-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsub_tmp.py
198 lines (181 loc) · 7.35 KB
/
sub_tmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# sklearn
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from sklearn.calibration import CalibratedClassifierCV
from sklearn.utils import shuffle
# from sklearn.metrics import log_loss
# indexes of N largest numbers
import heapq
# model storage
import joblib
# standard package
import numpy as np
import time
# utils
import utils
## to delete
temp_c0 = []
temp_c0u = []
temp_foit = []
temp_time_baseline = []
temp_time_updated_based = []
temp_time_FOIT = []
#
# cd_count = 16
cd_count = 0
dataset_name = 'seed4'
if dataset_name == 'seed3':
cd_count = 9
elif dataset_name == 'seed4':
cd_count = 16
number_trial, number_label, labels= utils.get_number_of_label_n_trial(dataset_name)
sub_data, sub_label = utils.load_by_session(dataset_name) # 3*14*(m*310)
# sub_data = utils.normalization(sub_data)
for ses_number in range(3):
print("Session id: ", ses_number)
# cross-subject, 取sub15
cd_data, cd_label, ud_data, ud_label = utils.pick_one_data(dataset_name, ses_number, cd_count, sub_id=14)
sub_data_ses, sub_label_ses = sub_data[ses_number], sub_label[ses_number] # 14*(m*310)
sub_data_ses, sub_label_ses = shuffle(sub_data_ses, sub_label_ses, random_state=0)
sub_data_ses = utils.normalization(sub_data_ses)
cd_data, cd_label = shuffle(cd_data, cd_label, random_state=0)
cd_data = utils.normalization(cd_data)
ud_data, ud_label = shuffle(ud_data, ud_label, random_state=0)
ud_data = utils.normalization(ud_data)
'''
a)
'''
# clf = svm.LinearSVC(max_iter=10000)
clf = LogisticRegression(max_iter=10000)
clf = CalibratedClassifierCV(clf, cv=5)
since = time.time()
# clf.fit(utils.normalization(cd_data), cd_label.squeeze())
clf.fit(cd_data, cd_label.squeeze())
time_elapsed_baseline = time.time() - since
# print('Baseline training complete in {:.4f}s'.format(time_elapsed_baseline))
# scoreA = utils.test(clf, utils.normalization(ud_data), ud_label.squeeze())
scoreA = utils.test(clf, ud_data, ud_label.squeeze())
# print('Baseline score: ', scoreA)
temp_time_baseline.append(time_elapsed_baseline)
temp_c0.append(scoreA)
'''
b)
'''
accs = [] # 14 classifiers from the reservoir for each session
clf_sources = []
for i in range(14):
path = 'models/' + dataset_name + '/csu/sesn' + str(ses_number) + '/lr' + str(i) + '.m'
temp_clf = joblib.load(path)
clf_sources.append(temp_clf)
# score = utils.test(temp_clf, utils.normalization(ud_data), ud_label.squeeze())
score = utils.test(temp_clf, ud_data, ud_label.squeeze())
accs.append(score)
# print('Accs of classifiers: {}'.format(accs))
accs = utils.normalization(accs)
# print('Accs of classifiers, normalized: {}'.format(accs))
'''
c)
'''
rho = 1
s_data_all, s_label_all = utils.stack_list(sub_data_ses, sub_label_ses)
# s_data_all_predict_proba = clf.predict_proba(utils.normalization(s_data_all))
s_data_all_predict_proba = clf.predict_proba(s_data_all)
s_label_all_proba = utils.get_one_hot(s_label_all.squeeze(), number_label)
confidence = np.zeros((s_label_all_proba.shape[0], 1))
for i in range(s_label_all_proba.shape[0]):
confidence[i] = s_label_all_proba[i].dot(s_data_all_predict_proba[i].T)
subs_data_0, subs_data_1, subs_data_2, subs_data_3 = [], [], [], []
conf_0, conf_1, conf_2, conf_3 = [],[],[],[]
subs_label_0, subs_label_1, subs_label_2, subs_label_3 = [],[],[],[]
for i in range(len(s_data_all)):
temp_label = s_label_all[i][0]
eval('subs_data_' + str(temp_label)).append(s_data_all[i])
eval('conf_' + str(temp_label)).append(confidence[i])
eval('subs_label_' + str(temp_label)).append(s_label_all[i])
indices = []
for i in range(4):
indices.append(np.argsort(eval('conf_'+str(i)), axis=0)[::-1])
# indices.append(np.argsort(eval('conf_'+str(i)), axis=0))
topK_indices = [indices[i][:int(rho*len(cd_label)/4)] for i in range(len(indices))]
S_data = None
S_label = None
for i in range(len(topK_indices)):
for j in topK_indices[i]:
temp_conf = eval('conf_'+str(i))[j[0]]
one_data = eval('subs_data_'+str(i))[j[0]]
one_label = eval('subs_label_'+str(i))[j[0]]
if S_data is not None:
S_data = np.vstack((S_data, one_data))
S_label = np.vstack((S_label, one_label))
else:
S_data = one_data
S_label = one_label
# print(len(cd_label))
# print(S_data.shape)
# print(S_label.shape)
### without balance
## indices = np.argsort(confidence, axis=0)
# indices = np.argsort(confidence, axis=0)[::-1]
# topK_indices = indices[:int(rho*len(cd_label))]
# S_data = None
# S_label = None
# for i in topK_indices:
# # print(confidence[i])
# one_data = s_data_all[i]
# one_label = s_label_all[i]
# if S_data is not None:
# S_data = np.vstack((S_data, one_data))
# S_label = np.vstack((S_label, one_label))
# else:
# S_data = one_data
# S_label = one_label
'''
d)
'''
# print(utils.count_for_array(cd_label))
L_S_data = cd_data.copy()
L_S_label = cd_label.copy()
L_S_data = np.vstack((L_S_data, S_data))
# L_S_data = utils.normalization(L_S_data)
L_S_label = np.vstack((L_S_label, S_label))
L_S_data, L_S_label = shuffle(L_S_data, L_S_label, random_state=0)
L_S_data = utils.normalization(L_S_data)
# print(utils.count_for_array(L_S_label))
# clf.fit(utils.normalization(L_S_data), L_S_label.squeeze())
clf.fit(L_S_data, L_S_label.squeeze())
time_updated_baseline = time.time() - since
# print('Updated baseline training complete in {:.4f}s'.format(time_updated_baseline))
temp_time_updated_based.append(time_updated_baseline)
# scoreD = utils.test(clf, utils.normalization(ud_data), ud_label.squeeze())
scoreD = utils.test(clf, ud_data, ud_label.squeeze())
# print("Updated model score: {}".format(scoreD))
temp_c0u.append(scoreD)
'''
e)
'''
weight = (len(accs) + 1) / 2
# proba_result_all = clf.predict_proba(utils.normalization(ud_data)) * weight
proba_result_all = clf.predict_proba(ud_data) * weight
# threshold = utils.find_threshold(accs)
threshold = 0.6
# print("Threshold: ", threshold)
for i in range(len(clf_sources)):
if accs[i] > threshold:
# proba_result_all += clf_sources[i].predict_proba(utils.normalization(ud_data)) * accs[i]
proba_result_all += clf_sources[i].predict_proba(ud_data) * accs[i]
corrects = np.sum(np.argmax(proba_result_all, axis=1) == ud_label.squeeze())
since_FOIT = time.time() - since
# print('FOIT training complete in {:.4f}s'.format(since_FOIT))
temp_time_FOIT.append(since_FOIT)
scoreE = corrects/len(ud_label)
# print("Ensembled model score: {}".format(scoreE))
temp_foit.append(scoreE)
print(temp_c0)
print(temp_c0u)
print(temp_foit)
print("A: ", np.mean(temp_c0), np.std(temp_c0))
print("D: ", np.mean(temp_c0u), np.std(temp_c0u))
print("E: ", np.mean(temp_foit), np.std(temp_foit))
print("Time cost for training baseline: ", np.mean(temp_time_baseline))
print("Time cost for training updated baseline: ", np.mean(temp_time_updated_based))
print("Time cost for training FOIT: ", np.mean(temp_time_FOIT))