-
Notifications
You must be signed in to change notification settings - Fork 29
/
augment.py
executable file
·368 lines (252 loc) · 9.99 KB
/
augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import math
import torch
from torch.nn import functional as F
from op import upfirdn2d
SYM6 = (
0.015404109327027373,
0.0034907120842174702,
-0.11799011114819057,
-0.048311742585633,
0.4910559419267466,
0.787641141030194,
0.3379294217276218,
-0.07263752278646252,
-0.021060292512300564,
0.04472490177066578,
0.0017677118642428036,
-0.007800708325034148,
)
def translate_mat(t_x, t_y):
batch = t_x.shape[0]
mat = torch.eye(3).unsqueeze(0).repeat(batch, 1, 1)
translate = torch.stack((t_x, t_y), 1)
mat[:, :2, 2] = translate
return mat
def rotate_mat(theta):
batch = theta.shape[0]
mat = torch.eye(3).unsqueeze(0).repeat(batch, 1, 1)
sin_t = torch.sin(theta)
cos_t = torch.cos(theta)
rot = torch.stack((cos_t, -sin_t, sin_t, cos_t), 1).view(batch, 2, 2)
mat[:, :2, :2] = rot
return mat
def scale_mat(s_x, s_y):
batch = s_x.shape[0]
mat = torch.eye(3).unsqueeze(0).repeat(batch, 1, 1)
mat[:, 0, 0] = s_x
mat[:, 1, 1] = s_y
return mat
def translate3d_mat(t_x, t_y, t_z):
batch = t_x.shape[0]
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
translate = torch.stack((t_x, t_y, t_z), 1)
mat[:, :3, 3] = translate
return mat
def rotate3d_mat(axis, theta):
batch = theta.shape[0]
u_x, u_y, u_z = axis
eye = torch.eye(3).unsqueeze(0)
cross = torch.tensor([(0, -u_z, u_y), (u_z, 0, -u_x), (-u_y, u_x, 0)]).unsqueeze(0)
outer = torch.tensor(axis)
outer = (outer.unsqueeze(1) * outer).unsqueeze(0)
sin_t = torch.sin(theta).view(-1, 1, 1)
cos_t = torch.cos(theta).view(-1, 1, 1)
rot = cos_t * eye + sin_t * cross + (1 - cos_t) * outer
eye_4 = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
eye_4[:, :3, :3] = rot
return eye_4
def scale3d_mat(s_x, s_y, s_z):
batch = s_x.shape[0]
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
mat[:, 0, 0] = s_x
mat[:, 1, 1] = s_y
mat[:, 2, 2] = s_z
return mat
def luma_flip_mat(axis, i):
batch = i.shape[0]
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
axis = torch.tensor(axis + (0,))
flip = 2 * torch.ger(axis, axis) * i.view(-1, 1, 1)
return eye - flip
def saturation_mat(axis, i):
batch = i.shape[0]
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
axis = torch.tensor(axis + (0,))
axis = torch.ger(axis, axis)
saturate = axis + (eye - axis) * i.view(-1, 1, 1)
return saturate
def lognormal_sample(size, mean=0, std=1):
return torch.empty(size).log_normal_(mean=mean, std=std)
def category_sample(size, categories):
category = torch.tensor(categories)
sample = torch.randint(high=len(categories), size=(size,))
return category[sample]
def uniform_sample(size, low, high):
return torch.empty(size).uniform_(low, high)
def normal_sample(size, mean=0, std=1):
return torch.empty(size).normal_(mean, std)
def bernoulli_sample(size, p):
return torch.empty(size).bernoulli_(p)
def random_mat_apply(p, transform, prev, eye):
size = transform.shape[0]
select = bernoulli_sample(size, p).view(size, 1, 1)
select_transform = select * transform + (1 - select) * eye
return select_transform @ prev
def sample_affine(p, size, height, width):
G = torch.eye(3).unsqueeze(0).repeat(size, 1, 1)
eye = G
# flip
param = category_sample(size, (0, 1))
Gc = scale_mat(1 - 2.0 * param, torch.ones(size))
G = random_mat_apply(p, Gc, G, eye)
# print('flip', G, scale_mat(1 - 2.0 * param, torch.ones(size)), sep='\n')
# 90 rotate
param = category_sample(size, (0, 3))
Gc = rotate_mat(-math.pi / 2 * param)
G = random_mat_apply(p, Gc, G, eye)
# print('90 rotate', G, rotate_mat(-math.pi / 2 * param), sep='\n')
# integer translate
param = uniform_sample(size, -0.125, 0.125)
param_height = torch.round(param * height) / height
param_width = torch.round(param * width) / width
Gc = translate_mat(param_width, param_height)
G = random_mat_apply(p, Gc, G, eye)
# print('integer translate', G, translate_mat(param_width, param_height), sep='\n')
# isotropic scale
param = lognormal_sample(size, std=0.2 * math.log(2))
Gc = scale_mat(param, param)
G = random_mat_apply(p, Gc, G, eye)
# print('isotropic scale', G, scale_mat(param, param), sep='\n')
p_rot = 1 - math.sqrt(1 - p)
# pre-rotate
param = uniform_sample(size, -math.pi, math.pi)
Gc = rotate_mat(-param)
G = random_mat_apply(p_rot, Gc, G, eye)
# print('pre-rotate', G, rotate_mat(-param), sep='\n')
# anisotropic scale
param = lognormal_sample(size, std=0.2 * math.log(2))
Gc = scale_mat(param, 1 / param)
G = random_mat_apply(p, Gc, G, eye)
# print('anisotropic scale', G, scale_mat(param, 1 / param), sep='\n')
# post-rotate
param = uniform_sample(size, -math.pi, math.pi)
Gc = rotate_mat(-param)
G = random_mat_apply(p_rot, Gc, G, eye)
# print('post-rotate', G, rotate_mat(-param), sep='\n')
# fractional translate
param = normal_sample(size, std=0.125)
Gc = translate_mat(param, param)
G = random_mat_apply(p, Gc, G, eye)
# print('fractional translate', G, translate_mat(param, param), sep='\n')
return G
def sample_color(p, size):
C = torch.eye(4).unsqueeze(0).repeat(size, 1, 1)
eye = C
axis_val = 1 / math.sqrt(3)
axis = (axis_val, axis_val, axis_val)
# brightness
param = normal_sample(size, std=0.2)
Cc = translate3d_mat(param, param, param)
C = random_mat_apply(p, Cc, C, eye)
# contrast
param = lognormal_sample(size, std=0.5 * math.log(2))
Cc = scale3d_mat(param, param, param)
C = random_mat_apply(p, Cc, C, eye)
# luma flip
param = category_sample(size, (0, 1))
Cc = luma_flip_mat(axis, param)
C = random_mat_apply(p, Cc, C, eye)
# hue rotation
param = uniform_sample(size, -math.pi, math.pi)
Cc = rotate3d_mat(axis, param)
C = random_mat_apply(p, Cc, C, eye)
# saturation
param = lognormal_sample(size, std=1 * math.log(2))
Cc = saturation_mat(axis, param)
C = random_mat_apply(p, Cc, C, eye)
return C
def make_grid(shape, x0, x1, y0, y1, device):
n, c, h, w = shape
grid = torch.empty(n, h, w, 3, device=device)
grid[:, :, :, 0] = torch.linspace(x0, x1, w, device=device)
grid[:, :, :, 1] = torch.linspace(y0, y1, h, device=device).unsqueeze(-1)
grid[:, :, :, 2] = 1
return grid
def affine_grid(grid, mat):
n, h, w, _ = grid.shape
return (grid.view(n, h * w, 3) @ mat.transpose(1, 2)).view(n, h, w, 2)
def get_padding(G, height, width):
extreme = G[:, :2, :] @ torch.tensor([(-1.0, -1, 1), (-1, 1, 1), (1, -1, 1), (1, 1, 1)]).t()
size = torch.tensor((width, height))
pad_low = ((extreme.min(-1).values + 1) * size).clamp(max=0).abs().ceil().max(0).values.to(torch.int64).tolist()
pad_high = (extreme.max(-1).values * size - size).clamp(min=0).ceil().max(0).values.to(torch.int64).tolist()
return pad_low[0], pad_high[0], pad_low[1], pad_high[1]
def try_sample_affine_and_pad(img, p, pad_k, G=None):
batch, _, height, width = img.shape
G_try = G
while True:
if G is None:
G_try = sample_affine(p, batch, height, width)
pad_x1, pad_x2, pad_y1, pad_y2 = get_padding(torch.inverse(G_try), height, width)
try:
img_pad = F.pad(img, (pad_x1 + pad_k, pad_x2 + pad_k, pad_y1 + pad_k, pad_y2 + pad_k), mode="reflect",)
except RuntimeError:
continue
break
return img_pad, G_try, (pad_x1, pad_x2, pad_y1, pad_y2)
def random_apply_affine(img, p, G=None, antialiasing_kernel=SYM6):
kernel = antialiasing_kernel
len_k = len(kernel)
pad_k = (len_k + 1) // 2
kernel = torch.as_tensor(kernel)
kernel = torch.ger(kernel, kernel).to(img)
kernel_flip = torch.flip(kernel, (0, 1))
img_pad, G, (pad_x1, pad_x2, pad_y1, pad_y2) = try_sample_affine_and_pad(img, p, pad_k, G)
p_ux1 = pad_x1
p_ux2 = pad_x2 + 1
p_uy1 = pad_y1
p_uy2 = pad_y2 + 1
w_p = img_pad.shape[3] - len_k + 1
h_p = img_pad.shape[2] - len_k + 1
h_o = img.shape[2]
w_o = img.shape[3]
img_2x = upfirdn2d(img_pad, kernel_flip, up=2)
grid = make_grid(
img_2x.shape,
-2 * p_ux1 / w_o - 1,
2 * (w_p - p_ux1) / w_o - 1,
-2 * p_uy1 / h_o - 1,
2 * (h_p - p_uy1) / h_o - 1,
device=img_2x.device,
).to(img_2x)
grid = affine_grid(grid, torch.inverse(G)[:, :2, :].to(img_2x))
grid = grid * torch.tensor([w_o / w_p, h_o / h_p], device=grid.device) + torch.tensor(
[(w_o + 2 * p_ux1) / w_p - 1, (h_o + 2 * p_uy1) / h_p - 1], device=grid.device
)
img_affine = F.grid_sample(img_2x, grid, mode="bilinear", align_corners=False, padding_mode="zeros")
img_down = upfirdn2d(img_affine, kernel, down=2)
end_y = -pad_y2 - 1
if end_y == 0:
end_y = img_down.shape[2]
end_x = -pad_x2 - 1
if end_x == 0:
end_x = img_down.shape[3]
img = img_down[:, :, pad_y1:end_y, pad_x1:end_x]
return img, G
def apply_color(img, mat):
batch = img.shape[0]
img = img.permute(0, 2, 3, 1)
mat_mul = mat[:, :3, :3].transpose(1, 2).view(batch, 1, 3, 3)
mat_add = mat[:, :3, 3].view(batch, 1, 1, 3)
img = img @ mat_mul + mat_add
img = img.permute(0, 3, 1, 2)
return img
def random_apply_color(img, p, C=None):
if C is None:
C = sample_color(p, img.shape[0])
img = apply_color(img, C.to(img))
return img, C
def augment(img, p, transform_matrix=(None, None)):
img, G = random_apply_affine(img, p, transform_matrix[0])
img, C = random_apply_color(img, p, transform_matrix[1])
return img, (G, C)