forked from voldemortX/pytorch-auto-drive
-
Notifications
You must be signed in to change notification settings - Fork 0
/
erfnet_llamas.py
67 lines (58 loc) · 1.66 KB
/
erfnet_llamas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Data pipeline
from configs.lane_detection.common.datasets.llamas_seg import dataset
from configs.lane_detection.common.datasets.train_level0_360 import train_augmentation
from configs.lane_detection.common.datasets.test_360 import test_augmentation
# Optimization pipeline
from configs.lane_detection.common.optims.segloss_5class import loss
from configs.lane_detection.common.optims.sgd05 import optimizer
from configs.lane_detection.common.optims.ep10_poly_warmup200 import lr_scheduler
train = dict(
exp_name='erfnet_baseline_llamas',
workers=10,
batch_size=20,
checkpoint=None,
# Device args
world_size=0,
dist_url='env://',
device='cuda',
val_num_steps=0, # Seg IoU validation (mostly useless)
save_dir='./checkpoints',
input_size=(360, 640),
original_size=(717, 1276),
num_classes=5,
num_epochs=10,
collate_fn=None, # 'dict_collate_fn' for LSTR
seg=True # Seg-based method or not
)
test = dict(
exp_name='erfnet_baseline_llamas',
workers=10,
batch_size=80,
checkpoint='./checkpoints/erfnet_baseline_llamas/model.pt',
# Device args
device='cuda',
save_dir='./checkpoints',
seg=True,
gap=1,
ppl=417,
thresh=0.3,
collate_fn=None, # 'dict_collate_fn' for LSTR
input_size=(360, 640),
original_size=(717, 1276),
max_lane=4,
dataset_name='llamas'
)
model = dict(
name='ERFNet',
num_classes=5,
dropout_1=0.3,
dropout_2=0.3,
pretrained_weights='erfnet_encoder_pretrained.pth.tar',
lane_classifier_cfg=dict(
name='EDLaneExist',
num_output=5 - 1,
flattened_size=4400,
dropout=0.3,
pool='max'
)
)