-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudioFeatureExtraction.py
943 lines (788 loc) · 32.9 KB
/
audioFeatureExtraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
from __future__ import print_function
import time
import os
import glob
import numpy
import math
from scipy.fftpack import fft
from scipy.fftpack.realtransforms import dct
import matplotlib.pyplot as plt
from pyAudioAnalysis import audioBasicIO
from pyAudioAnalysis import utilities
from scipy.signal import lfilter
eps = 0.00000001
""" Time-domain audio features """
def stZCR(frame):
"""Computes zero crossing rate of frame"""
count = len(frame)
countZ = numpy.sum(numpy.abs(numpy.diff(numpy.sign(frame)))) / 2
return (numpy.float64(countZ) / numpy.float64(count-1.0))
def stEnergy(frame):
"""Computes signal energy of frame"""
return numpy.sum(frame ** 2) / numpy.float64(len(frame))
def stEnergyEntropy(frame, n_short_blocks=10):
"""Computes entropy of energy"""
Eol = numpy.sum(frame ** 2) # total frame energy
L = len(frame)
sub_win_len = int(numpy.floor(L / n_short_blocks))
if L != sub_win_len * n_short_blocks:
frame = frame[0:sub_win_len * n_short_blocks]
# sub_wins is of size [n_short_blocks x L]
sub_wins = frame.reshape(sub_win_len, n_short_blocks, order='F').copy()
# Compute normalized sub-frame energies:
s = numpy.sum(sub_wins ** 2, axis=0) / (Eol + eps)
# Compute entropy of the normalized sub-frame energies:
Entropy = -numpy.sum(s * numpy.log2(s + eps))
return Entropy
""" Frequency-domain audio features """
def stSpectralCentroidAndSpread(X, fs):
"""Computes spectral centroid of frame (given abs(FFT))"""
ind = (numpy.arange(1, len(X) + 1)) * (fs/(2.0 * len(X)))
Xt = X.copy()
Xt = Xt / Xt.max()
NUM = numpy.sum(ind * Xt)
DEN = numpy.sum(Xt) + eps
# Centroid:
C = (NUM / DEN)
# Spread:
S = numpy.sqrt(numpy.sum(((ind - C) ** 2) * Xt) / DEN)
# Normalize:
C = C / (fs / 2.0)
S = S / (fs / 2.0)
return (C, S)
def stSpectralEntropy(X, n_short_blocks=10):
"""Computes the spectral entropy"""
L = len(X) # number of frame samples
Eol = numpy.sum(X ** 2) # total spectral energy
sub_win_len = int(numpy.floor(L / n_short_blocks)) # length of sub-frame
if L != sub_win_len * n_short_blocks:
X = X[0:sub_win_len * n_short_blocks]
sub_wins = X.reshape(sub_win_len, n_short_blocks, order='F').copy() # define sub-frames (using matrix reshape)
s = numpy.sum(sub_wins ** 2, axis=0) / (Eol + eps) # compute spectral sub-energies
En = -numpy.sum(s*numpy.log2(s + eps)) # compute spectral entropy
return En
def stSpectralFlux(X, X_prev):
"""
Computes the spectral flux feature of the current frame
ARGUMENTS:
X: the abs(fft) of the current frame
X_prev: the abs(fft) of the previous frame
"""
# compute the spectral flux as the sum of square distances:
sumX = numpy.sum(X + eps)
sumPrevX = numpy.sum(X_prev + eps)
F = numpy.sum((X / sumX - X_prev/sumPrevX) ** 2)
return F
def stSpectralRollOff(X, c, fs):
"""Computes spectral roll-off"""
totalEnergy = numpy.sum(X ** 2)
fftLength = len(X)
Thres = c*totalEnergy
# Ffind the spectral rolloff as the frequency position
# where the respective spectral energy is equal to c*totalEnergy
CumSum = numpy.cumsum(X ** 2) + eps
[a, ] = numpy.nonzero(CumSum > Thres)
if len(a) > 0:
mC = numpy.float64(a[0]) / (float(fftLength))
else:
mC = 0.0
return (mC)
def stHarmonic(frame, fs):
"""
Computes harmonic ratio and pitch
"""
M = numpy.round(0.016 * fs) - 1
R = numpy.correlate(frame, frame, mode='full')
g = R[len(frame)-1]
R = R[len(frame):-1]
# estimate m0 (as the first zero crossing of R)
[a, ] = numpy.nonzero(numpy.diff(numpy.sign(R)))
if len(a) == 0:
m0 = len(R)-1
else:
m0 = a[0]
if M > len(R):
M = len(R) - 1
Gamma = numpy.zeros((M), dtype=numpy.float64)
CSum = numpy.cumsum(frame ** 2)
Gamma[m0:M] = R[m0:M] / (numpy.sqrt((g * CSum[M:m0:-1])) + eps)
ZCR = stZCR(Gamma)
if ZCR > 0.15:
HR = 0.0
f0 = 0.0
else:
if len(Gamma) == 0:
HR = 1.0
blag = 0.0
Gamma = numpy.zeros((M), dtype=numpy.float64)
else:
HR = numpy.max(Gamma)
blag = numpy.argmax(Gamma)
# Get fundamental frequency:
f0 = fs / (blag + eps)
if f0 > 5000:
f0 = 0.0
if HR < 0.1:
f0 = 0.0
return (HR, f0)
def mfccInitFilterBanks(fs, nfft):
"""
Computes the triangular filterbank for MFCC computation
(used in the stFeatureExtraction function before the stMFCC function call)
This function is taken from the scikits.talkbox library (MIT Licence):
https://pypi.python.org/pypi/scikits.talkbox
"""
# filter bank params:
lowfreq = 133.33
linsc = 200/3.
logsc = 1.0711703
numLinFiltTotal = 13
numLogFilt = 27
if fs < 8000:
nlogfil = 5
# Total number of filters
nFiltTotal = numLinFiltTotal + numLogFilt
# Compute frequency points of the triangle:
freqs = numpy.zeros(nFiltTotal+2)
freqs[:numLinFiltTotal] = lowfreq + numpy.arange(numLinFiltTotal) * linsc
freqs[numLinFiltTotal:] = freqs[numLinFiltTotal-1] * logsc ** numpy.arange(1, numLogFilt + 3)
heights = 2./(freqs[2:] - freqs[0:-2])
# Compute filterbank coeff (in fft domain, in bins)
fbank = numpy.zeros((nFiltTotal, nfft))
nfreqs = numpy.arange(nfft) / (1. * nfft) * fs
for i in range(nFiltTotal):
lowTrFreq = freqs[i]
cenTrFreq = freqs[i+1]
highTrFreq = freqs[i+2]
lid = numpy.arange(numpy.floor(lowTrFreq * nfft / fs) + 1,
numpy.floor(cenTrFreq * nfft / fs) + 1,
dtype=numpy.int)
lslope = heights[i] / (cenTrFreq - lowTrFreq)
rid = numpy.arange(numpy.floor(cenTrFreq * nfft / fs) + 1,
numpy.floor(highTrFreq * nfft / fs) + 1,
dtype=numpy.int)
rslope = heights[i] / (highTrFreq - cenTrFreq)
fbank[i][lid] = lslope * (nfreqs[lid] - lowTrFreq)
fbank[i][rid] = rslope * (highTrFreq - nfreqs[rid])
return fbank, freqs
def stMFCC(X, fbank, n_mfcc_feats):
"""
Computes the MFCCs of a frame, given the fft mag
ARGUMENTS:
X: fft magnitude abs(FFT)
fbank: filter bank (see mfccInitFilterBanks)
RETURN
ceps: MFCCs (13 element vector)
Note: MFCC calculation is, in general, taken from the
scikits.talkbox library (MIT Licence),
# with a small number of modifications to make it more
compact and suitable for the pyAudioAnalysis Lib
"""
mspec = numpy.log10(numpy.dot(X, fbank.T)+eps)
ceps = dct(mspec, type=2, norm='ortho', axis=-1)[:n_mfcc_feats]
return ceps
def stChromaFeaturesInit(nfft, fs):
"""
This function initializes the chroma matrices used in the calculation of the chroma features
"""
freqs = numpy.array([((f + 1) * fs) / (2 * nfft) for f in range(nfft)])
Cp = 27.50
nChroma = numpy.round(12.0 * numpy.log2(freqs / Cp)).astype(int)
nFreqsPerChroma = numpy.zeros((nChroma.shape[0], ))
uChroma = numpy.unique(nChroma)
for u in uChroma:
idx = numpy.nonzero(nChroma == u)
nFreqsPerChroma[idx] = idx[0].shape
return nChroma, nFreqsPerChroma
def stChromaFeatures(X, fs, nChroma, nFreqsPerChroma):
#TODO: 1 complexity
#TODO: 2 bug with large windows
chromaNames = ['A', 'A#', 'B', 'C', 'C#', 'D',
'D#', 'E', 'F', 'F#', 'G', 'G#']
spec = X**2
if nChroma.max()<nChroma.shape[0]:
C = numpy.zeros((nChroma.shape[0],))
C[nChroma] = spec
C /= nFreqsPerChroma[nChroma]
else:
I = numpy.nonzero(nChroma>nChroma.shape[0])[0][0]
C = numpy.zeros((nChroma.shape[0],))
C[nChroma[0:I-1]] = spec
C /= nFreqsPerChroma
finalC = numpy.zeros((12, 1))
newD = int(numpy.ceil(C.shape[0] / 12.0) * 12)
C2 = numpy.zeros((newD, ))
C2[0:C.shape[0]] = C
C2 = C2.reshape(int(C2.shape[0]/12), 12)
#for i in range(12):
# finalC[i] = numpy.sum(C[i:C.shape[0]:12])
finalC = numpy.matrix(numpy.sum(C2, axis=0)).T
finalC /= spec.sum()
# ax = plt.gca()
# plt.hold(False)
# plt.plot(finalC)
# ax.set_xticks(range(len(chromaNames)))
# ax.set_xticklabels(chromaNames)
# xaxis = numpy.arange(0, 0.02, 0.01);
# ax.set_yticks(range(len(xaxis)))
# ax.set_yticklabels(xaxis)
# plt.show(block=False)
# plt.draw()
return chromaNames, finalC
def stChromagram(signal, fs, win, step, PLOT=False):
"""
Short-term FFT mag for spectogram estimation:
Returns:
a numpy array (nFFT x numOfShortTermWindows)
ARGUMENTS:
signal: the input signal samples
fs: the sampling freq (in Hz)
win: the short-term window size (in samples)
step: the short-term window step (in samples)
PLOT: flag, 1 if results are to be ploted
RETURNS:
"""
win = int(win)
step = int(step)
signal = numpy.double(signal)
signal = signal / (2.0 ** 15)
DC = signal.mean()
MAX = (numpy.abs(signal)).max()
signal = (signal - DC) / (MAX - DC)
N = len(signal) # total number of signals
cur_p = 0
count_fr = 0
nfft = int(win / 2)
nChroma, nFreqsPerChroma = stChromaFeaturesInit(nfft, fs)
chromaGram = numpy.array([], dtype=numpy.float64)
while (cur_p + win - 1 < N):
count_fr += 1
x = signal[cur_p:cur_p + win]
cur_p = cur_p + step
X = abs(fft(x))
X = X[0:nfft]
X = X / len(X)
chromaNames, C = stChromaFeatures(X, fs, nChroma, nFreqsPerChroma)
C = C[:, 0]
if count_fr == 1:
chromaGram = C.T
else:
chromaGram = numpy.vstack((chromaGram, C.T))
FreqAxis = chromaNames
TimeAxis = [(t * step) / fs for t in range(chromaGram.shape[0])]
if (PLOT):
fig, ax = plt.subplots()
chromaGramToPlot = chromaGram.transpose()[::-1, :]
Ratio = int(chromaGramToPlot.shape[1] / (3*chromaGramToPlot.shape[0]))
if Ratio < 1:
Ratio = 1
chromaGramToPlot = numpy.repeat(chromaGramToPlot, Ratio, axis=0)
imgplot = plt.imshow(chromaGramToPlot)
fstep = int(nfft / 5.0)
# FreqTicks = range(0, int(nfft) + fstep, fstep)
# FreqTicksLabels = [str(fs/2-int((f*fs) / (2*nfft))) for f in FreqTicks]
ax.set_yticks(range(int(Ratio / 2), len(FreqAxis) * Ratio, Ratio))
ax.set_yticklabels(FreqAxis[::-1])
TStep = int(count_fr / 3)
TimeTicks = range(0, count_fr, TStep)
TimeTicksLabels = ['%.2f' % (float(t * step) / fs) for t in TimeTicks]
ax.set_xticks(TimeTicks)
ax.set_xticklabels(TimeTicksLabels)
ax.set_xlabel('time (secs)')
imgplot.set_cmap('jet')
plt.colorbar()
plt.show()
return (chromaGram, TimeAxis, FreqAxis)
def phormants(x, fs):
N = len(x)
w = numpy.hamming(N)
# Apply window and high pass filter.
x1 = x * w
x1 = lfilter([1], [1., 0.63], x1)
# Get LPC.
ncoeff = 2 + fs / 1000
A, e, k = lpc(x1, ncoeff)
#A, e, k = lpc(x1, 8)
# Get roots.
rts = numpy.roots(A)
rts = [r for r in rts if numpy.imag(r) >= 0]
# Get angles.
angz = numpy.arctan2(numpy.imag(rts), numpy.real(rts))
# Get frequencies.
frqs = sorted(angz * (fs / (2 * math.pi)))
return frqs
def beatExtraction(st_features, win_len, PLOT=False):
"""
This function extracts an estimate of the beat rate for a musical signal.
ARGUMENTS:
- st_features: a numpy array (n_feats x numOfShortTermWindows)
- win_len: window size in seconds
RETURNS:
- BPM: estimates of beats per minute
- Ratio: a confidence measure
"""
# Features that are related to the beat tracking task:
toWatch = [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
max_beat_time = int(round(2.0 / win_len))
hist_all = numpy.zeros((max_beat_time,))
for ii, i in enumerate(toWatch): # for each feature
DifThres = 2.0 * (numpy.abs(st_features[i, 0:-1] - st_features[i, 1::])).mean() # dif threshold (3 x Mean of Difs)
if DifThres<=0:
DifThres = 0.0000000000000001
[pos1, _] = utilities.peakdet(st_features[i, :], DifThres) # detect local maxima
posDifs = [] # compute histograms of local maxima changes
for j in range(len(pos1)-1):
posDifs.append(pos1[j+1]-pos1[j])
[hist_times, HistEdges] = numpy.histogram(posDifs, numpy.arange(0.5, max_beat_time + 1.5))
hist_centers = (HistEdges[0:-1] + HistEdges[1::]) / 2.0
hist_times = hist_times.astype(float) / st_features.shape[1]
hist_all += hist_times
if PLOT:
plt.subplot(9, 2, ii + 1)
plt.plot(st_features[i, :], 'k')
for k in pos1:
plt.plot(k, st_features[i, k], 'k*')
f1 = plt.gca()
f1.axes.get_xaxis().set_ticks([])
f1.axes.get_yaxis().set_ticks([])
if PLOT:
plt.show(block=False)
plt.figure()
# Get beat as the argmax of the agregated histogram:
I = numpy.argmax(hist_all)
bpms = 60 / (hist_centers * win_len)
BPM = bpms[I]
# ... and the beat ratio:
Ratio = hist_all[I] / hist_all.sum()
if PLOT:
# filter out >500 beats from plotting:
hist_all = hist_all[bpms < 500]
bpms = bpms[bpms < 500]
plt.plot(bpms, hist_all, 'k')
plt.xlabel('Beats per minute')
plt.ylabel('Freq Count')
plt.show(block=True)
return BPM, Ratio
def stSpectogram(signal, fs, win, step, PLOT=False):
"""
Short-term FFT mag for spectogram estimation:
Returns:
a numpy array (nFFT x numOfShortTermWindows)
ARGUMENTS:
signal: the input signal samples
fs: the sampling freq (in Hz)
win: the short-term window size (in samples)
step: the short-term window step (in samples)
PLOT: flag, 1 if results are to be ploted
RETURNS:
"""
win = int(win)
step = int(step)
signal = numpy.double(signal)
signal = signal / (2.0 ** 15)
DC = signal.mean()
MAX = (numpy.abs(signal)).max()
signal = (signal - DC) / (MAX - DC)
N = len(signal) # total number of signals
cur_p = 0
count_fr = 0
nfft = int(win / 2)
specgram = numpy.array([], dtype=numpy.float64)
while (cur_p + win - 1 < N):
count_fr += 1
x = signal[cur_p:cur_p+win]
cur_p = cur_p + step
X = abs(fft(x))
X = X[0:nfft]
X = X / len(X)
if count_fr == 1:
specgram = X ** 2
else:
specgram = numpy.vstack((specgram, X))
FreqAxis = [float((f + 1) * fs) / (2 * nfft) for f in range(specgram.shape[1])]
TimeAxis = [float(t * step) / fs for t in range(specgram.shape[0])]
if (PLOT):
fig, ax = plt.subplots()
imgplot = plt.imshow(specgram.transpose()[::-1, :])
fstep = int(nfft / 5.0)
FreqTicks = range(0, int(nfft) + fstep, fstep)
FreqTicksLabels = [str(fs / 2 - int((f * fs) / (2 * nfft))) for f in FreqTicks]
ax.set_yticks(FreqTicks)
ax.set_yticklabels(FreqTicksLabels)
TStep = int(count_fr/3)
TimeTicks = range(0, count_fr, TStep)
TimeTicksLabels = ['%.2f' % (float(t * step) / fs) for t in TimeTicks]
ax.set_xticks(TimeTicks)
ax.set_xticklabels(TimeTicksLabels)
ax.set_xlabel('time (secs)')
ax.set_ylabel('freq (Hz)')
imgplot.set_cmap('jet')
plt.colorbar()
plt.show()
return (specgram, TimeAxis, FreqAxis)
""" Windowing and feature extraction """
def stFeatureExtraction(signal, fs, win, step):
"""
This function implements the shor-term windowing process. For each short-term window a set of features is extracted.
This results to a sequence of feature vectors, stored in a numpy matrix.
ARGUMENTS
signal: the input signal samples
fs: the sampling freq (in Hz)
win: the short-term window size (in samples)
step: the short-term window step (in samples)
RETURNS
st_features: a numpy array (n_feats x numOfShortTermWindows)
"""
win = int(win)
step = int(step)
# Signal normalization
signal = numpy.double(signal)
signal = signal / (2.0 ** 15)
DC = signal.mean()
MAX = (numpy.abs(signal)).max()
signal = (signal - DC) / (MAX + 0.0000000001)
N = len(signal) # total number of samples
cur_p = 0
count_fr = 0
nFFT = int(win / 2)
[fbank, freqs] = mfccInitFilterBanks(fs, nFFT) # compute the triangular filter banks used in the mfcc calculation
nChroma, nFreqsPerChroma = stChromaFeaturesInit(nFFT, fs)
n_time_spectral_feats = 8
n_harmonic_feats = 0
n_mfcc_feats = 13
n_chroma_feats = 13
n_total_feats = n_time_spectral_feats + n_mfcc_feats + n_harmonic_feats + n_chroma_feats
# n_total_feats = n_time_spectral_feats + n_mfcc_feats + n_harmonic_feats
feature_names = []
feature_names.append("zcr")
feature_names.append("energy")
feature_names.append("energy_entropy")
feature_names += ["spectral_centroid", "spectral_spread"]
feature_names.append("spectral_entropy")
feature_names.append("spectral_flux")
feature_names.append("spectral_rolloff")
feature_names += ["mfcc_{0:d}".format(mfcc_i)
for mfcc_i in range(1, n_mfcc_feats+1)]
feature_names += ["chroma_{0:d}".format(chroma_i)
for chroma_i in range(1, n_chroma_feats)]
feature_names.append("chroma_std")
st_features = []
while (cur_p + win - 1 < N): # for each short-term window until the end of signal
count_fr += 1
x = signal[cur_p:cur_p+win] # get current window
cur_p = cur_p + step # update window position
X = abs(fft(x)) # get fft magnitude
X = X[0:nFFT] # normalize fft
X = X / len(X)
if count_fr == 1:
X_prev = X.copy() # keep previous fft mag (used in spectral flux)
curFV = numpy.zeros((n_total_feats, 1))
curFV[0] = stZCR(x) # zero crossing rate
curFV[1] = stEnergy(x) # short-term energy
curFV[2] = stEnergyEntropy(x) # short-term entropy of energy
[curFV[3], curFV[4]] = stSpectralCentroidAndSpread(X, fs) # spectral centroid and spread
curFV[5] = stSpectralEntropy(X) # spectral entropy
curFV[6] = stSpectralFlux(X, X_prev) # spectral flux
curFV[7] = stSpectralRollOff(X, 0.90, fs) # spectral rolloff
curFV[n_time_spectral_feats:n_time_spectral_feats+n_mfcc_feats, 0] = \
stMFCC(X, fbank, n_mfcc_feats).copy() # MFCCs
chromaNames, chromaF = stChromaFeatures(X, fs, nChroma, nFreqsPerChroma)
curFV[n_time_spectral_feats + n_mfcc_feats:
n_time_spectral_feats + n_mfcc_feats + n_chroma_feats - 1] = \
chromaF
curFV[n_time_spectral_feats + n_mfcc_feats + n_chroma_feats - 1] = \
chromaF.std()
st_features.append(curFV)
# delta features
'''
if count_fr>1:
delta = curFV - prevFV
curFVFinal = numpy.concatenate((curFV, delta))
else:
curFVFinal = numpy.concatenate((curFV, curFV))
prevFV = curFV
st_features.append(curFVFinal)
'''
# end of delta
X_prev = X.copy()
st_features = numpy.concatenate(st_features, 1)
return st_features, feature_names
def mtFeatureExtraction(signal, fs, mt_win, mt_step, st_win, st_step):
"""
Mid-term feature extraction
"""
mt_win_ratio = int(round(mt_win / st_step))
mt_step_ratio = int(round(mt_step / st_step))
mt_features = []
st_features, f_names = stFeatureExtraction(signal, fs, st_win, st_step)
n_feats = len(st_features)
n_stats = 2
mt_features, mid_feature_names = [], []
#for i in range(n_stats * n_feats + 1):
for i in range(n_stats * n_feats):
mt_features.append([])
mid_feature_names.append("")
for i in range(n_feats): # for each of the short-term features:
cur_p = 0
N = len(st_features[i])
mid_feature_names[i] = f_names[i] + "_" + "mean"
mid_feature_names[i + n_feats] = f_names[i] + "_" + "std"
while (cur_p < N):
N1 = cur_p
N2 = cur_p + mt_win_ratio
if N2 > N:
N2 = N
cur_st_feats = st_features[i][N1:N2]
mt_features[i].append(numpy.mean(cur_st_feats))
mt_features[i + n_feats].append(numpy.std(cur_st_feats))
#mt_features[i+2*n_feats].append(numpy.std(cur_st_feats) / (numpy.mean(cur_st_feats)+0.00000010))
cur_p += mt_step_ratio
return numpy.array(mt_features), st_features, mid_feature_names
# TODO
def stFeatureSpeed(signal, fs, win, step):
signal = numpy.double(signal)
signal = signal / (2.0 ** 15)
DC = signal.mean()
MAX = (numpy.abs(signal)).max()
signal = (signal - DC) / MAX
# print (numpy.abs(signal)).max()
N = len(signal) # total number of signals
cur_p = 0
count_fr = 0
lowfreq = 133.33
linsc = 200/3.
logsc = 1.0711703
nlinfil = 13
nlogfil = 27
n_mfcc_feats = 13
nfil = nlinfil + nlogfil
nfft = win / 2
if fs < 8000:
nlogfil = 5
nfil = nlinfil + nlogfil
nfft = win / 2
# compute filter banks for mfcc:
[fbank, freqs] = mfccInitFilterBanks(fs, nfft, lowfreq, linsc, logsc, nlinfil, nlogfil)
n_time_spectral_feats = 8
n_harmonic_feats = 1
n_total_feats = n_time_spectral_feats + n_mfcc_feats + n_harmonic_feats
#st_features = numpy.array([], dtype=numpy.float64)
st_features = []
while (cur_p + win - 1 < N):
count_fr += 1
x = signal[cur_p:cur_p + win]
cur_p = cur_p + step
X = abs(fft(x))
X = X[0:nfft]
X = X / len(X)
Ex = 0.0
El = 0.0
X[0:4] = 0
# M = numpy.round(0.016 * fs) - 1
# R = numpy.correlate(frame, frame, mode='full')
st_features.append(stHarmonic(x, fs))
# for i in range(len(X)):
#if (i < (len(X) / 8)) and (i > (len(X)/40)):
# Ex += X[i]*X[i]
#El += X[i]*X[i]
# st_features.append(Ex / El)
# st_features.append(numpy.argmax(X))
# if curFV[n_time_spectral_feats+n_mfcc_feats+1]>0:
# print curFV[n_time_spectral_feats+n_mfcc_feats], curFV[n_time_spectral_feats+n_mfcc_feats+1]
return numpy.array(st_features)
""" Feature Extraction Wrappers
- The first two feature extraction wrappers are used to extract long-term averaged
audio features for a list of WAV files stored in a given category.
It is important to note that, one single feature is extracted per WAV file (not the whole sequence of feature vectors)
"""
def dirWavFeatureExtraction(dirName, mt_win, mt_step, st_win, st_step,
compute_beat=False):
"""
This function extracts the mid-term features of the WAVE files of a particular folder.
The resulting feature vector is extracted by long-term averaging the mid-term features.
Therefore ONE FEATURE VECTOR is extracted for each WAV file.
ARGUMENTS:
- dirName: the path of the WAVE directory
- mt_win, mt_step: mid-term window and step (in seconds)
- st_win, st_step: short-term window and step (in seconds)
"""
all_mt_feats = numpy.array([])
process_times = []
types = ('*.wav', '*.aif', '*.aiff', '*.mp3', '*.au', '*.ogg')
wav_file_list = []
for files in types:
wav_file_list.extend(glob.glob(os.path.join(dirName, files)))
wav_file_list = sorted(wav_file_list)
wav_file_list2, mt_feature_names = [], []
for i, wavFile in enumerate(wav_file_list):
print("Analyzing file {0:d} of "
"{1:d}: {2:s}".format(i+1,
len(wav_file_list),
wavFile))
if os.stat(wavFile).st_size == 0:
print(" (EMPTY FILE -- SKIPPING)")
continue
[fs, x] = audioBasicIO.readAudioFile(wavFile)
if isinstance(x, int):
continue
t1 = time.clock()
x = audioBasicIO.stereo2mono(x)
if x.shape[0]<float(fs)/5:
print(" (AUDIO FILE TOO SMALL - SKIPPING)")
continue
wav_file_list2.append(wavFile)
if compute_beat:
[mt_term_feats, st_features, mt_feature_names] = \
mtFeatureExtraction(x, fs, round(mt_win * fs),
round(mt_step * fs),
round(fs * st_win), round(fs * st_step))
[beat, beat_conf] = beatExtraction(st_features, st_step)
else:
[mt_term_feats, _, mt_feature_names] = \
mtFeatureExtraction(x, fs, round(mt_win * fs),
round(mt_step * fs),
round(fs * st_win), round(fs * st_step))
mt_term_feats = numpy.transpose(mt_term_feats)
mt_term_feats = mt_term_feats.mean(axis=0)
# long term averaging of mid-term statistics
if (not numpy.isnan(mt_term_feats).any()) and \
(not numpy.isinf(mt_term_feats).any()):
if compute_beat:
mt_term_feats = numpy.append(mt_term_feats, beat)
mt_term_feats = numpy.append(mt_term_feats, beat_conf)
if len(all_mt_feats) == 0:
# append feature vector
all_mt_feats = mt_term_feats
else:
all_mt_feats = numpy.vstack((all_mt_feats, mt_term_feats))
t2 = time.clock()
duration = float(len(x)) / fs
process_times.append((t2 - t1) / duration)
if len(process_times) > 0:
print("Feature extraction complexity ratio: "
"{0:.1f} x realtime".format((1.0 / numpy.mean(numpy.array(process_times)))))
return (all_mt_feats, wav_file_list2, mt_feature_names)
def dirsWavFeatureExtraction(dirNames, mt_win, mt_step, st_win, st_step, compute_beat=False):
'''
Same as dirWavFeatureExtraction, but instead of a single dir it
takes a list of paths as input and returns a list of feature matrices.
EXAMPLE:
[features, classNames] =
a.dirsWavFeatureExtraction(['audioData/classSegmentsRec/noise','audioData/classSegmentsRec/speech',
'audioData/classSegmentsRec/brush-teeth','audioData/classSegmentsRec/shower'], 1, 1, 0.02, 0.02);
It can be used during the training process of a classification model ,
in order to get feature matrices from various audio classes (each stored in a seperate path)
'''
# feature extraction for each class:
features = []
classNames = []
fileNames = []
for i, d in enumerate(dirNames):
[f, fn, feature_names] = dirWavFeatureExtraction(d, mt_win, mt_step,
st_win, st_step,
compute_beat=compute_beat)
if f.shape[0] > 0:
# if at least one audio file has been found in the provided folder:
features.append(f)
fileNames.append(fn)
if d[-1] == os.sep:
classNames.append(d.split(os.sep)[-2])
else:
classNames.append(d.split(os.sep)[-1])
return features, classNames, fileNames
def dirWavFeatureExtractionNoAveraging(dirName, mt_win, mt_step, st_win, st_step):
"""
This function extracts the mid-term features of the WAVE
files of a particular folder without averaging each file.
ARGUMENTS:
- dirName: the path of the WAVE directory
- mt_win, mt_step: mid-term window and step (in seconds)
- st_win, st_step: short-term window and step (in seconds)
RETURNS:
- X: A feature matrix
- Y: A matrix of file labels
- filenames:
"""
all_mt_feats = numpy.array([])
signal_idx = numpy.array([])
process_times = []
types = ('*.wav', '*.aif', '*.aiff', '*.ogg')
wav_file_list = []
for files in types:
wav_file_list.extend(glob.glob(os.path.join(dirName, files)))
wav_file_list = sorted(wav_file_list)
for i, wavFile in enumerate(wav_file_list):
[fs, x] = audioBasicIO.readAudioFile(wavFile)
if isinstance(x, int):
continue
x = audioBasicIO.stereo2mono(x)
[mt_term_feats, _, _] = mtFeatureExtraction(x, fs, round(mt_win * fs),
round(mt_step * fs),
round(fs * st_win),
round(fs * st_step))
mt_term_feats = numpy.transpose(mt_term_feats)
if len(all_mt_feats) == 0: # append feature vector
all_mt_feats = mt_term_feats
signal_idx = numpy.zeros((mt_term_feats.shape[0], ))
else:
all_mt_feats = numpy.vstack((all_mt_feats, mt_term_feats))
signal_idx = numpy.append(signal_idx, i * numpy.ones((mt_term_feats.shape[0], )))
return (all_mt_feats, signal_idx, wav_file_list)
# The following two feature extraction wrappers extract features for given audio files, however
# NO LONG-TERM AVERAGING is performed. Therefore, the output for each audio file is NOT A SINGLE FEATURE VECTOR
# but a whole feature matrix.
#
# Also, another difference between the following two wrappers and the previous is that they NO LONG-TERM AVERAGING IS PERFORMED.
# In other words, the WAV files in these functions are not used as uniform samples that need to be averaged but as sequences
def mtFeatureExtractionToFile(fileName, midTermSize, midTermStep, shortTermSize, shortTermStep, outPutFile,
storeStFeatures=False, storeToCSV=False, PLOT=False):
"""
This function is used as a wrapper to:
a) read the content of a WAV file
b) perform mid-term feature extraction on that signal
c) write the mid-term feature sequences to a numpy file
"""
[fs, x] = audioBasicIO.readAudioFile(fileName)
x = audioBasicIO.stereo2mono(x)
if storeStFeatures:
[mtF, stF, _] = mtFeatureExtraction(x, fs,
round(fs * midTermSize),
round(fs * midTermStep),
round(fs * shortTermSize),
round(fs * shortTermStep))
else:
[mtF, _, _] = mtFeatureExtraction(x, fs, round(fs*midTermSize),
round(fs * midTermStep),
round(fs * shortTermSize),
round(fs * shortTermStep))
# save mt features to numpy file
numpy.save(outPutFile, mtF)
if PLOT:
print("Mid-term numpy file: " + outPutFile + ".npy saved")
if storeToCSV:
numpy.savetxt(outPutFile+".csv", mtF.T, delimiter=",")
if PLOT:
print("Mid-term CSV file: " + outPutFile + ".csv saved")
if storeStFeatures:
# save st features to numpy file
numpy.save(outPutFile+"_st", stF)
if PLOT:
print("Short-term numpy file: " + outPutFile + "_st.npy saved")
if storeToCSV:
# store st features to CSV file
numpy.savetxt(outPutFile+"_st.csv", stF.T, delimiter=",")
if PLOT:
print("Short-term CSV file: " + outPutFile + "_st.csv saved")
def mtFeatureExtractionToFileDir(dirName, midTermSize, midTermStep,
shortTermSize, shortTermStep,
storeStFeatures=False, storeToCSV=False,
PLOT=False):
types = (dirName + os.sep + '*.wav', )
filesToProcess = []
for files in types:
filesToProcess.extend(glob.glob(files))
for f in filesToProcess:
outPath = f
mtFeatureExtractionToFile(f, midTermSize, midTermStep, shortTermSize,
shortTermStep, outPath, storeStFeatures,
storeToCSV, PLOT)