forked from erictuanle/GoingDeeperwPointNetworks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_shapenetpart.py
230 lines (220 loc) · 14 KB
/
train_shapenetpart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import sys
import torch
import shutil
import random
import numpy as np
from tensorboardX import SummaryWriter
from Datasets.dataset_shapenetpart import ShapeNetPartDataset
from Datasets.dataset_samplers import RandomSampler, Sampler
from Models.model_PN2 import PointNet2
from Models.model_mRes import mRes
from Models.model_convPN import convPN
from Configs.shapenetpart_options import ShapeNetPartOptions
from Utils.evaluation_metrics import compute_performance_metrics
np.seterr(divide='ignore', invalid='ignore')
import pdb
def compute_loss(pred, target):
num_batch, num_points, num_classes = pred.size()
pred = pred.contiguous().view(num_batch * num_points, num_classes)
target = target.view(num_batch * num_points)
loss = torch.nn.functional.cross_entropy(pred, target)
return loss
def train_shapenetpart(opt):
# Creating the device
if opt.use_GPU:
device = torch.device("cuda:" + str(opt.device_idx) if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print('Network loaded on the device: ', device)
# Colored console output
green = lambda x: '\033[92m' + x + '\033[0m'
blue = lambda x: '\033[94m' + x + '\033[0m'
# Set up folder directories
log_dirname = os.path.join(opt.logdir, opt.name)
params_filename = os.path.join(opt.outdir, '%s_params.pth' % (opt.name))
model_filename = os.path.join(opt.outdir, '%s_model.pth' % (opt.name))
desc_filename = os.path.join(opt.outdir, '%s_description.txt' % (opt.name))
if os.path.exists(log_dirname) or os.path.exists(model_filename):
response = input('A training run named "%s" already exists, overwrite? (y/n) ' % (opt.name))
if response == 'y':
if os.path.exists(log_dirname):
shutil.rmtree(os.path.join(opt.logdir, opt.name))
else:
sys.exit()
if not os.path.isdir(opt.outdir):
os.makedirs(opt.outdir)
# Set up the seed
if opt.seed < 0:
opt.seed = random.randint(1, 10000)
print("Random Seed: %d" % (opt.seed))
random.seed(opt.seed)
np.random.seed(opt.seed)
torch.manual_seed(opt.seed)
# Create train and test dataset loaders
train_dataset = ShapeNetPartDataset(root=opt.indir, seed=opt.seed, num_points=opt.num_points_training, center_points=opt.center_points,
use_pca=opt.use_pca, mode='training')
train_datasampler = RandomSampler(data_source=train_dataset, seed=opt.seed, identical_epochs=opt.identical_epochs)
train_dataloader = torch.utils.data.DataLoader(train_dataset, sampler=train_datasampler, batch_size=opt.batch_size, num_workers=int(opt.workers))
print('training set: %d pointclouds (in %d minibatches)' % (len(train_datasampler), len(train_dataloader)))
if opt.validation_batch == True:
test_dataset = ShapeNetPartDataset(root=opt.indir, seed=opt.seed, num_points=opt.num_points_training, center_points=opt.center_points,
use_pca=opt.use_pca, mode='validation')
test_datasampler = Sampler(data_source=test_dataset)
test_dataloader = torch.utils.data.DataLoader(test_dataset, sampler=test_datasampler, batch_size=opt.batch_size, num_workers=int(opt.workers))
print('test set: %d pointclouds (in %d minibatches)' % (len(test_datasampler), len(test_dataloader)))
list_num_parts = list(train_dataset.dictionary_categories.values())
# Creating the network
if opt.network == 'PointNet++':
# PN++
network = PointNet2(opt.batch_size, opt.nb_subsampled_points, opt.nb_neighbours, opt.sampling_method, opt.patch_radius, opt.in_channel_x_complete,
opt.in_channel, opt.list_dim_channels_encoding1, opt.use_x, opt.pooling_operation, opt.list_dim_channels_encoding2,
opt.intermediate_size_fc, opt.dropout_rate, opt.nb_interpolating_points, opt.use_x_complete_unsampled,opt.list_dim_channels_decoding,
opt.num_classes, opt.num_parts).to(device)
elif (opt.network == 'mRes') or (opt.network == 'mResX'):
# mRes
network = mRes(opt.batch_size, opt.nb_subsampled_points, opt.nb_neighbours, opt.sampling_method, opt.patch_radius, opt.in_channel_x_complete, opt.in_channel,
opt.list_dim_channels_encoding1, opt.use_x, opt.cross_connection, opt.pooling_operation, opt.list_dim_channels_encoding2, opt.intermediate_size_fc,
opt.dropout_rate, opt.nb_interpolating_points, opt.use_x_complete_unsampled, opt.list_dim_channels_decoding, opt.num_classes, opt.num_parts,
opt.dropout_rate_cross, opt.nb_interpolating_points_encoding).to(device)
network.add_cross_connection(opt.batch_size, opt.nb_interpolating_points_crossconnection)
network = network.to(device)
elif (opt.network == 'convPN') or (opt.network == 'deepConvPN'):
# convPN
network = convPN(opt.batch_size, opt.nb_subsampled_points, opt.nb_neighbours, opt.sampling_method, opt.patch_radius, opt.in_channel_x_complete, opt.in_channel,
opt.list_dim_channels_encoding, opt.use_x, opt.use_crosslinks, opt.use_reslinks, opt.sequence, opt.pooling_operation, opt.residuallinks_input,
opt.residuallinks_output, opt.intermediate_size_fc, opt.dropout_rate, opt.nb_interpolating_points, opt.use_x_complete_unsampled,
opt.list_dim_channels_decoding, opt.num_classes, opt.num_parts, opt.blockout_rate, test=False).to(device)
if opt.refine != '':
network.load_state_dict(torch.load(opt.refine, map_location=lambda storage, loc: storage))
num_parameters = np.sum([np.prod(parameter.shape) for parameter in network.parameters()])
print('Number of parameters for ' + opt.network + ': ' + str(num_parameters))
# Creating the tensorboardX writers
train_writer = SummaryWriter(os.path.join(log_dirname, 'train'))
if opt.validation_batch == True:
test_writer = SummaryWriter(os.path.join(log_dirname, 'validation'))
# Creating the optimizer
optimizer = torch.optim.Adam(network.parameters(), lr=opt.lr, betas=(0.9,0.999), eps=1e-8, weight_decay=opt.weight_decay, amsgrad=True)
# Saving parameters
torch.save(opt, params_filename)
# Saving description
with open(desc_filename, 'w+') as text_file:
print(opt.desc, file=text_file)
# Starting the training
print('Starting the training')
for epoch in range(opt.nepoch):
# Updating the learning rate and the batch norm decay
for param_group in optimizer.param_groups:
param_group['lr'] = max(opt.lr * opt.decay_rate**(epoch // opt.milestone_step), opt.lr_clip)
print('Learning rate: ' + str(optimizer.param_groups[0]['lr']))
bn_decay = min(1 - opt.bn_init_decay * opt.bn_decay_decay_rate**(epoch // opt.bn_decay_decay_step), opt.bn_decay_clip)
input_decay = 1 - bn_decay
print('Batchnorm decay: ' + str(bn_decay))
# Setting to training mode
network.train()
if (opt.network == 'convPN') or (opt.network == 'deepConvPN'):
network.train_custom()
# Initializing the metrics variable
loss_training = 0
cpt_rolling_average = 0
accuracy_training = 0
iou_training = 0
intersection_training = np.zeros([opt.num_parts])
union_training = np.zeros([opt.num_parts])
# Iterating over the batches
for train_batchind, data in enumerate(train_dataloader, 0):
# Rebooting the optimizer gradients
optimizer.zero_grad()
# Getting the input tensors from the data list
input_tensor = data[0].type(torch.FloatTensor).to(device)
vertices = input_tensor[:,:,:3]
normals = input_tensor[:,:,3:]
labels_cat = data[1].type(torch.LongTensor).to(device)
labels_seg = data[2].type(torch.LongTensor).to(device)
parts_tensor = data[3].type(torch.FloatTensor).to(device)
zero_tensor = torch.zeros([1]).to(device)
one_tensor = torch.ones([1]).to(device)
# Forward pass
pred = network(vertices, normals, labels_cat, bn_decay_value=input_decay)
loss = compute_loss(pred=pred, target=labels_seg)
loss_training = loss_training + loss.detach().cpu().item()
batch_accuracy, batch_iou, batch_intersection, batch_union = compute_performance_metrics(labels_cat, labels_seg, pred, None, parts_tensor, zero_tensor, one_tensor)
cpt_rolling_average += 1
accuracy_training += batch_accuracy
iou_training += batch_iou
intersection_training = intersection_training + batch_intersection.detach().cpu().numpy()
union_training = union_training + batch_union.detach().cpu().numpy()
# Backward pass
loss.backward()
optimizer.step()
if (train_batchind % opt.nb_rolling_iterations == 0) or (train_batchind == len(train_dataloader) - 1):
loss_training /= cpt_rolling_average
accuracy_training /= cpt_rolling_average
iou_training /= cpt_rolling_average
partiou_training = np.nanmean(intersection_training / union_training)
print('[%s %d - %d / %d] %s Loss: %f' % (opt.name, epoch, train_batchind+1, len(train_dataloader), green('training'), loss_training))
print('[%s %d - %d / %d] %s Accuracy: %f' % (opt.name, epoch, train_batchind+1, len(train_dataloader), green('training'), accuracy_training))
print('[%s %d - %d / %d] %s IoU: %f' % (opt.name, epoch, train_batchind+1, len(train_dataloader), green('training'), iou_training))
print('[%s %d - %d / %d] %s PartIoU: %f' % (opt.name, epoch, train_batchind+1, len(train_dataloader), green('training'), partiou_training))
train_writer.add_scalar('Loss', loss_training, len(train_dataloader)*epoch + (train_batchind+1))
train_writer.add_scalar('Accuracy', accuracy_training, len(train_dataloader)*epoch + (train_batchind+1))
train_writer.add_scalar('IoU', iou_training, len(train_dataloader)*epoch + (train_batchind+1))
train_writer.add_scalar('PartIoU', partiou_training, len(train_dataloader)*epoch + (train_batchind+1))
# Rebooting the rolling variables
cpt_rolling_average = 0
loss_training = 0
accuracy_training = 0
iou_training = 0
intersection_training = 0
union_training = 0
if (opt.validation_batch == True) and ((epoch % opt.nb_rolling_iterations == 0) or (epoch == opt.nepoch - 1)):
loss_validation, accuracy_validation, iou_validation, partiou_validation = validation_epoch(opt, network, test_dataloader, list_num_parts, device)
print('[%s %d - %d / %d] %s Loss: %f' % (opt.name, epoch, len(train_dataloader), len(train_dataloader), blue('validation'), loss_validation))
print('[%s %d - %d / %d] %s Accuracy: %f' % (opt.name, epoch, len(train_dataloader), len(train_dataloader), blue('validation'), accuracy_validation))
print('[%s %d - %d / %d] %s IoU: %f' % (opt.name, epoch, len(train_dataloader), len(train_dataloader), blue('validation'), iou_validation))
print('[%s %d - %d / %d] %s PartIoU: %f' % (opt.name, epoch, len(train_dataloader), len(train_dataloader), blue('validation'), partiou_validation))
test_writer.add_scalar('Loss', loss_validation, len(train_dataloader) * (epoch + 1))
test_writer.add_scalar('Accuracy', accuracy_validation, len(train_dataloader) * (epoch + 1))
test_writer.add_scalar('IoU', iou_validation, len(train_dataloader) * (epoch + 1))
test_writer.add_scalar('PartIoU', partiou_validation, len(train_dataloader) * (epoch + 1))
if (epoch % opt.nb_rolling_iterations == 0) or (epoch == opt.nepoch - 1):
torch.save(network.state_dict(), os.path.join(opt.outdir, '%s_model_%d.pth' % (opt.name, epoch)))
def validation_epoch(opt, network, test_dataloader, list_num_parts, device):
# Setting to evalution mode
network.eval()
if (opt.network == 'convPN') or (opt.network == 'deepConvPN'):
network.eval_custom()
# Initializing the metrics variable
loss_validation = 0
accuracy_validation = 0
iou_validation = 0
intersection_validation = np.zeros([opt.num_parts])
union_validation = np.zeros([opt.num_parts])
# Iterating over the batches
for _, data in enumerate(test_dataloader, 0):
input_tensor = data[0].type(torch.FloatTensor).to(device)
vertices = input_tensor[:,:,:3]
normals = input_tensor[:,:,3:]
labels_cat = data[1].type(torch.LongTensor).to(device)
labels_seg = data[2].type(torch.LongTensor).to(device)
parts_tensor = data[3].type(torch.FloatTensor).to(device)
zero_tensor = torch.zeros([1]).to(device)
one_tensor = torch.ones([1]).to(device)
with torch.no_grad():
pred = network(vertices, normals, labels_cat, bn_decay_value=None)
loss = compute_loss(pred=pred, target=labels_seg)
loss_validation = loss_validation + loss.detach().cpu().item()
batch_accuracy, batch_iou, batch_intersection, batch_union = compute_performance_metrics(labels_cat, labels_seg, pred, None, parts_tensor, zero_tensor, one_tensor)
accuracy_validation += batch_accuracy
iou_validation += batch_iou
intersection_validation = intersection_validation + batch_intersection.detach().cpu().numpy()
union_validation = union_validation + batch_union.detach().cpu().numpy()
loss_validation /= len(test_dataloader)
accuracy_validation /= len(test_dataloader)
iou_validation /= len(test_dataloader)
partiou_validation = np.nanmean(intersection_validation / union_validation)
return loss_validation, accuracy_validation, iou_validation, partiou_validation
if __name__ == '__main__':
configs = ShapeNetPartOptions()
opt = configs.parse()
train_shapenetpart(opt)