forked from usamaehsan/cog-controlnet-1.1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradio_normalbae.py
108 lines (81 loc) · 4.91 KB
/
gradio_normalbae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from share import *
import config
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.normalbae import NormalBaeDetector
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
preprocessor = None
def process(model, ddim_sampler, det, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta):
global preprocessor
if det == 'Normal_BAE':
if not isinstance(preprocessor, NormalBaeDetector):
preprocessor = NormalBaeDetector()
with torch.no_grad():
input_image = HWC3(input_image)
if det == 'None':
detected_map = input_image.copy()
else:
detected_map = preprocessor(resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)
# Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
# block = gr.Blocks().queue()
# with block:
# with gr.Row():
# gr.Markdown("## Control Stable Diffusion with Normal Maps")
# with gr.Row():
# with gr.Column():
# input_image = gr.Image(source='upload', type="numpy")
# prompt = gr.Textbox(label="Prompt")
# run_button = gr.Button(label="Run")
# num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
# seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=12345)
# det = gr.Radio(choices=["Normal_BAE", "None"], type="value", value="Normal_BAE", label="Preprocessor")
# with gr.Accordion("Advanced options", open=False):
# image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
# strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
# guess_mode = gr.Checkbox(label='Guess Mode', value=False)
# detect_resolution = gr.Slider(label="Preprocessor Resolution", minimum=128, maximum=1024, value=512, step=1)
# ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
# scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
# eta = gr.Slider(label="DDIM ETA", minimum=0.0, maximum=1.0, value=1.0, step=0.01)
# a_prompt = gr.Textbox(label="Added Prompt", value='best quality')
# n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
# with gr.Column():
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
# ips = [det, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta]
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
# block.launch(server_name='0.0.0.0')