-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVR.py
173 lines (154 loc) · 6.04 KB
/
SVR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
from sklearn.svm import SVR
from sklearn.model_selection import cross_val_score
from sklearn.metrics import explained_variance_score, mean_absolute_error, mean_squared_error, r2_score
import pandas as pd
import matplotlib.pyplot as plt
import xlwt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# read the data of Kanto region
raw_data = pd.read_csv(r'C:\Users\a\Desktop\SVR-GMMs-Kanto\SVR_GMMs_D90\D90\DataD902.csv',encoding='GBK')
X = raw_data.iloc[:, [1,2,3]].values
y = raw_data.iloc[:,[0,4]].values
print("X",X[0])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=40)
print("X_train",len(X_train))
print("X_test",len(X_test))
print(type(X_train))
# Training set
data_df_xunlian=pd.DataFrame(y_train)
data_df_xunlian.columns=['D90','zh']
data_xunlian=pd.DataFrame(X_train)
data_xunlian.columns=['ln_distance','M','ln_Vs30']
writer_xunlian=pd.ExcelWriter(r'C:\Users\a\Desktop\SVR-GMMs-Kanto\SVR_GMMs_D90\D90\train.xls')
data_df_xunlian.to_excel(writer_xunlian)
data_xunlian.to_excel(writer_xunlian,startcol=3)
writer_xunlian.save()
#Testing set
data_df_ceshi=pd.DataFrame(y_test)
data_df_ceshi.columns=['D90','zh']
data_ceshi=pd.DataFrame(X_test)
data_ceshi.columns=['ln_distance','M','ln_Vs30']
writer_ceshi=pd.ExcelWriter(r'C:\Users\a\Desktop\SVR-GMMs-Kanto\SVR_GMMs_D90\D90\test.xls')
data_df_ceshi.to_excel(writer_ceshi)
data_ceshi.to_excel(writer_ceshi,startcol=3)
writer_ceshi.save()
workbook = xlwt.Workbook(encoding='utf-8')
worksheet = workbook.add_sheet('sheet1')
worksheet.write(0, 0, label="Actual Value")
worksheet.write(0, 1, label="SVR Value")
raw_data = pd.read_csv(r'C:\Users\a\Desktop\SVR-GMMs-Kanto\SVR_GMMs_D90\D90\DataD902.csv',encoding='GBK')
X = raw_data.iloc[:, [1,2,3]].values
y = np.log(raw_data.iloc[:,0].values)
print(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=40)
print(y_train)
# Training regression model
n_folds = 6 # Sets the number of cross-checks
model_svr = SVR(kernel="rbf",gamma=0.279,C=4.177,epsilon=0.045) # Set the hyperparameters of SVR GMMs
model_names = ['SVR']
model_dic = [model_svr]
cv_score_list = []
pre_y_list = []
for model in model_dic:
scores = cross_val_score(model, X_train, y_train, cv=n_folds)
cv_score_list.append(scores)
pre_y_list.append(model.fit(X_train, y_train).predict(X_train))
print(model_svr)
#模型效果指标评估
n_samples, n_features = X_train.shape
model_metrics_name = [explained_variance_score, mean_absolute_error, mean_squared_error, r2_score]
model_metrics_list = []
for i in range(1):
tmp_list = [] #
for m in model_metrics_name:
tmp_score = m(y_train, pre_y_list[i])
tmp_list.append(tmp_score)
model_metrics_list.append(tmp_list)
df1 = pd.DataFrame(cv_score_list, index=model_names)
df2 = pd.DataFrame(model_metrics_list, index=model_names, columns=['ev', 'mae', 'mse', 'r2'])
print ('samples: %d \t features: %d' % (n_samples, n_features))
print (70 * '-')
print ('cross validation result:')
print (df1)
print (70 * '-')
print ('regression metrics:')
print (df2)
print (70 * '-')
print ('short name \t full name')
print ('ev \t explained_variance')
print ('mae \t mean_absolute_error')
print ('mse \t mean_squared_error')
print ('r2 \t r2')
print (70 * '-')
for i in range(len(y_train)):
worksheet.write(i+1, 0, label=y_train[i])
worksheet.write(i+1, 1, label=pre_y_list[0][i])
workbook.save('SVR_true_predict_training_set.xls')
# 模型效果可视化
plt.plot(np.arange(X_train.shape[0]), y_train, color='k', label='true y')
color_list = [ 'g']
linestyle_list = [ 'v']
plt.plot(np.arange(X_train.shape[0]), pre_y_list[0], color_list[0], label=model_names[0])
plt.title('regression result comparison')
plt.legend(loc='upper right')
plt.ylabel('real and predicted value')
plt.show()
# test
workbook = xlwt.Workbook(encoding='utf-8')
worksheet = workbook.add_sheet('sheet2')
worksheet.write(0, 0, label="Actual Value")
worksheet.write(0, 1, label="SVR Value")
new_pre_SVR_y = []
new_pre_br_y = []
new_pre_lr_y = []
new_pre_etc_y = []
new_pre_gbr_y=[]
for i, new_point in enumerate(X_test):
new_point=np.array(new_point).reshape(1,3)
pre_SVR_y = model_svr.predict(new_point)
new_pre_SVR_y.append(pre_SVR_y)
print(type(y_test))
data=[]
for i in range(len(np.array(new_pre_SVR_y))):
aa=len(np.array(new_pre_SVR_y)[i])
for j in range(aa):
data.append(np.array(new_pre_SVR_y)[i][j])
print(len(y_test-data))
print("standard deviation=",np.std(y_test-data))
print(type(pre_y_list[0][0]))
print("MAE=",sum(np.abs(y_test-data))/len(y_test))
# 数据准备
for i in range(len(y_test)):
worksheet.write(i+1, 0, label=y_test[i])
worksheet.write(i+1, 1, label=new_pre_SVR_y[i][0])
workbook.save('SVR_true_predict_test_set.xls')
# prediction
workbook = xlwt.Workbook(encoding='utf-8')
worksheet = workbook.add_sheet('sheet3')
worksheet.write(0, 0, label="Kanto")
worksheet.write(0, 1, label="SVR")
worksheet.write(0, 2, label="log(distance)")
worksheet.write(0, 3, label="M")
worksheet.write(0, 4, label="log(Vs30)")
new_pre_SVR_y = []
raw_data = pd.read_csv(r'C:\Users\a\Desktop\SVR-GMMs-Kanto\SVR_GMMs_D90\D90\shujv2222-11.csv',encoding='GBK') # input the information for prediction (R,M,Vs30)
X_test1 = raw_data.iloc[:, [1,2,3]].values
y_test=np.array(raw_data.iloc[:, 0].values)
print(y_test)
for i, new_point in enumerate(X_test1):
new_point=np.array(new_point).reshape(1,3)
pre_SVR_y = model_svr.predict(new_point)
print(pre_SVR_y)
print(i)
new_pre_SVR_y.append(pre_SVR_y)
print(np.array(new_pre_SVR_y))
data=[]
for i in range(len(y_test)):
worksheet.write(i+1,1, label=new_pre_SVR_y[i][0])
worksheet.write(i+1,2,label=X_test1[i][0])
worksheet.write(i+1,3,label=X_test1[i][1])
worksheet.write(i+1,4,label=X_test1[i][2])
workbook.save('qvxian1.xls') # The prediction results given by SVR GMMs
print(X_test1[0][0])