-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
186 lines (145 loc) · 6.33 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import torch.nn as nn
from torch import Tensor
from translation_utils import TokenEmbedding
from torch.nn import Transformer
from barlow_utils import off_diagonal
class Translator(nn.Module):
def __init__(self,
mbert,
transformer,
tgt_vocab_size: int,
emb_size: int):
super(Translator, self).__init__()
self.transformer = transformer
self.generator = nn.Linear(emb_size, tgt_vocab_size)
self.mbert = mbert
self.tok_emb = TokenEmbedding(emb_size = emb_size, mbert=self.mbert)
# self.trg_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
# self.positional_encoding = PositionalEncoding(emb_size, dropout=args.dropout)
def forward(self,
src: Tensor,
tgt: Tensor,
src_mask: Tensor,
tgt_mask: Tensor,
src_padding_mask: Tensor,
tgt_padding_mask: Tensor,
memory_key_padding_mask: Tensor):
# print(src.shape, tgt.shape)
src_emb = self.tok_emb(src)
trg_emb = self.tok_emb(tgt)
out = self.transformer(src_emb, trg_emb, src_mask, tgt_mask, None,
src_padding_mask, tgt_padding_mask, memory_key_padding_mask)
return self.generator(out)
def encode(self,
src: Tensor,
src_mask: Tensor):
return self.transformer.encoder(self.tok_emb(src), src_mask)
def decode(self, tgt: Tensor,
memory: Tensor,
tgt_mask: Tensor):
return self.transformer.decoder(self.tok_emb(tgt), memory, tgt_mask)
class Barlow2Twins(nn.Module):
def __init__(self,
pretrained_model,
projector_layers: str,
mbert_out_size: int,
transformer_enc: nn.TransformerEncoder,
mbert,
lambd: float): #eg. projector_layers = "1024-1024-1024"
super().__init__()
self.projector_layers = projector_layers
self.mbert_out_size = mbert_out_size
self.transformer_enc = pretrained_model.modules.ModuleList.TransformerModel.encoder
self.lambd = lambd
self.mbert = pretrained_model.tokenzier
sizes = [self.mbert_out_size] + list(map(int, self.projector_layers.split('-')))
layers = []
for i in range(len(sizes) - 2):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False))
layers.append(nn.BatchNorm1d(sizes[i + 1]))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False))
self.projector = nn.Sequential(*layers)
# normalization layer for the representations z1 and z2
self.bn = nn.BatchNorm1d(sizes[-1], affine=False) #not sure about this one, will have to check about size and all
def forward(self,
x: torch.tensor,
y: torch.tensor): #x = numericalised text
x = x.squeeze(-1)
#print(x.shape)
x = self.mbert(x)
x = self.transformer_enc(x["last_hidden_state"].permute(1,0,2))
print(x.shape)
x = torch.sum(x, dim=0)/x.shape[1] # using avg pooling
y = y.squeeze(-1)
y = self.mbert(y)
y = self.transformer_enc(y["last_hidden_state"].permute(1,0,2))
y = torch.sum(y, dim=0)/y.shape[1] # using avg pooling
x = self.projector(x) #x = [batch_size, projector]
x = self.bn(x)
# print(x.shape)
y = self.projector(y)
y = self.bn(y) #y = [batch_size, projector]
batch_size = y.shape[0]
#emperical cross-correlation mattrix
c = x.T @ y
# for multi-gpu: sum cross correlation matrix between all gpus
#(uncomment below 2 lines
c.div_(batch_size)
torch.distributed.all_reduce(c)
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss = on_diag + self.lambd * off_diag
return c, loss
class BarlowTwins(nn.Module):
def __init__(self,
projector_layers: str,
mbert_out_size: int,
transformer_enc: nn.TransformerEncoder,
mbert,
lambd: float): #eg. projector_layers = "1024-1024-1024"
super().__init__()
self.projector_layers = projector_layers
self.mbert_out_size = mbert_out_size
self.transformer_enc = transformer_enc
self.lambd = lambd
self.mbert = mbert
sizes = [self.mbert_out_size] + list(map(int, self.projector_layers.split('-')))
layers = []
for i in range(len(sizes) - 2):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False))
layers.append(nn.BatchNorm1d(sizes[i + 1]))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False))
self.projector = nn.Sequential(*layers)
# normalization layer for the representations z1 and z2
self.bn = nn.BatchNorm1d(sizes[-1], affine=False) #not sure about this one, will have to check about size and all
def forward(self,
x: torch.tensor,
y: torch.tensor): #x = numericalised text
x = x.squeeze(-1)
#print(x.shape)
x = self.mbert(x)
x = self.transformer_enc(x["last_hidden_state"].permute(1,0,2))
x = torch.sum(x, dim=0)/x.shape[1] # using avg pooling
y = y.squeeze(-1)
y = self.mbert(y)
y = self.transformer_enc(y["last_hidden_state"].permute(1,0,2))
y = torch.sum(y, dim=0)/y.shape[1] # using avg pooling
x = self.projector(x) #x = [batch_size, projector]
x = self.bn(x)
# print(x.shape)
y = self.projector(y)
y = self.bn(y) #y = [batch_size, projector]
batch_size = y.shape[0]
#emperical cross-correlation mattrix
c = x.T @ y
# for multi-gpu: sum cross correlation matrix between all gpus
#(uncomment below 2 lines
c.div_(batch_size)
torch.distributed.all_reduce(c)
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss = on_diag + self.lambd * off_diag
return c, loss