forked from usamaehsan/cog-controlnet-1.1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradio_lineart.py
81 lines (59 loc) · 3.21 KB
/
gradio_lineart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from share import *
import config
import cv2
import einops
import numpy as np
import torch
import random
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.lineart import LineartDetector
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
preprocessor = None
# model_name = 'control_v11p_sd15_lineart'
# model = create_model(f'./models/{model_name}.yaml').cpu()
# model.load_state_dict(load_state_dict('./models/v1-5-pruned.ckpt', location='cuda'), strict=False)
# model.load_state_dict(load_state_dict(f'./models/{model_name}.pth', location='cuda'), strict=False)
# model = model.cuda()
# ddim_sampler = DDIMSampler(model)
def process(model, ddim_sampler, det, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta):
global preprocessor
if 'Lineart' in det:
if not isinstance(preprocessor, LineartDetector):
preprocessor = LineartDetector()
with torch.no_grad():
input_image = HWC3(input_image)
if det == 'None':
detected_map = input_image.copy()
else:
detected_map = preprocessor(resize_image(input_image, detect_resolution), coarse='Coarse' in det)
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = 1.0 - torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)
# Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results