forked from rost0413/LeetCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnique_Paths_II.cpp
64 lines (53 loc) · 1.25 KB
/
Unique_Paths_II.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/*
Author: Weixian Zhou, [email protected]
Date: Jul 27, 2012
Problem: Unique Paths II
Difficulty:
Source: http://www.leetcode.com/onlinejudge
Notes:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths
would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
Solution:
*/
#include <vector>
#include <set>
#include <climits>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
using namespace std;
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
int array[n], i, j;
array[0] = (obstacleGrid[0][0] == 0 ? 1 : 0);
for (int i = 1; i < n; i++) {
array[i] = 0;
}
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (obstacleGrid[i][j] == 0) {
array[j] = (j > 0 ?array[j - 1] + array[j] : array[j]);
} else {
array[j] = 0;
}
}
}
return array[n - 1];
}
};