-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathAnomalyDataClass.py
76 lines (71 loc) · 3.63 KB
/
AnomalyDataClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
class AnomalyData:
"""
Class for Anomaly Dataset that stores all the parameters to be extracted and used in functions
Parameters:
- data_name: the name of the dataset
- folder_path: the path to access the folder of the data
- data_path: the path to access the data in the folder
- model_path: the path to read the deep autoencoder model in the folder
- is_image_data: indicator if the data is of the type image (If so, it requires normalization before passing to the Deep Autoencoder)
- n_components: number of components remained after PCA encoding
- k: used to compute the precision@k
- n_layers: # layers in deep autoencoder model
- replicate_for_training: If the dataset is too small, we will replicate the data before training the deep autoencodering
- multiplier: by what rate should the new layer in the encoder model should decreasing than the previous layer
"""
def __init__(self,data_name,folder_path,data_path,n_components,encoder_hidden_layers, decoder_hidden_layers, is_image_data=True,img_height=0,img_width=0,k=20, replicate_for_training = 0,model_path='model_autoencoder.h5'):
self.data_name = data_name
self.folder_path = folder_path # String
self.data_path = folder_path + data_path # String
self.n_components = n_components # int: No components after PCA encoding
self.encoder_hidden_layers = encoder_hidden_layers # An array of integers to indicate the structure of encoder network, EXCLUDING THE INPUT LAYER
self.decoder_hidden_layers = decoder_hidden_layers # An array of integers indicating the structure of the decoder network, EXCLUDING THE OUTPUT LAYER
self.is_image_data = is_image_data # Boolean: if the data is of the type image
self.img_height = img_height # int
self.img_width = img_width # int
self.k = k # int: a parameter to be used in Precision@k
self.replicate_for_training = replicate_for_training # Integer
self.model_path = folder_path + model_path # String
def set_mnist():
"""
Function to configure MNIST datasets
"""
data_name = 'MNIST'
folder_path = 'MNIST/'
data_path = 'data/'
n_components = 200
encoder_hidden_layers = np.array([512,256,128, 64])
decoder_hidden_layers = np.array([64,128,256,512])
is_image_data = True
img_height = 32
img_width = 32
mnist = AnomalyData(data_name,folder_path,data_path,n_components,encoder_hidden_layers, decoder_hidden_layers,
is_image_data=is_image_data, img_height=img_height, img_width=img_width)
return mnist
def set_faces():
"""
Function to configure MNIST datasets
"""
data_name = 'Yale Faces'
folder_path = 'Yale_Faces_Data/'
data_path = 'CroppedYale/'
n_components = 50
encoder_hidden_layers = np.array([252,126,63,31])
decoder_hidden_layers = np.array([31,62,124,248])
is_image_data = True
k = 10
replicate_for_training = 300
faces = AnomalyData(data_name,folder_path,data_path,n_components,encoder_hidden_layers, decoder_hidden_layers,
is_image_data=is_image_data, k=k, replicate_for_training=replicate_for_training)
return faces
def set_synthetic(folder_path):
data_name=folder_path
data_path = 'data/'
n_components = 14
encoder_hidden_layers = np.array([13,11,9]) # input dimension is 16
decoder_hidden_layers = np.array([9,11,13])
is_image_data = False
synthetic = AnomalyData(data_name,folder_path,data_path,n_components, encoder_hidden_layers, decoder_hidden_layers,
is_image_data=is_image_data)
return synthetic