
for supported_model_type in main.SUPPORTED_MODEL_TYPES:
try:
main.get_species_model(supported_model_type)
except ValueError:
self.fail("`{}` model type should be supported but it is not".format(supported_model_type))
def test_get_disease_model_raises_error_if_unsupported_model_type_is_given(self):
with self.assertRaises(ValueError) as ve:
main.get_disease_model(self.unsupported_species, self.unsupported_model_type)
def test_get_disease_model_doesnot_raise_error_if_supported_model_type_is_given(self):
for supported_model_type in main.SUPPORTED_MODEL_TYPES:
try:
main.get_disease_model(self.supported_species, supported_model_type)
except ValueError:
self.fail("`{}` model type should be supported but it is not".format(supported_model_type))
def test_get_disease_model_raises_if_unsupported_species_is_given(self):
for supported_model_type in main.SUPPORTED_MODEL_TYPES:
with self.assertRaises(ValueError) as ve:
main.get_disease_model(self.unsupported_species, supported_model_type)
def test_get_disease_model_doesnot_raise_if_supported_species_is_given(self):
for supported_model_type in main.SUPPORTED_MODEL_TYPES:
for supported_species in main.DISEASE_SUPPORTED_SPECIES:
try:
main.get_disease_model(supported_species, supported_model_type)
except ValueError:
self.fail("`{}` species should be supported but it is not".format(supported_species))
class TestGetPredictions(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model_path = 'model_path'
cls.img_path = 'img_path'
cls.target_size = (5, 5)
@mock.patch('main.image')
@mock.patch('main.load_model')
@mock.patch('main.np')
@mock.patch('main.Image')
@mock.patch('main.os.path')
def test_get_predictions_raises_error_if_model_file_doesnot_exist_only(self, mock_path, _Image, _np, _load, _image):
# if model path exist, valueerror should not be raised
mock_path.exists.return_value = True
try:
main.get_predictions(self.model_path, self.img_path, self.target_size)
except ValueError:
self.fail("No value error should have been raised while model path existing")
# if model path does not exist, valueerror should be raised
mock_path.exists.return_value = False
with self.assertRaises(ValueError) as ve:
main.get_predictions('dummy_path', 'dummy_path', self.target_size)
@mock.patch('main.image')
@mock.patch('main.load_model')
@mock.patch('main.np')
@mock.patch('main.Image')
@mock.patch('main.os.path')
def test_get_predictions_uses_model_appropriately(self, mock_path, _Image, _np, _load, _image):
mock_path.exists.return_value = True
main.get_predictions(self.model_path, self.img_path, self.target_size)
_load.assert_called_once_with(self.model_path)
_load.return_value.predict.assert_called_once()
@mock.patch('main.image')
@mock.patch('main.load_model')
@mock.patch('main.np')
@mock.patch('main.Image')
@mock.patch('main.os.path')
def test_get_predictions_loads_image_appropriately(self, mock_path, _Image, _np, _load, _image):
mock_path.exists.return_value = True
_Image.open.return_value.size = (6, 6)
main.get_predictions(self.model_path, self.img_path, self.target_size)
_Image.open.assert_called_once_with(self.img_path)
_Image.open.return_value.resize.assert_called_once_with(self.target_size)
_image.img_to_array.assert_called_once_with(_Image.open.return_value.resize.return_value)
@mock.patch('main.preprocess_input')
@mock.patch('main.image')
@mock.patch('main.load_model')
@mock.patch('main.np')
@mock.patch('main.Image')
@mock.patch('main.os.path')
def test_get_predictions_input_is_preprocessed(self, mock_path, _Image, _np, _load, _image, _preprocess):
mock_path.exists.return_value = True
main.get_predictions(self.model_path, self.img_path, self.target_size)
_preprocess.assert_called_once_with(_np.expand_dims.return_value)
_load.return_value.predict.assert_called_once_with(_preprocess.return_value)
@mock.patch('main.preprocess_input')
@mock.patch('main.image')
@mock.patch('main.load_model')
@mock.patch('main.np')
@mock.patch('main.Image')
@mock.patch('main.os.path')
def test_get_predictions_returns_right_preds_and_its_sorting_index(self, mock_path, _Image, _np, _load, _image,
_preprocess):
mock_path.exists.return_value = True
expected_preds = np.array([2, 3, 1])
_load.return_value.predict.return_value.flatten.return_value = expected_preds
preds, sorrting_index = main.get_predictions(self.model_path, self.img_path, self.target_size)
expected_sorting_index = np.array([1, 0, 2])
np.testing.assert_array_equal(preds, expected_preds)
np.testing.assert_array_equal(sorrting_index, expected_sorting_index)
class TestSegmentImage(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.img_path = 'img_path.jpg'
cls.segmented_img_path = 'img_path_marked.jpg'
@mock.patch('main.subprocess')
def test_segment_image_returns_the_right_file_name(self, _subprocess):
result_img_path = main.segment_image(self.img_path)
self.assertEqual(self.segmented_img_path, result_img_path)
@mock.patch('main.subprocess')
def test_segment_image_segments_given_image(self, _subprocess):
result_img_path = main.segment_image(self.img_path)
_subprocess.check_output(['python', "leaf-image-segmentation/segment.py", "-s", self.img_path])
class TestPipelines(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.supported_species = main.APPLE
cls.unsupported_species = 'xx'
cls.species_model = 'apple.h5'
cls.disease_model = 'healthy.h5'
cls.default_model_type = VGG_ARCHITECTURE
cls.model_path = 'model_path'
cls.img_path = 'img_path.jpg'
cls.segmented_img_path = 'img_path_marked.jpg'
cls.target_size = (5, 5)
cls.preds = np.array([2, 3, 1])
cls.sorting_index = np.array([1, 0, 2])
random.seed(0)
if cls.unsupported_species in main.DISEASE_SUPPORTED_SPECIES:
raise ValueError("unsupported species is not setup right in unit test\n"
"Please, Write unit test condition again with appropriate unsupported species")
if cls.supported_species not in main.DISEASE_SUPPORTED_SPECIES:
raise ValueError("supported species is not setup right in unit test\n"
"Please, Write unit test condition again with appropriate supported species")
if len(cls.sorting_index) > len(main.APPLE_CLASSES):
raise ValueError("used species classes and sorting index length is not compatible\n"
"Please, Write unit test condition again with appropriate length")
if len(cls.sorting_index) != len(cls.preds):
raise ValueError("preds and sorting index should be equal length since sorting index sorts preds\n"
"Please, Write unit test condition again with appropriate length and items")
def setUp(self):
self.old_stdout = sys.stdout
def tearDown(self):
# restore stdout to console
sys.stdout = self.old_stdout
@mock.patch('main.get_predictions')
@mock.patch('main.get_species_model')
@mock.patch('main.segment_image')
def test_segment_and_predict_species_image_is_segmented(self, _segment_image, _get_species_model, _get_predictions):
_get_species_model.return_value = self.species_model
_get_predictions.return_value = self.preds, self.sorting_index
main.segment_and_predict_species(self.img_path, self.default_model_type, False)
_segment_image.assert_called_once_with(self.img_path)
@mock.patch('main.get_predictions')
@mock.patch('main.get_species_model')
@mock.patch('main.segment_image')
def test_segment_and_predict_species_loads_correct_model_and_segmented_image_with_right_size(self, _segment_image,
_get_species_model,
_get_predictions):
_get_species_model.return_value = self.species_model
_get_predictions.return_value = self.preds, self.sorting_index
_segment_image.return_value = self.segmented_img_path
model_path = os.path.join(main.MODEL_STORAGE_BASE, self.species_model)
for model_type in main.SUPPORTED_MODEL_TYPES:
main.segment_and_predict_species(self.img_path, model_type, False)
target_img_size = main.TARGET_IMAGE_SIZES[model_type][main.SPECIES_DETECTION]
_get_predictions.assert_called_with(model_path, self.segmented_img_path, target_img_size)
@mock.patch('main.get_predictions')
@mock.patch('main.get_species_model')
@mock.patch('main.segment_image')
def test_segment_and_predict_species_returns_what_is_expected(self, _segment_image, _get_species_model,
_get_predictions):
_get_species_model.return_value = self.species_model
_get_predictions.return_value = self.preds, self.sorting_index
_segment_image.return_value = self.segmented_img_path
top_species, segmented_image_name = main.segment_and_predict_species(self.img_path, self.default_model_type,
False)
self.assertEqual(top_species, main.SPECIES[self.sorting_index[0]])
self.assertEqual(segmented_image_name, self.segmented_img_path)
@mock.patch('main.get_predictions')
@mock.patch('main.get_species_model')
@mock.patch('main.segment_image')
def test_segment_and_predict_species_prints_the_right_result(self, _segment_image, _get_species_model,
_get_predictions):
_get_species_model.return_value = self.species_model
_get_predictions.return_value = self.preds, self.sorting_index
out_string = io.StringIO()
sys.stdout = out_string
top_species, segmented_image_name = main.segment_and_predict_species(self.img_path, self.default_model_type,
True)
# check one random item from a list of printed results
random_i = random.choice(self.sorting_index)
printed_content = out_string.getvalue()
self.assertIn(str(main.SPECIES[random_i]), printed_content)
self.assertIn(str(self.preds[random_i]), printed_content)
@mock.patch('main.get_predictions')
@mock.patch('main.get_species_model')
def test_predict_species_loads_correct_model_and_image_with_right_size(self, _get_species_model,
_get_predictions):
_get_species_model.return_value = self.species_model
_get_predictions.return_value = self.preds, self.sorting_index
model_path = os.path.join(main.MODEL_STORAGE_BASE, self.species_model)
for model_type in main.SUPPORTED_MODEL_TYPES:
main.predict_species(self.img_path, model_type, False)
target_img_size = main.TARGET_IMAGE_SIZES[model_type][main.SPECIES_DETECTION]
_get_predictions.assert_called_with(model_path, self.img_path, target_img_size)
@mock.patch('main.get_predictions')
@mock.patch('main.get_species_model')
def test_predict_species_returns_what_is_expected(self, _get_species_model,
_get_predictions):
_get_species_model.return_value = self.species_model
_get_predictions.return_value = self.preds, self.sorting_index
top_species = main.predict_species(self.img_path, self.default_model_type, False)
self.assertEqual(top_species, main.SPECIES[self.sorting_index[0]])
@mock.patch('main.get_predictions')
@mock.patch('main.get_species_model')
def test_predict_species_prints_the_right_result(self, _get_species_model,
_get_predictions):
_get_species_model.return_value = self.species_model
_get_predictions.return_value = self.preds, self.sorting_index
out_string = io.StringIO()
sys.stdout = out_string
main.predict_species(self.img_path, self.default_model_type, True)
# check one random item from a list of printed results
random_i = random.choice(self.sorting_index)
printed_content = out_string.getvalue()
self.assertIn(str(main.SPECIES[random_i]), printed_content)
self.assertIn(str(self.preds[random_i]), printed_content)
@mock.patch('main.get_predictions')
@mock.patch('main.get_disease_model')
def test_predict_disease_loads_correct_model_and_image_with_right_size(self, _get_disease_model, _get_predictions):
_get_disease_model.return_value = self.disease_model
_get_predictions.return_value = self.preds, self.sorting_index
model_path = os.path.join(main.MODEL_STORAGE_BASE, self.disease_model)
for model_type in main.SUPPORTED_MODEL_TYPES:
main.predict_disease(self.img_path, self.supported_species, model_type, False)
target_img_size = main.TARGET_IMAGE_SIZES[model_type][main.DISEASE_DETECTION]
_get_predictions.assert_called_with(model_path, self.img_path, target_img_size)
@mock.patch('main.get_classes')
@mock.patch('main.get_disease_model')
@mock.patch('main.get_predictions')
def test_predict_disease_uses_appropriate_species_class_and_returns_proper_element_from_it(self, _get_predictions,
_get_disease_model,
_get_classes):
_get_disease_model.return_value = self.disease_model
_get_predictions.return_value = self.preds, self.sorting_index
_get_classes.return_value = main.APPLE_CLASSES
top_disease = main.predict_disease(self.img_path, self.supported_species, self.default_model_type, False)
_get_classes.assert_called_with(self.supported_species)
self.assertEqual(top_disease, main.APPLE_CLASSES[self.sorting_index[0]])
@mock.patch('main.get_classes')
@mock.patch('main.get_disease_model')
@mock.patch('main.get_predictions')
def test_predict_disease_prints_the_right_thing(self, _get_predictions, _get_disease_model, _get_classes):
_get_disease_model.return_value = self.disease_model
_get_predictions.return_value = self.preds, self.sorting_index
_get_classes.return_value = main.APPLE_CLASSES
out_string = io.StringIO()
sys.stdout = out_string
main.predict_disease(self.img_path, self.supported_species, self.default_model_type, True)
# check one random item from a list of printed results
random_i = random.choice(self.sorting_index)
printed_content = out_string.getvalue()
self.assertIn(str(main.APPLE_CLASSES[random_i]), printed_content)
self.assertIn(str(self.preds[random_i]), printed_content)
@mock.patch('main.get_classes')
@mock.patch('main.get_disease_model')
@mock.patch('main.get_predictions')
def test_predict_disease_raises_error_if_unsupported_species_is_given(self, _get_predictions,
_get_disease_model,
_get_classes):
_get_disease_model.return_value = self.disease_model
_get_predictions.return_value = self.preds, self.sorting_index
_get_classes.return_value = main.APPLE_CLASSES
with self.assertRaises(ValueError) as ve:
main.predict_disease(self.img_path, self.unsupported_species, False)
if __name__ == '__main__':
unittest.main()