-
Notifications
You must be signed in to change notification settings - Fork 10
/
lr_scheduler.py
102 lines (91 loc) · 3.32 KB
/
lr_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import torch
from timm.scheduler.cosine_lr import CosineLRScheduler
from timm.scheduler.step_lr import StepLRScheduler
from timm.scheduler.scheduler import Scheduler
def build_scheduler(args, optimizer, n_iter_per_epoch):
num_steps = int(args.epochs * n_iter_per_epoch)
warmup_steps = int(args.warmup_epochs * n_iter_per_epoch)
decay_steps = int(args.decay_epochs * n_iter_per_epoch)
lr_scheduler = None
if args.sched == 'cosine':
lr_scheduler = CosineLRScheduler(
optimizer,
t_initial=num_steps,
t_mul=1.,
lr_min=args.min_lr,
warmup_lr_init=args.warmup_lr,
warmup_t=warmup_steps,
cycle_limit=1,
t_in_epochs=False,
)
elif args.sched == 'linear':
lr_scheduler = LinearLRScheduler(
optimizer,
t_initial=num_steps,
lr_min_rate=0.01,
warmup_lr_init=args.warmup_lr,
warmup_t=warmup_steps,
t_in_epochs=False,
)
elif args.sched == 'step':
lr_scheduler = StepLRScheduler(
optimizer,
decay_t=decay_steps,
decay_rate=args.decay_rate,
warmup_lr_init=args.warmup_lr,
warmup_t=warmup_steps,
t_in_epochs=False,
)
return lr_scheduler
class LinearLRScheduler(Scheduler):
def __init__(self,
optimizer: torch.optim.Optimizer,
t_initial: int,
lr_min_rate: float,
warmup_t=0,
warmup_lr_init=0.,
t_in_epochs=True,
noise_range_t=None,
noise_pct=0.67,
noise_std=1.0,
noise_seed=42,
initialize=True,
) -> None:
super().__init__(
optimizer, param_group_field="lr",
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed,
initialize=initialize)
self.t_initial = t_initial
self.lr_min_rate = lr_min_rate
self.warmup_t = warmup_t
self.warmup_lr_init = warmup_lr_init
self.t_in_epochs = t_in_epochs
if self.warmup_t:
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
super().update_groups(self.warmup_lr_init)
else:
self.warmup_steps = [1 for _ in self.base_values]
def _get_lr(self, t):
if t < self.warmup_t:
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps]
else:
t = t - self.warmup_t
total_t = self.t_initial - self.warmup_t
lrs = [v - ((v - v * self.lr_min_rate) * (t / total_t)) for v in self.base_values]
return lrs
def get_epoch_values(self, epoch: int):
if self.t_in_epochs:
return self._get_lr(epoch)
else:
return None
def get_update_values(self, num_updates: int):
if not self.t_in_epochs:
return self._get_lr(num_updates)
else:
return None